

Copyright © 1978 by Analog Devices, Inc. Printed in U.S.A.

All rights reserved. This publication, or parts thereof, must not be reproduced in any form without permission of the copyright owner.

Information furnished by Analog Devices, Inc., is believed to be accurate and reliable. However no responsibility is assumed by Analog Devices, Inc., for its use.

Analog Devices, Inc., makes no representation that the interconnection of its circuits as described herein will not intringe on existing or future patent rights, nor do the descriptions contained herein imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith.

Specifications and prices are subject to change without notice.

We are pleased to acknowledge the invaluable contributions of James Williams and Barrie Gilbert, who have contributed to the design, testing, and/or documentation of many of these circuits.

Edited by D. H. Sheingold.

PREFACE

Closeted in Product Guides between "Operational Amplifiers" and "Data Converters" is usually a section called "Special" or "Function" circuits. Within this eclectic family of devices, there lives the analog multiplier. Multipliers are perhaps the most generally useful member of the group, but they are scarcely ever recognized as solutions-in-waiting, as op amps have become.

Ask an engineer what can be done with operational amplifiers or with systems using data converters, and the response will be lengthy, fluid, and enthusiastic. The same query with regard to multipliers is liable to yield (particularly in the worst case) a blank stare, a long (thoughtful) pause, and the barely audible response . . . "multiply (?)" Others may mention general cases, like amplitude modulators or function synthesis, but the detailed, inspired torrents of applications that discussions of op amps evoke simply aren't there.

Why not?

Two reasons suggest themselves. First, multipliers are admittedly not as broadly applicable as are op amps — which dominate the analog world because of the ability of even the neophyte designer (fresh from an undergraduate op-amp course) to see their relevance and immediate applicability to measurement and control problems. With the advent of digital computers and minicomputers, digital instruments, and microprocessors, data converters have assumed a readily identifiable functionality. Multipliers — and other analog functional components — conceived originally to perform circumscribed tasks in analog computing, simply appear to have been born without charisma.

Second, high-performance, easy-to-implement, low-cost multipliers (on-a-chip) have only been available for a few years. Op amps and data converters have been mature products for much longer. It's interesting to note that even the now-ubiquitous op amp was around for quite a while before its capabilities were widely recognized and exploited. It might also be noted that the market for data converters wasn't just created, it was demanded by the digital revolution of the '60's, as the only rational way of interfacing digital systems to the Real (analog) World.

The availability of good multipliers in profusion evokes the need for applications literature. The present effort complements earlier publications¹ in documenting the spreading uses of analog multiplication, but there is a difference of approach. Here, the bulk of the effort has gone into the section on Applications, although there is some review of basics and generalities. The objective here is to create awareness in the reader that the analog multiplier is a universally applicable problem solver. That is, multipliers don't "just multiply" in the same way the op amps don't "just amplify". These devices make possible analog solutions to analog problems with simplicity, sophistication, and low cost.

The depth of detail in the treatment of many of the applications is intended to attract the engineer-at-the bench, who is painfully aware of the gulf between concepts and circuits-thatwork in the cold, cruel world. Those who are charged (or will be) with designing a production instrument, a test fixture, or a fully instrumented system, are the intended beneficiaries of this book. No reader can fail to be impressed by the fact that, in many of the applications, the multiplying function, which is the key to performing the overall function of the system, comprises but a small part of the overall circuit; there's plenty of room for the reader to exercise his own engineering creativity and judgment over the actual implementation of the rest of it. We hope, then, that the present publication will serve both novice and veteran as a generator of ideas.

"... Be fruitful and multiply ..." (Genesis 1-22)

CONTENTS

PREFACE	i
CONTENTS	ii
MULTIPLIERS – SOME BASICS	1
MULTIPLICATION	2
DIVISION AND ROOTING	2
POLARITY	3
SPECIAL MULTIPLICATION-DIVISION FUNCTIONS	3
SCALING	3
BRIEF DEFINITIONS	4
APPLICATIONS	
INSTRUMENTATION FUNCTIONS	5
WATTMETERS	5
WATT-HOUR METER	6
FLOWMETER	7
DENSITOMETER	9
PHASE MEASUREMENT AND PHASE-SENSITIVE DETECTION	10
ACOUSTIC THERMOMETER	11
SIGNAL GENERATORS AND FILTERS	13
WIEN-BRIDGE OSCILLATOR	13
VOLTAGE-CONTROLLED SINE-WAVE OSCILLATOR	14
CRYSTAL OSCILLATOR WITH AMPLITUDE-MODULATED OUTPUT	14
LOW-DISTORTION OSCILLATOR	16
VOLTAGE-CONTROLLED LOW-PASS FILTER	17
DERIVATIVE-CONTROLLED LOW-PASS FILTER	17
MISCELLANEOUS MULTIPLIER APPLICATIONS	19
% DEVIATION - RATIO COMPUTER	19
COMPONENT SORTER	19
BRIDGE LINEARIZATION	21

HIGH-PERFORMANCE RMS-TO-DC CONVERSION CIRCUIT	21
FREQUENCY DOUBLING	22
FILTER TESTER USING WIDEBAND MULTIPLIER	24
PERFORMANCE AUGMENTATION	25
INCREASED ACCURACY WITH MULTIPLYING DAC'S	25
CURRENT OUTPUTS	27
CURRENT BOOSTING	27
AUDIO POWER BOOSTER	27
HIGH-VOLTAGE BOOSTER	29
MULTIPLIER MEDLEY	31
DIFFERENCE OF THE SQUARES	31
AUTOMATIC LEVEL CONTROL	32
AUTOMATIC GAIN CONTROL	32
AMPLITUDE MODULATOR	32
VOLTAGE-CONTROLLED AMPLIFIER	33
POLYNOMIALS – POWER SERIES	33
ARBITRARY (NON-INTEGRAL) POWERS	33
SINE OF A VOLTAGE	34
SQUARE-ROOT OF THE SUM OF SQUARES (VECTOR SUM)	35
VECTOR OPERATIONS – POLAR-TO-RECTANGULAR	35
CARE AND FEEDING AND A LITTLE THEORY	-37
BRIEF BIBLIOGRAPHY	40
TECHNICAL DATA	v

MULTIPLIERS -SOME BASICS

In its simplest conceptual form, an analog multiplier is a three-terminal (plus common) device that will perform the mathematical operations of multiplication and division, by appropriate terminal connections. Figure 1 shows the conceptual block representing a multiplier.

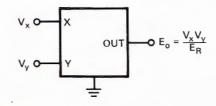
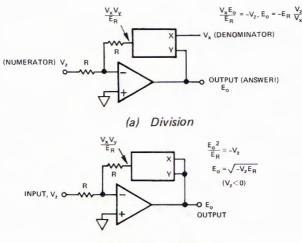



Figure 1. Conceptual multiplier. E_R is a dimensional scale constant, usually 10V

For given values of the inputs, V_x and V_y , the output will be $V_x V_y / E_R$, where E_R is a dimensional constant, usually equal to 10 volts. Since squaring is simply a multiplication of an input by itself, it follows that tying X and Y together will yield a squared term at the output, i.e., if $V_x = V_y = V_{in}$, the output will be V_{in}^2 / E_R .

Division and square-rooting, being inverses of the above operations, can be implemented by placing the multiplier in the feedback path of an operational amplifier, as Figure 2 shows. Since most multipliers use an operational amplifier as the output circuit, a set of simple external jumper connections permit the same (complete) device to perform in any of the four modes.

(b) Square Root

Figure 2. Feedback connection of conceptual multiplier for division and square-rooting

Of what use is such a device? Multipliers serve well in a number of areas including analog computing (e.g., ratio determination, functions, rms conversion), signal processing (amplitude modulation, frequency multiplication, servomechanisms), measurement (wattmeters

1

and phase-sensitive detectors), and in a miscellany of useful functions (linearization of transducers, percentage computing, bridge linearizing). The Table of Contents gives a reasonably full list at a glance.

The designer, be he battle-scarred veteran, or astute neophyte, well-alerted to the difficulties of applying theoretical models to Real Solutions, will wonder what circuit contortions are required to transform the black boxes on the diagrams into Real Multipliers. Happily, very little. High performance multipliers, such as the AD532 and AD534, are completely self-contained IC's, laser-trimmed at the factory, whose actual implementation schematic is joyfully close to the theoretical. In fact, in some ways even better. The AD535 is very similar to the AD534, only it is trimmed, tested and specified in the divide mode.

MULTIPLICATION

Practical use of an AD534 in the multiply mode is shown in Figure 3. No trims, capacitors, or other appendages are required. In addition, the AD534 is even more versatile than the theoretical version introduced in Figure 1, since all the inputs are differential (including the feedback circuit). This allows such multipliers to be used in systems having grounds of less than impeccable character and permits direct subtraction, where needed, as well as permitting other terms (additive constants or variables) to be included in the transfer function.

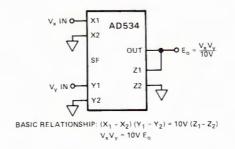


Figure 3. Signal connections of an actual multiplier

Many of the other multipliers in our catalog do require a set of external trims, for scale factor and/or output/input offsets, but offer compensating advantages, such as extra-low cost, wide bandwidth, an active division terminal (for YZ/X functions), or the like. Even pre-trimmed units can be externally trimmed where the application calls for optimization "to a gnat's eyelash."

DIVISION AND ROOTING

Division with the AD534 or AD535 is configured with equal ease (Figure 4). In division circuits, where the multiplying operation comprises the feedback path, only one polarity of denominator is permitted, since reversal of the denominator reverses the sense of the feedback loop. In addition, the closed-loop gain is inversely proportional to the denominator voltage (approaching "infinity" at zero input). This – in general – causes increased noise, error, and output lag, for small values of denominator, in inverse proportion to V_z .

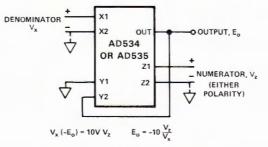


Figure 4. Connection of the AD534/AD535 for division

The AD534/AD535 square-roots easily, but requires a diode - connected as shown in Figure 5 - to prevent latchup, which can occur in such configurations if the input were to change polarity, even momentarily. As shown in Figure 5, the device is set up for the positive square root. The output may be made negative by reversing the diode polarity and inter-

changing the X input leads. Since the signal input is differential, all combinations of input and output polarities can be realized.

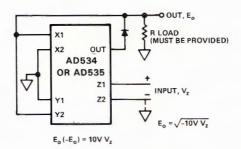


Figure 5. Connection of the AD534/AD535 for square rooting

If the output circuit does not provide a resistive load to ground, one should be connected (about $10k\Omega$) to maintain diode conduction. For critical applications, the Z offset can be adjusted for greater accuracy below 1V.

POLARITY

The AD534 is a 4-quadrant multiplier. This means that, for its two inputs, there are four possible permutations of polarity, and the output product will always be of the correct polarity. The inputs can be mapped on the four quadrants of an X-Y plane, as shown in Figure 6 (hence the term "4-quadrant"). Some multipliers will operate in only one or two quadrants. A two-quadrant multiplier will accept a \pm signal at one input and a unipolar signal at the other; in the single-quadrant case, the inputs are restricted to a single polarity for each input.

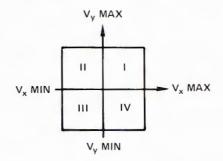


Figure 6. Input plane showing multiplication quadrants

Dividers are either two-quadrant or one-quadrant devices, because, as noted earlier, the denominator may have only one polarity. However, in the case of devices having the extra degrees of freedom provided by differential inputs, the X input may be of either polarity, as long as it is connected to X_1 and X_2 in the proper sense.

SPECIAL MULTIPLICATION-DIVISION FUNCTIONS

The 436 is an example of a specialized, dedicated, high-performance, two-quadrant divider only. The 433 and 434 are examples of three-input single-quadrant high-accuracy multiplier dividers (YZ/X); the 433 has the further distinction that the exponent of the ratio (Z/X) can be adjusted from 1/5 to 5 i.e., $Y(Z/X)^m$. In the AD531 IC, the internal reference current may be manipulated externally, permitting a form of three-variable multiplier-divider, in which the scale constant can be varied.

SCALING

As mentioned earlier, multipliers are almost always designed (but not necessarily *constrained*) to have a dimensional scale constant, E_R , of 10V. This permits either input to have any value in the 10V full-scale range, without causing the output to exceed 10V. For applications in which the maximum range of the inputs is substantially less than 10V, or if the multiplier is used for division and the numerator can exceed the denominator, it is helpful to use a smaller value of E_R . This can be done with the AD534, the AD531, the 433, and the 434.

BRIEF DEFINITIONS²

The most obvious specification of importance is *accuracy*, which may be defined in terms of the *total error* of the multiplier at room temperature and constant nominal supply voltage. Such errors include input and output dc imperfections, plus nonlinearity, plus feedthrough. *Temperature dependence* and *supply variation* effects are specified separately.

Scale Factor The scale-factor error is the difference between the average scale factor and the ideal scale factor of $(10V)^{-1}$. It is expressed in % of the output signal and can be trimmed for critical applications. Temperature dependence is specified.

Output Offset refers to the offset voltage at the output-amplifier stage. This is usually minimized at manufacture and can be trimmed where high accuracy is desired. Remember that the output offset will drift with temperature.

Linearity error, or *nonlinearity*, is the maximum difference between actual and theoretical output, for all pairs of input values, expressed as a percentage of full scale, with all other dc errors nulled, i.e., the irreducible minimum error. It is usually expressed in terms of X and Y nonlinearity, with the named input swinging over its full-scale range, and the other input at 10V. If the user recognizes that linearity errors are usually largest at large input values, improvement in predicted linearity can be gained, for small inputs, using the approximate non-linearity equation: $f(X,Y) = |V_X|e_x + |V_y|e_y$, where e_x and e_y are the specified linearity errors, and V_x and V_y are the maximum respective input signal ranges.

X or Y *Feedthrough* is the signal at the output for any value of X or Y input when the other input is zero. It has two components, a linear one corresponding to an *offset* at the zero input, which may be trimmed out (but can drift), and a nonlinear one which is irreducible. Feedthrough is usually specified at one frequency (50Hz) for a 20V p-p sinewave input and increases with frequency.

Dynamic parameters include *small-signal bandwidth*, *full-power response*, *slew(ing) rate*, *small-signal amplitude error*, and *settling time*. These terms should be familiar to all but the most dc-minded op-amp users. *Small-signal bandwidth* is the frequency at which the output is down 3dB from its low-frequency value (i.e., by about 30%), for a nominal output amplitude of 10% of full scale. *Full-power response* is the maximum frequency at which the multiplier can produce full-scale voltage into its rated output load without noticeable distortion. *Slew(ing) rate* is the maximum rate of change of output voltage for a large input-signal step change. *Small-signal amplitude error* is defined in relation to the frequency at which the amplitude response, or scale factor, is in error by 1%, measured with a small (10% of full scale) signal. *Settling time* (for a $\pm 10V$ step, multiplied by 10V), is the total length of time the output takes to respond to an input change and stay within some specified error band of its final value. Settling time cannot be accurately predicted from any other dynamic specifications; it is specified in terms of a prescribed measurement. *Vector error* is the most-sensitive measure of dynamic error. It is usually specified in terms of the frequency at which a phase error of 0.01 radian (0.57°) occurs.

In variable-transconductance multipliers, the most-significant lags occur in the output stage, with considerably smaller differential lags between the inputs. Thus, they are well-suited to such applications as power measurement, where input phase may be important, but the output is usually filtered.

²Complete definitions and tests can be found in the NONLINEAR CIRCUITS HANDBOOK.

APPLICATIONS

INSTRUMENTATION FUNCTIONS

WATTMETERS

Multipliers are well suited for wattmeter designs. Figure 7 shows a simple arrangement that measures the power output of an audio amplifier into a load. The $18k\Omega$ - $10k\Omega$ divider scales the amplifier's output voltage swing to a maximum of 10V (from a maximum of 28V, representing about 100W peak power), well within the AD534's input range. The voltage is measured across the load, with the tap of the divider connected to X₁ and the lower end of the load to X₂. The power dissipated in the divider is negligible (1/3500 of the power in the load).

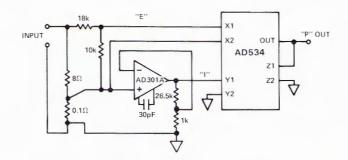


Figure 7. Wattmeter measures audio-amplifier output power into dummy load

Current is measured with a 4-terminal, 0.1Ω shunt. The 0.1Ω "steals" only about 1/80 of the voltage coming out of the amplifier, but the differential voltage measurement ensures that even this small difference between the amplifier output and the load voltage does not affect the measurement of the power dissipated in the load. The AD301A op amp is used to amplify the signal up to manageable levels and to present it to the multiplier's Y input. The output of the multiplier is $(X_1 - X_2) (Y)/10$, which is proportional to the product of load voltage and current, hence the power dissipated in the load.

In practice, the output of the amplifier under test should be connected to the input of the circuit through number 16 wire. Connections should be made with soldered lugs to minimize contact resistance, and the load should be a high-wattage-capacity, non-reactive 8Ω resistor. A number of vendors supply 8Ω , 10W resistors, encased in finned, integral heat sinks, which may be bolted to aluminum plates for optimum dissipation characteristics. An 8Ω loud-speaker could be used as a load, but the cost of the necessary anechoic chamber or concert hall (to avoid loss of friends in the laboratory – or one's hearing) should be considered. This system can be used to test instantaneous amplifier power into a resistive load as a function of frequency and waveform. With an averaging output, it will test average power. With a loudspeaker, it will determine how much power is delivered to a real load.

Some interesting characteristics of incandescent lamps can be observed if the 8Ω load is

replaced by a light bulb and a transistor switch. This configuration was used to determine the optimum price-performance breakpoint in a computer-controlled scoreboard. Trace A of Figure 8 is the bulb voltage, trace B is the AD301A "current" amplifier output, and trace C is the AD534 "power" output.

Figure 8. Turn-on power of cold incandescent lamp

The waveforms show that the bulb pulls almost 2.5 times the power at turn-on as it does in the steady state. In Figure 9, the bulb has been pre-biased just below the illumination level by connecting a "leak" resistor across the switch. This pre-heating of the filament dramatically reduces the turn-on power requirements, which results in an increase of bulb life. In addition, the transient demand on the power supply (which also runs the computer) is reduced, eliminating logic-deranging spikes.

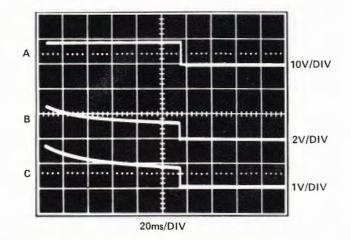


Figure 9. Turn-on power of incadescent lamp from standby

For three-phase wattage measurements, voltages proportional to the voltages and currents in each phase are multiplied in each of three analog multipliers and summed in an operational amplifier.³

WATT-HOUR METER

A power-measuring circuit similar to that used in Figure 8 is employed in the watt-hour meter circuit of Figure 10. An isolation amplifier allows the multiplier output to be measured without safety hazard. The Model 284J isolation amplifier is chosen for economy and because it furnishes a fully floating dual supply, which drives the active circuitry. The output of the 284J represents the instantaneous power delivered to the load, which is a "40-watt" light bulb.

³ "Detection and Measurement of Three-Phase Power, Reactive Power, and Power Factor, with Minimum Time Delay," by I. R. Smith and L. A. Snyder, *Proc. IEEE*, November, 1970, p. 1866.

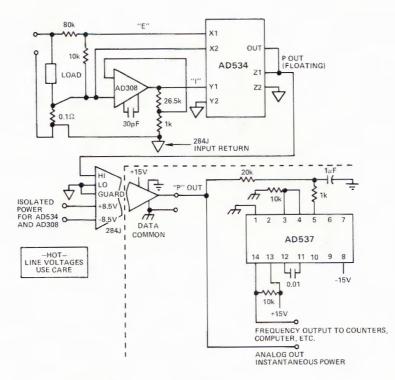


Figure 10. Line wattmeter - watt-hour meter

To obtain the watt-hour function, this signal is averaged and converted to frequency by an AD537 V/f converter. The pulse repetition rate of the AD537 will vary in direct proportion to the average power consumed by the load. A counter will determine the total energy consumed over the desired interval.

Differing sensitivities (watt-minutes, watt-milliseconds, etc.) can be obtained by altering the scale factor of the AD537, the gain to the 284, or the count ratio on the AD537 output.

If an analog output is desired, an analog integrator may be successfully employed within the limitations of the components chosen. Accuracies to within $\pm 1\%$ or better are achievable with time constants of 100ks, but 1000s is perhaps a more practical limit.

FLOWMETER

The accurate measurement of the flow rate of liquids flowing at slow speeds presents a difficult transduction problem. A flow transducer of wide dynamic range at low flow rates may be configured with the aid of analog multipliers and a pair of well-matched, linear-responding temperature sensors.

The theory behind the flowmeter can be understood by referring to Figure 11. The conceptual transducer is composed of a section of tubing, a heater dissipating a constant amount of power into the tubing, and two temperature sensors. The entire assembly is wrapped in Fiberglas to limit and smooth the thermal loss rate.

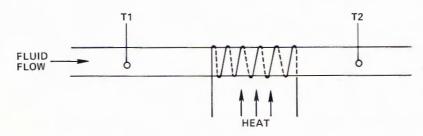


Figure 11. Flowmeter principle

With no flow through the pipe, the power is dissipated into the medium in a symmetrical manner. Under these conditions, the temperature sensors, T1 and T2, will indicate a net temperature difference of zero. As flow begins, T1 will continue to assume the value of the upstream temperature, but T2 will be influenced by the power dissipated into the moving stream.

The temperature difference between T_1 and T_2 will be solely a function of flow rate, so long as the specific heat of the fluid remains constant. Changes in stream or ambient temperature will be effectively offset by T_1 , which serves as a baseline for the measurement.

It is worth noting that the flowmeter is bidirectional. If the flow reverses direction, the measurement is still valid. By detecting which sensor is hotter, and by how much, the transducer will indicate what the flow rate is and which way it is going.

A working version of the theoretical model is shown in Figure 12. The transducer comprises a $\frac{1}{4}$ " inside-diameter stainless steel tube which has been turned down and force fit through the core of a standard 20W ceramic-coated resistor. Silicon grease is used to facilitate thermal transfer between the resistor and the tubing. At each end of the tube, stainless-steel mesh has been inserted to break up the laminar flow of the liquid and promote mixing. The requirement for linear, matched temperature sensors is met with distinction by the AD590 current-output temperature transducers.

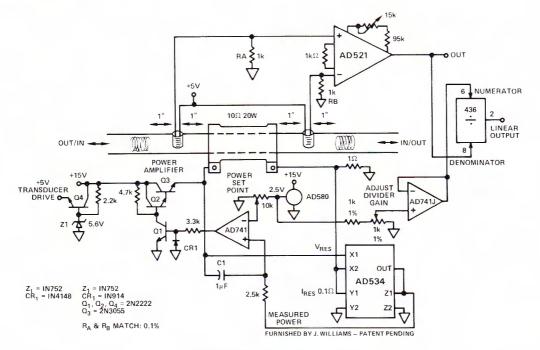


Figure 12. Flowmeter circuit

In theory, the power dissipated by the resistor can be held constant by driving it with a fixed voltage. In practice, changes in the resistor's value over time and temperature (remember, the resistor is being used as a heater, so the temperature rise will be quite substantial) mandate a requirement for a constant *wattage* regulator. The regulator determines the V• I product at the load (in similar manner to the wattmeters described in Figures 7 and 10), compares it to a dc set-point reference, and feeds the amplified difference back to the load.

At the wattmeter, X measures the voltage, Y measures the current in the 1Ω shunt, and the output of the AD534 therefore measures the power. The AD741 is used as the servo amplifier, and an AD580 bandgap reference provides the set point, which is compared with the power measured by the AD534. Boosted power to heat the resistor is provided via Q1, which provides voltage gain, and the Darlington pair, Q2-Q3, which provide current boost. Since Q1 inverts the AD741's output, feedback is returned to the "+" input terminal. C1 provides dynamic feedback for stability and noise reduction. The D1-Q4 combination provides the 5V nominal drive potential to the AD590 temperature transducers.

The $1\mu A/K$ current output of the AD590's is converted to voltage by R_A and R_B , and the difference is amplified by the AD521 instrumentation amplifier, set for a gain of 100V/V.

Figure 13 is a plot of flow rate vs. the output voltage of the AD521. The function is hyperbolic (flow *period* is measured linearly) and may be converted to a linear measure of the flow rate by performing a division (Const/x) to obtain the reciprocal. The function could be

performed in a divider-connected general-purpose multiplier, like the AD532 or the AD534, but for wider dynamic range and better performance at low-level outputs from the AD521, a high-accuracy dedicated divider, such as the 436, can be used, as shown in the figure.

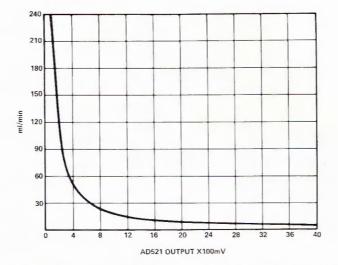


Figure 13. Flowrate vs. output voltage of the AD521, showing inverse relationship

The output of the divider can be calibrated to read (for example) 10V at full scale. Other scale factors are possible by changing the gain of the AD521 or of the divider. The time response of the flowmeter is slow - of the order of 10-15 seconds. In most low flow-rate applications, this is not a severe penalty, unless the flow rate changes quickly over a wide dynamic range.

DENSITOMETER

In this application, a mathematical function that is not easy to achieve with a single multiplier is needed for linearizing. The problem has been resolved by the use of a Model 433 multifunction component, which embodies the mathematical relationship $Y(Z/X)^m$. In Figure 14, the density of a liquid moving in a pipe is computed by measuring the difference between velocity-produced pressure and static pressure in the pipe. This output is nonlinearly related to density, and the 433 performs the linearization.

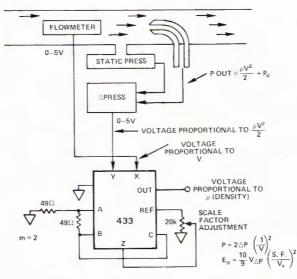


Figure 14. Block diagram of densitometer

The static pressure in the pipe is taken through a simple orifice in the pipe wall. The velocityproduced pressure is generated by a Pitot tube. The pressure produced in the Pitot tube is governed by the relationship,

$$P_{out} = \rho V^2 / 2 + P_0$$

The differential pressure at the output of the pressure sensor is:

$$\Delta P = P_{out} - P_o = \frac{\rho V^2}{2}$$

Therefore, the density, ρ , is

$$\rho = 2 \triangle \mathbf{P} \left(\frac{1}{\mathbf{V}}\right)^2$$

If $\triangle P$ and V are measured electrically, the analogous voltage corresponding to ρ can be computed electrically using a 433, with Y analogous to $\triangle P$, X analogous to V, Z a scale constant, and m = 2.

The choice of flowmeter and pressure sensor depends upon the ranges of the variables and the conditions of measurement. In the case of the actual device illustrated here, a high-level-output LX-series pressure transducer was used, together with a flowmeter consisting of a paddle wheel, which interrupted a light beam from a light-emitting diode, and a frequency-to-analog converter.

PHASE MEASUREMENT AND PHASE-SENSITIVE DETECTION

Although there has been a vast increase in the use of square waves and pulses, in their various degrees of freedom (amplitude, frequency, phase, duty cycle, code), for conveying information, sine waves are still widely used. The analog multiplier is a simple and useful way of recovering information from sine waves.

Figure 15a shows the AD532 connected as a phasemeter. At a given frequency, if the phase reference signal is applied to one input of the multiplier, and the phase-shifted signal is applied to the other input, and a further 90° phase shift is introduced between the inputs, then the average value of the product is proportional to the sine of the phase angle. Since the sine is approximately equal to the angle (in radians) for small angles, this circuit provides a good linear measure of phase for small angles (within 0.0025 radian for angles up to 0.25 radian, or 14°), and a sinusoidal measure for angles between $\pm 90^{\circ}$.

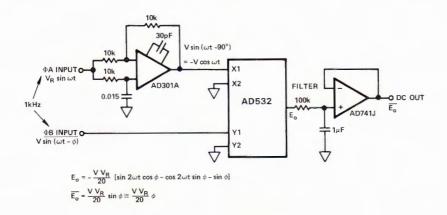


Figure 15a. Phasemeter for sinusoidal signals

Figure 15b shows a phase-sensitive detector, a "soft" rectifier for sinusoidal signals, with positive output if the signal is in phase with the reference (about 0°) and negative output if the signal is out of phase (about 180°). The average value of the output is

$$\overline{E_0} = \frac{1}{20} V \cdot V_R \cos \phi$$

Thus, the output is pretty much independent of small phase variations around 0° to 180° (2.5° corresponds to 0.1%, 8° corresponds to 1%).

Incidentally, the form of the equation indicates that the same configuration will also serve as a computation of "real power" in an ac system, while the configuration of 15a will compute reactive power.

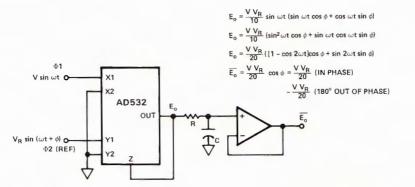


Figure 15b. Phase-sensitive detector for sinusoidal signals. Measures magnitude of in-phase or 180° -out-of-phase input with proper polarity, depending on phase relationship to reference, with less than 1% nominal error for phase shift between signal and reference of less than 0.14 radian (8°)

Figure 15c shows a phase-sensitive detector in which the reference signal is a square wave. If the signal and the reference are in phase, the output is positive; if they are 180° out-of-phase, the output will be negative. The output magnitude will be $\frac{1}{10}$ V · V_R |sin ωt |, and the average output will be the ac average $0.636 V_{in} V_{ref}$ for sine waves. The circuit will tolerate small phase shifts between the signal and the reference.

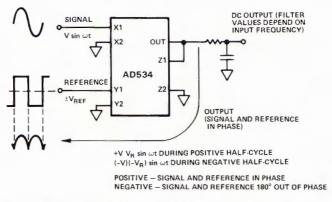


Figure 15c. Phase-sensitive detector, square-wave reference

ACOUSTIC THERMOMETER

A novel and wide-range temperature sensor can be constructed by using the relationship between the speed of sound and absolute temperature. Acoustic thermometers rely on the principle that the speed of sound varies predictably with temperature in a known medium. They are usually implemented as either clocked (pulsed) systems or oscillators. In both modes, the sensor is, in effect, a thermally dependent delay line.

In theory, the speed of sound through a medium is predictable and reproducible over temperature ranges from cryogenic to thousands of degrees. Acoustic techniques will function at extremes which other sensors cannot tolerate. The relationship between the speed of sound in dry air (for example) and temperature is:

$$c = 331.5\sqrt{\frac{T}{273}}$$
 m/s.

Thus, for a measured value of c, the absolute temperature is

$$T = \frac{273}{331.5^2} \cdot c^2$$

If c is measured in terms of the length of time, Δt , required for a sound impulse to travel a given distance, λ , the absolute temperature is

$$T = \frac{273 \lambda^2}{331.5^2} \left(\frac{1}{\Delta t}\right)^2$$

Thus, in addition to the physical hardware for implementing the measurement, a means of computing the inverse square is needed. It could be the 433, as used in Figure 14. However, in this case, a Model 436 high-accuracy dedicated divider was used for reciprocation, and an AD534 multiplier was used for squaring.

A linearized temperature sensor using analog components is shown in Figure 16. Some of the critical waveforms are shown in Figure 17. The clock pulse (trace A) simultaneously sets the flip-flop, drives the piezoelectric 40kHz transducer, and triggers the 74121 one-shot into its output *low* state. This causes Q6 to turn off, allowing the AD812-AD820 current source to begin charging C4, the 0.04μ F integrating capacitor (trace C).

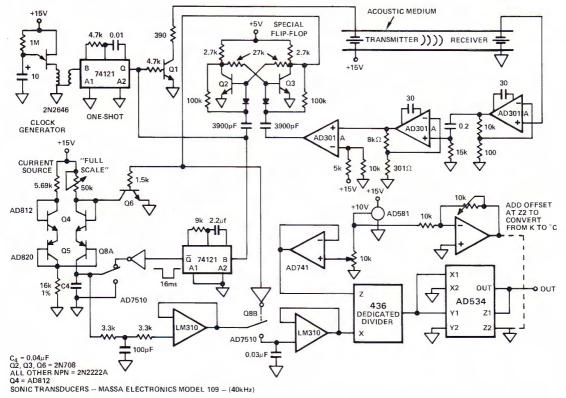


Figure 16. Acoustic-thermometer analog output

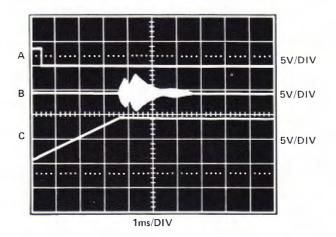


Figure 17. Waveforms in acoustic thermometer

When the acoustic pulse reaches the receiver transducer, the output is amplified by the AD301A amplifiers, producing the damped pulse train of trace B — the output of the second AD301A. The leading edge of the pulse train is used to reset the Q2-Q3 flip-flop, via the third

AD301A, which functions as a comparator. When the flip-flop resets, Q6 is turned on, and the current source turns off very quickly, typically in 10ns.

The voltage on C4 at this time is a function of the length of the tube and its temperature. The full-scale trim is adjusted by altering the slope of the ramp at the current source with the $50k\Omega$ potentiometer in the AD812 collector line. The voltage at C4 is unloaded by the first LM310 follower, and the value is stored in the sample-hold formed by switch Q8, the 0.03μ F capacitor, and the second LM310. The stored voltage is proportional to the transit time of sound in the tube.

To obtain an output reading proportional to temperature, the output of the sample-hold is applied to the denominator input of the Model 436 precision divider; a constant derived from the AD581 reference is applied to the numerator. The output of the 436 is squared in an AD534, thus obtaining an output voltage which is a measure of the absolute temperature. A voltage derived from the AD581 may be optionally applied to input Z2 of the AD534 to subtract a constant, if the analog readout is desired in degrees Celsius. The AD534 output will be related to the temperature at the transducer to a typical accuracy of better than 1% over a 0° to 100°C range.

The prospective constructor of this circuit should be aware of the difficulty of developing a good transducer design. The design used here is crude in comparison to what can be achieved. Acoustic thermometers involve a great deal of engineering to compensate for errors in the sonic transducers, thermal expansion effects in the tube walls, wave dispersion inside the tube, and sundry other potential problem areas. This example, while certainly workable, is primarily intended to show the key role of the analog multiplier and divider in obtaining an output that linearly represents temperature, once a time interval can be measured.

SIGNAL GENERATION AND FILTERS

WIEN-BRIDGE OSCILLATOR

Figure 18 is a schematic diagram of a stabilized Wien-bridge oscillator. The AD534 serves as a variable-gain amplifier for the feedback signal from output to input, via the Wien bridge. The peak-rectifier & filter combination applies sufficient voltage to the X (denominator) input to support stable oscillation with about 0.2% ripple. The circuit has no startup problems,

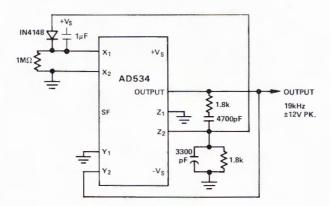


Figure 18. Stabilized Wien-bridge oscillator

since X is small and the gain very high, allowing rapid buildup of the oscillation. Tighter amplitude control is possible with other schemes at the expense of simplicity. This circuit will typically stay within 0.01dB of amplitude over 10° C temperature range and ± 1 V supply variation.

VOLTAGE-CONTROLLED SINE-WAVE OSCILLATOR

Voltage-to-frequency converters using charge balancing and other techniques (for example, Models 456, 454, 460, and the monolithic AD537) are readily available and feature excellent performance at low cost. However, *voltage-controlled oscillators with sine-wave output* are not so plentiful and constitute a non-trivial design task if reasonable performance is desired.

Figure 19 shows two multipliers being used to form integrators with controllable time constants in a 2nd-order-differential-equation feedback loop. R2 and R5 are connected for controlled current-output operation. The currents are integrated in capacitors C1 and C3, and the resulting voltages at high impedance are unloaded by the X inputs of the "next" AD534. The frequency-control input, E_{in} , connected to the Y inputs, varies the integrator gains, with a sensitivity of 100Hz/V, to 10V. C2 (proportional to C1 and C3), R3, and R4 provide regenerative damping to start and maintain oscillation. The diode bridge, CR1-CR4 and Zener diode Z1 provide economical temperature-compensated amplitude stabilization at ±8.5V by degenerative damping. Figure 20 shows the VCO's response to a ramp input.

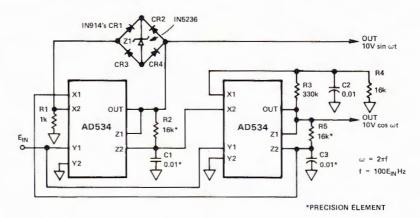


Figure 19. Voltage-controlled sine-wave oscillator

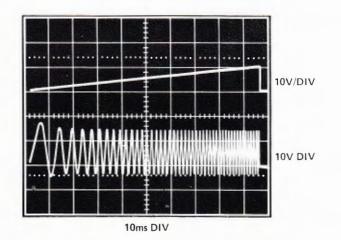


Figure 20. Ramp-modulated output of V.C.O.

CRYSTAL OSCILLATOR WITH AMPLITUDE-MODULATED OUTPUT

Fast amplitude slewing and settling of a crystal-stabilized oscillator are provided by an AD534 in the circuit of Figure 21. This arrangement was used to test 32.768kHz clock crystals for Q vs. amplitude.

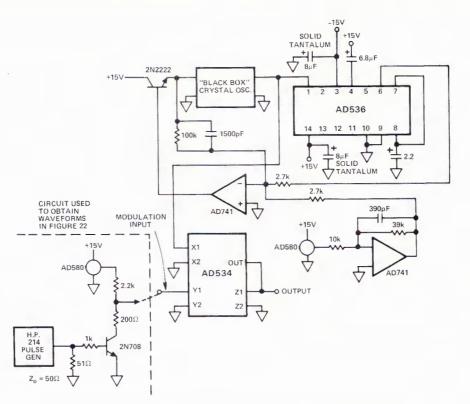


Figure 21. Crystal oscillator circuit, showing high-speed gain adjustment. The circuit at the lower left was used to obtain the test waveforms in Figure 22.

The "black-box" crystal oscillator's output is converted to dc by the AD536 rms/dc converter. The AD536 output is summed in an AD741 with the dc reference voltage obtained by inverting and amplifying the output of an AD580 band-gap reference.* The AD741 drives the 2N2222 control transistor to close the feedback loop around the oscillator by adjusting its supply voltage. The op amp runs at a gain of 35V/V, as determined by its feedback circuit. The 1500pF capacitor stabilizes the loop.

Amplitude modulation could be obtained by changing the reference voltage, but settling time would be long because of time constants in the AD536 filter circuit, as well as any unknown poles in the "black-box" oscillator.

Fast settling is conveniently obtained by using an AD534 as an *amplitude modulator*. The oscilloscope photo of Figure 22 shows the 32.768kHz waveform being switched by a fast step

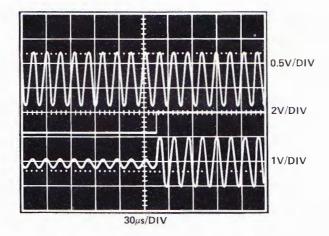


Figure 22. Amplitude modulation of crystal oscillator output. Upper trace is unmodulated output, middle trace is modulating waveform, lower trace is modulated output.

*The newly available AD581 could also have been used, in its connection as a two-terminal -10V reference.

from 0.3 to 2.2 volts peak-to-peak, with no ringing, overshoot, or other untoward dynamics. Since an rms-to-dc converter is used in the control loop to measure the output for setting the amplitude, the output of the circuit can be readily calibrated in rms volts, if desired.

LOW-DISTORTION OSCILLATOR

A low-distortion (0.01%) oscillator is depicted in Figure 23. Amplifier Al is connected as a non-inverting gain of about 3. The band-pass filter, R1, C1, R5, C2, provides notched feed-back at 1kHz, causing the circuit to oscillate at $f_0 = (2 \pi RC)^{-1}$, where $R_1 = R_5 = R$ and $C_1 = C_2 = C$. The output amplitude is measured and compared with the set-point voltage by R6 and R7 at the input of A2. Integrator A2 accumulates the error and applies voltage to input Y1 of the AD532 multiplier. This will increase or decrease the gain in the damping feedback loop around A1. This loop can be visualized as a "smart" resistor, of large value, that parallel-trims R4 and adjusts the overall gain of A1 to keep the oscillation stable.

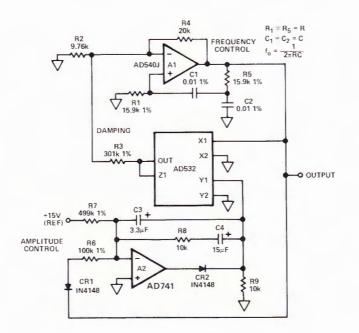


Figure 23. Low-distortion sine-wave oscillator

Since the multiplier is linear, and its output is attenuated to provide a "vernier" gain adjustment on the oscillator amplifier, its distortion has negligible effect upon the output. The distortion is due primarily to the nonlinearity of the op amp. An AD540J provides 0.01% distortion at the frequency in this example, 1kHz. Figure 24 shows the output waveform in trace A and the crossover distortion, greatly amplified (from the output of a distortion analyzer) in trace B.

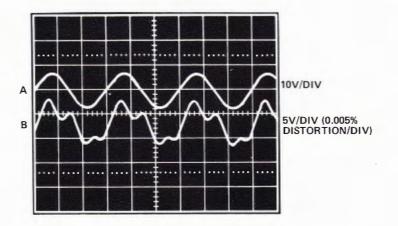


Figure 24. Waveforms in low-distortion oscillator - output and distortion

VOLTAGE-CONTROLLED LOW-PASS FILTER

Figure 25 is the circuit of a controlled low-pass filter, and Figure 26 shows its response to a square-wave input, as the control input ramps the time constant from very slow to quite fast response.

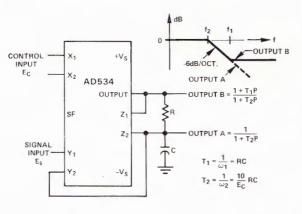


Figure 25. Voltage-controlled low-pass filter

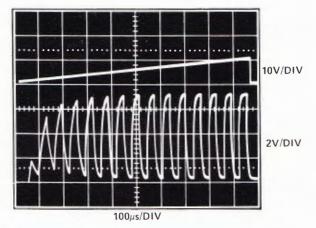


Figure 26. Response of low-pass filter to square wave as cutoff frequency is linearly increased

The voltage at output A, which should be unloaded by a follower, responds as though the input signal, E_s , were applied directly to the filter, but its break frequency is modulated by E_c , the control input. The break frequency, f_2 , is equal to $E_c/(20\pi RC)$, and the rolloff is at -6dB per octave.

Output B, the direct output of the AD534, has the same response up to frequency f_1 , the "natural" break point of the RC filter (1/(2 π RC)), then levels off at a constant attenuation of $f_2/f_1 = E_c/10$.

For example, if $R = 8k\Omega$, $C = 0.002\mu F$, Output A has a pole at frequencies from 100Hz to 10kHz, for E_c ranging from 100mV to 10V. Output B has an additional zero at 10kHz (and can be loaded, since it's the low-impedance multiplier output). The circuit can be converted to high pass by interchanging C and R.

DERIVATIVE-CONTROLLED LOW-PASS FILTER

Figure 27 shows an interesting variation of the voltage-controlled low-pass filter. A wellknown difficulty with conventional linear filters is that long time constants provide excellent filtering, but they also require a great deal of time to settle. The filter described here settles rapidly in response to step changes, then assumes a long time constant for filtering (small amounts of) noise.

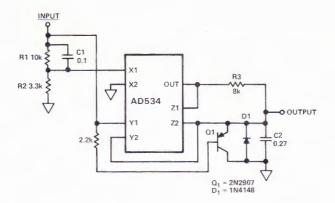


Figure 27. Derivative-controlled low-pass filter

In the circuit of Figure 27, a controllable low-pass filter, like that of Figure 25, has its control input driven from a high-pass filter (i.e., a differentiator), consisting of R1, R2, and C1. When a step voltage is applied to the input, the time constant is immediately determined by the voltage applied to X1, the amplitude of the step; then the control voltage exponentially decays until it is about 25% of the step, (the divider ratio $R_2/(R_1 + R_2)$, which increases the filter time constant fourfold.

Figure 28 shows salient waveforms in the circuit. Trace A is the input step, trace B is the control input, showing the immediate jump in cutoff frequency, and the decay to a cutoff frequency of about ¹/₄. Trace C is the signal output, showing a rapid response – faster, in fact, than that of the control input, followed by a long tail, indicating the low steady-state cutoff frequency.

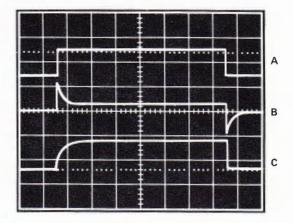


Figure 28. Waveforms in derivative-controlled low-pass filter

Since the spike produced by the R1, R2, C1 network will go in the wrong direction, tending to greatly lengthen the time constant, when the square-wave returns, a clamping circuit, consisting of Q1 and D1 rapidly resets C1 to zero. If derivative control of the falling edge were desired, an absolute value amplifier could be inserted between the X1 input and R1-R2 junction.

In this example, the ultimate time constant is determined by the height of the step and/or the ratio of the resistors R1-R2. If there are to be other influences on the time constant, appropriate additional voltages could be summed in at the X2 input. It is important to note that this circuit will function properly only if the noise is relatively small and has lower-frequency components than the initial step.

This kind of approach to filtering has proven useful in electronic weighing applications, where long time-constants are undesirable when weighing an object, yet "floor noise" has to be filtered out.

In deference to objectivity, another nonlinear approximation, using simple circuitry but not as fast-settling, can exhibit related behavior. Figure 29 shows a pair of diodes and an R-C filter. This circuit will only exhibit low-pass characteristics after the capacitor has charged to within 0.6V of the applied signal. Further, the diode could be replaced by a computer-controlled switch, allowing the "breakdown voltage" to be any desired value.

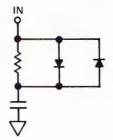


Figure 29. Diode-controlled low-pass filter

MISCELLANEOUS MULTIPLIER APPLICATIONS

% DEVIATION - RATIO COMPUTER

Figure 30 shows a circuit that computes the percent deviation between its two inputs. The scale factor in this arrangement is 1% per volt, but other scale factors can be obtained by altering the resistor ratios. The percentage deviation function is of practical value for many applications in measurement, testing, and control. For example, the output of this circuit might be applied to a pair of biased comparators to stimulate particular actions or displays depending on whether the gain of a circuit under test were within limits, or deviating by a preset amount in either direction.

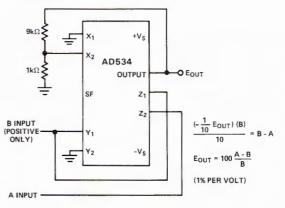


Figure 30. ∆% ratio computer

COMPONENT SORTER

The circuit of Figure 30 forms the basis for the component sorter shown in Figure 31. This circuit will grade capacitors, resistors, or Zener diodes by percentage deviation from a settable value. The circuit comprises a switchable current source, a clock, a sample-hold network, and some timing logic. Waveforms are shown in Figure 32.

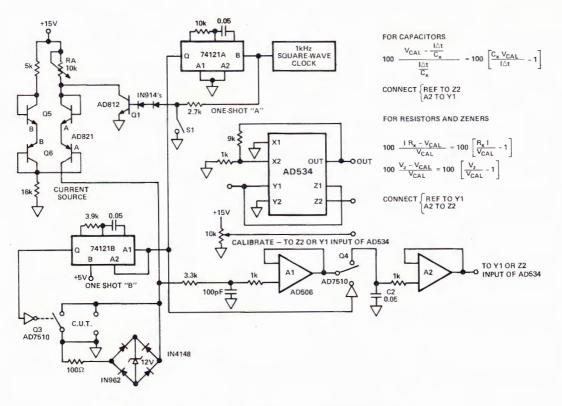


Figure 31. Capacitor, resistor, and Zener-diode sorter

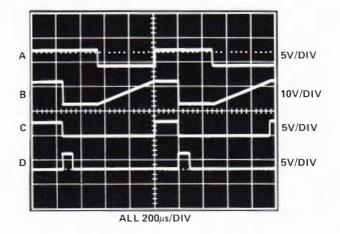


Figure 32. Waveforms in C, R, Zener sorter

The "A" portion of the AD821 functions as the current-source transistor, and the "B" portion provides temperature compensation. The AD812B prevents the AD821 pair from conducting in the reverse direction whenever the voltage across the component under test (C.U.T.) exceeds the AD821B emitter voltage (when Q1 is on). The adjustable 10k Ω resistor, R_A, sets the output of the current source. The 1kHz square-wave clock (trace A) is applied to Q1, turning the current source on and off. The capacitor under test, in this case 0.01μ F, is allowed to charge until the clock goes high, turning off the current source (trace B). The voltage the capacitor sits at is inversely proportional to its absolute value.

The AD506 follows this potential and feeds the simple sample-hold circuit, Q4, C2, A2. The sample-hold is enabled by the one-shot "A" for 200μ s when the clock goes high (trace C). After this time, "A" goes low, triggering one-shot "B" on for 100μ s. This pulse drives Q3 on (trace D) and discharges the C.U.T.

The output of the sample-hold is applied to the percent deviation circuit. In practice, a 0.01μ F standard capacitor is put into the fixture, and the reference voltage is adjusted so that the AD534 output reads zero. The circuit is now ready for use at a scale factor of 1 V/%

deviation. When capacitors are measured, the unknown is applied to input Y1, and the calibration input to Z2.

The $3.3k\Omega$ -100pF network prevents the sample-hold from catching any portion of the discharge of the c.u.t. at the beginning of *hold* by introducing a slight delay into A1's response. The Zener-diode-bridge clamp provides protection for the tester in the event a charged capacitor is placed in the test fixture. The discrete-component current-source facilitates a groundreferenced two-terminal, high-noise-rejection test fixture.

The same two-terminal fixture may be used to check resistors and Zener diodes, by closing S1. This allows the current source to run all the time (necessary, since resistors and diodes have no "memory"). Because the test voltage will be proportional to the resistance or the Zener voltage, the connections to the $\Delta\%$ circuit are reversed, the calibration reference is connected to Y1, and the test voltage is connected to Z2.

BRIDGE LINEARIZATION

If one arm of Wheatstone bridge varies from its nominal value by a factor, (1 + 2w), the voltage or current output of the bridge will be (with appropriate polarities and scale factors):

$$y = \frac{w}{1+w}$$

Linear response requires very small values of w (to make the denominator essentially independent of w) and, as a consequence, preamplification.

The circuit shown in Figure 33 enables large-deviation bridges to be used without losing linearity or resorting to high attenuation. The circuit computes the inverse of the bridge function, i.e.,

$$w = \frac{y}{1 - y}$$

Depending on which arm of the bridge varies, it may be necessary to reverse the polarity of the X connections.

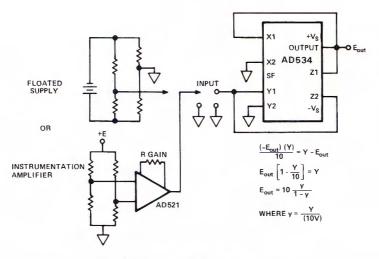


Figure 33. Bridge-linearization circuit

Since the input to this circuit is single-ended, the bridge must either float with respect to ground, or an instrumentation amplifier may be used to translate the bridge output to the AD534's common. Any resistive, linearly responding transducer (i.e., one or more legs of the bridge proportional to the phenomenon being measured) may profit from the application of this circuit. Examples include position servos, linear thermistors, platinum-resistance-wire sensors (nearly linear over wide ranges), pressure transducers, strain gages, etc.

HIGH-PERFORMANCE RMS-TO-DC CONVERSION CIRCUIT

For applications calling for greater accuracy and bandwidth, but with lesser dynamic range

than the AD536 rms-to-dc converter can easily handle, the circuit of Figure 34, employing the AD534, will be found useful.

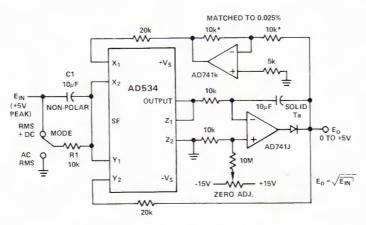


Figure 34. Wideband, high crest, rms-to-dc converter

The balance equation of this circuit is:

$$-(E_{in} + E_o)(E_{in} - E_o) = -10RC \frac{dE_o}{dt}$$

For steady state (or very slowly varying) values of E_0 , the right-hand term approaches zero, the average value of E_{in}^2 is equal to E_0^2 , and hence E_0 measures the rms value of E_{in} .

After calibration, error < 0.1% is maintained for frequencies up to 100kHz; it increases to 0.5% at 1MHz at 4V rms. Crest factors up to 10 have little effect on accuracy.

To calibrate, with the mode switch at "RMS + DC", apply an input of (say) 1.00V dc. Adjust the zero until the output reads the same as the input. Check for inputs of ± 5 V.

FREQUENCY DOUBLING

By use of trigonometric identities that can be found in any mathematical formulary, circuits can be assembled that accept sinusoidal inputs and generate outputs at two, three, four, and five-or-more times the input frequency.

Frequency doubling, in its simplest form, makes use of the identity,

$$\cos 2\theta = 1 - \sin^2 \theta$$

Since, for a sine wave, $\theta = \omega t$,

$$\cos 2\omega t = 1 - \sin^2 \omega t$$

If an input E sin ωt , is applied to a multiplier, connected as a squarer, the output will be

$$E_0 = \frac{1}{20} E^2 (1 - \cos 2\omega t)$$

The dc term may be eliminated from the output by capacitive coupling, or by applying a bias voltage (which can be done conveniently with the AD534). Figure 35 shows a circuit which accepts a sinusoidal signal with a 10V amplitude and produces a double-frequency signal also having a 10V amplitude with no dc offset.

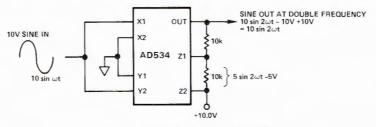


Figure 35. Frequency doubler

An obvious problem is that variations of input amplitude result in dc errors at the output. If the output is ac-coupled, abrupt changes of input level cause the output to bounce, which in some applications is troublesome. Figure 36 shows a circuit, using a different trigonometric identity, which produces frequency doubling, at a given frequency, with no dc offset, hence no bounce. It uses the identity:

 $\cos \omega t \sin \omega t = \frac{1}{2} \sin 2\omega t$

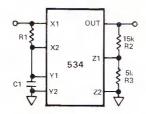


Figure 36. "No-bounce" frequency doubler

The X input leads the input signal, E sin ωt , by 45° (and is attenuated by $\sqrt{2}$), and the Y input lags the input by 45°, and is also attenuated by $\sqrt{2}$. Since the X and Y input are 90° out of phase (at the frequency $f = (2\pi RC)^{-1}$), the response equation of the circuit will be

$$\frac{1}{10} \frac{E}{\sqrt{2}} \cos \omega t \frac{E}{\sqrt{2}} \sin \omega t = \frac{E^2}{40} \sin 2\omega t = \frac{1}{4} E_0$$

The right-hand side reflects the attenuation of the output at the Z input. Hence,

$$E_0 = \frac{E^2}{10} \sin 2\omega t$$

While this circuit is not wideband (as Figure 35 is), considerable frequency deviation can be tolerated without causing appreciable change in output amplitude. A $\pm 10\%$ frequency error causes a $\pm 0.5\%$ amplitude error. Obviously, frequency quadrupling can be effected by cascading doublers. The waveforms of Figure 37 show a sine wave that is doubled and then doubled again by repeating the circuit of Figure 35.

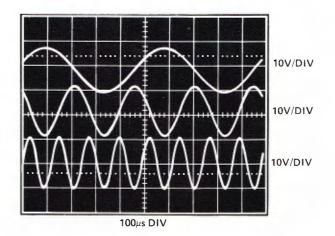


Figure 37. Sine wave – doubled and redoubled (and not vulnerable)

In frequency-doubling applications, amplitude is usually not critical. This is fortunate, because the squaring of the input amplitude doubles the sensitivity to amplitude errors, and distorts the modulation envelope. A circuit that uses feedback of the filtered output to the scale-factor input of the AD531 to produce frequency doubling with *proportional* amplitude is shown in Figure 38. A discussion of this circuit may be found on page 502 of the NON-LINEAR CIRCUITS HANDBOOK.

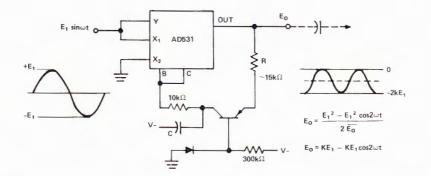


Figure 38. Frequency doubler with linear amplitude response

FILTER TESTER USING WIDEBAND MULTIPLIER

The high-speed testing of high frequency filters can pose some knotty problems. A circuit for testing a "black box" 1MHz bandpass filter for insertion loss (gain) vs. input amplitude is shown in Figure 39. The test is performed by sweeping the amplitude of the input signal and comparing the envelopes of the input and output signals.

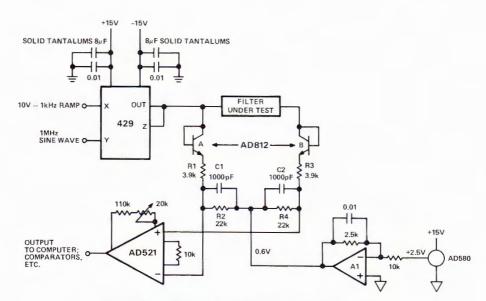


Figure 39. 1MHz bandpass filter insertion-loss tester

The test signal is produced by modulating a 1MHz sinusoidal carrier with a 10V, 1kHz ramp, using a high-speed Model 429 multiplier. The test signal is demodulated and filtered by the diode-connected AD812A and the network consisting of R1, R2, C1. The signal coming out of the filter is passed through an identical envelope-demodulation network, consisting of the AD812B, and R3, R4, C2.

The filter under test is specified to have zero insertion loss at 1MHz. Therefore, as the 1kHz ramp-modulated 1MHz signal is driven through the filter, the voltages across C1 and C2 should be identical, within an acceptable error band. Any discrepancy between the input signal and the filter response will manifest itself as a voltage difference between the two capacitors. Since both the input and the output are demodulated in the same way, any peculiarities introduced by the demodulator and its filter become common-mode factors.

The AD521 instrumentation amplifier compares the voltages at a gain of about 12. The offset error due to the AD812's approximately 0.6V drop is reduced to second-order by returning the capacitors to a -0.6V potential, provided by A1. Common-mode gain errors in the resistive dividers are calibrated out by fine trimming of the gain of the AD521. Other values of overall gain could be used for increased or decreased sensitivity, depending on the magnitudes of the errors that are being investigated, and their tolerances. The AD521 output is a direct indication of whether the filter is "peaking" (positive output) or attenuating (negative output), by how much (absolute value of the output), and at what amplitude (the input ramp is also available to the monitoring processor, comparator, or whatever). The waveforms in Figure 40 illustrate the input ramp (trace A), the modulated test waveform (trace B), the demodulated ramp (trace C) and the demodulated filter output (trace D). Though not shown in the photograph, the AD521 output would provide a sensitive measurement of the difference between the two lower traces, which appear quite similar in the photo.

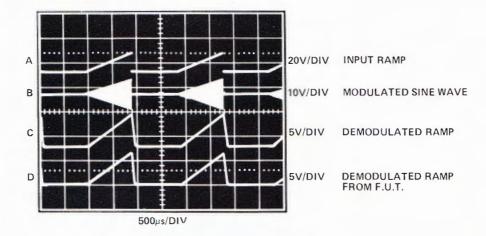


Figure 40. Waveforms in filter tester

PERFORMANCE AUGMENTATION

INCREASED ACCURACY WITH MULTIPLYING DAC'S

The present state of the analog multiplier mart allows 0.1% absolute accuracy at reasonably high speeds, using *translinear** multiplier circuitry (Model 435K), which has, by and large, superseded the slower *pulse-height-pulse-width* technique for high-precision applications.

Higher-accuracy performance can be achieved for many applications by the use of 4-quadrant multiplying d/a converters, especially for asymmetrical-input functions involving variable gains and modulation. Multiplying DAC's, which are commonly thought of as d/a converters requiring external reference voltage, can also be thought of as digitally controlled attenuators of analog signals. When considered for use as a multiplier, a 12-bit multiplying DAC, with its digital gain-setting resolution of one part in 4096, can be seen to be approaching an order-of-magnitude better performance than the best all-analog multipliers. The analog inputs of multiplying DAC's provide comparable accuracy and linearity, with quite low feedthrough, principally because the analog signal is conditioned by an attenuator consisting of high-quality linear resistors.

*These concepts are discussed briefly in the "Theory" section, and at greater length in the NONLINEAR CIRCUITS HANDBOOK.

Figure 41 is a simplified block diagram of the DAC1125 12-bit 2- or 4-quadrant multiplying DAC. The waveforms in Figure 42a were produced from measurements on a DAC1125. A square wave (trace A) multiplies a 40kHz sine wave, and the result is shown in trace B. The square wave in trace A was obtained by exercising the most-significant bit with a digital input (which could be the output of an a/d converter, when providing multiplication of two analog inputs). The gated 40kHz waveform appears cleanly at the DAC1125's output and is 12-bit accurate ($\pm 0.025\%$). Figure 42b shows the feedthrough of the analog input. With a $\pm 10V$ 50kHz sine wave applied to the analog input and all digital inputs held high (the DAC1125 is complementary-coded in 2-quadrant operation), the feedthrough is seen to be comfortably less than 1mV peak-to-peak (1/20,000).

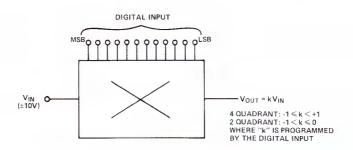


Figure 41. Functional diagram of the DAC1125 multiplying d/a converter

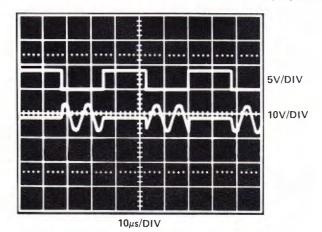


Figure 42a. Response of multiplying DAC to square-wave modulation of sinusoidal input

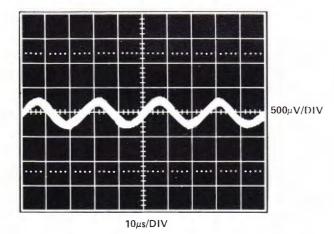


Figure 42b. Feedthrough of multiplying DAC, zero input multiplying $\pm 10V$ 50kHz sine wave, 500 μ V/division

Although high-performance multiplying DAC's are evidently better suited to hybrid systems (digital/analog, or human-digital/analog, via keyboards or thumbwheel switches), which abound with applications for multiplying DAC's, it is worthwhile noting that high-performance multiplying DAC's, when coupled with 12-bit-or-better ADC's and a modicum of logic,

make possible analog X analog multiplications of transcendent performance at realistic cost.

CURRENT OUTPUTS

The simplest form of output modification in the AD534 is the use of a current - instead of the usual voltage - output. The voltage-controlled oscillator in Figure 19 utilizes this readily achievable configuration. Since multiplication operations are often followed by integrators, the ease of providing a current output, which can charge a grounded capacitor, is attractive. The current-output conversion is shown in Figure 43. Waveforms of an AD534 integrating its current output into a capacitor are shown in Figure 44. Naturally, the capacitor voltage is read with a high-impedance follower.

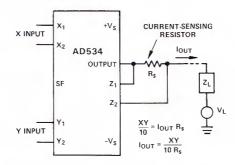


Figure 43. Output-to-current conversion

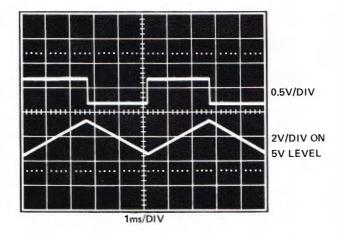


Figure 44. Response of AD534 connected as integrator; I_{OUT} charges a capacitor that is connected to ground. Ramp output for symmetrical square-wave input

CURRENT BOOSTING

The availability of an uncommitted high-gain feedback loop in the AD534, in combination with the device's excellent dynamic characteristics, invites the addition of output current boosters. Since the booster is added inside the loop, it has no effect on the salient parameters of the AD534. Figure 45 shows a current booster that will gladly drive ± 12 volts into 50Ω , paralleled by 10,000 pF, as fast as the AD534 asks it to. The booster uses standard components, and construction is not critical. The current sources, Q1-Q2 provide adequate biasing under all drive conditions. The 12Ω resistors provide current limiting and output-to-ground short-circuit protection; but it would be unwise to short the output to either supply.

Figure 46 shows the response of a booster, happily ensconced inside the AD534's loop, driving a $\pm 10V$, 333Hz square wave into a 50 Ω , 10,000pF load.

AUDIO POWER BOOSTER

The configuration of Figure 47 is not just a tour de force, but a useful booster as well. The

AD534 is used in association with a high-quality audio power amplifier to produce a 75-watt output into 8 ohms. The amplifier used is a venerable favorite in research labs, due to its clean response and the transformer-isolated output.

Despite the amplifier's age and its vacuum tubes (remember them?), there is no "generation gap" in this family. The amplifier is inserted into the AD534's feedback loop in a similar manner to the current booster. The output is taken across 8Ω and attenuated by the $9k\Omega$ -

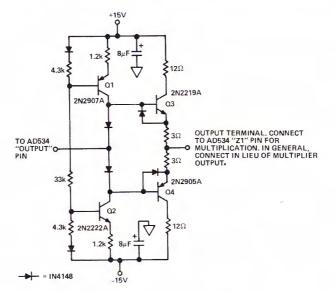


Figure 45. Current booster

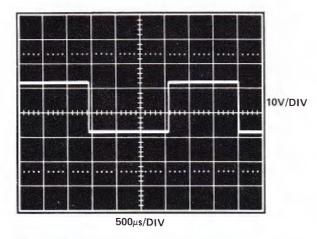


Figure 46. Square-wave response of current booster

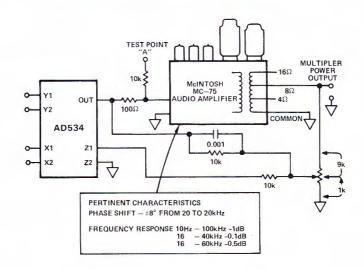


Figure 47. 75-watt inside-the-loop booster (ac only)

 $1k\Omega$ feedback divider. The $10k\Omega$ resistors provide a dc feedback path for the multiplier (around the transformer-coupled amplifier), and the 0.001μ F capacitor provides dynamic stability for the loop.

Figure 48a shows the output of the boosted "multiplier" for X = a 2kHz ramp, Y = an 80kHz, 12V sine wave. In another test, with X = 10V, and Y = 0, a 4kHz, 10V square wave is injected at the test point "A" to test the loop gain. Figure 48b shows the happy result the first time it was tried (with no prior attempt made to optimize the loop response). The loop manages to grab control just $50\mu s$ after the disturbance occurs.

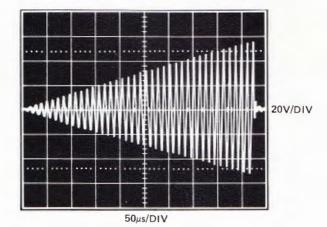


Figure 48a. Ramp-modulated sine-wave output of boosted multiplier

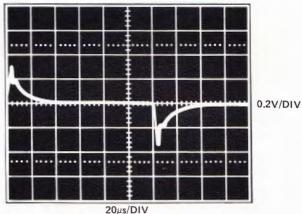


Figure 48b. Transient response of boosted multiplier

HIGH-VOLTAGE BOOSTER – BUT BE CAREFUL!

One of the popular techniques biochemists use in separating cells and proteins is electrophoresis. This involves exciting the sample with high-voltage potentials so that separation-bycharge can take place. It is important that the sample dissipate a constant amount of power during the run, which may take 12 hours or longer. To meet this need, constant wattage supplies are used. Figure 49 shows a booster that meets this need by transforming the 300mW output of an AD534 into a 1000V, 300W roaring Goliath.

BEFORE PROCEEDING ANY FURTHER, THE READER IS ADVISED THAT THE CONSTRUCTION, DEBUGGING, AND USE OF THIS CIRCUIT MUST BE UNDERTAKEN WITH EXTREME CAUTION. THE OUTPUT PRODUCED BY THIS CIRCUIT IS MANY TIMES ABOVE THE LEVEL NECESSARY TO KILL AND IS ABSOLUTELY LETHAL. THERE IS NO SUBSTITUTE FOR CAUTION, PRUDENCE, AND CLEAR THINKING WHEN WORKING WITH HIGH-VOLTAGE CIRCUITRY.

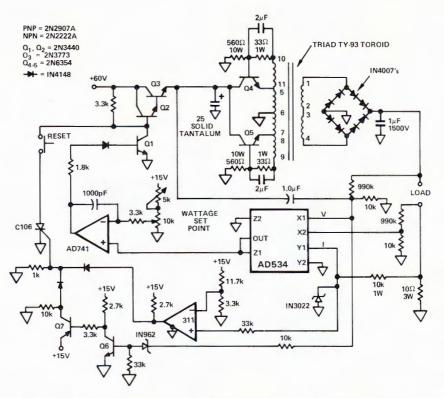


Figure 49. High-voltage booster. DANGER! SEE TEXT. USE CAUTION IN ASSEMBLING, TESTING, AND USING. PROVIDE ADEQUATE WARNING TO PROTECT OTHERS.

This booster, unlike the previous types, is not inserted into the feedback loop. Instead, it functions by using the power-measuring AD534's output to control the output of a toroidal dc-dc converter within the feedback loop of an amplifier. Both the multiplier and the dc-dc converter "hang" inside the AD741's feedback loop. The 741 sees, and is only concerned with, the low-voltage causal relationship between its input and its output . . . it is oblivious to the bustling nature of its complex feedback loop.

When power is applied, the circuit output is zero, the "V" and "I" multiplier inputs are at zero, and the multiplier output is of course zero. Under these conditions, the AD741 output goes negative, cutting off Q1. The Darlington pair, Q2-Q3 come on, and power is delivered to the self-exciting inverter, consisting of Q4, Q5, the transformer, and the associated components. The transformer output is rectified and filtered in the conventional manner. The 1μ F capacitor is adequate for filtering the square-wave output of the converter.

Current and voltage are sensed at the load and multiplied together by the AD534. The voltage stolen by the current shunt is factored out using the differential inputs of the multiplier. The AD534 output is fed to the AD741, to be compared with the set-point voltage. The AD741, sensing the difference, provides a drive for Q1 in the appropriate amplitude and polarity to keep the output power servoed at the set-point value.

The 4kHz switching frequency of the inverter determines the ultimate limit on how rapidly information can be transmitted around the loop, but the 1μ F capacitor sets the most significant response pole. Circuit stability is assured by rolling off the loop at a few Hz via the 1μ F capacitor that is connected between the 2N3773 emitter and the output voltage-divider. The waveforms in Figure 50 were taken at the emitters of Q4 and Q5, at a 300W output level, at 1000V. Despite the high switching currents (7-8A), the combination of good transistors and a well-designed transformer yields clean waveforms, with a minimum of overshoot or ringing.

Overcurrent/short-circuit protection is provided by the AD311 comparator and the C106 SCR. If the current-sensor line rises above 3.3V (330mA), the AD311 output goes high and turns on the C106. The C106 grounds the drive to Q2 and latches *on*, shutting off all power to the dc-dc converter. Power is restored by removing the overload and pushing the "reset" button. Overvoltage protection is necessary for this supply, because a load dropout will

cause the servo to "go through the roof" as it seeks to keep a constant wattage across an infinite-impedance load. If the voltage-sense line rises above the 12V Zener diodes' breakdown level, the Q6-Q7 pair conduct and provide the C106 with a short turn-on-spike. The C106 shuts down the supply in the same way as for a current overload.

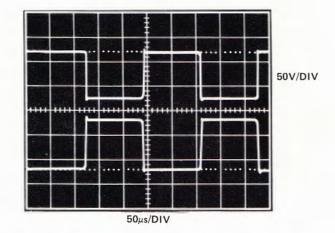


Figure 50. Switching waveforms at emitters of Q4 and Q5 in constantpower supply of Figure 49.

MULTIPLIER MEDLEY

The circuits in the following collection, although presented in somewhat less detail than many of those in the preceding sections, are neverless valuable, despite their brevity. Some will work as described, others are offered in conceptual form. All are useful and should prove catalytic for the alert reader seeking solutions. Further information can be found in the NONLINEAR CIRCUITS HANDBOOK, individual product data sheets, and (where noted) ANALOG DIALOGUE.

DIFFERENCE OF THE SQUARES¹

The circuit of Figure 51 will compute the difference of the squares of two input signals. This is useful in vector computations and in weighting the difference of two magnitudes to emphasize the greater nonlinearly. This circuit can also be used to determine absolute value if "A" is the input, "B" is connected to E_0 through a diode, and both Z terminals are grounded.

The balance equation is:

$$\mathbf{A}^2 - \mathbf{B}^2 = \mathbf{0}$$

Therefore the output, B, must be equal to the absolute value of A.

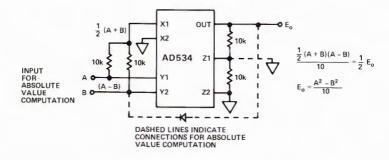


Figure 51. Difference-of-squares circuit

AUTOMATIC LEVEL CONTROL

Figure 52 illustrates a simple automatic level control. The AD533 is set up in the *divide* mode. Its output is rectified and compared with a power-supply-derived -15V reference. The net current is integrated by the AD741 and fed into the denominator input of the AD533, maintaining the level of the output at the "ac average" value programmed by the feedback circuitry, 7V, with $\pm 1\%$ stability, in this case. The level can be changed by changing the reference-current resistor. Normally, the output is ac-coupled, and no offset trim is necessary.

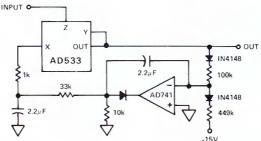


Figure 52. Automatic level control circuit

AUTOMATIC GAIN CONTROL

A more-sophisticated circuit is the automatic gain-control loop of Figure 53. Here, a low-cost AD531 maintains a 3V p-p output for inputs from 0.1V to over 12V, with 2% regulation for the range from 0.4V p-p to 6V p-p. Distortion is less than 1%. Input frequency can range from 30Hz to 400kHz.

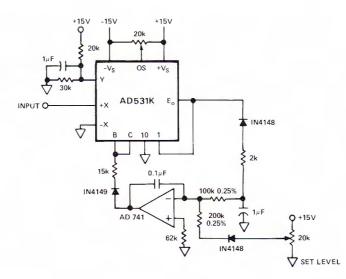


Figure 53. Automatic gain control circuit

If the input signal increases, the output will try to increase. Its negative peaks, caught by the diode and 1μ F capacitor, tend to increase, causing the output of the inverting integrator to increase. This causes the denominator input of the AD531 to increase, which reduces the forward gain and tends to keep the output level constant.

AMPLITUDE MODULATOR

If a high-frequency carrier is applied to one input of a multiplier, and a modulation signal to the other input, the multiplier inherently acts as a "balanced modulator", with suppressed-carrier response, i.e., if no modulating signal is present, there will be no carrier output. In true amplitude modulation, the modulation effectively consists of a constant – to provide a continuous carrier – plus the modulation signal itself. Figure 54 shows how the AD534 can be used as a simple amplitude modulator. The continuous carrier signal is provided by summing the carrier at the Z2 input. Note that the modulation input can be differential (for example, the output of a bridge).

If the Model 429 wide-bandwidth multiplier is used as a modulator, the carrier is applied to one input, and the biased modulation signal is applied to the other input. With its 2MHz full-

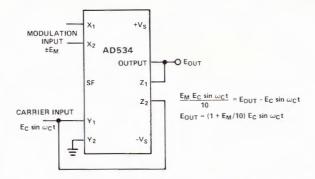


Figure 54. Linear (AM) amplitude modulator

power response, the 429 can put you on the air with your own AM radio station in the broadcast band (but be sure that you comply with F.C.C. licensing requirements!).

VOLTAGE-CONTROLLED AMPLIFIER²

In Figure 55, an AD534 is shown functioning as a voltage-controlled amplifier. A constant or varying signal, E_C , applied to the X input, controls the gain for the variable signal, E_{IN} , applied to the Y input. The inputs could be interchanged, but the Y input has the better linearity. For this application, which uses the AD534's "SF" terminal, the "set gain" potentiometer is typically adjusted to provide a calibrated gain of 10V/V per volt of E_C .

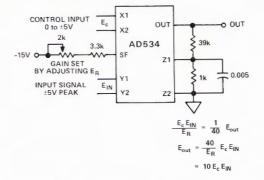


Figure 55. Voltage-controlled amplifier

Bandwidth is dc to 30kHz, independent of gain. The wideband noise (10Hz to 30kHz is 3mV rms, typically, corresponding to full-scale signal-to-noise of 70dB. Noise, referred to the signal input, is of the order of 60μ V rms.

POLYNOMIALS – POWER SERIES

Polynomials can be effected with multipliers and summing operational amplifiers. Figure 56 shows the minimum number of multipliers required to accomplish the function for 2nd, 4th, and 8th-degree polynomials or truncated power series. The "X" blocks are multipliers, the " Σ " blocks are adder-subractor circuits.* With feedback, infinite series are possible, but the number of degrees of freedom for adjusting coefficients are limited (Figure 57). Detailed discussion of and mathematical considerations for these circuits are to be found in the NON-LINEAR CIRCUITS HANDBOOK.

ARBITRARY (NON-INTEGRAL) POWERS

The Model 433 multifunction module can be used to generate powers and roots, with either continuous adjustment or fixed settings. Figure 58 shows the connections for both modes.

² ANALOG DIALOGUE 11-1, 1977, p. 7.

*See "Simple Rules for Choosing Resistor Values in Adder-Subtractor Circuits", ANALOG DIALOGUE 10-1, 1976, p. 14.

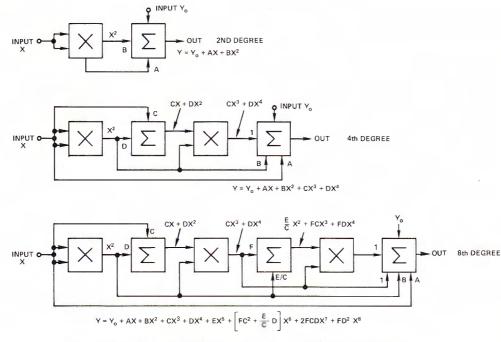
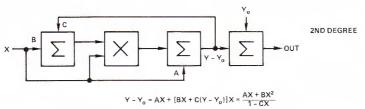
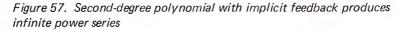
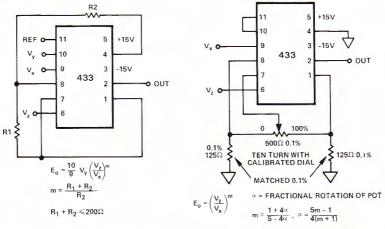





Figure 56. Polynomial (Truncated power series) block diagrams

 $Y = Y_0 + AX + (B + AC) X^2 + C(B + AC) X^3 + ... C^{n-2} (B + AC) X^n$

a) Fixed exponent, m>1

b) Adjustable exponent, 1/5<m<5

Figure 58. The 433 as an arbitrary fixed power generator or adjustable power/root generator

SINE OF A VOLTAGE³

Figure 59 shows how the AD534 can be used to approximate the sine of a voltage in one quadrant. With 0.1% resistors, the accuracy of fit will be to within 0.5% of full scale at all points.

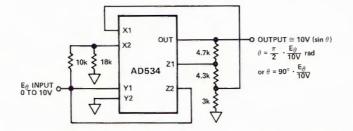


Figure 59. A simple sine-of-a-voltage circuit using the AD534

SQUARE-ROOT OF THE SUM OF SQUARES (VECTOR SUM)⁴

A high-accuracy three-input multiplier-divider (YZ/X), Model 434, is used to perform the vector computation shown in Figure 60. As shown,

$$E_o = V_B + \frac{V_A^2}{E_o + V_B}$$

From which,

$$(E_o - V_B) (E_o + V_B) = E_o^2 - V_B^2 = V_A^2$$

and

$$E_o = \sqrt{V_A^2 + V_B^2}$$

Note that the inputs are the absolute values of V_A and V_B , since the 434 is a single-quadrant device.

The method generalizes for n-dimensional vectors, using (n - 1) 434's, but no additional op amps. Each additional input adds a term, $V_i^2/(E_0 + V_B)$, to the first equation.

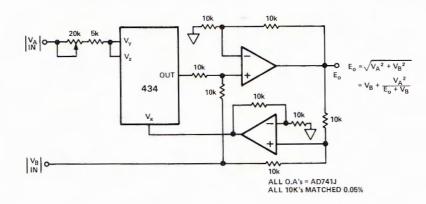
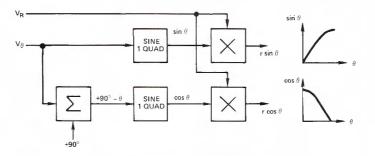
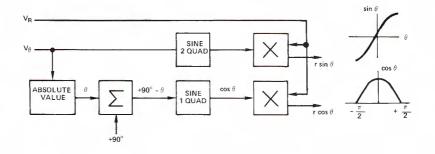



Figure 60. Square-root of the sum-of-the-squares


VECTOR OPERATIONS – POLAR-TO-RECTANGULAR

If a good circuit for fitting sin θ is available (a simple one is shown in Figure 59, others with greater accuracy and/or wider angular range can be found in the Appendix to Chapter 2-1 of the NONLINEAR CIRCUITS HANDBOOK), it can be used to perform vector computations of the form r sin θ and r cos θ (Figure 61). The cosine can be either developed as a separate function or by translating a sine 90°.

⁴ ANALOG DIALOGUE, 6-3, 1972, p. 3. On page 5 of this issue, one can find an approximation for tan ⁻¹(V_B/V_A), using a 433 set for an exponent of 1.2125. Thus, both magnitude and angle can be determined in a rectangular-to-polar conversion in analog form. The same circuit is shown and discussed in the NONLINEAR CIRCUITS HANDBOOK.

a) Vector Resolution - One Quadrant

b) Vector Resolution – Two Quadrants

CARE AND FEEDING AND A LITTLE THEORY

Even the most-carefully designed multiplier is at the mercy of its circuit surroundings. Evaluate the power supply and its distribution scheme in your circuit. Choose a well-regulated, low output-impedance supply (yes, the manufacturer's spec says 0.00001Ω output impedance, but what does it look like at 350kHz?) Is the supply immune to fast transients or do they sail through to the output? If you're working from a switching supply, is the noise specification adequate for your application?

Observe good grounding techniques. There is nothing wrong with "bussed" grounds if the rules and limitations of the game are understood. Single-point grounding is required in a high-accuracy system, *especially* when high- and low-current returns exist in the circuit. Any high currents returning from a load should be grounded directly at the supply, not tied together with an input reference ground and 17 other points before returning "home".

Bypass capacitors are always in order. A high-speed device like the 429, albeit internally bypassed, seems by its nature to demand bypassing; but plenty of trouble can come from a "slower" 750kHz AD532 that has been incited to riot by poorly bypassed supply lines. Normally, well-designed multipliers are very forgiving of improperly bypassed supplies, but prudence is always in order. Aluminum electrolytics are fine, but they must be shunted with 0.01μ F disc capacitors if there is to be any hope of high-frequency functioning. High-speed devices driving heavy or dynamically varying loads often require a "flywheel," especially if they are located some distance from the power supply. In these cases, solid tantalum capacitors are a good choice for the bypassing service. When using solid tantalum capacitors, the 0.01μ F disc shunt may (or may not) be deleted. (This is a matter which arouses passionate debate in some circles, but if your name is going on the schematic, the disc shunt is recommended.) Offset and scaling adjustments will sometimes be desirable. Keep the wire lengths between the pots and the IC or module as short as possible. Components directly associated with the multiplier should also be mounted near it. As frequency goes up, this becomes even more important. Choose components with care. A poor grade of trim potentiometer used to set the scale factor on an AD534 externally (SF pin) can introduce more error (due to mechanical vibration, temperature, humidity, etc.) than the multiplier itself.

The dynamics of multipliers are governed by the same counsel as those of operational amplifiers. Phase shift, slewing rate, settling time, load considerations, etc., are all very real issues and must be addressed by manufacturer (we do our best!) and user alike. When putting things inside the AD534's feedback path, it's good to remember that the thing is going to oscillate if your addition has 137° of phase shift in it.

A LITTLE THEORY

Now that we have seen the many things multipliers can do . . . how do they work? We will discuss here the design technique most widely used—and characteristic of such IC types as the AD534, AD532, AD531, etc. It is variously known as the "transconductance technique," the translinear circuit, the Gilbert Cell, etc. It is described in some detail in several of the references at the end of this section.

The transconductance multiplier is conceptually simple. One input controls the gain of an active (FET, vacuum tube, transistor) device, which amplifies the other input in proportion to the control input. Almost all transconductance multipliers in production today use transistors as the active element, because of their linear, consistent relationship between collector current and transconductance, and because they are so easy to fabricate in matched thermally tracking sets on IC chips.

A four-quadrant transconductance multiplier consists of a set of matched current sources, a set of voltage-to-current converters, to convert the X, Y, (and, in the case of the AD534, Z) input voltages to linearly related currents, a 6-transistor multiplying "cell" that produces two currents whose difference is proportional to the product of the input voltages, and a differential-input amplifier that converts the difference current to a single-ended output voltage.

These elements, with the exception of the output amplifier and its feedback circuit, which are omitted for clarity, can be seen in Figure 62. The matched current sources are all labeled "I"; the X input voltage is applied at the bases of QA and QB, generating a proportional difference current in R_x ; the Y input voltage is applied at the bases of QC and QD, generating a proportional difference current in R_y ; the multiplying cell consists of diode-connected transistors Q1 and Q2, plus the four transistors Q3, Q4, Q5, Q6. The output difference current is equal to the sum of $I_3 + I_5$, less the sum of $I_4 + I_6$.

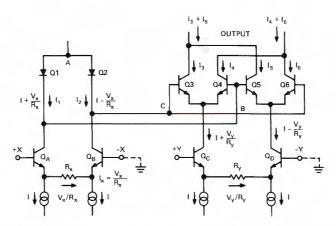


Figure 62. Basic 4-quadrant variable-transconductance multiplier circuit

In order to explain how this multiplier operates, let us first define the more-obvious relationships among the currents. By inspection of the figure,

 $I_1 = I + V_X / R_X \tag{1}$

$$I_2 = I - V_X / R_X$$
⁽²⁾

$$I_3 + I_4 = I + V_y/R_y$$
 (3)

$$I_{5} + I_{6} = I - V_{v} / R_{v}$$
(4)

The assumptions throughout will be similar geometries, infinite β , no series or shunt resistance, and isothermal operation.

Following the loop A–B–C–A via Q1, Q4, Q3, Q2,

$$V_{Q1} + V_{beQ4} = V_{beQ3} + V_{Q2}$$
(5)

Then, since

$$V_{beQi} \cong \frac{kT}{q} \ln \frac{I_i}{I_{ceo}}$$
(6)

equation (5) can be boiled down to

$$\ln I_{Q_1} + \ln I_{Q_4} = \ln I_{Q_3} + \ln I_{Q_2}$$
(7)

Therefore,

$$\mathbf{I}_{1}\mathbf{I}_{4} = \mathbf{I}_{3}\mathbf{I}_{2} \tag{8}$$

Similarly, for loop A-B-C-A via Q1, Q5, Q6, Q2,

$$I_1 I_5 = I_6 I_2$$
 (9)

As noted earlier, the output current is

$$I_0 = I_3 + I_5 - (I_4 + I_6)$$
(10)

Substituting the relationships (8) and (9) in (10), L = L + L L / L - L L

$$I_0 = I_3 + I_6 I_2 / I_1 - I_3 I_2 / I_1 - I_6$$
(11)

$$= I_3(I_1 - I_2)/I_1 - I_6(I_1 - I_2)/I_1$$

$$= (I_3 - I_6)(I_1 - I_2)/I_1$$
(12)

Substituting (1) and (2) for I_1 and I_2 in the numerator of (12),

$$I_0 = (I_3 - I_6)(2V_X/R_X)/I_1$$
(13)

From (8) and (3), we can see that

$$I_{4} = \frac{I_{3}I_{2}}{I_{1}} = I + \frac{V_{y}}{R_{y}} - I_{3}$$
(14)

Hence, we can solve for I_3 ,

$$I_{3} = \frac{I_{1}I + I_{1}V_{y}/R_{y}}{I_{1} + I_{2}} = \frac{I_{1}I + I_{1}V_{y}/R_{y}}{2I}$$
(15)

Similarly, from (9) and (4), we can see that

$$I_{5} = \frac{I_{6}I_{2}}{I_{1}} = I - \frac{V_{y}}{R_{y}} - I_{6}$$
(16)

Solving for I6,

$$I_{6} = \frac{I_{1}I - I_{1}V_{y}/R_{y}}{2I}$$
(17)

Substituting (15) and (17) in (13) and simplifying,

1

$$\frac{V_0}{0} = \frac{2I_1 V_y / R_y}{2I} \cdot \frac{2V_x / R_x}{I_1}$$

$$= 2 \frac{V_x V_y}{IR_x R_y}$$
(18)

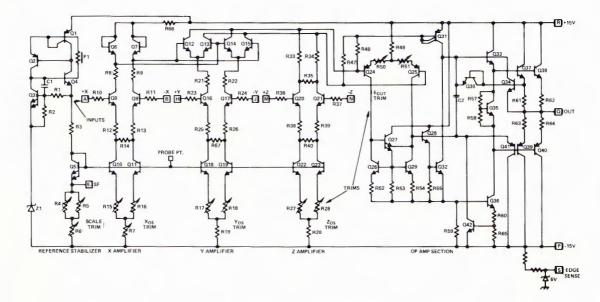


Figure 63. Schematic diagram of complete laser-trimmed multiplier (from ANALOG DIALOGUE 9-3, 1975, page 5)

Figure 63 is a complete schematic of a version of the AD534. The six-transistor multiplier cell consists of Q6, Q7, Q12, Q13, Q14, and Q15. $(R_{12} + R_{13} + R_{14})$ is analogous to R_x , $(R_{25} + R_{26} + R_{27})$ is analogous to R_y , and $(R_{38} + R_{39} + R_{40})$ is analogous to R_z . The difference current, $2V_z/R_z$, is made equal to the output current by feedback around the output amplifier. Therefore, when the "sense" feedback from E_0 is to Z_1 ("+Z"), and the "reference", Z_2 ("-Z"), is at ground,

$$E_{o} = V_{z},$$

$$E_{o} = \frac{R_{z}}{R_{x}R_{y}I} - V_{x}V_{y}$$
(19)

and

The "trim" resistors that adjust the current sources are automatically adjusted for balanced operation – all difference currents at zero when the respective inputs are at zero – and the scale factor is automatically adjusted to $(10V)^{-1}$, by means of laser trimming at the wafer stage. A temperature-compensated buried-Zener-diode reference circuit controls the current-sources – hence the scale factor – with excellent stability against time and temperature.

A BRIEF BIBLIOGRAPHY

Note: Items are *not* available from Analog Devices unless identified by an asterisk(*).

- "Accurate, Low-Cost, Easy-to-Use I.C. Multiplier," B. Gilbert, ANALOG DIALOGUE 11-1, 1977*
- "All-Electronic High-Speed Multiplier," S. Giser, M.I.T. Instrumentation Laboratory Report R-67, 1953

"Analog Multiplier Applications," J. Pepper, Instruments and Control Systems, June, 1972

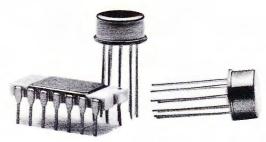
"Analog Multipliers – New Versions Manipulate Real-World Problems with Ease," R. Frantz, EDN Magazine, 5 September, 1977*

"A Complete Monolithic Multiplier-Divider on a Single Chip," R. Burwen, ANALOG DIALOGUE 5-1, 1971*

"Don't Be Fooled By Multiplier Specs," R. Stata, Electronic Design 6, March 15, 1971

"Heavy-Duty Supply Regulates Voltage, Current, or Power," J. Williams, EDN, 5 May, 1975

- "An I.C. Amplifier User's Guide to Decoupling, Grounding, and Making Things Go Right for a Change," A. P. Brokaw, Analog Devices Application Note, April, 1977*
- "Linearizing Almost Anything with Multipliers," R. Burwen, *Electronic Design* 8, 15 April, 1971


"Multiplier Memories and Meanderings," D. Sheingold, ANALOG DIALOGUE 5-1, 1971*

- NONLINEAR CIRCUITS HANDBOOK, D. H. Sheingold, Ed., Analog Devices, Inc., 1974, 1976,* P.O. Box 796, Norwood MA 02062, \$5.95
- "A Precise Four-Quadrant Multiplier with Subnanosecond Response," B. Gilbert, IEEE Journal of Solid-State Circuits, December, 1968

TECHNICAL DATA

In this section, you will find brief descriptions and specifications of most of the multiplier/ divider products mentioned in the text, extracted from the Analog Devices Short Form Guide to Electronic Products for Precision Measurement and Control. The complete Short Form Guide, containing similar information on all Analog Devices products, is available upon request. Detailed information, in the form of complete data sheets on specific products, may also be had without charge.

Computational Circuits: IC's

Analog Devices is the industry's leading supplier of Analog Computational Circuits. Utilizing the linearized transconductance technique, Analog Devices has developed a line of low cost, monolithic circuits which can multiply, divide, square and square-root analog voltage magnitudes. The most recent development is the AD535, the world's first laser-trimmed, 2-quadrant dedicated divider.

MULTIPLIER IC's

The AD531 is the first monolithic programmable multiplier/ divider to provide the true transfer function $V_X \cdot V_Y/kI_Z$ without the need for an external level shifting op amp at the output. Not just a multiplier, the AD531 is truly a computation circuit that is ideally suited to such applications as automatic gain control (AGC), true rms-to-dc conversion, ratio determination and vector operations; in addition, it provides the normal mathematical functions of four-quadrant multiplication, two-quadrant division, squaring, and square rooting.

The AD532 is the first internally trimmed single chip monolithic multiplier/divider. It guarantees a maximum multiplying error of ±1.0% and a ±10V output voltage without the need for external trimming resistors or an output op amp.

The Analog Devices' AD533 is a low cost integrated circuit 4 quadrant multiplier consisting of a transconductance multiplying element, stable reference, and output amplifier on a monolithic silicon chip. Specified accuracy is achieved with feedthrough, offset, and gain trim pots.

The AD534 is the most accurate and versatile IC multiplier/ divider manufactured today. Laser trimming provides accuracies up to 0.25% max error at +25°C (AD534L) and 1.0% max error from -55°C to +125°C (AD534T); and a buried Zener reference provides excellent long-term stability. In addition to the metal package, a new convenient DIP package is available.

SPECIFICATIONS (min, max $@V_S = \pm 15V$, $T_A = \pm 25^{\circ}C$ unless otherwise noted)

Models	AD531J(AD531K)(AD531L) (AD531S)	AD532J(AD532K) (AD532S)	AD533J(AD533K)(AD533L) (AD533S)	AD534J(AD534K)(AD534L) (AD534S)(AD534T)
Full Scale Accuracy – %	2(1)(0.5)(1)	2(1)(1)	2(1)(0.5)(1)	1(0.5)(0.25)(1)(0.5)
Divides and Square Roots	YES	YES	YES	YES
Multiplication Characteristics				
Output Function	XY/klz	$(X_1 - X_2)(Y_1 - Y_2)/10$	XY/10	$[(X_1 - X_2)(Y_1 - Y_2)/10] + Z_2$
Accuracy vs. Temperature $(\pm) - \%/^{\circ}C$	0.04(0.03)(0.01)(0.02 max)	0.04(0.03)(0.04 max)	0.04(0.03)(0.01)(0.01)	0.022(0.015)(0.008) (0.02 max)(0.01 max)
Accuracy vs. Supply	0.5%/%	0.05	0.5	$\pm 0.01\% \pm 14V$ to $\pm 16V$
Output Offset				
Initial	Adj. to zero	±40mV(±30mV) (±30mV)max	Adj. to zero	±30mV(±15mV)(±10mV)(±30mV) (±15mV)max
$Drift - /^{\circ}C$	0.7(0.7)(1.0 max)(2.0 max)µV	0.7(0.7)(2.0 max)mV	0.7mV	0.2(0.1)(0.1)(0.5 max)(0.3 max)mV
Scale Factor Nonlinearity	Dynamically Variable	Fixed	Fixed	3 to 10
X Input (X = 20V p-p, Y = $\pm 10V dc$) - $\pm \%$	$0.8(0.5)(0.3)(0.5)^{1}$	0.8(0.5)(0.5)	0.8(0.5)(0.5)(0.5)	0.4(0.3 max)(0.12 max)(0.4)(0.3 max)
Y Input (Y = 20V p-p, X = $\pm 10V dc$) - $\pm \%$	$0.3(0.2)(0.2)(0.2)^1$	0.3(0.2)(0.2)	0.3(0.2)(0.2)(0.2)	0.01(0.1 max)(0.1 max)(0.01)(0.1 max)
Feedthrough				
X = 0, Y = 20V p - p 50Hz - mV p - p	-	150(80)(80)max		1(10 max)(10 max)(1)(10 max)
with External Trim - mV p-p	100(60)(30)(60)max ¹	-	150(100)(50)(100)max	
Y = 0, X = 20V p - p 50Hz - mV p - p	-	200(100)(100)max	-	30(30 max)(12 max)(30)(30 max)
with External Trim - mV p-p	150(80)(40)(80) max ¹	-	200(100)(50)(100) max	-
Bandwidth				
-3dB Small Signal - MHz	1	1	1	1
Full Power Response - kHz	750	750	750	not spec'd
Slew Rate - V/µs	45	45	45	20
Output Characteristics				
Voltage at Rated Load (min) - V	±10	±10	±10	±11
Current (min) -mA	±5	±5	±5	±5
Input Resistance				
$X/Y/Z$ Input $-\Omega$	10M/6M/36k ²	10M/10M/36k	10M/6M/36k	10M
Input Bias Current				
X/Y Input $-\mu A$	3(4 max)(2 max)(4 max)	3(4 max)(4 max)	3(7.5 max)(5 max)(7.5 max)	2 max
Power Supply (V _S)				
Rated Performance - V	±15	±15	±15	±15
Operating - V	± 15 to $\pm 18^{3}$	± 10 to $\pm 18^{3}$	± 15 to $\pm 18^3$	±8 to ±18
Quiescent Current – mA max	±6.5	±6	±6	±6
Operating Temperature Range ⁴	C(C)(C)(M)	C(C)(M)	C(C)(C)(M)	C(C)(C)(M)(M)

³AD531S/AD532S/AD533S ±10 to ±22

 ${}^{4}C: 0 \text{ to } +70^{\circ}C$ M: -55°C to +125°C ⁵ D: 14 Pin Ceramic Dip H: 10 Pin TO-100

RMS TO DC CONVERTER IC

A monolithic rms to dc converter, the AD536A computes the true rms value of any complex waveform without the need for external adjustment. The device utilizes a crest factor compensation scheme to achieve less than 1% error at crest factors up to 7. The AD536A is available in a new, inexpensive metal package as well as a ceramic DIP.

SPECIFICATIONS

(typical @ +25°C and ±15V dc unless otherwise noted)

Models	AD536AJ (AD536AK)(AD536AS)
Transfer Equation	$V_{OUT} = \sqrt{avg. (V_{IN})^2}$
Conversion Accuracy	
Total Error	
Input: 0 to 7Vms	±5mV ±0.5%(±2mV ±0.2%)(±2mV ±0.2%) of Rdg., max
vs. Temperature Tmin to +70°C	±(0.1mV ±0.01% Rdg.)(0.05mV ±0.005% Rdg.)(0.1mV ±0.005% of Rdg.)/°C max
+70°C to +125°C	(-)(-) ±(0.3mV ±0.005% of Reading)/°C max
vs. Supply Voltage	±(0.1mV ±0.01% Reading)/V
Error vs. Crest Factor	e.
1 to 2	0
3	-0.1% of Reading
7	-1% of Reading
Frequency Response (Sinewave) Bandwidth for ±1% Reading Additional Error	
$10mV < V_{IN} \leq 100mV$	6kHz
$100 \text{mV} \le V_{\text{IN}} \le 1 \text{V}$	40kHz
$1V < V_{IN} \leq 7V$	100kHz
Bandwidth, -3dB	
$10 \text{mV} \le V_{\text{IN}} \le 100 \text{mV}$	50kHz
$100 \text{mV} < \text{V}_{\text{IN}} \leq 1 \text{V}$	300kHz
$1V < V_{IN} \leq 7V$	2MHz
±1% Reading Error Input: 0.1 to 7V _{rms}	100kHz
Bandwidth, -3dB, 1Vrms	1MHz
External Filter Time Constant	25ms/µF
	2 5 11 5 / μ1
Signal Output Rated Output	
Voltage, ±15V Supplies	0 to +10V min
Voltage, 0, +5V Supplies	0 to +2V min
Current	(+5mA, -130µA) min
Resistance	0.5Ω max
Short Circuit Current	20mA
Offset Voltage	$\pm 2mV(\pm 1mV)(\pm 2mV) max$
vs. Temperature vs. Supply	±(100)(100)(200 max)µV/°C ±100µV/V
	-100,4777
Signal Input Signal Range ±15V Supply	±20V Peak
Signal Range 0, +5V Supply	±5V Peak (ac - coupled)
Safe Input ±15V Supply	±30V
Input Impedance	16.7kΩ ±20%
dB Output	
Scale Factor (+25°C)	-3mV/dB
Scale Factor TC	-0.3% of Reading/°C
I_{REF} , for 1.0 $V_{rms} = 0$ dB	20μΑ
Accuracy $(1.0V_{rms} = 0dB)$	
Input: 7mV to 7V _{rms}	±0.5(±0.2)(±0.5)dB
Power Supply	
Voltage Rated Performance	+2 +1 017
Dual Supply Single Supply +5 to +36V	±3 to ±18V +5 to +36V
Single Supply +5 to +36V Quiescent Current	1mA
Temperature Range Operating	$0 to +70^{\circ}C$
Storage	-55°C to +150°C
Packages	14 Pin Ceramic DIP (D)
B	10 Pin Metal Can (H)

DEDICATED IC DIVIDER

The AD535 is a monolithic laser-trimmed two quadrant divider with performance specifications previously available only in high cost hybrid or modular devices. A maximum divider error of $\pm 0.5\%$ is guaranteed with no external trim over a denominator range of 10 to 1.

SPECIFICATIONS

 $(V_S = \pm 15V, R_L \ge 2k\Omega, T_A = 25^{\circ}C$ typical unless otherwise stated)

Parameter	Conditions	AD535J(K)
Transfer Function		$10 \frac{(Z_2 - Z_1)}{(X_1 - X_2)} + Y$
Total Error – % max	No External Trims 1V≤X≤10V, Z≤ X	1.0(0.5)
	With External Trim 0.5V≪X≤10V, Z≤ X	1.0(0.5)
Temperature Coefficient – %/°C	$1V \leq X \leq 10V, Z \leq X $ $0.2V \leq X \leq 10V, Z \leq X $	0.01 0.05
Total Error, Square Root – %	No External Trim 1V≪Z≪10V	0.4
Bandwidth — kHz	X=0.2V	20
Input Amplifiers Bias Current – μ A max CMRR – dB min Differential Impedance – m Ω	dc to 50Hz, 20V p-p	2.0 60 10
Output Amplifier Small Signal Gain Bandwidths – MHz Output Voltage Swing – V min Slew Rate – V/µs Current – mA max	V _{OUT} = 0.1V _{ms} T _{min} to T _{max} V _{OUT} = 20V p-p T _{min} to T _{max}	1 ±11 20 30
Power Requirement Rated Performance – V Operating – V Supply Current – mA max	Quiescent	±15 ±8 to ±18 6
Operating Temperature Range – °C Packages	14 Pin Ceramic DIP (D) 10 Pin Metal Can (H)	0 to +70

Computational Circuits: Modules

MULTIFUNCTION MODULES

Model 433 will perform multiplication, division, or exponentiation up to the 5th power or root. Offering ½% (433J) and ¼% (433B) accuracy as well as simple programmability, model 433 is ideal for generating linear and non-linear functions as well as for linearizing transducer signals in medical and industrial applications.

Model 434 is optimized for one quadrant divider applications and features external adjustment capability to eliminate all dc offset errors. Accuracy without external adjustment is ½% max (434A) and ¼% (434B) over a 100:1 denominator range. Model 434 may be connected as a precision wide dynamic range square rooter offering ½% (434B) max error over 1000:1 range.

MULTIPLIERS/ DIVIDERS

Model 426 is a low cost, 1% (426A,K) and ½% (426L) general purpose multiplier/divider. Model 429 offers excellent 10MHz bandwidth and 1% max (429A), ½% max (429B) accuracy. Model 435 provides precision performance of ½% (435J) and 0.1% (435K) max error with no external trimming. Model 436 is a precision two quadrant divider with max error of ½% (436A) and ¼% (436B) over a 100:1 denominator range with no external adjustment required.

SPECIFICATIONS

(typical $(a) + 25^{\circ}C$ and $\pm 15V$ dc unless otherwise noted)

Model	Multifunction 433J(433B)	One Quadrant Divider 434A(434B)
Transfer Function	$e_{o} = -\frac{10}{V_{REF}} V_{y} \left(\frac{V_{z}}{V_{x}}\right)^{m}$	$e_{o} = \frac{10}{V_{\text{REF}}} V_{y} \frac{V_{z}}{V_{x}}$
		$e_{o} = \frac{10}{V_{REF}} V_{y} \frac{I_{z}}{I_{x}}$
Reference Voltage, V _{REF} (Internal Source)	+9.0V ±5% @ 1mA	+9.0 ±5% @ 1mA
Rated Output	+10.5V @ 5mA, min	+10.5V @ 5mA, min
External Adjustment m	$1/5 \leqslant m \leqslant 5$	NA
Total Output Error $(25^{\circ}C)$ Input Range $(V_{z} \leq V_{x})$	$\pm 0.5\%(\pm 0.25\%)$ max 0.01V to 10V, V ₂	$\pm 0.5\%(\pm 0.25\%)$ max $0.01 \le V_z \le \pm 10V$ $[0.1 \le I_z \le \pm 100\mu A]$
	0.1V to 10V, $\mathrm{V_{X}}$	$[0.1 \leq I_Z \leq +100\mu A]$ $0.1 \leq V_X \leq +10V$ $[1 \leq I_X \leq +100\mu A]$
Over Specified Temp. Range	$\pm 1\%(\pm 1\% \text{ max})$	±1% (±1% max)
Bandwidth, V _y , V _z Small Signal (-3dB), 10% of de level		
$V_y = V_z = V_x = 10V$ $V_y = V_z = V_x = 0.01V$	100kHz 400Hz	100kHz 400Hz
Power Supply, Rated Performance	±15V dc @ 10mA	±15V dc @ 8mA
Temperature Range, Rates Performance	0 to $+70^{\circ}$ C (-25°C to $+85^{\circ}$ C)	$-25^{\circ}C$ to $+85^{\circ}C$
Case Dimensions	1.5" x 1.5" x 0.62"	1.5" x 1.5" x 0.62"

SPECIFICATIONS (typical $@ +25^{\circ}$ C and $\pm 15V$ unless otherwise noted)

Model ¹	General Purpose 426A(426K)(426L)	Accurate Wideband 429A(429B)	High Accuracy 435J(435K)	High Accuracy 2-Quadrant Divider 436A(436B)
Divides and Square Roots	Yes	Yes	Yes	Divide Only
Multiplication Characteristics Output Function Error, Internal Trim Error, External Trim Accuracy vs. Temperature	XY/10 1%(1%)(0.5%) max 0.6%(0.6%)(0.35%) 0.05(0.04 max)(0.04 max) %/°C	XY/10 1%(0.5%) max 0.7%(0.3%) 0.05%/ [°] C(0.04%/ [°] C max)	XY/10 0.25%(0.1%) max 0.15%(0.08%) 0.01%/ [°] C(0.01%/ [°] C max)	10Z/X 0.5%(0.25%) max 0.3%(0.1%) max 0.04%/°C(0.2%/°C) max
Output Offset Initial ® +25°C vs. Temperature	20mV 2mV/°C(1mV/°C max)(1mV/°C max)	20mV(10mV) max 2mV/°C(1mV/°C max)	10mV(5mV) max 0.3mV/°C(0.2mV/°C) max	$10 \text{mV}, \text{V}_{X} = +10 \text{V}$ $0.5 \text{mV}^{\circ} \text{C}$
Nonlinearity X Input (X = 20V p-p; Y = ±10V dc) Y Input (Y = 20V p-p; X = ±10V dc)	0.6%(0.6%)(0.25%) max 0.3%(0.3%)(0.25% max	0.5%(0.2%) max 0.3%(0.2%) max	0.1%(0.05%) max 0.1%(0.05% max	0.1%(0.05%) $0.1V \le V_x \le 10V$
Bandwidth —3dB Small Signal Full Power Response Slew Rate	400kHz 80kHz 5V/μs	10MHz 2MHz min 120V/µs min	300kHz 30kHz 2V/µs	300kHz 30kHz 2V/μs
Output Voltage/Current	±11V min/±11mA min	±11V min/±11mA min	±10V min/±5mA min	±10V min/±5mA min
Power Supply, Rated Performance	±15V dc @ ±5mA.	±15V dc @ ±12mA.	±15V dc @ ±6mA	±15V dc @ ±9mA
Temperature Range, Rated Performance	$e -25$ to $+85^{\circ}C(0$ to $+70^{\circ}C)(0$ to $+70^{\circ}C$) $-25^{\circ}C$ to $+85^{\circ}C$	0 to $+70^{\circ}$ C	$-25^{\circ}C$ to $+85^{\circ}C$
Case Dimensions, inches	1.5 x 1.5 x 0.6	1.5 x 1.5 x 0.6	1.65 x 3.07 x 0.65	1.5 x 1.5 x 0.62

¹Other popular models not shown, but available (contact factory) 432J/K, 428J/K, 424J/K, 427J/K

LOGARITHMIC AMPLIFIERS

Models 759N/P are low cost, fast response dc logarithmic amplifiers offering 1% conformance to ideal log operation over four decades of current operation, 20nA to 200μ A. Featuring 200kHz bandwidth @ $I_{SIG} = 1\mu A$, these new economy designs are the industries fastest log/antilog amplifiers and offer an attractive alternative to in-house designs. Voltage logging from 1mV to 10V is also provided, with 2% max conformance error over the entire range. Designed for ease of use, models 759N/P are complete and offer internal reference current (10µA) scale factors (K=2, 1, 2/3 V/decade) and log/ antilog operation by simple pin selection. External components are not required for logging currents over a six decade range, from 1nA to 1mA. Model 759N computes the log of positive input signals, while model 759P computes the log of negative input signals. Applications for models 759N/P include data compression and expansion, chemical analysis of liquids and conversion of exponential transducer signals

to linear form. Models 755N/P are high accuracy, complete, dc logarithmic amplifiers, offering 1/2% log conformity over a four decade range, 10nA to 100 μ A. A 1% log conformity is also guaranteed over a six decade range, 1nA to 1mA. For increased flexibility, three scale factors (K=2, 1, 2/3 V/decade), as well as log or antilog operation may be selected by simple pin connection. The 10 μ A internal reference current may also be externally adjusted. Model 755N computes the log of positive input signals; model 755P computes the log of negative input signals.

Models 757N/P are high accuracy, complete, temperature compensated, dc log ratio amplifiers, capable of either current log ratio or voltage log ratio. Models 757N/P can process signals spanning 6 decades (1nA to 1mA) at either input channel (I_{SIG}, I_{REF}), maintaining 1% log conformity. Log ratio amplifiers are suited for applications such as blood analysis, chromatography, chemical analysis and absorbance measurements.

SPECIFICATIONS (typical $@+25^{\circ}$ C and V_S = ±15V dc unless otherwise noted)

Model ¹	Economy, Wideband,High AccuracyLog/Antilog AmplifierLog/Antilog Amplifier759N/P755N/P		High Accuracy, Log/Antilog Ratio Amplifier 757N/P
Transfer Functions			
Current Mode	$e_0 = -K \log_{10} \frac{I_{SIG}}{I_{REF}}$	$e_0 = -K \log_{10} \frac{I_{SIG}}{I_{REF}}$	$e_0 = -K \log_{10} \frac{I_{SIG}}{I_{REF}}$
Voltage Mode	$e_o = -K \log_{10} \frac{E_{SIG}}{E_{REF}}$	$e_o = -K \log_{10} \frac{E_{in}}{E_{REF}}$	$e_{0} = -K \log_{10} \left(\frac{e_{1}}{e_{2}} \times \frac{R_{2}}{R_{1}} \right)$
Antilog Mode	$e_o = E_{REF} 10^{-} \left(\frac{E_{SIG}}{K}\right)$	$e_o = E_{REF} 10^{-} \left(\frac{E_{in}/K}{K} \right)$	$e_0 = E_{REF} 10^{-} \left(\frac{E_{in}}{K}\right)$
Log Conformity Error, Referred to Input I _{SIG} , I _{REF} Range			
20nA to 100µA	$\pm 1\% \max (I_{\text{REF}}^3 = 10 \mu \text{A})$	_	_
10nA to 1mA	$\pm 2\% \max(I_{REF}^{3} = 10\mu A)$	-	_
10nA to 100µA	_	$\pm 0.5\% \text{ max} (I_{\text{REF}}^3 = 10\mu\text{A})$	±0.5% max
InA to 1mA	$\pm 5\%$ (I _{REF} ³ = 10µA)	$\pm 1\% \max (I_{REF}^3 = 10\mu A)$	±1% max
icale Factor (K) Selections ^{2,3}	2, 1, 2/3 Volt/Decade, ±1%	2, 1, 2/3 Volt/Decade, ±1%	1 Volt/Decade ±1%
Small Signal Bandwidth, –3dB			
$I_{SIG} = 1\mu A$	200kHz	10kHz	25kHz
$I_{SIG} = 100 \mu A$	300kHz	40kHz	50kHz
aput Specifications			
ISIG Channel; Input Range	1nA to 1mA	1nA to 1mA	1nA to 1mA
Bias Current	200pA max	10pA	10pA
Offset Voltage	±2mV max	±0.4mV	±1mV max
IREF Channel, Input Range		_	1nA to 1mA
Bias Current	-	<u>-</u>	10pA
Offset Voltage		_	±1mV max
Rated Output Voltage/Current	±10V min @ ±5mA	±10V min @ ±5mA	±10V min @ ±5mA
ower Supply, Rated Performance	±15V dc @ ±4mA	±15V dc @ ±10mA	±15V dc @ ±8mA
Case Dimensions	1.125" x 1.125" x 0.4"	$1.5'' \ge 1.5'' \ge 0.4''$	$1.5'' \ge 1.5'' \ge 0.4''$

For positive inputs, specify "N" model; for negative inputs, specify "P" model.

³K is positive for "N" models; negative for "P" models.

³Externally adjustable.

RMS-to-DC Converters: Modules

TRUE RMS-TO-DC CONVERTERS

These compact true rms-to-dc converter modules are an excellent choice for use in all types of OEM rms instrumentation. In addition to measuring ac signals, all models also measure directly the rms value of waveforms containing both ac and dc. No external adjustments or components are required to achieve rated performance.

Model 442 is a high performance true rms-to-dc converter featuring 8MHz bandwidth, low drift to $\pm 35\mu V/^{\circ}C \pm 0.01\%$ of reading/ $^{\circ}C$ maximum, and $\pm 1\%$ reading error to 800kHz. Accuracy is held to within $\pm 2mV \pm 0.15\%$ of reading for input signals of 0 to 2V rms. If optional adjustments are performed, this accuracy can be improved to $\pm 0.5mV \pm 0.05\%$ of reading. Model 442 is designed to be used in high performance instrumentation where response to low level, high speed signals, is of greatest importance. Model 440 is a compact rms-to-dc converter featuring performance usually found in higher priced units. Model 440 is available in two accuracy grades; model 440K features total error of $\pm 5 \text{mV} \pm 0.1\%$ of reading, while model 440J has total error of $\pm 15 \text{mV} \pm 0.2\%$ of reading. Rated accuracy is achieved for signal crest factors as high as 5. Less than $\pm 1\%$ reading error occurs with signal crest factor as high as 10.

Model 441 is a low cost design capable of performing high accuracy measurements (0.2%, 441K) on simple ac signals, such as sinewaves, and on a wide range of complex waveforms. For measurements below 100Hz, a single external capacitor may be added to achieve 0.1% accuracy without affecting the bandwidth for higher frequency measurements. The model 441 delivers its excellent performance over a wide range of power supplies (± 4 to $\pm 18V$ dc) making it ideal for battery operated applications.

SPECIFICATIONS (typical $@+25^{\circ}C$ and $V_{S} = \pm 15V$ dc unless otherwise noted)

Model	Wideband, High Accuracy 442J(442K)(442L)	General Purpose 440J(440K)	Economy 441J(441K)
Accuracy No External Adjustment External Adjustment vs. Temperature (0 to +70°C)	±2mV ±0.15% max ±0.5mV ±0.05% max ±(0.1mV ±0.01%)/°C max [442J] ±(0.05mV ±0.01%)/°C max [442K] ±(0.035mV ±0.01%)/°C max [442L	±15mV ±0.2%, (±5mV ±0.1%) max ±10mV ±0.1%, (±2mV ±0.05%) max ±(0.2mV ±0.02%)/°C max	±10mV ±0.4% (±5mV ±0.2%) max ±2mV ±0.1%, max ±(0.2mV ±0.03%)/°C max
Crest Factor, Rated Accuracy	7	5 min	3 min
Frequency Response, Sinewave Rated Accuracy Input Range, 0.1 to 7V _{rms} ±1% Reading Error	20kHz, min	10kHz, min	10kHz, min
Input, $7V_{rms}$ Input, $0.7V_{rms}$ Bandwidth, $-3dB$	800kHz, min 150kHz	50kHz, min 100kHz, min	20kHz, min 30kHz, min
Input Range, 0.7 to 7V _{rms}	8MHz	500kHz	75kHz
Output Specifications Rated Output Offset Voltage (Adj. to Zero)	+10V min/+5mA min ±2mV max	+10V min/+10mA min ±5mV, (±2mV) max	+10V min/+5mA min ±10mV(±5mV) max
Input Voltage Range	±10V, Peak	±10V, Peak	±10V, Peak.
Power Supply Voltage, Rated Performance Voltage, Operating Current, Quiescent	±15V dc ±(6 to 18)V dc ±12mA	±15V dc ±(6 to 18)V dc ±10mA	±15V dc ±(4 to 18)V dc ±10mA
Temperature Range, Operating	0 to +70°C	$0 \text{ to } +70^{\circ}\text{C}$	0 to $+70^{\circ}$ C
Case Dimensions	1.5" x 1.5" x 0.4"	1.5" x 1.5" x 0.4"	2" x 2" x 0.4"

U.S. SALES OFFICES

ALABAMA 205 536 1506 * ALASKA 617 329 4700 * ARIZONA 602 949 0048 ARKANSAS 214 231-5094 • CALIFORNIA* Southern 714 842 1717. Northern 415 969-8525 COLORADO 303-494-3351 CONNECTICUT Fairfield County 516 673 1900, All Others 617 329-4700 • DELAWARE 215 643 7790 • FLORIDA 305 855 0843 • GEORGIA 205 536-1506 • HAWAII 714 842 1717 • IDAHO Idaho Co. & North 206 767-3870; South of Idaho Co. 801 484-3365 . ILLINOIS 312 894-3300"; Northern 312 446 9085; Southern 314 725-5361 . INDIANA 317 244 7867 • IOWA 312 446-9085 • KANSAS Shawnee Mission 913 888-3330; Wichita 316 945-5501 • KENTUCKY Western 317 244-7867; Eastern 617 329-4700 • LOUISIANA 713 664-6704 • MAINE 617 329-4700 • MARYLAND 301 953 7580 • MASSACHUSETTS 617 329 4700 • MICHIGAN 313 882-1717 • MINNESOTA 612 835 2414 • MISSISSIPPI 205 536 1506 • MISSOURI 314 725 5361 • MONTANA 801 484-3365 • NEBRASKA 913 888-3330 • NEVADA Clark County 505 262-1416: All Others 415-969-8525 • NEW HAMPSHIRE 617 329-4700 • NEW JERSEY Northern 516 673 1900, Southern 215 643-7790 • NEW MEXICO 505 262 1416 • NEW YORK New York City Area and Poughkeepsie 516 673-1900, Syracuse 315 454-9314 or From Area Codes 315 , 518, 607, 716 only call toll free 800 962-5701 • NORTH CAROLINA 919 373 0380 • NORTH DAKOTA 512 835 2414 • OHIO Worthington* 514 764-8795; Cleveland 216 261 5440; Dayton 513 426 5851 • OKLAHOMA 214 731-5094 • OREGON 206 767-3870 • PENNSYLVANIA Eastern and Central 215 643-7790," Western 412 823-0932 . RHODE ISLAND 617 329-4700 . SOUTH CAROLINA 919 373-0380 · SOUTH DAKOTA 612 835-2414 · TENNESSEE 205 536-1506 · TEXAS El Paso County 505 262 1416; Richardson* 214 231 5094; Houston* 713 664-6704 • UTAH 801 484-3365 • VERMONT 517 329-4700 • VIRGINIA 301 953-7580 · WASHINGTON 206 767-3870 · WEST VIRGINIA 412 823-0932 · WISCONSIN 414 781-3763 • WYOMING 303 494 3351 • PUERTO RICO 617 329-4700 CANADA Ottawa, Ontario 613 722-7667; Point Claire, Quebec 514 694 5343; West Vancouver, B.C. 604 926 3411; Mississauga, Ontario 416 625-7752

*Factory direct sales offices

OVERSEAS SALES OFFICES

ARGENTINA: Rayo Electronica 37-9890 . AUSTRALIA*: Parameters Pty. Ltd. 02/43 93 288. 03/90 74 44 # AUSTRIA*: Walter Rekirsch elektronische 34 76 46 • BELGIUM*: Analog Devices Benelux 031/37 48 03 • BRAZIL: Artimar Ltd. 228-7361 • CMEA COUNTRIES: International Electronics Company, Vienna, Austria 0222/859304 ● DENMARK*: Analog Devices APS 02/84 58 00 ● FINLAND*: SW-Instruments 90-738265 • FRANCE*: Analog Devices S.A. 687-3411, 76 05 82 15, 61 41 11 81, 33 26 07 61 • HOLLAND*: Analog Devices Benefux 076/879251 • INDIA: Darbari Industries (Agencies) 3385 . IRELAND: Analog Devices B.V. 061/44699 . ISRAEL*: Analog Devices, Ltd. 052-21023 • ITALY*: Dott. Ing. Gruseppe DeMico S.p.A. 02/853 131, 051/55 56 14, 049/65 29 09, 06/31 62 04, 011/65 03 271 • JAPAN* Analog Devices of Japan, Inc. 03/263 68 26, 06 372 1814 • MALAYSIA: General Engineers Corp. Pte. Ltd. . NEW ZEALAND: W. Arthur Fisher Ltd. 595-525, 850-243, 67-692 . NORWAY*: Estronic 02/78 60 10 . PAKISTAN: Superior Electronic Assocs. 613655 • ROMANIA: Analog Devices SA, Switzerland 022/31 57 60, 01/840 07 77 . SINGAPORE: General Eng. Corp. Pte. Ltd. 2714081 . SOUTH AFRICA*: L'Electron (pty.) Ltd. 786-5150 • SPAIN*: Interface S.A., 93/3017851, 051/55 56 14, 049/65 29 09, 06/31 62 04, 011/65 03 271 • SWEDEN*: NAXAB 08/98 51 40. SWITZERLAND*: Analog Devices SA 022/31 57 60, 01/840 07 77 • TAIWAN: Yuan Kong Enterprises Ltd. 331-8833 • THAILAND: Dynamic Supply Eng. R.O.P. 3914434 . TURKEY: Simge Ltd. 297744 . UNITED KINGDOM*: Analog Devices Ltd. 01/941 0466 • WEST GERMANY*: Analog Devices GmbH 089/530319, 04187/381, 0721/616075, 030/31 64 41, 0221/68 60 06 • YUGOSLAVIA: Analog Devices SA, Switzerland 022/31 57 60, 01/840 07 77

"These offices sell components and MACSYM systems,

ROUTE ONE INDUSTRIAL PARK . P.O. BOX 280 . NORWOOD, MASSACHUSETTS 02062

TWX: (710) 394-6577 Cable: ANALOG NORWOODMASS **TELEX: 924491**