
Copyright © 1996-2020 by PowerBASIC Tools, LLC. All Rights Reserved.

PowerBASIC Compiler for
Windows Version 10

PowerBASIC Compiler for Windows Version 10

2 / 2126

Table of contents

Home ... 36
Introducing PowerBASIC For Windows 10 ... 37
What's New ... 38

New Statements and Functions .. 38
Changes to existing Statements and Functions ... 51
Additional Changes .. 55
New in the IDE .. 58

Running PB/Win ... 60
Running PB/Win ... 60
Running PB/Win From Windows ... 60
Running PB/Win From The Command Prompt ... 61
PB/Win Command Line Switches .. 61

The PowerBASIC Integrated Development Environment 62
The PowerBASIC Integrated Development Environment 62
The PowerBASIC User Interface ... 63
Toolbar Buttons ... 64
Editor Hot Keys .. 65
IDE Context Menu .. 67
File Templates ... 68
Project Files ... 69
Custom Help Files .. 70
IDE Options ... 71

IDE Options ... 71
File tab .. 71
Editor tab .. 73
Fonts tab ... 74
Color tab ... 75
Syntax Color Selector .. 76
Syntax Custom Color Selector .. 76
Compiler tab .. 77
Browsing for Include folders .. 78
Debugger tab ... 79
General tab .. 80

IDE Dialogs ... 87
Code Finder Dialog ... 87
Command Line Dialog .. 87
Debugger Evaluate Dialog ... 87
Find Dialog .. 87
Go to Line Dialog ... 88
Go to Bookmark Dialog ... 88
Print Preview Dialog ... 89
Primary Source File Dialog .. 91
Replace Dialog Box ... 91
PowerBASIC Library Manager .. 91

Writing Programs in PB/Win .. 93
Line numbers and Labels ... 93
Long lines ... 94

PowerBASIC Compiler for Windows Version 10

3 / 2126

Statement separation .. 94
Variables ... 95
Structured Programming ... 96

Creating Dynamic Link Libraries ... 97
What is a Dll? .. 97
Why use Dlls? .. 98
Creating a Dynamic Link Library ... 98
Private and Exported Procedures .. 99
Dll example ... 100
LibMain ... 101

Creating Static Link Libraries .. 101
What is an SLL? .. 101
Creating a Static Link Library ... 102
SLL example .. 104
PowerBASIC Library Manager .. 105

Debugging PB/Win Programs ... 106
Debugging PB/Win Programs ... 106
How the integrated debugger works ... 107
Debugger Toolbar Buttons ... 107
The Debug Menu .. 109
Debugging a simple program ... 110

Debugging a simple program ... 110
TWORD.bas Source Listing .. 111
Setting and using breakpoints .. 113
Tracing execution ... 113
Evaluating a variable ... 114
Summary .. 115

Data Types .. 115
Data Types .. 115
Integral Data Types .. 116

Byte (?) ... 116
Word (??) .. 117
Integers (%) .. 117
Long integers (&) ... 118
Double-word (???) ... 119
Quad integers (&&) .. 119

Floating Point Data Types .. 120
Single-precision floating-point (!) ... 120
Double-precision floating-point (#) .. 120
Extended-precision floating-point (##) ... 121
Currency (@) and Extended-currency (@@) .. 122

String Data Types ... 123
Characters, Strings, and Unicode .. 123
Dynamic (Variable-length) strings ($) ... 124
FIELD strings ... 125
Fixed-length strings .. 126
Nul-Terminated Strings ... 127
String expressions .. 128
String Operations Commands .. 129

Array Data Types ... 132

PowerBASIC Compiler for Windows Version 10

4 / 2126

Array Data Types ... 132
Subscripts .. 133
String arrays .. 134
Multidimensional arrays ... 135
Array storage requirements ... 136
Internal representations of arrays ... 136
Arrays within User-Defined Types .. 137
Array operations .. 137
POWERARRAY Object ... 139

User-Defined Types and Unions ... 142
User-Defined Types (UDTs) ... 142
Defining User-Defined Types ... 143
Accessing the fields of a User-Defined Type ... 143
Nesting User-Defined Types ... 144
Arrays within User-Defined Types .. 145
Using arrays of User-Defined Types .. 146
Using User-Defined Types with procedures .. 146
Storage requirements and restrictions ... 148
Built-in User Defined Types ... 148
Unions .. 150

Unions .. 150
Storage requirements and restrictions ... 151

Pointer Data Types ... 151
Pointers (@) .. 151
Pointers to Nul-Terminated and fixed-length strings 154
Pointers to arrays ... 155
Pointers to arrays with dual indexes .. 157

Constants .. 157
Constants and Literals ... 157
Defining Constants ... 158
Numeric Equates .. 159
Built-in numeric equates .. 161
Built In RGB Color Equates .. 168
String Equates .. 172
Built-in string equates ... 173

Bit Data Types .. 174
GUID data types ... 174
Object Data Type ... 175
Variant Data Types ... 176
Comparative Data Types ... 178

C/C++ .. 178
Delphi ... 179
Visual Basic 6 ... 180

Variables and Variable Scope ... 180
Variables ... 180
Default Variable Typing ... 181
Variable scope .. 181

Operators .. 183
Arithmetic Operators .. 183
Relational Operators ... 184

PowerBASIC Compiler for Windows Version 10

5 / 2126

Operator Precedence ... 185
Errors and Error Trapping ... 186

Error Overview ... 186
Error Trapping ... 188

Error Trapping ... 188
How error traps work .. 189
Setting an error trap ... 190
Writing an error handler .. 190
Exiting an error handler .. 191
Error Trapping Summary .. 192

Compile Time Errors ... 193
Error 401 Expression too long/complex .. 193
Error 402 - Statement too long/complex ... 193
Error 403 - #IF nesting overflow .. 193
Error 404 - #INCLUDE file/Macro nesting overflow 193
Error 405 - Block nesting overflow ... 193
Error 406 - Compiler out of memory .. 193
Error 407 - Source line too long ... 194
Error 408 - Wrong compiler for this program .. 194
Error 409 - Sub/Function is too large .. 194
Error 411 - "," expected .. 194
Error 412 - ";" expected .. 195
Error 413 - "(" expected .. 195
Error 414 - ")" expected .. 195
Error 415 - "=" expected ... 195
Error 416 - "-" expected .. 195
Error 417 - "*" expected .. 195
Error 418 - Statement expected .. 195
Error 419 - Label/line number expected .. 196
Error 420 - Relational operator expected ... 196
Error 421 - String operand expected ... 196
Error 422 - Scalar variable expected ... 196
Error 423 - Array variable expected .. 196
Error 424 - Numeric variable expected .. 196
Error 425 - String variable expected ... 196
Error 426 - Variable expected .. 197
Error 427 - Integer constant expected ... 197
Error 428 - Positive integer constant expected ... 197
Error 429 - String constant expected ... 197
Error 430 - Integer variable expected .. 197
Error 431 - Numeric scalar variable expected ... 198
Error 432 - Long-integer variable expected .. 198
Error 433 - Matrix array expected (integer/float) .. 198
Error 434 - End of line expected ... 198
Error 435 - #IF expected ... 198
Error 436 - #ENDIF expected .. 198
Error 437 - AS expected .. 198
Error 438 - Member name expected .. 199
Error 439 - GOSUB expected ... 199
Error 440 - GOTO expected ... 199

PowerBASIC Compiler for Windows Version 10

6 / 2126

Error 441 - IN expected .. 199
Error 442 - THEN expected .. 199
Error 443 - TO expected ... 199
Error 444 - PREFIX clause expected .. 199
Error 445 - OF expected .. 200
Error 446 - FUNCTION expected .. 200
Error 447 - IF expected ... 200
Error 448 - DO loop expected .. 200
Error 449 - SELECT expected ... 200
Error 450 - CASE expected .. 200
Error 451 - FOR loop expected ... 201
Error 452 - SUB expected .. 201
Error 453 - Equate (%xyz) expected ... 201
Error 454 - END FUNCTION expected ... 201
Error 455 - END IF expected .. 201
Error 456 - LOOP/WEND expected ... 201
Error 457 - END SELECT expected .. 201
Error 458 - END SUB expected ... 202
Error 459 - NEXT expected .. 202
Error 460 - Undefined equate .. 202
Error 461 - INSTANCE arrays must be declared ... 202
Error 462 - Undefined SUB/FUNCTION reference 202
Error 463 - Undefined label/line reference ... 202
Error 464 - Undefined class reference ... 202
Error 465 - May be defined only once ... 203
Error 466 - This name is already in use ... 203
Error 467 - Duplicate line number .. 203
Error 468 - This equate may not be redefined .. 203
Error 469 - Quad integer variable expected ... 203
Error 471 - Invalid line number .. 203
Error 472 - Invalid label .. 203
Error 473 - Invalid numeric format ... 204
Error 474 - Invalid name ... 204
Error 475 - Metastatements not allowed here ... 204
Error 476 - Block/scanned statements not allowed here 204
Error 477 - Syntax error .. 204
Error 478 - Resource file error ... 204
Error 479 - Array bounds error .. 205
Error 480 - Parameter mismatches definition ... 205
Error 481 - Mismatch with prior definition ... 205
Error 482 - Data type mismatch ... 205
Error 483 - Requires Object Procedure (Method/Property) 205
Error 484 - Requires procedure (Sub/Function) .. 206
Error 485 - Dynamic/Field strings not allowed ... 206
Error 486 - BYVAL option not allowed .. 206
Error 487 - Multiple NEXT not allowed .. 206
Error 488 - Numeric processor overflow .. 206
Error 489 - Invalid string length ... 206
Error 490 - Static array too large .. 207
Error 491 - Invalid register variable .. 207

PowerBASIC Compiler for Windows Version 10

7 / 2126

Error 492 - Invalid SORT function .. 207
Error 493 - Compiler file not found/accessible ... 207
Error 494 - ASM not allowed here .. 207
Error 495 - Compiler file read error .. 207
Error 496 - Destination file write error .. 208
Error 497 - Assembler syntax error .. 208
Error 498 - Assembler variables must be declared 208
Error 499 - Statement must be first on line .. 208
Error 500 - Variable name must be unique .. 208
Error 501 - Parameters too large (exceed 64 Kb) .. 208
Error 502 - COM interface name expected ... 208
Error 503 - Invalid MAIN Function(s) .. 209
Error 504 - Executable requires PBMAIN/WINMAIN function 209
Error 505 - Debugging requires EXE file, not DLL 209
Error 506 - Declaration must precede statements 209
Error 507 - OLE variable expected .. 209
Error 508 - INSTANCE not allowed here ... 210
Error 509 - Interface mismatches class .. 210
Error 510 - Interface name expected ... 210
Error 511 - Numeric operand expected ... 210
Error 512 - Brackets not supported (use OPTIONAL) 210
Error 513 - "]" expected .. 210
Error 514 - Enclosing <...> angle brackets expected 210
Error 515 - Fixup overflow .. 211
Error 516 - DEFtype, Type ID or type-specifier required 211
Error 517 - OPTIONAL requires CDECL or SDECL 211
Error 519 - Missing declaration .. 211
Error 520 - TYPE expected .. 211
Error 521 - UNION expected .. 212
Error 522 - END TYPE expected ... 212
Error 523 - END UNION expected .. 212
Error 524 - Undefined type .. 212
Error 525 - Type ID or specifier (?%&!#$) not allowed 212
Error 526 - Period not allowed ... 212
Error 527 - End of statement expected .. 212
Error 528 - Type too large ... 213
Error 529 - Pointer variable error ... 213
Error 530 - Invalid member name/definition .. 213
Error 531 - Object variable expected ... 213
Error 532 - Variant variable expected .. 213
Error 533 - Dispatch object variable expected .. 213
Error 534 - Bit field error ... 213
Error 535 - Dynamic string variable expected ... 214
Error 536 - Too many imports ... 214
Error 537 - Pointer expected .. 214
Error 538 - Invalid FOR/NEXT limits ... 214
Error 539 - Invalid thread function ... 214
Error 540 - Invalid operation with a register variable 215
Error 541 - Register size conflict ... 215
Error 542 - May not be altered ... 215

PowerBASIC Compiler for Windows Version 10

8 / 2126

Error 543 - Must be outside Sub/Function/Class... 215
Error 544 - Field variable expected ... 215
Error 545 - AT expected .. 215
Error 546 - Use only as a Callback .. 216
Error 547 - Callback function required .. 216
Error 548 - No parameters with Callback ... 216
Error 549 - BYVAL required with pointers ... 216
Error 550 - Too many data statements .. 216
Error 551 - Not supported in this version .. 216
Error 552 - TRY statement expected ... 217
Error 553 - CATCH statement expected ... 217
Error 554 - END TRY statement expected .. 217
Error 555 - ON ERROR/RESUME not allowed here 217
Error 556 - Function restricted to threads .. 217
Error 557 - Macro too long/complex ... 218
Error 558 - MACRO expected ... 218
Error 559 - END MACRO expected .. 218
Error 560 - FASTPROC expected .. 218
Error 561 - END FASTPROC expected ... 218
Error 562 - INTERFACE expected ... 219
Error 563 - END INTERFACE expected .. 219
Error 564 - MACROTEMP not allowed here .. 219
Error 565 - Macro mismatch with code position ... 219
Error 566 - CLASS expected .. 219
Error 567 - END CLASS expected ... 219
Error 568 - METHOD expected ... 219
Error 569 - END METHOD expected .. 220
Error 570 - PROPERTY expected .. 220
Error 571 - END PROPERTY expected ... 220
Error 572 - PROPERTY GET expected ... 220
Error 573 - Valid only in a CALLBACK FUNCTION 220
Error 574 - Not allowed in an Event Class ... 221
Error 575 - EVENT SOURCE is not declared ... 221
Error 576 - Too many Interfaces .. 221
Error 577 - EVENT INTERFACE expected .. 221
Error 578 - INHERIT of Base Class expected .. 221
Error 579 - BYREF variable or BYVAL/BYREF variant expected 221
Error 580 - Duplicate GUID usage .. 221
Error 581 - Type Library creation error ... 222
Error 582 - Duplicate Dispatch interface .. 222
Error 583 - Unpaired PROPERTY definition ... 222
Error 584 - Mismatched PROPERTY pair ... 222
Error 585 - PROPERTY requires BYVAL parameters 222
Error 586 - User Defined Type or AS expected ... 222
Error 587 - Invalid Constructor/Destructor .. 223
Error 588 - Indirect operand must be bracketed: [12] 223
Error 589 - Dual/IDispatch interface is required ... 223
Error 590 - PROPERTY SET requires at least one parameter 223
Error 591 - BYVAL with OUT is not allowed .. 223
Error 592 - Return value required ... 223

PowerBASIC Compiler for Windows Version 10

9 / 2126

Error 593 - Dual or Automation interface is required 223
Error 594 - Macro ends with continuation '_' .. 224
Error 595 - Object return type required ... 224
Error 596 - Inherited interface expected .. 224
Error 597 - Invalid name or sequence in the interface 224
Error 598 - CLASS METHOD name expected .. 224
Error 599 - Requires CLASS but outside of Interfaces 224
Error 600 - Macro phase error, referenced before define 225
Error 601 - One INHERIT per interface ... 225
Error 602 - Hidden interface referenced by COM .. 225
Error 603 - Incompatible with a Dual/IDispatch interface 225
Error 604 - Incompatible with #COM TLIB generation 225
Error 605 - Macro parameter mismatch ... 225
Error 606 - PowerCollection / LinkListCollection required 226
Error 607 - New syntax requires GETCOM/NEWCOM/ANYCOM 226
Error 609 - Too many macro expansions .. 226
Error 610 - Invalid within a FastProc ... 226
Error 611 - FASTPROC params must be ByVal Long Integer 226
Error 612 - FASTPROC return may only be Long Integer 227
Error 613 - Cannot compile - the program is now running 227
Error 614 - Mismatched CHR Mode (Ansi/Wide) ... 227
Error 615 - PREFIX expected .. 227
Error 616 - END PREFIX expected .. 227
Error 617 - ASMDATA expected ... 227
Error 618 - END ASMDATA expected .. 227
Error 619 - ENUM expected ... 228
Error 620 - END ENUM expected .. 228
Error 621 - Interface cannot inherit from itself ... 228
Error 622 - AS STRING required for variant conversion 228
Error 623 - THREADPARM Instance variable required 228
Error 624 - Invalid THREADPARM variable type ... 228
Error 625 - THREAD Method required ... 229
Error 626 - Duplicate THREAD Method ... 229
Error 627 - INHERIT IPowerThread expected .. 229
Error 628 - Not valid in a Static-Lin-Lib (SLL) ... 229
Error 629 - ALIAS disallows Private/Thread/Callback 229
Error 630 - Link File Error ... 229
Error 631 - Nested Link Files .. 229
Error 632 - COMMON name is a duplicate ... 229
Error 633 - COMMON signature is mismatched .. 230
Error 634 - Undefined COMMON reference .. 230
Error 635 - USING clause is required .. 230
Error 636 - Invalid VersionInfo Resource .. 230
Error 637 - SLL mismatch with this compiler ... 230
Error 638 - Please change AS STRING to AS WSTRING 230
Error 639 - TYPE variable expected .. 230
Error 801 to 815 - Internal error .. 231
Error 640 - Invalid use of BYCOPY ... 231

Run Time Errors ... 231
Error 0 - No error ... 231

PowerBASIC Compiler for Windows Version 10

10 / 2126

Error 5 - Illegal function call .. 231
Error 6 - Overflow .. 231
Error 7 - Out of memory ... 231
Error 9 - Subscript / Pointer out of range .. 232
Error 11 - Division by zero .. 232
Error 24 - Device time-out ... 232
Error 51 - Internal error .. 232
Error 52 - Bad file name or number .. 232
Error 53 - File not found ... 232
Error 54 - Bad file mode .. 233
Error 55 - File is already open .. 233
Error 57 - Device I/O error .. 233
Error 58 - File already exists .. 233
Error 61 - Disk full .. 233
Error 62 - Input past end .. 233
Error 63 - Bad record number .. 234
Error 64 - Bad file name .. 234
Error 67 - Too many files .. 234
Error 68 - Device unavailable ... 234
Error 69 - COMM error .. 234
Error 70 - Permission denied ... 234
Error 71 - Disk not ready ... 235
Error 72 - Disk media error ... 235
Error 74 - Rename across disks .. 235
Error 75 - Path/file access error .. 235
Error 76 - Path not found .. 235
Error 98 - XPrint Preview error ... 235
Error 99 - Object error .. 235
Error 241 - Global memory corrupt .. 236
Error 242 - String space corrupt ... 236

Dynamic Dialog Tools (DDT) ... 236
Dynamic Dialog Tools (DDT) ... 236
Creating a Dialog .. 237
Adding Controls to the Dialog .. 238
Modal vs. Modeless ... 240
Controls .. 242
Control Styles .. 244
Callbacks ... 245
Dialog Styles .. 249
Menus ... 250
Menu Walkthrough ... 250
More on the Menu .. 252
Menu State .. 252
Menu Example ... 253

Files .. 256
Files .. 256
Sequential Files .. 256
Random Access Files ... 257
Binary Files .. 259

Graphics .. 260

PowerBASIC Compiler for Windows Version 10

11 / 2126

Printing ... 261
Printing ... 261
Print Preview ... 262

Serial Communications .. 263
Serial Communications .. 264
Communications Basics ... 265
Communication Buffers ... 266
Parity and general error checking ... 267
Start and stop bits .. 268
Opening a communications port ... 268
Reading and writing data ... 271
A simple communications program .. 272

TCP and UDP Communications .. 280
TCP and UDP Communications .. 280
The Internet Protocol (IP) ... 280
User Datagram Protocol (UDP) ... 281
Transmission Control Protocol (TCP) .. 282
Winsock .. 282
Request for Comments (RFC) ... 283
TCP clients and servers ... 283
Simple Mail Transfer Protocol (SMTP) ... 284
An ECHO client and server using TCP ... 286

Objects and COM Programming ... 288
What is an object, anyway? ... 288
Where are objects located? .. 289
Why should I use objects? ... 290
What are the parts of an object? ... 291
Are there other important "Buzz-Words"? .. 292
What does a Class look like? .. 294
What is a Base Class? .. 295
What does an Interface look like? ... 296
Just what is COM? .. 297
What is a COM component? ... 298
How do you publish an object? .. 299
What is inheritance? .. 299
How do you create an object? .. 301
How do you duplicate an object variable? .. 302
How do you call a Direct Method? .. 303
What is a Compound Object Reference? .. 304
What is an hResult? .. 305
How do you register a COM Component? .. 306
What is a Class Method? .. 306
What are Constructors and Destructors? .. 307
What is DISPATCH? .. 308
Late Binding ... 308
ID Binding ... 309
Creating a DISPATCH Object ... 310
How do you call a DISPATCH METHOD? ... 310
What are Connection Points? ... 311
Enumerating Collections .. 314

PowerBASIC Compiler for Windows Version 10

12 / 2126

What are Type Libraries? ... 315
How are GUID's used with objects? .. 316
Built-in Interfaces ... 317

The PowerBASIC COM Browser .. 317
The PowerBASIC COM Browser .. 317
The PowerBASIC COM Browser user interface .. 318
The PowerBASIC COM Browser Menu ... 319
The PowerBASIC COM Browser Toolbar .. 320
Shortcut Keys ... 321
Registered Type Library View ... 321
Source Code View .. 322
Getting Help .. 323
Opening a type-library .. 324
Saving the Source Code .. 324
Options Dialog ... 324
The PowerBASIC COM Browser Tutorial .. 326

The Inline Assembler .. 332
The Inline Assembler .. 332
Using assembly-language in your code ... 333
Inline Assembler code syntax ... 334
Flat memory model .. 334
Protected mode programming ... 335
Mnemonics and Operands ... 336
Opcodes and Mnemonics ... 336
Registers ... 337
Data types in Registers .. 339
MMX registers .. 339
The Stack .. 340
Balancing the stack ... 341
Tricks of the stack .. 341
Stack Overhead Reduction ... 342
Saving registers .. 343
Saving Registers at the Procedure level ... 344
Intermixing ASM and BASIC code .. 345
Using ESP and EBP ... 347
Saving the FPU registers .. 347
Tricks in preserving registers ... 348
Addressing and pointers .. 349
Effective Addressing ... 350
Passing parameters ... 351
Parameters passed by reference or by copy ... 352
Parameters passed by value ... 353
Passing arrays .. 353
Passing dynamic strings .. 353
Accessing PowerBASIC variables by name ... 354
Commenting Assembly code .. 355

Resource Files .. 355
What is a Resource File? .. 355
Resource Editors .. 356
Resource File Compiling .. 356

PowerBASIC Compiler for Windows Version 10

13 / 2126

Resource Scripts ... 357
Converting a .RC to a .RES .. 358

Working with Visual Basic .. 358
Visual Basic Data Types ... 358
VB Run-time errors when calling a PowerBASIC DLL 359

Optimizing your code .. 360
Keyword Reference ... 362

Keyword Quick Finder ... 362
Keyword Reference ... 391
Format and typefaces .. 393
Command Summary ... 393

Command Summary ... 393
Array Operations .. 394
Collection Objects ... 396
COM Commands .. 396
Communication Control .. 398
Compiler Operations ... 398
Debugging and Error Control ... 400
Dynamic Dialog Tools ... 400
File Commands .. 406
Flow Control .. 407
Graphic Commands .. 408
Input Commands ... 411
Memory Management .. 412
Metastatements .. 412
Numeric Operations .. 413
Operating System ... 415
Printing Commands .. 417
String Operations ... 419
Text Commands ... 422
Thread Control ... 423
Time Commands .. 423
Misc Operations .. 425

%DEF operator .. 425
%PB_COMPILETIME numeric equate .. 426
#ALIGN metastatement .. 426
#BLOAT metastatement .. 427
#COM metastatement ... 427
#COMPILE metastatement ... 428
#COMPILER metastatement ... 429
#DEBUG CODE metastatement .. 429
#DEBUG DISPLAY metastatement .. 430
#DEBUG ERROR metastatement .. 430
#DEBUG PRINT metastatement ... 431
#DIM metastatement .. 432
#EXPORT metastatement .. 432
#IF metastatement ... 433
#INCLUDE metastatement ... 435
#LINK metastatement ... 436
#MESSAGES metastatement .. 437

PowerBASIC Compiler for Windows Version 10

14 / 2126

#OPTIMIZE metastatement ... 437
#OPTION metastatement .. 438
#PAGE metastatement .. 440
#PBFORMS metastatement .. 440
#REGISTER metastatement ... 440
#RESOURCE metastatement .. 441
#STACK metastatement .. 445
#TOOLS metastatement .. 445
#UNIQUE metastatement .. 445
#UTILITY metastatement .. 446
ABS function .. 446
ACCEL ATTACH statement .. 447
ACODE$ function ... 449
AND operator .. 449
ARRAY ASSIGN statement .. 450
ARRAY DELETE statement ... 450
ARRAY INSERT statement ... 451
ARRAY SCAN statement .. 453
ARRAY SORT statement .. 455
ARRAYATTR function ... 460
ASC function .. 462
ASC statement ... 462
ASM statement ... 462
ASM ALIGN statement .. 466
ASMDATA/END ASMDATA statements ... 470
ATN function ... 471
BEEP statement .. 472
BGR function .. 472
BIN$ function ... 473
BIT CALC statement ... 474
BIT function ... 474
BIT statement .. 475
BITS$ function ... 476
BITS function ... 477
BITSE function ... 477
BUILD$ function ... 478
CALL statement .. 478
CALL DWORD statement ... 481
CALLSTK statement .. 482
CALLSTK$ function ... 483
CALLSTKCOUNT function .. 484
CB Callback functions .. 484
CBYT function .. 487
CCUR function ... 488
CCUX function .. 489
CDBL function .. 490
CDWD function .. 491
CEIL function ... 492
CEXT function .. 493
CHDIR statement .. 494

PowerBASIC Compiler for Windows Version 10

15 / 2126

CHDRIVE statement .. 494
CHRBYTES function .. 495
ChrToOem$ function .. 495
ChrToUtf8$ function ... 496
CHOOSE function ... 496
CHR$ function .. 497
CHR$$ function .. 498
CINT function .. 499
CLASS/END CLASS block .. 500
CLIP$ function ... 501
CLIPBOARD GET BITMAP statement ... 502
CLIPBOARD GET OEMTEXT statement .. 504
CLIPBOARD GET TEXT statement .. 506
CLIPBOARD GET UNICODE statement .. 508
CLIPBOARD RESET statement .. 510
CLIPBOARD SET BITMAP statement ... 511
CLIPBOARD SET OEMTEXT statement .. 513
CLIPBOARD SET TEXT statement ... 515
CLIPBOARD SET UNICODE statement .. 517
CLNG function .. 519
CLOSE statement .. 520
CLSID$ function ... 521
CODEPTR function ... 521
COMBOBOX ADD statement ... 522
COMBOBOX DELETE statement .. 525
COMBOBOX FIND statement .. 528
COMBOBOX FIND EXACT statement ... 531
COMBOBOX GET COUNT statement ... 534
COMBOBOX GET SELCOUNT statement .. 537
COMBOBOX GET SELECT statement ... 540
COMBOBOX GET STATE statement .. 542
COMBOBOX GET TEXT statement ... 545
COMBOBOX GET USER statement .. 548
COMBOBOX INSERT statement .. 551
COMBOBOX RESET statement .. 554
COMBOBOX SELECT statement .. 557
COMBOBOX SET TEXT statement ... 560
COMBOBOX SET USER statement ... 563
COMBOBOX UNSELECT statement .. 566
COMM CLOSE statement ... 569
COMM function .. 569
COMM LINE statement .. 571
COMM OPEN statement ... 572
COMM PRINT statement .. 573
COMM RECV statement ... 573
COMM RESET statement .. 574
COMM SEND statement ... 574
COMM SET statement ... 574
COMM TIMEOUT statement ... 577
COMMAND$ function .. 577

PowerBASIC Compiler for Windows Version 10

16 / 2126

CONTROL ADD statement ... 578
CONTROL ADD BUTTON statement ... 579
CONTROL ADD CHECK3STATE statement ... 582
CONTROL ADD CHECKBOX statement .. 587
CONTROL ADD COMBOBOX statement ... 590
CONTROL ADD FRAME statement .. 594
CONTROL ADD HEADER statement .. 595
CONTROL ADD GRAPHIC statement .. 596
CONTROL ADD IMAGE statement .. 598
CONTROL ADD IMAGEX statement .. 600
CONTROL ADD IMGBUTTON statement .. 602
CONTROL ADD IMGBUTTONX statement .. 605
CONTROL ADD LABEL statement ... 607
CONTROL ADD LINE statement ... 610
CONTROL ADD LISTBOX statement ... 612
CONTROL ADD LISTVIEW statement .. 615
CONTROL ADD OPTION statement .. 617
CONTROL ADD PROGRESSBAR statement .. 620
CONTROL ADD SCROLLBAR statement ... 621
CONTROL ADD STATUSBAR statement .. 624
CONTROL ADD TAB statement .. 625
CONTROL ADD TEXTBOX statement .. 626
CONTROL ADD TOOLBAR statement .. 630
CONTROL ADD TREEVIEW statement ... 631
CONTROL DISABLE statement ... 634
CONTROL ENABLE statement .. 634
CONTROL GET CHECK statement ... 634
CONTROL GET CLIENT statement .. 635
CONTROL GET LOC statement ... 635
CONTROL GET SIZE statement .. 635
CONTROL GET TEXT statement ... 636
CONTROL GET USER statement ... 636
CONTROL HANDLE statement ... 636
CONTROL HIDE statement .. 637
CONTROL KILL statement ... 637
CONTROL NORMALIZE statement .. 638
CONTROL POST statement .. 638
CONTROL REDRAW statement ... 639
CONTROL SEND statement .. 640
CONTROL SET CHECK statement ... 640
CONTROL SET CLIENT statement .. 641
CONTROL SET COLOR statement ... 641
CONTROL SET FOCUS statement ... 643
CONTROL SET FONT statement ... 644
CONTROL SET IMAGE statement ... 644
CONTROL SET IMAGEX statement ... 645
CONTROL SET IMGBUTTON statement ... 645
CONTROL SET IMGBUTTONX statement ... 646
CONTROL SET LOC statement ... 646
CONTROL SET OPTION statement ... 647

PowerBASIC Compiler for Windows Version 10

17 / 2126

CONTROL SET SIZE statement .. 648
CONTROL SET TEXT statement ... 648
CONTROL SET USER statement ... 649
CONTROL SHOW STATE statement .. 649
COS function ... 650
CQUD function ... 651
CSET statement .. 652
CSET$ function .. 652
CSNG function ... 653
CURDIR$ function .. 654
CVBYT function .. 654
CVCUR function ... 655
CVCUX function .. 657
CVD function ... 658
CVDWD function .. 659
CVE function .. 660
CVI function .. 661
CVL function .. 662
CVQ function ... 663
CVS function .. 664
CVWRD function ... 666
CWRD function ... 667
DATA statement ... 668
DATACOUNT function .. 669
DATE$ system variable ... 669
DAYNAME$ function ... 669
DEC$ function .. 670
DECLARE statement .. 670
DECR statement ... 674
DEFBYT statement .. 674
DEFCUR statement ... 675
DEFCUX statement .. 676
DEFDBL statement .. 677
DEFDWD statement .. 678
DEFEXT statement .. 678
DEFINT statement .. 679
DEFLNG statement .. 680
DEFQUD statement ... 681
DEFSNG statement ... 682
DEFSTR statement .. 682
DEFWRD statement ... 683
DESKTOP GET CLIENT statement ... 684
DESKTOP GET LOC statement ... 684
DESKTOP GET SIZE statement ... 685
DIALOG DEFAULT FONT statement .. 685
DIALOG DISABLE statement .. 686
DIALOG DOEVENTS statement .. 686
DIALOG ENABLE statement ... 687
DIALOG END statement .. 687
DIALOG GET CLIENT statement ... 688

PowerBASIC Compiler for Windows Version 10

18 / 2126

DIALOG GET LOC statement ... 688
DIALOG GET SIZE statement ... 689
DIALOG GET TEXT statement .. 689
DIALOG GET USER statement .. 689
DIALOG HIDE statement ... 690
DIALOG MAXIMIZE statement .. 690
DIALOG MINIMIZE statement .. 690
DIALOG NEW statement .. 691
DIALOG NONSTABLE statement .. 696
DIALOG NORMALIZE statement ... 696
DIALOG PIXELS statement .. 696
DIALOG POST statement .. 697
DIALOG REDRAW statement ... 697
DIALOG SEND statement .. 698
DIALOG SET CLIENT Statement ... 698
DIALOG SET COLOR statement ... 699
DIALOG SET ICON statement .. 700
DIALOG SET LOC statement .. 701
DIALOG SET SIZE statement ... 701
DIALOG SET TEXT statement .. 701
DIALOG SET USER statement .. 702
DIALOG SHOW MODAL statement ... 702
DIALOG SHOW MODELESS statement .. 703
DIALOG SHOW STATE statement .. 703
DIALOG STABILIZE statement ... 704
DIALOG UNITS statement ... 705
DIM statement ... 705
DIR$ function .. 709
DIR$ CLOSE statement ... 711
DISKFREE function ... 711
DISKSIZE function .. 712
DISPLAY BROWSE statement ... 712
DISPLAY COLOR statement ... 713
DISPLAY FONT statement ... 714
DISPLAY OPENFILE statement ... 716
DISPLAY SAVEFILE statement ... 717
DLLMAIN function .. 719
DO/LOOP statements .. 721
ENUM/END ENUM statements .. 723
END statement ... 724
ENVIRON statement ... 725
ENVIRON$ function .. 725
EOF function .. 726
EQV operator ... 727
ERASE statement .. 727
ERL system variable .. 728
ERL$ function .. 728
ERR system variable ... 729
ERRCLEAR system variable .. 729
ERROR statement ... 730

PowerBASIC Compiler for Windows Version 10

19 / 2126

ERROR$ function .. 730
EVENT SOURCE statement .. 731
EVENTS statement .. 733
EXE.Inst member ... 734
EXE.Extn$ member ... 735
EXE.Full$ member .. 736
EXE.Name$ member ... 736
EXE.Namex$ member ... 737
EXE.Path$ member ... 738
EXIT statement .. 739
EXP function .. 740
EXP2 function .. 740
EXP10 function ... 740
EXTRACT$ function .. 741
FASTPROC/END FASTPROC statements .. 741
FIELD statement ... 743
FILEATTR function ... 744
FILECOPY statement ... 745
FILENAME$ function ... 745
FILESCAN statement ... 746
FIX function ... 746
FLUSH statement .. 746
FONT END statement .. 747
FONT NEW statement ... 747
FOR EACH/NEXT statements .. 749
FOR/NEXT statements ... 749
FORMAT$ function ... 752
FRAC function .. 755
FREEFILE function .. 755
FUNCNAME$ function ... 756
FUNCTION/END FUNCTION statements .. 756
GET statement ... 762
GET$ statement ... 764
GET$$ statement .. 765
GETATTR function ... 765
GLOBAL statement ... 766
GLOBALMEM ALLOC statement .. 767
GLOBALMEM FREE statement ... 768
GLOBALMEM LOCK statement .. 769
GLOBALMEM SIZE statement ... 770
GLOBALMEM UNLOCK statement .. 771
GOSUB statement ... 773
GOSUB DWORD statement .. 773
GOTO statement .. 774
GOTO DWORD statement .. 775
GRAPHIC Code Group .. 776
GRAPHIC(CANVAS.X) function .. 777
GRAPHIC(CANVAS.Y) function .. 778
GRAPHIC(Cell.Size.X) function ... 779
GRAPHIC(Cell.Size.Y) function ... 779

PowerBASIC Compiler for Windows Version 10

20 / 2126

GRAPHIC(Chr.Size.X) function ... 780
GRAPHIC(Chr.Size.Y) function ... 780
GRAPHIC(Client.X) function ... 780
GRAPHIC(Client.Y) function ... 781
GRAPHIC(Clip.X) function ... 781
GRAPHIC(Clip.Y) function ... 782
GRAPHIC(COL) function .. 782
GRAPHIC(DC) function ... 783
GRAPHIC(INSTAT) function .. 784
GRAPHIC(LINES) function ... 784
GRAPHIC(LOC.X) function ... 785
GRAPHIC(LOC.Y) function ... 785
GRAPHIC(MIX) function .. 785
GRAPHIC(OVERLAP) function .. 786
GRAPHIC(PIXEL...) function .. 786
GRAPHIC(POS.X) function ... 787
GRAPHIC(POS.Y) function ... 787
GRAPHIC(PPI.X) function .. 787
GRAPHIC(PPI.Y) function .. 788
GRAPHIC(ROW) function .. 788
GRAPHIC(SCROLLTEXT) function ... 789
GRAPHIC(SIZE.X) function .. 790
GRAPHIC(SIZE.Y) function .. 790
GRAPHIC(STRETCHMODE) function ... 791
GRAPHIC(TEXT.SIZE.X...) function ... 791
GRAPHIC(TEXT.SIZE.Y...) function .. 792
GRAPHIC(View.X) function .. 792
GRAPHIC(View.Y) function .. 793
GRAPHIC(WORDWRAP) function ... 793
GRAPHIC(WRAP) function ... 794
GRAPHIC$(CAPTION) function .. 794
GRAPHIC$(INKEY$) function ... 795
GRAPHIC$(WAITKEY$) function .. 795
GRAPHIC$(WAITKEY$...) function ... 796
GRAPHIC ARC statement .. 797
GRAPHIC ATTACH statement .. 798
GRAPHIC BITMAP END statement .. 799
GRAPHIC BITMAP LOAD statement .. 799
GRAPHIC BITMAP NEW statement ... 800
GRAPHIC BOX statement ... 801
GRAPHIC CELL SIZE statement .. 801
GRAPHIC CELL statement .. 802
GRAPHIC CHR SIZE statement ... 803
GRAPHIC CLEAR statement ... 803
GRAPHIC COLOR statement .. 804
GRAPHIC COPY statement .. 804
GRAPHIC DETACH statement .. 805
GRAPHIC ELLIPSE statement ... 806
GRAPHIC GET BITS statement ... 806
GRAPHIC GET CANVAS statement ... 807

PowerBASIC Compiler for Windows Version 10

21 / 2126

GRAPHIC GET CAPTION statement .. 808
GRAPHIC GET CLIENT statement ... 808
GRAPHIC GET CLIP statement ... 809
GRAPHIC GET DC statement ... 809
GRAPHIC GET LINES statement ... 810
GRAPHIC GET LOC statement .. 810
GRAPHIC GET MIX statement .. 810
GRAPHIC GET OVERLAP statement .. 811
GRAPHIC GET PIXEL statement ... 811
GRAPHIC GET POS statement .. 812
GRAPHIC GET PPI statement ... 812
GRAPHIC GET SCALE statement .. 812
GRAPHIC GET SCROLLTEXT statement ... 813
GRAPHIC GET SIZE statement ... 814
GRAPHIC GET STRETCHMODE statement ... 814
GRAPHIC GET VIEW statement .. 815
GRAPHIC GET WORDWRAP statement ... 815
GRAPHIC GET WRAP statement ... 816
GRAPHIC IMAGELIST statement .. 817
GRAPHIC INKEY$ statement .. 817
GRAPHIC INPUT statement ... 818
GRAPHIC INPUT FLUSH statement ... 819
GRAPHIC INSTAT statement ... 819
GRAPHIC LINE INPUT statement ... 819
GRAPHIC LINE statement .. 820
GRAPHIC PAINT statement ... 821
GRAPHIC PIE statement .. 822
GRAPHIC POLYGON statement .. 823
GRAPHIC POLYLINE statement .. 824
GRAPHIC PRINT statement ... 825
GRAPHIC REDRAW statement .. 826
GRAPHIC RENDER statement ... 827
GRAPHIC SAVE statement ... 827
GRAPHIC SCALE statement ... 827
GRAPHIC SET AUTOSIZE statement ... 828
GRAPHIC SET BITS statement ... 829
GRAPHIC SET CAPTION statement .. 830
GRAPHIC SET CLIENT statement ... 830
GRAPHIC SET CLIP statement ... 831
GRAPHIC SET FIXED statement ... 831
GRAPHIC SET FOCUS statement .. 832
GRAPHIC SET FONT statement .. 832
GRAPHIC SET LOC statement .. 833
GRAPHIC SET MIX statement ... 833
GRAPHIC SET OVERLAP statement .. 834
GRAPHIC SET PIXEL statement .. 834
GRAPHIC SET POS statement .. 835
GRAPHIC SET SCROLLTEXT statement ... 835
GRAPHIC SET SIZE statement ... 835
GRAPHIC SET STRETCHMODE statement ... 836

PowerBASIC Compiler for Windows Version 10

22 / 2126

GRAPHIC SET VIEW statement .. 837
GRAPHIC SET VIRTUAL statement ... 837
GRAPHIC SET WORDWRAP statement .. 839
GRAPHIC SET WRAP statement ... 839
GRAPHIC SPLIT statement .. 839
GRAPHIC STRETCH statement ... 840
GRAPHIC STYLE statement ... 841
GRAPHIC TEXT SIZE statement ... 842
GRAPHIC WAITKEY$ statement ... 842
GRAPHIC WIDTH statement .. 843
GRAPHIC WINDOW statement ... 843
GRAPHIC WINDOW CLICK statement ... 845
GRAPHIC WINDOW END statement .. 845
GRAPHIC WINDOW HIDE statement ... 845
GRAPHIC WINDOW MINIMIZE statement .. 846
GRAPHIC WINDOW NONSTABLE statement .. 846
GRAPHIC WINDOW NORMALIZE statement .. 847
GRAPHIC WINDOW STABILIZE statement ... 847
GRAPHIC WINDOW TEXT statement .. 848
GUID$ function .. 849
GUIDTXT$ function .. 850
HEADER GET COUNT statement .. 850
HEADER GET ITEM statement .. 851
HEADER SEND statement .. 852
HEADER SET ITEM statement .. 853
HEX$ function .. 854
HI function .. 855
HOST ADDR statement ... 855
HOST NAME statement ... 856
IDISPINFO pseudo-object ... 856
IF statement .. 858
IF/END IF block .. 860
IIF function .. 861
ILinkListCollection.ADD method ... 861
ILinkListCollection.CLEAR method .. 866
ILinkListCollection.COUNT method ... 870
ILinkListCollection.FIRST method ... 875
ILinkListCollection.INDEX method .. 880
ILinkListCollection.INSERT method ... 884
ILinkListCollection.ITEM method .. 889
ILinkListCollection.LAST method .. 894
ILinkListCollection.NEXT method .. 898
ILinkListCollection.PREVIOUS method .. 903
ILinkListCollection.REMOVE method ... 908
ILinkListCollection.REPLACE method .. 912
IMAGELIST ADD BITMAP statement ... 917
IMAGELIST ADD ICON statement .. 919
IMAGELIST ADD MASKED statement .. 922
IMAGELIST GET COUNT statement .. 924
IMAGELIST KILL statement .. 927

PowerBASIC Compiler for Windows Version 10

23 / 2126

IMAGELIST NEW BITMAP statement ... 929
IMAGELIST NEW ICON statement .. 932
IMAGELIST SET OVERLAY statement ... 934
IMP operator .. 937
IMPORT ADDR statement .. 937
IMPORT CLOSE statement ... 938
INCR statement .. 939
INPUT# statement ... 939
INPUTBOX$ function .. 940
INSTANCE statement .. 941
INSTR function .. 941
INT function .. 942
INTERFACE / END INTERFACE Block (Direct) .. 943
INTERFACE/END INTERFACE block (Dispatch) .. 946
IPowerArray.ARRAYBASE method ... 947
IPowerArray.ARRAYDESC method ... 950
IPowerArray.ARRAYINFO property get ... 953
IPowerArray.ARRAYINFO property set ... 956
IPowerArray.CLONE method ... 959
IPowerArray.COPYFROMVARIANT method ... 962
IPowerArray.COPYTOVARIANT method ... 965
IPowerArray.DIM method .. 968
IPowerArray.ELEMENTPTR method .. 971
IPowerArray.ELEMENTSIZE method ... 974
IPowerArray.ERASE method .. 977
IPowerArray.LBOUND method ... 980
IPowerArray.LOCK method .. 983
IPowerArray.MOVEFROMVARIANT .. 986
IPowerArray.MOVETOVARIANT ... 989
IPowerArray.REDIM method .. 992
IPowerArray.REDIMPRESERVE method ... 995
IPowerArray.RESET method .. 998
IPowerArray.SUBSCRIPTS method ... 1001
IPowerArray.UBOUND method ... 1004
IPowerArray.UNLOCK method ... 1007
IPowerArray.VALUEGET method .. 1010
IPowerArray.VALUESET method .. 1013
IPowerArray.VALUETYPE method .. 1016
IPowerCollection.ADD method ... 1019
IPowerCollection.CLEAR method .. 1024
IPowerCollection.CONTAINS method .. 1028
IPowerCollection.COUNT method ... 1033
IPowerCollection.ENTRY method .. 1038
IPowerCollection.FIRST method ... 1042
IPowerCollection.INDEX method .. 1047
IPowerCollection.ITEM method .. 1052
IPowerCollection.LAST method .. 1056
IPowerCollection.NEXT method .. 1061
IPowerCollection.PREVIOUS method .. 1066
IPowerCollection.REMOVE method ... 1070

PowerBASIC Compiler for Windows Version 10

24 / 2126

IPowerCollection.REPLACE method .. 1075
IPowerCollection.SORT method ... 1079
IPowerThread.Close method .. 1084
IPowerThread.Equals method .. 1089
IPowerThread.Handle method .. 1093
IPowerThread.Id method .. 1098
IPowerThread.IsAlive method .. 1102
IPowerThread.Join method .. 1107
IPowerThreadLaunch method .. 1111
IPowerThread.Priority property get ... 1116
IPowerThread.Priority property set ... 1120
IPowerThread.Result method ... 1125
IPowerThread.Resume method .. 1129
IPowerThread.StackSize property get .. 1134
IPowerThread.StackSize property set .. 1138
IPowerThread.Suspend method ... 1143
IPowerThread.TimeCreate method ... 1147
IPowerThread.TimeExit method ... 1152
IPowerThread.TimeKernel method ... 1156
IPowerThread.TimeUser method .. 1161
IPowerTime.AddDays method .. 1165
IPowerTime.AddHours method .. 1168
IPowerTime.AddMinutes method .. 1172
IPowerTime.AddMonths method .. 1175
IPowerTime.AddMSeconds method .. 1178
IPowerTime.AddSeconds method ... 1182
IPowerTime.AddTicks method ... 1185
IPowerTime.AddYears method ... 1188
IPowerTime.DateDiff method ... 1191
IPowerTime.DateString method ... 1195
IPowerTime.DateStringLong method .. 1198
IPowerTime.Day method ... 1201
IPowerTime.DayOfWeek method .. 1204
IPowerTime.DayOfWeekString method ... 1208
IPowerTime.DaysInMonth method .. 1211
IPowerTime.FileTime property get .. 1214
IPowerTime.FileTime property set .. 1217
IPowerTime.Hour method ... 1221
IPowerTime.IsLeapYear method ... 1224
IPowerTime.Minute method ... 1227
IPowerTime.Month method ... 1231
IPowerTime.MonthString method ... 1234
IPowerTime.MSecond method .. 1237
IPowerTime.NewDate method .. 1240
IPowerTime.NewTime method ... 1244
IPowerTime.Now method .. 1247
IPowerTime.NowUTC method .. 1250
IPowerTime.Second method .. 1253
IPowerTime.Tick method .. 1257
IPowerTime.TimeDiff method .. 1260

PowerBASIC Compiler for Windows Version 10

25 / 2126

IPowerTime.TimeString method ... 1263
IPowerTime.TimeString24 method ... 1267
IPowerTime.TimeStringFull method .. 1270
IPowerTime.Today method ... 1273
IPowerTime.ToLocalTime method .. 1276
IPowerTime.ToUTC method .. 1280
IPowerTime.Year method .. 1283
IQueueCollection.CLEAR method .. 1286
IQueueCollection.COUNT method .. 1291
IQueueCollection.DEQUEUE method ... 1295
IQueueCollection.ENQUEUE method ... 1300
IStackCollection.CLEAR method ... 1305
IStackCollection.COUNT method .. 1309
IStackCollection.POP method ... 1314
IStackCollection.PUSH method ... 1319
IStringBuilderA.Add method .. 1323
IStringBuilderA.Capacity Property Get ... 1325
IStringBuilderA.Capacity Property Set ... 1326
IStringBuilderA.Char Property Get .. 1328
IStringBuilderA.Char Property Set ... 1329
IStringBuilderA.Clear method ... 1331
IStringBuilderA.Delete method ... 1332
IStringBuilderA.Insert method .. 1334
IStringBuilderA.Len method ... 1335
IStringBuilderA.String method ... 1337
IStringBuilderW.Add method ... 1338
IStringBuilderW.Capacity Property Get .. 1340
IStringBuilderW.Capacity Property Set ... 1341
IStringBuilderW.Char Property Get .. 1343
IStringBuilderW.Char Property Set .. 1344
IStringBuilderW.Clear method .. 1346
IStringBuilderW.Delete method .. 1347
IStringBuilderW.Insert method ... 1349
IStringBuilderW.Len method .. 1350
IStringBuilderW.String method ... 1352
ISFALSE operator ... 1353
ISFILE Function .. 1354
ISFOLDER function ... 1355
ISINTERFACE Function ... 1355
ISMISSING function .. 1356
ISNOTHING function .. 1356
ISNOTNULL function ... 1357
ISNULL function ... 1357
ISOBJECT function ... 1358
IStackCollection .. 1358
ISTRUE operator .. 1363
ISWIN function ... 1364
ITERATE statement .. 1364
JOIN$ function ... 1365
KILL statement ... 1366

PowerBASIC Compiler for Windows Version 10

26 / 2126

LBOUND function ... 1366
LCASE$ function ... 1367
LEFT$ function ... 1367
LEN function .. 1367
LET statement .. 1368
LET statement (with Objects) ... 1370
LET statement (with Types) ... 1372
LET statement (with Variants) .. 1373
LIBMAIN function ... 1375
LINE INPUT# statement .. 1377
LISTBOX ADD statement ... 1378
LISTBOX DELETE statement ... 1381
LISTBOX FIND statement ... 1384
LISTBOX FIND EXACT statement .. 1388
LISTBOX GET COUNT statement .. 1391
LISTBOX GET SELCOUNT statement ... 1394
LISTBOX GET SELECT statement .. 1397
LISTBOX GET STATE statement ... 1400
LISTBOX GET TEXT statement ... 1403
LISTBOX GET USER statement ... 1406
LISTBOX INSERT statement ... 1410
LISTBOX RESET statement .. 1413
LISTBOX SELECT statement ... 1416
LISTBOX SET TEXT statement .. 1419
LISTBOX SET USER statement ... 1422
LISTBOX UNSELECT statement .. 1425
LISTVIEW DELETE COLUMN statement ... 1429
LISTVIEW DELETE ITEM statement .. 1436
LISTVIEW FIND statement ... 1443
LISTVIEW FIND EXACT statement .. 1450
LISTVIEW FIT CONTENT statement .. 1458
LISTVIEW FIT HEADER statement .. 1465
LISTVIEW GET COLUMN statement .. 1472
LISTVIEW GET COUNT statement .. 1479
LISTVIEW GET HEADER statement ... 1487
LISTVIEW GET HEADERID statement ... 1494
LISTVIEW GET MODE statement .. 1501
LISTVIEW GET SELCOUNT statement ... 1509
LISTVIEW GET SELECT statement .. 1516
LISTVIEW GET STATE statement ... 1523
LISTVIEW GET STYLEXX statement .. 1530
LISTVIEW GET TEXT statement ... 1538
LISTVIEW GET USER statement ... 1545
LISTVIEW INSERT COLUMN statement ... 1552
LISTVIEW INSERT ITEM statement ... 1559
LISTVIEW RESET statement ... 1567
LISTVIEW SELECT statement ... 1574
LISTVIEW SET COLUMN statement ... 1581
LISTVIEW SET HEADER statement ... 1589
LISTVIEW SET IMAGE statement .. 1596

PowerBASIC Compiler for Windows Version 10

27 / 2126

LISTVIEW SET IMAGE2 statement .. 1603
LISTVIEW SET IMAGELIST statement ... 1610
LISTVIEW SET MODE statement ... 1618
LISTVIEW SET OVERLAY statement ... 1625
LISTVIEW SET STYLEXX statement ... 1632
LISTVIEW SET TEXT statement .. 1639
LISTVIEW SET USER statement .. 1647
LISTVIEW SORT statement .. 1654
LISTVIEW UNSELECT statement ... 1661
LISTVIEW VISIBLE statement ... 1669
LO function .. 1676
LOC function .. 1676
LOCAL statement .. 1676
LOCK statement .. 1677
LOF function .. 1678
LOG function .. 1678
LOG2 function .. 1679
LOG10 function .. 1679
LPRINT statement ... 1680
LPRINT ATTACH statement ... 1680
LPRINT CLOSE statement .. 1681
LPRINT FLUSH statement .. 1682
LPRINT FORMFEED statement .. 1682
LPRINT$ function ... 1683
LSET statement .. 1683
LSET$ function ... 1684
LTRIM$ function ... 1684
MACRO/END MACRO block ... 1685
MAK function ... 1689
MAT statement ... 1689
MAX function ... 1690
MCASE$ function .. 1691
ME pseudo-variable ... 1691
MEMORY COPY statement ... 1692
MEMORY FILL statement ... 1692
MEMORY SWAP statement ... 1693
MENU ADD POPUP statement .. 1693
MENU ADD STRING statement ... 1694
MENU ATTACH statement ... 1695
MENU CONTEXT statement .. 1696
MENU DELETE statement ... 1697
MENU DRAW BAR statement .. 1697
MENU GET STATE statement ... 1697
MENU GET TEXT statement ... 1698
MENU NEW BAR statement .. 1698
MENU NEW POPUP statement .. 1699
MENU SET STATE statement ... 1699
MENU SET TEXT statement .. 1700
METHOD / END METHOD statements .. 1700
METRICS function ... 1704

PowerBASIC Compiler for Windows Version 10

28 / 2126

MID$ function .. 1705
MID$ statement .. 1706
MIN function .. 1706
MKBYT$ function .. 1707
MKCUR$ function .. 1708
MKCUX$ function .. 1709
MKD$ function .. 1709
MKDIR statement .. 1710
MKDWD$ function ... 1711
MKE$ function .. 1711
MKI$ function ... 1712
MKL$ function .. 1713
MKQ$ function ... 1714
MKS$ function .. 1715
MKWRD$ function ... 1716
MOD operator .. 1716
MONTHNAME$ function .. 1717
MOUSEPTR statement ... 1717
MSGBOX function ... 1718
MSGBOX statement ... 1719
MYBASE pseudo-variable ... 1720
NAME statement ... 1721
NEXT statement .. 1721
NOT operator ... 1723
NUL$ function .. 1724
OBJACTIVE function ... 1724
OBJECT statement .. 1725
OBJEQUAL function .. 1727
OBJPTR function .. 1728
OBJRESULT function ... 1728
OBJRESULT$ function ... 1729
OCT$ function .. 1729
OemToChr$ function .. 1730
ON ERROR statement .. 1731
ON GOSUB statement ... 1732
ON GOTO statement ... 1732
OPEN statement ... 1733
OPTION EXPLICIT statement ... 1736
OR operator ... 1736
PARSE statement .. 1737
PARSE$ function .. 1738
PARSECOUNT function ... 1739
PATHNAME$ function ... 1740
PATHSCAN$ function .. 1740
PBLIBMAIN function .. 1741
PBMAIN function .. 1742
PEEK function ... 1742
PEEK$ function ... 1743
PEEK$$ function ... 1744
PLAY WAVE statement .. 1746

PowerBASIC Compiler for Windows Version 10

29 / 2126

PLAY WAVE END statement ... 1747
POKE statement .. 1748
POKE$ statement .. 1749
POKE$$ statement .. 1749
POWERARRAY Object ... 1750
POWERTIME object .. 1753
PREFIX/END PREFIX statements ... 1757
PRINT# statement .. 1758
PRINTER$ function ... 1760
PRINTERCOUNT function .. 1760
PROCESS GET PRIORITY statement ... 1760
PROCESS SET PRIORITY statement .. 1761
PROFILE statement ... 1762
PROGID$ function .. 1763
PROGRESSBAR GET POS statement .. 1764
PROGRESSBAR GET RANGE statement ... 1765
PROGRESSBAR SET POS statement .. 1766
PROGRESSBAR SET RANGE statement .. 1767
PROGRESSBAR SET STEP statement ... 1769
PROGRESSBAR STEP statement ... 1770
PROPERTY / END PROPERTY statement ... 1771
PUT statement ... 1774
PUT$ statement .. 1776
PUT$$ statement .. 1777
RAISEEVENT statement ... 1777
RANDOMIZE statement ... 1778
READ$ function .. 1779
REDIM statement .. 1779
REGEXPR statement .. 1780
REGISTER statement ... 1783
REGREPL statement .. 1784
REM statement ... 1788
REMAIN$ function .. 1789
REMOVE$ function .. 1789
REPEAT$ function .. 1790
REPLACE statement .. 1790
RESET statement .. 1791
RESOURCE$ function .. 1791
RESUME statement ... 1792
RESUME FLUSH statement ... 1793
RESUME NEXT statement ... 1794
RESUME <Label> statement .. 1794
RETAIN$ function ... 1795
RETURN statement ... 1796
RETURN FLUSH statement ... 1796
RGB function .. 1796
RIGHT$ function .. 1797
RMDIR statement .. 1797
RND function ... 1798
ROTATE statement ... 1798

PowerBASIC Compiler for Windows Version 10

30 / 2126

ROUND function ... 1799
RSET statement .. 1799
RSET$ function .. 1800
RTRIM$ function .. 1800
SCROLLBAR GET PAGESIZE statement ... 1801
SCROLLBAR GET POS statement .. 1802
SCROLLBAR GET RANGE statement .. 1803
SCROLLBAR GET TRACKPOS statement .. 1804
SCROLLBAR SET PAGESIZE statement .. 1805
SCROLLBAR SET POS statement .. 1807
SCROLLBAR SET RANGE statement .. 1808
SEEK function ... 1809
SEEK statement .. 1810
SELECT CASE/END SELECT block ... 1810
SETATTR statement .. 1813
SETEOF statement .. 1813
SGN function .. 1814
SHELL function ... 1814
SHELL statement .. 1815
SHIFT statement ... 1816
SHRINK$ function ... 1816
SIN function ... 1817
SIZEOF function ... 1818
SLEEP statement ... 1819
SPACE$ function .. 1820
SPLIT statement ... 1820
SQR function .. 1821
STATIC statement .. 1821
STATUSBAR SET PARTS statement .. 1822
STATUSBAR SET TEXT statement .. 1823
STR$ function .. 1824
STRDELETE$ function ... 1825
STRING$ function ... 1825
STRING$$ function ... 1826
STRINSERT$ function ... 1826
STRINGBUILDER Object .. 1827
STRPTR function .. 1828
STRREVERSE$ function ... 1829
SUB/END SUB statements .. 1829
SWAP statement ... 1832
SWITCH function .. 1833
TAB$ function .. 1834
TAB DELETE statement ... 1834
TAB GET COUNT statement ... 1836
TAB GET DIALOG statement .. 1838
TAB GET IMAGE statement .. 1840
TAB GET PAGE statement ... 1842
TAB GET SELECT statement .. 1845
TAB GET TEXT statement .. 1847
TAB INSERT PAGE statement .. 1849

PowerBASIC Compiler for Windows Version 10

31 / 2126

TAB RESET statement ... 1851
TAB SELECT statement ... 1853
TAB SET IMAGE statement .. 1855
TAB SET IMAGELIST statement ... 1857
TAB SET TEXT statement .. 1860
TALLY function .. 1862
TAN function ... 1862
TCP ACCEPT statement ... 1863
TCP CLOSE statement ... 1863
TCP LINE INPUT statement ... 1863
TCP NOTIFY statement ... 1864
TCP OPEN statement .. 1865
TCP PRINT statement ... 1866
TCP RECV statement ... 1866
TCP SEND statement ... 1866
THREAD CLOSE statement .. 1867
THREAD Code Group .. 1868
THREAD CREATE statement .. 1868
THREAD GET PRIORITY statement .. 1871
THREAD Object .. 1872
THREAD RESUME statement .. 1877
THREAD SET PRIORITY statement ... 1877
THREAD STATUS statement .. 1878
THREAD SUSPEND statement .. 1878
THREADCOUNT function ... 1878
THREADED statement ... 1879
THREADID function .. 1880
TIME$ system variable .. 1880
TIMER function .. 1881
TIX statement .. 1881
TOOLBAR ADD BUTTON statement .. 1882
TOOLBAR ADD SEPARATOR statement .. 1884
TOOLBAR DELETE BUTTON statement ... 1887
TOOLBAR GET COUNT statement .. 1890
TOOLBAR GET STATE statement ... 1893
TOOLBAR SET IMAGELIST statement ... 1896
TOOLBAR SET STATE statement .. 1899
TRACE statement ... 1902
TREEVIEW DELETE statement .. 1904
TREEVIEW GET BOLD statement .. 1907
TREEVIEW GET CHECK statement .. 1911
TREEVIEW GET CHILD statement ... 1914
TREEVIEW GET COUNT statement ... 1917
TREEVIEW GET EXPANDED statement .. 1921
TREEVIEW GET NEXT statement .. 1924
TREEVIEW GET PARENT statement .. 1927
TREEVIEW GET PREVIOUS statement ... 1931
TREEVIEW GET ROOT statement ... 1934
TREEVIEW GET SELECT statement ... 1938
TREEVIEW GET TEXT statement .. 1941

PowerBASIC Compiler for Windows Version 10

32 / 2126

TREEVIEW GET USER statement .. 1944
TREEVIEW INSERT ITEM statement .. 1948
TREEVIEW RESET statement .. 1951
TREEVIEW SELECT statement .. 1955
TREEVIEW SET BOLD statement .. 1958
TREEVIEW SET CHECK statement ... 1961
TREEVIEW SET EXPANDED statement .. 1965
TREEVIEW SET IMAGELIST statement .. 1968
TREEVIEW SET TEXT statement ... 1972
TREEVIEW SET USER statement ... 1975
TREEVIEW UNSELECT statement .. 1978
TRIM$ function .. 1982
TRY/END TRY block ... 1982
TXT.CELL method ... 1983
TXT.CLS method .. 1987
TXT.COLOR method ... 1990
TXT.END method ... 1994
TXT.INKEY$ method ... 1998
TXT.INSTAT method .. 2001
TXT.LINE.INPUT method .. 2005
TXT.PRINT method .. 2008
TXT.WAITKEY$ method .. 2012
TXT.WINDOW method .. 2016
TYPE/END TYPE block .. 2019
TYPE SET statement ... 2023
UBOUND function ... 2024
UCASE$ function .. 2024
UCODE$ function ... 2025
UCODEPAGE statement ... 2025
UDP CLOSE statement ... 2026
UDP NOTIFY statement ... 2026
UDP OPEN statement .. 2027
UDP RECV statement .. 2027
UDP SEND statement .. 2028
UNION/END UNION block ... 2028
UNLOCK statement ... 2030
UNWRAP$ function ... 2031
USING$ function .. 2031
Utf8ToChr$ function ... 2033
VAL function .. 2033
VAL statement .. 2034
VARIANT# function .. 2036
VARIANT$/VARIANT$$ function .. 2036
VARIANTVT function .. 2037
VARPTR function .. 2038
VERIFY function ... 2039
WHILE/WEND statements .. 2040
WINDOW GET HANDLE statement .. 2040
WINDOW GET ID statement .. 2042
WINDOW GET PARENT statement .. 2043

PowerBASIC Compiler for Windows Version 10

33 / 2126

WINDOW GET STYLE statement ... 2044
WINDOW GET STYLEX statement ... 2045
WINDOW GET USER statement .. 2046
WINDOW SET ID statement ... 2048
WINDOW SET STYLE statement ... 2049
WINDOW SET STYLEX statement ... 2050
WINDOW SET USER statement .. 2051
WINMAIN function .. 2052
WRAP$ function ... 2053
WRITE# statement ... 2053
XOR operator ... 2054
XPRINT Code Group ... 2055
XPRINT(CANVAS.X) function ... 2056
XPRINT(CANVAS.Y) function ... 2057
XPRINT(Cell.Size.X) function .. 2057
XPRINT(Cell.Size.Y) function .. 2058
XPRINT(Chr.Size.X) function .. 2058
XPRINT(Chr.Size.Y) function .. 2059
XPRINT(Client.X) function .. 2059
XPRINT(Client.Y) function ... 2060
XPRINT(Clip.X) function .. 2060
XPRINT(Clip.Y) function .. 2060
XPRINT(COL) function .. 2061
XPRINT(COLLATE) function ... 2062
XPRINT(COLORMODE) function ... 2062
XPRINT(COPIES) function ... 2063
XPRINT(DC) function .. 2063
XPRINT(DUPLEX) function ... 2063
XPRINT(LINES) function .. 2064
XPRINT(MIX) function ... 2064
XPRINT(ORIENTATION) function ... 2065
XPRINT(OVERLAP) function ... 2065
XPRINT(PAPER) function ... 2066
XPRINT(PIXEL...) function ... 2067
XPRINT(POS.X) function .. 2067
XPRINT(POS.Y) function ... 2067
XPRINT(PPI.X) function ... 2068
XPRINT(PPI.Y) function ... 2068
XPRINT(QUALITY) function ... 2068
XPRINT(ROW) function ... 2069
XPRINT(SELECTION) function .. 2069
XPRINT(SIZE.X) function ... 2070
XPRINT(SIZE.Y) function ... 2070
XPRINT(STRETCHMODE) function .. 2071
XPRINT(TEXT.SIZE.X...) function ... 2071
XPRINT(TEXT.SIZE.Y...) function ... 2072
XPRINT(TRAY) function .. 2073
XPRINT(WORDWRAP) function .. 2074
XPRINT(WRAP) function .. 2074
XPRINT$ function ... 2075

PowerBASIC Compiler for Windows Version 10

34 / 2126

XPRINT$(ATTACH) function .. 2075
XPRINT$(PAPERS) function ... 2076
XPRINT$(TRAYS) function ... 2077
XPRINT ARC statement ... 2078
XPRINT ATTACH statement ... 2078
XPRINT BOX statement ... 2080
XPRINT CANCEL statement .. 2081
XPRINT CELL statement .. 2081
XPRINT CELL SIZE statement ... 2082
XPRINT CHR SIZE statement .. 2083
XPRINT CLOSE statement .. 2083
XPRINT COLOR statement ... 2083
XPRINT COPY statement ... 2084
XPRINT ELLIPSE statement .. 2085
XPRINT FORMFEED statement .. 2085
XPRINT GET ATTACH statement .. 2086
XPRINT GET CANVAS statement .. 2086
XPRINT GET CLIENT statement .. 2086
XPRINT GET CLIP statement .. 2087
XPRINT GET COLLATE statement ... 2087
XPRINT GET COLORMODE statement ... 2088
XPRINT GET COPIES statement ... 2088
XPRINT GET DC statement .. 2089
XPRINT GET DUPLEX statement ... 2089
XPRINT GET LINES statement .. 2090
XPRINT GET MARGIN statement .. 2090
XPRINT GET MIX statement ... 2090
XPRINT GET ORIENTATION statement ... 2091
XPRINT GET OVERLAP statement ... 2091
XPRINT GET PAGES statement ... 2092
XPRINT GET PAPER statement ... 2092
XPRINT GET PAPERS statement ... 2093
XPRINT GET PIXEL statement .. 2094
XPRINT GET POS statement .. 2095
XPRINT GET PPI statement .. 2095
XPRINT GET QUALITY statement ... 2095
XPRINT GET SCALE statement ... 2095
XPRINT GET SELECTION statement .. 2096
XPRINT GET SIZE statement .. 2097
XPRINT GET STRETCHMODE statement .. 2097
XPRINT GET TRAY statement .. 2098
XPRINT GET TRAYS statement .. 2099
XPRINT GET WORDWRAP statement .. 2099
XPRINT GET WRAP statement .. 2100
XPRINT IMAGELIST statement ... 2101
XPRINT LINE statement ... 2101
XPRINT PIE statement ... 2102
XPRINT POLYGON statement ... 2103
XPRINT POLYLINE statement ... 2104
XPRINT PREVIEW statement .. 2105

PowerBASIC Compiler for Windows Version 10

35 / 2126

XPRINT PRINT statement ... 2106
XPRINT RENDER statement ... 2107
XPRINT SCALE statement .. 2108
XPRINT SET CLIP statement .. 2108
XPRINT SET COLLATE statement ... 2109
XPRINT SET COLORMODE statement .. 2109
XPRINT SET COPIES statement .. 2110
XPRINT SET DUPLEX statement ... 2110
XPRINT SET FONT statement ... 2111
XPRINT SET MIX statement ... 2111
XPRINT SET ORIENTATION statement ... 2112
XPRINT SET OVERLAP statement ... 2112
XPRINT SET PAGES statement ... 2113
XPRINT SET PAPER statement ... 2113
XPRINT SET PIXEL statement ... 2114
XPRINT SET POS statement ... 2115
XPRINT SET QUALITY statement ... 2115
XPRINT SET STRETCHMODE statement .. 2115
XPRINT SET TRAY statement ... 2116
XPRINT SET WORDWRAP statement ... 2117
XPRINT SET WRAP statement .. 2117
XPRINT SPLIT statement ... 2118
XPRINT STRETCH statement .. 2118
XPRINT STRETCH PAGE statement ... 2119
XPRINT STYLE statement .. 2120
XPRINT TEXT SIZE statement .. 2121
XPRINT WIDTH statement ... 2121

Support ... 2122
Technical Support ... 2122
License Agreement ... 2122

PowerBASIC Compiler for Windows Version 10

36 / 2126

Home

Power
BASIC

10
For

Windo
ws

KeyWord
Quick Finder

Introducing
PowerBASIC
For Windows

New
Statements

and Functions

Command
Summary

Running
PB/Win

Data Types

Built-in numeric
equates

Built-in string
equates

Glossary

Register

Technical
Support

Downloads

Peer Support
Forums

http://www.powerbasic.com

Glossary.htm
register.htm
http://www.powerbasic.com/support/downloads/
http://www.powerbasic.com/support/pbforums/index.php
http://www.powerbasic.com/support/pbforums/index.php
https://www.powerbasic.com/

PowerBASIC Compiler for Windows Version 10

37 / 2126

Copyright © 1996-2020 Pow erBASIC Tools, LLC

Terms of Use - Privacy Policy

Introducing PowerBASIC For Windows 10

Introducing PowerBASIC 10 for Windows
PowerBASIC for Windows is a native code compiler for Win95/98/ME, WinNT, Windows 2000, Windows
XP, Windows Vista, and Windows 7. It creates applications with a Graphical User Interface (GUI), to provide
the typical "Look and Feel" of Windows. It creates highly efficient executables and industry-standard DLLs
for optimum flexibility. The machine code generated by PowerBASIC is among the most efficient in the
industry, both in terms of size and speed. It compares most favorably with leading compilers of any dialect,
Pascal, C++, Fortran, and others.

Our favorite slogan is "We put the Power in BASIC", and we sincerely believe you will find this to be true.
With compilation speeds of 1 million lines per minute, unrivaled performance, and the smallest executables
in the industry, PowerBASIC has become the new standard of comparison in Windows programming.
Thank you for joining us in the War on Bloatware!

Features

· Create client COM applications and COM components using Dispatch, Direct, Automation, or Dual
interfaces.

· Fast and Small 32-bit EXEs and DLLs for Microsoft Windows 95/98/ME/NT/2000/XP/Vista/Windows
7.

· Multi-threaded application support: Thread Object, Thread Functions, ThreadSafe Functions,
ThreadSafe Subroutines, ThreadSafe Methods, ThreadSafe Properties, Thread Create, Thread
Suspend, Thread Resume, Thread Status, and Thread Close.

· 32-bit protected mode code generation for maximum performance.

· Automatic unreferenced code removal.

· Total support for both ANSI and Unicode strings with automatic conversion.

· Dynamic Dialog Tools for easy creation of Graphic User Interface applications.

· A complete graphics package for easy development of graphic presentations, splash screens and
more.

· Support for Windows only printers with the XPRINT statement and functions.

· Supports existing Line Printers, with PowerBASIC LPRINT statements and functions.

· A complete set of advanced string manipulation functions: VERIFY, REMOVE, REPLACE,
EXTRACT, TALLY, REPEAT,

, and many more.

· REGEXPR and REGREPL functions for regular expression search and replace.

· Array Sort and Scan, element Insert and Delete.

· MIN and MAX value Functions that work with both

 and data types.

· PEEK, POKE, PEEK$, POKE$ for direct memory access.

https://www.powerbasic.com/conditions-of-use
https://www.powerbasic.com/privacy-notice

PowerBASIC Compiler for Windows Version 10

38 / 2126

 and Indexed Pointers for direct memory access.

· Matrix operations: Init, Identity, Transposition, Inversion, scalar, and matrix math.

· 80-bit Extended-precision math.

· Register Variables for increased performance: up to six unique register variables:

 (2) or (4).

· Unsigned integral types: BYTE (8-bit), WORD (16-bit) and DWORD (32-bit).

· Signed integral types: INTEGER (16-bit), LONG (32-bit) and QUAD (64-bit).

· Two Currency variable types.

· User-Defined TYPEs and UNIONs.

· FIELD variables for file I/O.

· Variant, GUID, and Object variables.

· Optional parameters in BASIC Subs, Functions, Methods, and Properties.

· Optional parameter passing to

 and procedures.

· Optional requirement that variables must be declared before use.

· Built-in 32-bit Inline Assembler with 80486, Pentium, and SIMD opcodes.

· Inline Assembler includes Floating-Point and MMX instructions.

· Direct export of Subs and Functions.

· Import Subs and Functions from the entire Win32 API or any 32-bit DLL.

· Client/Server Network Communications - TCP/UDP for E-mail, FTP, etc.

· High-speed Serial Communications support.

· True 32-bit code pointers, great for callbacks.

· Easy to use syntax highlighting Integrated Development Environment (IDE) and debugger.

See Also

The Integrated Development Environment

Running PB/Win

Debugging PB/Win Programs

What's New

New Statements and Functions

New Statements and Functions
· #COM CLASS metastatement allows you to add the COM attribute to a class defined elsewhere.

· #EXPORT metastatement declare a Sub/Function to have the EXPORT attribute.

PowerBASIC Compiler for Windows Version 10

39 / 2126

· #LINK metastatement links a pre-compiled Static Link Library (SLL) into your host program.

· #OPTIMIZE CODE ON metastatement removes unreferenced code from the compiled program.

· #OPTIMIZE CODE OFF metastatement keeps unreferenced code in the compiled program.

· #OPTION LARGEMEM32 metastatement allows your application to use more than the original limit
of 2 Gigabytes of memory.

· #OPTION WIN95 metastatement includes a complete Unicode emulation package in your EXE or
DLL to allow them to run properly on Windows 95, 98, and ME.

· #OPTION ANSIAPI metastatement directs the internal runtime library to only use ANSI Windows API
calls.

· #PAGE metastatement sets a page boundary for the PowerBASIC IDE.

· #RESOURCE BITMAP metastatement embeds a bitmap as Resource data into your program or DLL.

· #RESOURCE ICON metastatement embeds a icon as Resource data into your program or DLL.

· #RESOURCE MANIFEST metastatement embeds a manifest file into your program or DLL.

· #RESOURCE RCDATA metastatement embeds raw resource data into your program or DLL.

· #RESOURCE STRING metastatement embeds a

 as Resource data into your program or DLL.

· #RESOURCE TYPELIB metastatement embeds a type library as Resource data into your program or
DLL.

· #RESOURCE PBR metastatement embeds a PowerBASIC compiled resource (.PBR) into your
program or DLL.

· #RESOURCE RES metastatement embeds a compiled resource (.RES) file into your program or
DLL.

· #RESOURCE WAVE metastatement embeds a wave file into your program.

· #RESOURCE VERSIONINFO metastatement embeds version information into your program or DLL.

· #UNIQUE metastatement specifies whether unique variable names are required.

· ASM ALIGN statement rounds up the instruction location to a power of two address.

· ASMDATA/END ASMDATA statements defines a block where primitive read-only data is stored.

· BITS$ function copies string contents without modification.

· CHRBYTES function determines the size of a single character in a string variable.

· CHR$$ function converts one or more numeric Unicode character codes, code ranges, and/or strings
into a single string.

· ChrToOem$ function translates a string of ANSI/WIDE characters to OEM byte characters.

· ChrToUtf8$ function translates a string of ANSI/WIDE characters to UTF-8 byte characters.

· CLIP$ function deletes characters from a string.

· COLLECTION Object Group provides a convenient way to refer to a related group of items as a single
object.

· COMM TIMEOUT statement places a limit on the time to complete a

 operation.

PowerBASIC Compiler for Windows Version 10

40 / 2126

· CONTROL ADD HEADER statement adds a header control to a dialog.

· CONTROL HIDE statement makes a

 invisible.

· CONTROL NORMALIZE statement makes a control visible.

· DAYNAME$ function converts a Day-of-Week number to the associated name.

· DEC$ function converts an integral value to a decimal string.

· DIALOG DEFAULT FONT statement specifies the default font to be used for DDT Dialogs and
Controls.

· DIALOG HIDE statement makes a Dialog invisible.

· DIALOG NONSTABLE statement makes a Dialog non-stable (closeable).

· DIALOG NORMALIZE statement makes a Dialog visible.

· DIALOG STABILIZE statement makes a Dialog stabilized (non-closeable).

· END statement terminates the program immediately.

· ENUM/END ENUM statements creates a group of logically related numeric equates.

· EXE.INST read-only user defined type returns the instance handle of the program which is currently
executing.

· FASTPROC/END FASTPROC statements defines a FastProc code section.

· FOR EACH/NEXT statements defines a loop of program statements which can sequentially examine
and act upon each member of a PowerCollection or LinkListCollection.

· GET$$ statement reads WIDE string data from a file opened in binary mode.

· GRAPHIC(CANVAS.X) function retrieves the writable width of the attached graphic target.

· GRAPHIC(CANVAS.Y) function retrieves the writable height of the attached graphic target.

· GRAPHIC(Cell.Size.X) function retrieves the character cell width including external leading.

· GRAPHIC(Cell.Size.Y) function retrieves the character cell height including external leading.

· GRAPHIC(Chr.Size.X) function retrieves the character width on the graphic target.

· GRAPHIC(Chr.Size.Y) function retrieves the character height on the graphic target.

· GRAPHIC(Client.X) function retrieves the client width of the attached graphic target.

· GRAPHIC(Client.Y) function retrieves the client height of the attached graphic target.

· GRAPHIC(Clip.X) function retrieves the width of the clip area.

· GRAPHIC(Clip.Y) function retrieves the height of the clip area.

· GRAPHIC(COL) function retrieves the next column print position, based upon the row and column
position of a text cell.

· GRAPHIC(DC) function retrieves the handle of the DC (device context) for the selected graphic target.

· GRAPHIC(INSTAT) function determines whether a keyboard character is ready.

· GRAPHIC(LINES) function retrieves the number of text lines which will fit on the graphic target.

· GRAPHIC(LOC.X) function retrieves the horizontal location of the graphic target on the desktop.

PowerBASIC Compiler for Windows Version 10

41 / 2126

· GRAPHIC(LOC.Y) function retrieves the vertical location of the graphic target on the desktop.

· GRAPHIC(MIX) function retrieves the color mix mode for the selected graphic target.

· GRAPHIC(OVERLAP) function retrieves the status of Graphic Overlap Mode.

· GRAPHIC(PIXEL...) function retrieves the color of the pixel at the specified point.

· GRAPHIC(POS.X) function retrieves the horizontal POS (last point referenced) by a GRAPHIC
statement.

· GRAPHIC(POS.Y) function retrieves the vertical POS (last point referenced) by a GRAPHIC
statement.

· GRAPHIC(PPI.X) function retrieves the horizontal resolution of the display device, in points per inch.

· GRAPHIC(PPI.Y) function retrieves the vertical resolution of the display device, in points per inch.

· GRAPHIC(ROW) function retrieves the next row print position, based upon the row and column
position of a text cell.

· GRAPHIC(SCROLLTEXT) function retrieves the status of Graphic ScrollText Mode.

· GRAPHIC(SIZE.X) function retrieves the overall width of the selected graphic target.

· GRAPHIC(SIZE.Y) function retrieves the overall height of the selected graphic target.

· GRAPHIC(STRETCHMODE) function retrieves the default bitmap stretching mode for the attached
DC.

· GRAPHIC(TEXT.SIZE.X...) function calculates the width of text to be printed.

· GRAPHIC(TEXT.SIZE.Y...) function calculates the height of text to be printed.

· GRAPHIC(View.X) function retrieves the horizontal position of the virtual graphic viewport.

· GRAPHIC(View.Y) function retrieves the vertical position of the virtual graphic viewport.

· GRAPHIC(WORDWRAP) function retrieves the status of Graphic WordWrap Mode.

· GRAPHIC(WRAP) function retrieves the status of Graphic Wrap Mode.

· GRAPHIC$(CAPTION) function retrieves the caption from a Graphic Window.

· GRAPHIC$(INKEY$) function reads a keyboard character if one is ready.

· GRAPHIC$(WAITKEY$) function reads a keyboard character or extended key, waiting until one is
ready.

· GRAPHIC$ (WAITKEY$...) function reads a limited set of keyboard characters or extended keys,
with an optional timeout value.

· GRAPHIC CELL SIZE statement retrieves the character cell size including external leading.

· GRAPHIC CELL statement sets or retrieves the next print position, based upon the row and column
position of a text cell.

· GRAPHIC COL statement retrieves the next column print position, based upon the row and column
position of a text cell.

· GRAPHIC GET CANVAS statement retrieves the buffer size of the attached graphic target.

· GRAPHIC GET CAPTION statement retrieves the caption from a Graphic Window.

· GRAPHIC GET CLIP statement retrieves the size of the clip area.

PowerBASIC Compiler for Windows Version 10

42 / 2126

· GRAPHIC GET OVERLAP statement retrieves the status of Graphic Overlap Mode.

· GRAPHIC GET SCROLLTEXT statement retrieves the status of Graphic ScrollText Mode.

· GRAPHIC GET SIZE statement retrieves the overall size of the selected graphic target.

· GRAPHIC GET STRETCHMODE statement retrieves the default bitmap stretching mode for the
attached DC.

· GRAPHIC GET VIEW statement retrieves the position of the virtual graphic viewport.

· GRAPHIC GET WORDWRAP statement retrieves the status of Graphic WordWrap Mode.

· GRAPHIC GET WRAP statement retrieves the status of Graphic Wrap Mode.

· GRAPHIC ROW statement retrieves the next row print position, based upon the row and column
position of a text cell.

· GRAPHIC SET AUTOSIZE statement expands a graphic target into autosize mode.

· GRAPHIC SET CAPTION statement changes the caption on a Graphic Window.

· GRAPHIC SET CLIENT statement changes the size of a graphic control or graphic window to a
specific client area size.

· GRAPHIC SET CLIP statement establishes margins around the outer edges of the graphic target.

· GRAPHIC SET FIXED statement restores a graphic target to standard fixed mode.

· GRAPHIC SET OVERLAP statement enables or disables Graphic Overlap Mode.

· GRAPHIC SET SCROLLTEXT statement enables or disables Graphic ScrollText Mode.

· GRAPHIC SET SIZE statement changes the overall size of a graphic control or graphic window.

· GRAPHIC SET STRETCHMODE statement sets the default bitmap stretching mode for the current
DC.

· GRAPHIC SET VIEW statement changes the position of the viewport on a virtual graphic target.

· GRAPHIC SET VIRTUAL statement expands a graphic target into virtual mode.

· GRAPHIC SET WORDWRAP statement enables or disables Graphic WordWrap Mode.

· GRAPHIC SET WRAP statement enables or disables Graphic Wrap Mode.

· GRAPHIC SPLIT statement splits a string into two parts for display on a graphic target.

· GRAPHIC STRETCH PAGE statement copies and resizes a bitmap to the clip or client area of the
selected graphic target.

· GRAPHIC WINDOW HIDE statement makes a graphic window invisible.

· GRAPHIC WINDOW MINIMIZE statement minimizes a graphic window.

· GRAPHIC WINDOW NONSTABLE statement makes a graphic window non-stable (closeable).

· GRAPHIC WINDOW NORMALIZE statement makes a graphic window visible.

· GRAPHIC WINDOW STABILIZE statement makes a graphic window stabilized (non-closeable).

· GRAPHIC WINDOW TEXT statement creates a new standalone window oriented more towards the
display of text.

· HEADER statement manipulates a HEADER control in order to set/retrieve data.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

43 / 2126

· IMPORT ADDR statement loads a library (DLL) to access an imported procedure.

· IMPORT CLOSE statement frees a library.

· ILinkListCollection.ADD method adds am item to the end of the LinkListCollection.

· ILinkListCollection.CLEAR method removes all items from the LinkListCollection.

· ILinkListCollection.COUNT method returns the number of items currently in the LinkListCollection.

· ILinkListCollection.FIRST method sets the current index for the LinkListCollection to one (1) and
returns the previous value.

· ILinkListCollection.INDEX method sets the current index for the LinkListCollection to the specified
value and returns the previous value.

· ILinkListCollection.INSERT method adds the specified item to the specified index position.

· ILinkListCollection.ITEM method returns the item from the specified index position.

· ILinkListCollection.LAST method sets the index value to the last item and returns the previous value.

· ILinkListCollection.NEXT method returns the next item in the LinkListCollection.

· ILinkListCollection.PREVIOUS method returns the previous item in the LinkListCollection.

· ILinkListCollection.REMOVE method removes the item at the specified position from the
LinkListCollection.

· ILinkListCollection.REPLACE method replaces the item at the specified position with a new item in
the LinkListCollection.

· IPowerArray.ARRAYBASE method returns the address of the first element of the array.

· IPowerArray.ARRAYDESC method returns the address of the SAFEARRAY descriptor.

· IPowerArray.ARRAYINFO <Get> property retrieves the info string, if one is present.

· IPowerArray.ARRAYINFO <Set> property assigns the info string to the array.

· IPowerArray.CLONE method copies an exact duplicate of the SafeArray, and stores it in the
specified PowerArray object.

· IPowerArray.COPYFROMVARIANT method copies an exact duplicate of the specified SafeArray and
stores it in this PowerArray object.

· IPowerArray.COPYTOVARIANT method copies an exact duplicate of the SafeArray in this object and
stores it in the specified Variant.

· IPowerArray.DIM method dimensions (creates) a new array.

· IPowerArray.ELEMENTPTR method retrieves the address of the specified data element.

· IPowerArray.ELEMENTSIZE method retrieves the storage size (in bytes) of each data element of the
array.

· IPowerArray.ERASE method destroys the contained array and empties the object.

· IPowerArray.LBOUND method retrieves the lower bound number for the dimension specified.

· IPowerArray.LOCK method increments the lock count of the SAFEARRAY.

· IPowerArray.MOVEFROMVARIANT method transfers ownership of the specified SafeArray contained
in the variant to the PowerArray object.

· IPowerArray.MOVETOVARIANT method transfers ownership of the SafeArray contained in this

PowerBASIC Compiler for Windows Version 10

44 / 2126

PowerArray object to a variant parameter.

· IPowerArray.REDIM method allows the SafeArray to be erased and re-dimensioned to a new size.

· IPowerArray.REDIMPRESERVE method allows the least significant (rightmost) bound to be changed
to a new size. The remaining data items in the array are preserved.

· IPowerArray.RESET method sets all elements in the SafeArray back to their initial, default value.

· IPowerArray.SUBSCRIPTS method retrieves the number of dimensions (subscripts) for this array.

· IPowerArray.UBOUND method retrieves the upper bound number for the dimension specified.

· IPowerArray.UNLOCK method decrements the lock count of the SAFEARRAY.

· IPowerArray.VALUEGET method retrieves the value of the specified array element.

· IPowerArray.VALUESET method assigns the value to the specified array element.

· IPowerArray.VALUETYPE method retrieves the %VT code which describes the data contained in this
array.

· IPowerCollection.ADD method adds an item and key to the end of the PowerCollection.

· IPowerCollection.CLEAR method removes all items and keys from the PowerCollection.

· IPowerCollection.CONTAINS method scans the PowerCollection for the specified key.

· IPowerCollection.COUNT method returns the number of data items currently contained in the
PowerCollection.

· IPowerCollection.ENTRY method returns the PowerCollection item specified by the Index number.

· IPowerCollection.FIRST method sets the index to the first item and returns the previous value.

· IPowerCollection.INDEX method sets the index value and returns the previous value.

· IPowerCollection.ITEM method returns the item associated with the specified key in the
PowerCollection.

· IPowerCollection.LAST method sets the index to the last item and returns the previous value.

· IPowerCollection.NEXT method returns the next item in the PowerCollection.

· IPowerCollection.PREVIOUS method returns the previous item in the PowerCollection.

· IPowerCollection.REMOVE method removes the item associated with the specified key from the
PowerCollection.

· IPowerCollection.REPLACE method replaces the item associated with the specified key with a new
item.

· IPowerCollection.SORT method sorts the data items in the PowerCollection based upon the text in
the associated keys.

· IPowerThread.Close method releases the

 handle of this thread.

· IPowerThread.Equals method compares the specified object to determine if it references the same
object as this object.

· IPowerThread.Handle method retrieves the handle of the thread for use with Windows API functions.

· IPowerThread.Id method retrieves the ID of the thread for use with Windows API functions.

· IPowerThread.IsAlive method checks the thread to see if it is currently "alive".

PowerBASIC Compiler for Windows Version 10

45 / 2126

· IPowerThread.Join method waits for the specified thread object to complete before execution of this
thread continues.

· IPowerThreadLaunch method begins execution of the thread object.

· IPowerThread.Priority property get retrieves the priority value for this thread.

· IPowerThread.Priority property set sets the priority value for this thread.

· IPowerThread.Result method retrieves the results value if the thread has ended.

· IPowerThread.Resume method resumes execution of a suspended thread.

· IPowerThread.StackSize property get retrieves the size of the stack for this thread.

· IPowerThread.StackSize property set sets the size of the stack for this thread to the value specified.

· IPowerThread.Suspend method suspends execution of the thread.

· IPowerThread.TimeCreate method retrieves the date and time-of-day of the thread creation.

· IPowerThread.TimeExit method retrieves the date and time-of-day of the thread exit

· IPowerThread.TimeKernel method retrieves the amount of time this thread has spent in kernel mode.

· IPowerThread.TimeUser method retrieves the amount of time this thread has spent in user mode.

· IPowerTime.AddDays method adds or subtracts a specified number of days to value of this object.

· IPowerTime.AddHours method adds or subtracts a specified number of hours to value of this object.

· IPowerTime.AddMinutes method adds or subtracts a specified number of minutes to value of this
object.

· IPowerTime.AddMonths method adds or subtracts a specified number of months to value of this
object.

· IPowerTime.AddMSeconds method adds or subtracts a specified number of milliseconds to value of
this object.

· IPowerTime.AddSeconds method adds or subtracts a specified number of seconds to value of this
object.

· IPowerTime.AddTicks method adds or subtracts a specified number of ticks to value of this object.

· IPowerTime.AddYears method adds or subtracts a specified number of years to value of this object.

· IPowerTime.DateDiff method compares the date component of an external PowerTime object to this
objects date component.

· IPowerTime.DateString method returns the Date component of the object expressed as a string.

· IPowerTime.DateStringLong method returns the Date component of the PowerTime object, expressed
as a string, with a full alphabetic month name.

· IPowerTime.Day method returns the Day component of the object.

· IPowerTime.DayOfWeek method returns the Day-of-Week component of the object.

· IPowerTime.DayOfWeekString method returns the Day-of-Week of the object, expressed as a string
(Sunday, Monday...).

· IPowerTime.DaysInMonth method returns the number of days which comprise the month of the date
of the PowerTime object.

· IPowerTime.FileTime property get returns a Quad-Integer value of the PowerTime object as a

PowerBASIC Compiler for Windows Version 10

46 / 2126

FileTime.

· IPowerTime.FileTime property set the FileTime Quad-Integer value specified is assigned as the
PowerTime object value

· IPowerTime.Hour method returns the Hour component of the object.

· IPowerTime.IsLeapYear method returns true/false (-1/0) to tell if the object year is a leap year.

· IPowerTime.Minute method returns the Minute component of the object.

· IPowerTime.Month method returns the Month component of the object.

· IPowerTime.MonthString method returns the Month component of the object, expressed as a string
(January, February...).

· IPowerTime.MSecond method returns the millisecond component of the PowerTime object.

· IPowerTime.NewDate method assigns a new value to the date component of the PowerTime object.

· IPowerTime.NewTime method assigns a new value to the time component of the PowerTime object.

· IPowerTime.Now method assigns the current local date and time on this computer to this object.

· IPowerTime.NowUTC method assigns the current Coordinated Universal date and time (UTC) to this
object.

· IPowerTime.Second method returns the Second component of the object.

· IPowerTime.Tick method returns the Tick component of the object.

· IPowerTime.TimeDiff method compares the time component of an external PowerTime object with
this objects time component.

· IPowerTime.TimeString method returns the Time component of the PowerTime object expressed as a
string.

· IPowerTime.TimeString24 method returns the Time component of the PowerTime object expressed
as a string. The time is formatted as hh:mm in 24-hour notation.

· IPowerTime.TimeStringFull method returns the Time component of the PowerTime object expressed
as a string. The time is formatted as hh:mm:ss.tt in 24-hour notation.

· IPowerTime.Today method the current local date on this computer is assigned to this PowerTime
object.

· IPowerTime.ToLocalTime method converts the object to local time.

· IPowerTime.ToUTC method converts the object to Coordinated Universal Time (UTC).

· IPowerTime.Year method returns the Year component of the PowerTime object as a numeric value.

· IQueueCollection.CLEAR method removes all items from the QueueCollection.

· IQueueCollection.COUNT method returns the number of data items currently contained in the
QueueCollection.

· IQueueCollection.DEQUEUE method returns the item at the "oldest" position in the QueueCollection.

· IQueueCollection.ENQUEUE method adds the specified item to the "newest" position in the
QueueCollection.

· IStackCollection.CLEAR method removes all items from the StackCollection.

· IStackCollection.COUNT method returns the number of data items currently contained in the
StackCollection.

PowerBASIC Compiler for Windows Version 10

47 / 2126

· IStackCollection.POP method returns the item at the "Stack-Top" (the item most recently added).

· IStackCollection.PUSH method adds the specified item to the StackCollection at the "Stack-Top"
position.

· IStringBuilderA.Add method appends an ANSI string to the object.

· IStringBuilderA.Capacity property get retrieves the size of the internal buffer.

· IStringBuilderA.Capacity property set sets the size of the internal buffer.

· IStringBuilderA.Char property get returns the numeric character code of the character at the specified
position.

· IStringBuilderA.Char property set changes the numeric character code of the character at the
specified position.

· IStringBuilderA.Clear method erases all data in the object.

· IStringBuilderA.Delete method deletes all data in the object.

· IStringBuilderA.Insert method inserts a string at a specified position.

· IStringBuilderA.Len method returns the number of characters stored in the object.

· IStringBuilderA.String method returns the ANSI string stored in the object.

· IStringBuilderW.Add method appends an WIDE string to the object.

· IStringBuilderW.Capacity property get retrieves the size of the internal buffer.

· IStringBuilderW.Capacity property set sets the size of the internal buffer.

· IStringBuilderW.Char property get returns the numeric character code of the character at the
specified position.

· IStringBuilderW.Char property set changes the numeric character code of the character at the
specified position.

· IStringBuilderW.Clear method erases all data in the object.

· IStringBuilderW.Delete method deletes all data in the object.

· IStringBuilderW.Insert method inserts a string at a specified position.

· IStringBuilderW.Len method returns the number of characters stored in the object.

· IStringBuilderW.String method returns the WIDE string stored in the object.

· ISNOTNULL function determines if a string is not nul (contains 1 or more characters).

· ISNULL function determines if a string is nul (zero-length).

· LISTVIEW GET HEADERID statement returns the handle of the LISTIVEW control and the ID of
HEADER control.

· MEMORY COPY statement copies a specified number of bytes from one address to another.

· MEMORY FILL statement fills a specified address with a specified number of bytes with one or more
copies of a specified string expression.

· MEMORY SWAP statement exchanges a specified number of bytes from at one address with the
data at another address.

· MENU CONTEXT statement creates a floating context menu.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

48 / 2126

· METRICS function retrieves information or dimensions of system elements.

· MONTHNAME$ function converts a Month number to the associated name.

· OBJEQUAL function checks if object variables refer to the same object.

· OemToChr$ function translates a byte string of OEM characters into ANSI/WIDE characters.

· PLAY statement plays a wave file under program control.

· POKE$$ statement stores the characters of a string expression as consecutive 2-byte words of
memory at a specific address.

· PEEK$$ function retrieves a specified count of consecutive 2-byte wide characters, and returns them
as a wide character string.

· PowerArray object encapsulates the Windows SAFEARRAY structure.

· PowerTime object contains a date and time value, allowing easy calculations.

· PREFIX/END PREFIX statements execute a series of statements, each of which utilizes pre-defined
source code.

· PUT$$ statement writes a WIDE Unicode string to a file opened in binary mode.

· RESOURCE$ function returns predefined resource data.

· RESUME FLUSH statement flushes the RESUME stack and program execution simply continues on
the line immediately following the RESUME FLUSH.

· RETURN FLUSH statement removes the most recent return address from the system stack and
program flow continues normally after the RETURN FLUSH.

· SHRINK$ function shrinks a string to use a consistent single character delimiter.

· SPLIT statement splits a string into two parts.

· STRINGBUILDER Object offers the ability to concatenate many string sections at a very high level of
performance.

· STRING$$ function returns a Unicode string consisting of multiple copies of a specified character.

· TAB GET IMAGE statement retrieves the index of the image displayed on the specified TAB page.

· TAB GET PAGE statement retrieves the page number of the specified TAB page dialog.

· TAB GET SELECT statement returns the index of the currently selected TAB page.

· TAB GET TEXT statement retrieves the text displayed on the specified page tab.

· TAB SET IMAGE statement displays the specified image on the specified page tab.

· TAB SET TEXT statement displays the specified text on the specified page tab.

· THREAD Object offers a collection of methods which allow you to easily create and maintain
additional threads of execution in your programs.

· TXT.CELL method sets or retrieves the cursor position.

· TXT.CLS method clears the Text Window and moves to caret to the upper left corner.

· TXT.COLOR method sets the foreground color.

· TXT.END method destroys and detaches the Text Window currently attached to your program from
the process.

PowerBASIC Compiler for Windows Version 10

49 / 2126

· TXT.INKEY$ method reads a keyboard character if one is ready.

· TXT.INSTAT method determines whether a keyboard character is ready.

· TXT.LINE.INPUT method reads an entire line from the keyboard.

· TXT.PRINT method writes text data to the TEXT WINDOW at the current caret location.

· TXT.WAITKEY$ method reads a keyboard character, waiting until one is ready.

· TXT.WINDOW method creates a new Text Window and attaches it to your program.

· UNWRAP$ removes paired characters from the beginning and end of a string.

· Utf8ToChr$ function translates a byte string of OEM characters into ANSI/WIDE characters.

· VAL statement converts a text string to a numeric value with additional information.

· VARIANT$(BYTE, VrntVar) function returns the contents of a Variant as a ANSI byte string. This
result can be assigned to an ANSI string variable or a User-Defined Type.

· VARIANT$$ function returns the Unicode string value contained in a Variant variable.

· WINDOW GET HANDLE statement retrieves the handle of a Window.

· WINDOW GET STYLE statement retrieves the style of the Window.

· WINDOW GET STYLEX statement retrieves the extended-style of the Window.

· WINDOW GET USER statement retrieves the 32-bit user data value associated with the window.

· WINDOW SET ID statement changes the integral ID of the window.

· WINDOW SET STYLE statement changes the style of the Window.

· WINDOW SET STYLEX statement changes the extended-style of the Window.

· WINDOW SET USER statement changes the 32-bit user data value associated with the window.

· WRAP$ function adds paired characters to the beginning and end of a string.

· XPRINT(CANVAS.X) function retrieves the writable width of the host printer page.

· XPRINT(CANVAS.Y) function retrieves the writable height of the host printer page.

· XPRINT(Cell.Size.X) function retrieves the character cell width including external leading.

· XPRINT(Cell.Size.Y) function retrieves the character cell height including external leading.

· XPRINT(Chr.Size.X) function retrieves the character width on the host printer page.

· XPRINT(Chr.Size.Y) function retrieves the character height on the host printer page.

· XPRINT(Client.X) function retrieves the width of the client area (printable area) on the host printer
page.

· XPRINT(Client.Y) function retrieves the height of the client area (printable area) on the host printer
page.

· XPRINT(Clip.X) function retrieves the width of the clip area on the selected printer.

· XPRINT(Clip.Y) function retrieves the height of the clip area on the selected printer.

· XPRINT(COL) function retrieves the next column print position, based upon the row and column
position of a text cell.

· XPRINT(COLLATE) function retrieves the XPRINT collate status.

PowerBASIC Compiler for Windows Version 10

50 / 2126

· XPRINT(COLORMODE) function retrieves the XPRINT colormode status.

· XPRINT(COPIES) function retrieves the XPRINT copy count.

· XPRINT(DC) function retrieves the handle of the device context (DC) for the host printer page.

· XPRINT(DUPLEX) function retrieves the XPRINT duplex status.

· XPRINT(LINES) function retrieves the number of lines that can be printed.

· XPRINT(MIX) function retrieves the color mix mode for a host printer page.

· XPRINT(ORIENTATION) function retrieves the paper orientation for a host printer page.

· XPRINT(OVERLAP) function retrieves the status of XPrint Overlap Mode.

· XPRINT(PAPER) function retrieves the current paper size/type.

· XPRINT(PIXEL...) function retrieves the color of a pixel on a host printer page.

· XPRINT(POS.X) function retrieves the last horizontal point referenced (POS) by an XPRINT
statement.

· XPRINT(POS.Y) function retrieves the last vertical point referenced (POS) by an XPRINT statement.

· XPRINT(PPI.X) function retrieves the horizontal resolution of the host printer page.

· XPRINT(PPI.Y) function retrieves the vertical resolution of the host printer page.

· XPRINT(ROW) function retrieves the next row print position, based upon the row and column position
of a text cell.

· XPRINT(QUALITY) function retrieves the print quality setting for the host printer.

· XPRINT(SELECTION) function retrieves the status of the SELECTION flag.

· XPRINT(SIZE.X) function retrieves the width of the host printer page.

· XPRINT(SIZE.Y) function retrieves the height of the host printer page.

· XPRINT(STRETCHMODE) function retrieves the default bitmap stretching mode for the attached DC.

· XPRINT(TEXT.SIZE.X...) function calculates the width of text to be printed on a host printer.

· XPRINT(TEXT.SIZE.Y...) function calculates the height of text to be printed on a host printer.

· XPRINT(TRAY) function retrieves the active printer tray.

· XPRINT(WORDWRAP) function retrieves the status of XPRINT WordWrap Mode.

· XPRINT(WRAP) function retrieves the status of XPRINT Wrap Mode.

· XPRINT$(ATTACH) function returns the name of the attached host printer.

· XPRINT$(PAPERS) function retrieves a list of supported paper types.

· XPRINT$(TRAYS) function retrieves a list of supported paper trays.

· XPRINT CELL SIZE statement retrieves the character cell size including external leading.

· XPRINT CELL statement sets or retrieves the next print position, based upon the row and column
position of a text cell.

· XPRINT GET ATTACH statement retrieves the name of the attached host printer.

· XPRINT GET CANVAS statement retrieves the buffer size of the attached host printer.

PowerBASIC Compiler for Windows Version 10

51 / 2126

· XPRINT GET CLIP statement retrieves the size of the clip area on the selected printer.

· XPRINT GET OVERLAP statement retrieves the status of XPrint Overlap Mode.

· XPRINT GET PAGES statement retrieves the XPRINT page number limits for this print job.

· XPRINT GET SELECTION statement retrieves the status of the SELECTION flag.

· XPRINT GET STRETCHMODE statement retrieves the default bitmap stretching mode for the
attached DC.

· XPRINT GET WORDWRAP statement retrieves the status of XPRINT WordWrap Mode.

· XPRINT GET WRAP statement retrieves the status of XPRINT Wrap Mode.

· XPRINT PREVIEW statement display a replica of a printed document on the screen.

· XPRINT PREVIEW CLOSE statement reverts XPRINT output back to the host printer.

· XPRINT SET CLIP statement establishes margins around the outer edges of the print page.

· XPRINT SET OVERLAP statement enables or disables XPRINT Overlap Mode.

· XPRINT SET PAGES statement sets the XPRINT page number limits for this print job.

· XPRINT SET STRETCHMODE statement sets the default bitmap stretching mode for the current DC.

· XPRINT SET WORDWRAP statement enables or disables XPRINT WordWrap Mode.

· XPRINT SET WRAP statement enables or disables XPrint Wrap Mode.

· XPRINT SPLIT statement splits a string into two parts for printing with XPRINT.

· XPRINT STRETCH PAGE statement copies and resizes a bitmap to the clip or client area of the print
page.

See Also

Changes to existing Statements and Functions

New in the IDE

Additional Changes

Changes to existing Statements and Functions

Changes to existing Statements and Functions
· #COMPILE metastatement has been enhanced to support compiling of Static Link Libraries.

· %DEF operator has been expanded so that %PB_EXE returns false when compiling a Static Link
Library.

· ARRAY DELETE and ARRAY INSERT statements now supports Variants, Objects, Guids, and UDT
arrays.

· ARRAY SORT now uses CALL instead of USING when specifying a custom array sort function.

· ASC function has been improved to support Unicode as well as ANSI

.

· ASC statement has been improved to support Unicode as well as ANSI strings.

PowerBASIC Compiler for Windows Version 10

52 / 2126

· ASMDATA DD now supports sign-extended values.

· BIN$ function has been expanded to 64-bits with formatting and now supports adding leading and
trailing spaces to the string result.

· CALL statement offers automatic conversion of numeric, string, and UDT parameters to variant
parameters.

· CHOOSE, CHOOSE&, and CHOOSE$ functions have been enhanced with optional ELSE clause.
The ELSE option allows an optional choice value to be returned when no match is made. For
example:

ChoiceVar$ = CHOOSE$(7,"ONE", "TWO" ELSE "NUL")

In this case, the ELSE expression "NUL" is returned.

CHOOSE and CHOOSE& also support an optional BIT clause where the selection is based upon the
first bit set (lowest to highest) in the specified index. This is particularly valuable when used with an
ENUMERATION which also uses the BIT option, to describe a set of attributes for an item in your
program.

The CHOOSE$ function now has an optional BITS clause that works in the same general fashion as
the BIT clause, except the function may return multiple choices, as a concatenated string, if more
than one bit is set. For example:

x$ = CHOOSE$(BITS 5, "Computer ", "Laptop ", "Desktop ")

Since the value 5 consists of 2 bits (the lowest and third-lowest) set, the first and third strings are
concatenated and returned to the caller. In this case, "Computer Desktop " is the result.

· CLIPBOARD GET TEXT statement automatically converts the retrieved string to ANSI or Unicode to
match the format of the target variable.

· CODEPTR function has been improved to return the address of a FASTPROC.

· COMBOBOX ADD and COMBOBOX INSERT statements now offer an optional TO clause that returns
the index position of the added string.

· COMM function, COMM LINE, COMM OPEN, COMM PRINT, COMM RECV, COMM SEND, and
COMM SET have been expanded to support ANSI and Unicode strings. COMM LINE, COMM OPEN,
COMM PRINT, COMM RECV, and COMM SEND have been improved with an optional timeout (see
COMM TIMEOUT) to complete the given COMM operation.

· CONTROL ADD GRAPHIC statement. Graphic controls may now be resized with CONTROL SET
CLIENT, GRAPHIC SET CLIENT, CONTROL SET SIZE, or GRAPHIC SET SIZE.

· CONTROL SET CLIENT statement now resizes graphic controls.

· CONTROL SET FONT statement resets back to the default original font chosen by PowerBASIC
when a font handle of zero is specified.

· CONTROL SET SIZE statement has been enhanced to support graphic controls.

· DECLARE statement has been updated to support the COMMON and THREADSAFE descriptors. A
COMMON Sub or Function is one which may be referenced by and between linked unit modules
(Main or SLL). With the THREADSAFE option, PowerBASIC automatically establishes a semaphore
which allows only one thread to execute the Sub/Function at a time. Other callers must wait until
the first thread exits the THREADSAFE procedure before they are allowed to begin.

· DIR$ function now supports Unicode file names and directories. The DIRDATA built-in UDT has been
updated to return Unicode short and long filenames.

· EXIT statement has been improved to support exiting a FASTPROC immediately.

· FONT NEW statement now optionally supports creating fonts with external leading.

· FUNCTION/END FUNCTION statements have been expanded to support an optional THREADSAFE

PowerBASIC Compiler for Windows Version 10

53 / 2126

descriptor. With the THREADSAFE option, PowerBASIC automatically establishes a semaphore
which allows only one thread to execute the procedure at a time.

· GET$ statement reads ANSI string data from a file opened in binary mode, but if the data is read into
a Unicode string it will be converted to Unicode before it is assigned.

· GRAPHIC COLOR statement now supports parameters of -3 to indicate that the existing color should
not be changed.

· GRAPHIC GET CLIENT statement now returns the client area size in dialog units or pixels only. The
size represents the physical size of the display area on the screen. This change was necessary
because of the improved graphic functionality involving virtual windows, resizing of graphic windows,
etc. Prior versions returned scaled sizes if a GRAPHIC SCALE was executed. Substitute GRAPHIC
GET CANVAS for functionality which is fully compatible with the old format.

· GRAPHIC GET LOC and GRAPHIC SET LOC now only support Graphic Windows. For Graphic
Controls use CONTROL GET LOC and CONTROL SET LOC.

· GRAPHIC SET FONT statement resets back to the default original font chosen by PowerBASIC
when a font handle of zero is specified.

· GRAPHIC PRINT statement has been expanded to support POS(), SPC(), TAB(), commas, and
semicolons. The POS(n) clause is an optional function used to set the POS to the horizontal page
unit. Multiple uses of the POS function is permitted in a single statement. The SPC(n) clause is an
optional function used to insert n spaces into the printed output. Multiple use of SPC is permitted in
a single statement. The TAB(n) clause is an optional function used to tab to the nth column before
printing the next expression. Multiple use of TAB is permitted in a single statement.

· GRAPHIC RENDER statement now supports icons as well as bitmaps.

· GRAPHIC WAITKEY$ statement has been improved with a optional KeyMask$ and TimeOut&
expressions. If the optional KeyMask$ expression is included, only a limited set of keys are
recognized. KeyMask$ may include any number of Sub-Masks, one for each key to observe. For
example, GRAPHIC WAITKEY$("YyNn") will recognize upper-case or lower-case Y or N (for yes/no
answers), while any other key will be ignored. If KeyMask$ is omitted, or evaluates to a zero-length
string, any key event will be recognized. If the optional TimeOut& expression is included, it tells the
maximum number of milliseconds to wait for a key. GRAPHIC WAITKEY$(5000) will wait a
maximum of 5 seconds. The specified TimeOut period will only be approximate, so you should not
rely upon precision accuracy. If the TimeOut period is exceeded, a zero-length string is returned. If
the TimeOut& parameter is omitted, or evaluates to zero (0), it will wait an infinite length of time.

· GRAPHIC WINDOW statement has been expanded to support an optional font handle of the initial
font to be used in the GRAPHIC WINDOW.

· GRAPHIC WINDOW END statement has been enhanced with an optional handle of the graphic
window to close.

· HEX$ function now supports adding leading and trailing spaces to the string result.

· IPowerTime.DateDiff now reports invalid parameters through OBJRESULT.

· IPowerTime.TimeDiff now reports invalid parameters through OBJRESULT.

· IPowerTime.NewDate now reports invalid parameters through OBJRESULT.

· IPowerTime.NewTime now reports invalid parameters through OBJRESULT.

· LET statement (with Types) has been expanded to support assigning a Variant byte string to a UDT
using the Variant$ function.

· LISTBOX ADD and LISTBOX INSERT statements now offer an optional TO clause that returns the
index position of the added string.

· MENU ADD POPUP statement has been expanded with an optional AS id& clause. id& is a unique

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

54 / 2126

numeric identifier for this popup menu. id& may be used later with a BYCMD option to reference this
popup.

· MENU GET STATE statement has been enhanced to support the %MFS menu states equates.

· MENU SET STATE statement has been enhanced to support the %MFS menu states equates.

· METHOD/END METHOD statements have been expanded to support an optional THREADSAFE
descriptor. With the THREADSAFE option, PowerBASIC automatically establishes a semaphore
which allows only one thread to execute the procedure at a time.

· MID$ function and MID$ statement now support both a starting and ending position.

· OCT$ function has been expanded to 64-bits with formatting and now supports adding leading and
trailing spaces to the string result.

· OPEN statement has been improved with the CHR clause. The CHR clause specifies the character
mode for this file: ANSI or WIDE (Unicode). Since sequential files consist of text alone, the selected
mode is enforced by PowerBASIC. All data read or written to the file is automatically forced to the
selected mode, regardless of the type of variables or expressions used. With binary or random files,
this specification has no effect, but it may be included in your code for self-documentation purposes.

· PATHNAME$ function has been enhanced to accept relative path names.

· POKE statement now supports multiple data items to be stored successively.

· PROPERTY/END PROPERTY statements have been expanded to support an optional
THREADSAFE descriptor. With the THREADSAFE option, PowerBASIC automatically establishes a
semaphore which allows only one thread to execute the procedure at a time.

· PUT$ statement has been expanded to support Unicode string expressions. If string expressions
result is a Unicode string, it is converted to ANSI byte characters.

· SELECT CASE/END SELECT block has been improved with the CONST$$ modifier to enhance
performance when the controlling expression is Unicode.

· SUB/END SUB statements have been expanded to support an optional THREADSAFE descriptor.
With the THREADSAFE option, PowerBASIC automatically establishes a semaphore which allows
only one thread to execute the procedure at a time.

· TOOLBAR ADD SEPARATOR statement has been improved with an optional unique numeric
identifier. This identifier may be used later with a BYCMD option in TOOLBAR DELETE, TOOLBAR
SET STATE, etc.

· TRIM$ function has been expanded to take a numeric expression and convert it to a string without
any leading or trailing spaces along with an option specify the maximum number of significant digits.

· UCODEPAGE statement now supports the OEM code page. By default, the system ANSI code
page, is used to map the character translation. If you are compiling a CONSOLE application or one
which makes use of the high-order ANSI codes, CHR$(128) through CHR$(255) for line drawing and a
few international characters, you should declare an OEM code page by placing UCODEPAGE OEM
at the start of your

 function.

· VAL function has been enhanced with an optional parameter to specify the position in the string
where the conversion should begin.

· VARIANT$ and VARIANT$$ used to return strings based on the contents of the variant. VARIANT$
now assumes the contents of the variant is a wide Unicode string and converts it to a ANSI string.
VARIANT$$ assumes the contents of the variant is a wide Unicode string and returns the contents
directly as a wide Unicode string. VARIANT$(BYTE, VrntVar) always returns the contents as an ANSI
byte string. This result can be assigned to an ANSI string variable or a User-Defined Type.

· XPRINT ATTACH CHOOSE statement has been expanded to support optional numeric expression to

http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

55 / 2126

control the execution of the Printer Dialog.

· XPRINT COLOR statement now supports parameters of -3 to indicate that the existing color should
not be changed.

· XPRINT PRINT statement has been expanded to support POS(), SPC(), TAB(), commas, and
semicolons. The POS(n) clause is an optional function used to set the POS to the horizontal page
unit. Multiple uses of the POS function is permitted in a single statement. The SPC(n) clause is an
optional function used to insert n spaces into the printed output. Multiple use of SPC is permitted in
a single statement. The TAB(n) clause is an optional function used to tab to the nth column before
printing the next expression. Multiple use of TAB is permitted in a single statement.

· XPRINT SET FONT statement resets back to the default original font chosen by PowerBASIC when a
font handle of zero is specified,

See Also

New Statements and Functions

New in the IDE

Additional Changes

Additional Changes

Additional changes
· Pre-Compiled modules and libraries are now supported.

· Unreferenced code is automatically removed from the compiled program to minimize the executable
file size. This can be overridden using the #OPTIMIZE OFF metastatement.

· There is a dramatic improvement of execution speed in many/most DWORD expressions.

· Dramatic improvement in

 execution speed.

· Mask variable assignment expressions may contain any combination of LONG and DWORD values
without error. Operators may include +, -, AND, OR, XOR.

· WSTRING, WSTRINGZ and WFIELD wide Unicode strings data types are now supported.

· Variant variables now recognize the %VT_DECIMAL data type and now may contain UDT data as a
string of bytes (%VT_BSTR).

· Many new predefined numeric equates and string equates have been built-in to the compiler. One
new equate is %PB_COMPILETIME which contains the date and time of compilation. See the Built-
in string equates and Built-in numeric equates topics for a complete list.

· Run Time error code 98 added: XPRINT PREVIEW error

· Compiler error code 444 added: PREFIX clause expected. A PREFIX clause is expected in this
statement.

· Compiler error code 461 changed: INSTANCE arrays must be declared. INSTANCE arrays must be
declared before any CLASS code.

· Compiler error code 465 changed: May be defined only once. A program element which should only
appear once was duplicated in your program. For example, two #STACK metastatements could
cause this error to be generated. A common source of this problem is multiple #INCLUDE files which
define the same term.

PowerBASIC Compiler for Windows Version 10

56 / 2126

· Compiler error code 466 changed: This name is already in use. This name (identifier) is used for
more than one purpose, causing a fatal conflict. For example, you might have used the name ABC
as both a variable and a label. You must rename one or both uses of this particular name.
 PowerBASIC generates this error when it sees the second use of the name.

· Compiler error code 468 changed: This equate may not be redefined. A numeric or string equate is
defined a second time with a different value. Equate definitions may appear more than once, but the
value must remain constant.

· Compiler error code 500 update: Variable name must be unique. All Global, Threaded, and Instance
variable names must be unique to guarantee access to a specific variable. If #UNIQUE VAR ON is
specified, then all variable names must be unique.

· Compiler error code 503 changed: Invalid MAIN Function(s).

/ Function(s) do not match the target file type.

· Compiler error code 512 changed: Brackets not supported (use OPTIONAL). Brackets are no longer
supported for optional parameters.

· Compiler error code 518 removed.

· Compiler error code 540 changed: Invalid operation with a register variable. This assembler opcode or
operands are invalid using a register variable.

· Compiler error code 560 added: FASTPROC expected. A FASTPROC statement must precede other
related statements like EXIT FASTPROC and END FASTPROC.

· Compiler error code 561 added: END FASTPROC expected. A FASTPROC statement must be
matched with an associated END FASTPROC.

· Compiler error code 599 changed: Requires CLASS but outside of Interfaces. This item must be
enclosed within a CLASS, but outside of Interfaces.

· Compiler error code 606 changed: PowerCollection / LinkListCollection required. FOR EACH loops
require an object of a specific class.

· Compiler error code 607 added: New syntax requires GETCOM/NEWCOM/ANYCOM. The LET
statement syntax for COM OBJECT creation has been changed. Previous syntax is no longer
recognized.

· Compiler error code 609 added: Too many macro expansions. You have used more than 65,535
macros in this program.

· Compiler error code 610 added: Invalid within a FastProc. You have used a feature which is not
supported within a FastProc.

· Compiler error code 611 added: FASTPROC params must be ByVal Long Integer. FASTPROC
parameters must be ByVal Long Integer.

· Compiler error code 612 added: FASTPROC return may only be Long Integer. FASTPROC return
value must be Long Integer or nothing.

· Compiler error code 613 added: Cannot compile - the program is now running. The program you are
trying to compile is currently executing. You may have to use Task Manager to force the program to
end.

· Compiler error code 614 added: Mismatched CHR Mode (ANSI/Wide). The string operand does not
match the required ANSI or Wide mode.

· Compiler error code 615 added: PREFIX expected. A PREFIX statement must precede each END
PREFIX statement.

· Compiler error code 616 added: END PREFIX expected. A PREFIX statement must be matched with
an associated END PREFIX.

PowerBASIC Compiler for Windows Version 10

57 / 2126

· Compiler error code 617 added: ASMDATA expected. An ASMDATA statement must precede each
END ASMDATA statement.

· Compiler error code 618 added: END ASMDATA expected. An ASMDATA statement must be
matched with an associated END ASMDATA.

· Compiler error code 619 added: ENUM expected. An ENUM statement must precede each END
ENUM statement.

· Compiler error code 620 added: END ENUM expected. An ENUM statement must be matched with
an associated END ENUM.

· Compiler error code 621 added:

 cannot inherit from itself. An interface cannot inherit from itself.

· Compiler error code 622 added: AS STRING required for variant conversion. Conversion from a UDT
as a string requires AS STRING notation.

· Compiler error code 623 added: THREADPARM Instance variable required. THREAD Class must
declare a THREADPARM Instance variable.

· Compiler error code 624 added: Invalid THREADPARM variable type. THREADPARM must be a
LONG, DWORD, or UDT PTR INSTANCE variable.

· Compiler error code 625 added: THREAD Method required. THREAD Class must include a THREAD
Method.

· Compiler error code 626 added: Duplicate THREAD Method. THREAD Class must have exactly one
THREAD Method.

· Compiler error code 627 added: INHERIT IPowerThread expected. THREAD METHOD is only
allowed with a threaded interface.

· Compiler error code 628 added: Not valid in a Static-Link-Library (SLL). This language element is
invalid in a Static-Link-Library.

· Compiler error code 629 added: ALIAS disallows Private/Thread/Callback.

· Compiler error code 630 added: Link File Error. The SLL Link File is not valid for this compiler.

· Compiler error code 631 added: Nested Link Files. You cannot link an SLL file into an SLL file.

· Compiler error code 632 added: COMMON name is a duplicate. COMMON procedure name was
previously defined.

· Compiler error code 633 added: COMMON signature is mismatched. COMMON procedure signature
(params, return type...) is mismatched.

· Compiler error code 634 added: Undefined COMMON reference. COMMON item was referenced but
not defined.

· Compiler error code 635 added: USING clause is required. USING <ProcName> is required to
describe the function signature.

· Compiler error code 636 added: Invalid VersionInfo Resource.

· Compiler error code 637 added: This SLL requires CONSOLE (PB/CC only) or DDT support which is
not available.

· Compiler error code 638 added: Please change AS STRING to AS WSTRING.

· Compiler error code 639 added: TYPE variable expected.

· Compiler error code 640 added: Invalid use of BYCOPY. The BYCOPY override may not be used with
certain parameters (for example, entire arrays).

http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

58 / 2126

See Also

New Statements and Functions

Changes to existing Statements and Functions

New in the IDE

New in the IDE

New in the IDE
· Added support for the new #PAGE metastatement.

· Added Print Preview. This allows you to select a range of pages to print.

· The edit window is now based on tabs rather than MDI children. The tabs support hover, to see the
complete filespec, and a context menu for tab actions. You can set the preferred maximum width of
the displayed filespec.

· New toolbar icons support new sizes. You may turn off the toolbar or select icon sizes of 16x16,
24x24, and now 32x32 and 48x48.

· Projects now use the extension .PBprj. The old .PBP format supported only a list of files and a
primary file. The new .PBprj format supports a list of files, their scrolling position and caret position, a
primary file, the active tab, breakpoints, bookmarks, and the debug Watch list. When the IDE is
closed, any open tabs are saved as a default project.

· Templates now may be defined as being for PBCC, for PBWIN, or for CCWIN. With CCWIN
templates, lines that start with [PBCC] are used only for PB/CC, and lines that start with [PBWIN]
are used only for PB/Win. Lines without a [target] will be used for either compiler.

· Quick context-sensitive syntax help is shown on the status bar. Hovering over the status bar shows
additional information, if any. Clicking the status bar brings up context-sensitive help for the displayed
syntax.

· Custom help files can have help keys that overlap with other custom help files. The user will get a
pick list, in that case, allowing them to choose the most relevant help file.

· Find/Replace can now be set to wrap around the file, instead of stopping at the end (or the beginning,
for upwards searches). Wrapping is off by default. The Find and Replace dialogs now supports finding
and replacing across all loaded files

· Code Finder now has columns for dispatch IDs and filenames. Code Finder now works across all
loaded files.

· Added a drop-down combobox for command-line parameters. The command lines are automatically
restored when the IDE is reloaded. The Command Line dialog can now be resized.

· Ctrl+Alt+P can be used to open the Select Primary File dialog.

· The Open File dialog for source files now allows selecting multiple files at a time.

· The "Go To Bookmark" dialog now includes a column showing the bookmark number.

· The IDE may be limited to a single running instance.

· The Command Line dialog can now be resized. The dialog position and size are saved on exit and
restored on the next use. The command lines are automatically restored when the IDE is reloaded.

· The Primary Source File dialog can now be resized. The files are shown in a full listbox, rather than a

http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

59 / 2126

drop-down.

· The Run menu has a new command, "Set Dll Test File", which lets you specify an .EXE file to run
when you select "Compile and Execute" for a DLL. The .DLL will be copied to the .EXE's folder first, if
the folders are different.

· The locations and sizes of the IDE and its edit windows are preserved when exiting the IDE and
restored when you return.

· File backups can be customized. Rather than a .BAK extension, backup files are given a Backup
prefix. This preserves normal file extension behavior. It also avoids conflicting backup files in cases
where two source files differ only in the file extension, e.g., Test.Bas and Test.H. Backups may be
numbered up to a selected maximum number, or saved with a timestamp code.

· Added /D command-line switch to launch the debugger as soon as files are loaded.

· Added a context menu to Register Watcher. This allows selecting which registers to watch.

· The Register Watcher can now display FPU registers. The registers to watch may be selected via the
new context menu for the Register Watcher.

· An optional header may used with printed source code.

· Margins can now be set when printing source code.

· The Open File dialog for source files allows selecting multiple files at a time.

· Syntax Coloring can now be applied to

.

· ALT+B accelerator for Toggling Bookmarks.

· The IDE now supports up to 36 bookmarks.

· Fixed an issue with fonts appearing clipped if Windows font smoothing (e.g., ClearType) was enabled.

· Variable Watcher properly restores the sizes of its listview columns.

· The display bounds checker fully supports the use of multiple monitors. The IDE will re-open on the
appropriate display.

· Fixed Code Finder handling of PROPERTY SET. The Type information for PROPERTY now
distinguishes between PROPERTY GET and PROPERTY SET.

· The colors of the Output Window match better with Windows Themes.

· Saving backup files with timestamps uses the correct timestamp again.

· Double-click in Variable Watcher is ignored for empty rows. Evaluate Variable is enabled only if there
is a symbol name at the caret.

· The last specified file path is selected as the default path regardless of how the last file was loaded.

· Backups may now be done to a specified directory. The IDE will attempt to create the directory if it
does not already exist. The default setting is ".\", the path of the saved file.

· Added Shift+Delete as "Cut" key.

· Ctrl+F4 added as "Close File" key.

· Compiler options now has a checkbox to specify if a .PBR file should be created when compiling an
.RC file.

· File options now has a checkbox to select which files are included when saving a project.

· General options now has a check to select whether to display the IDE status bar.

PowerBASIC Compiler for Windows Version 10

60 / 2126

See Also

New Statements and Functions

Changes to existing Statements and Functions

Additional Changes

Running PB/Win

Running PB/Win

Running PB/Win
The PowerBASIC for Windows Compiler (PB/Win) is comprised of two core applications: the Integrated
Development Environment and the compiler itself. This chapter describes launching the compiler directly.

See Also

Running PB/Win From Windows

Running PB/Win From DOS

PB/Win Command Line Switches

The Integrated Development Environment

Running PB/Win From Windows

Running PB/Win From Windows
Double-click the PB/Win Compiler icon (PBWIN.EXE). A dialog box will appear asking for a file name and
compile options:

Type the name of the BASIC source file, plus any desired options, and click the OK button. To abort, click
the Cancel button. See below for command-line parameters that may be specified in the dialog box.

See Also

Running PB/Win From Windows

Running PB/Win From DOS

PB/Win Command Line Switches

The Integrated Development Environment

PowerBASIC Compiler for Windows Version 10

61 / 2126

Running PB/Win From The Command Prompt

Running PB/Win From The Command Prompt
Run PBWIN.EXE from the command prompt, using a command-line with the following syntax:

PBWIN.EXE [/Ipath] [/L] [/Q] [/Cfilename] FileName

…where FileName is the name of the source file to compile. If you just type PBWIN (omitting FileName),
you'll get a dialog box asking for the name of the file to compile.

PowerBASIC first attempts to open the source file using the FileName specified. If the file cannot be opened
and FileName does not have an explicit .BAS extension, PowerBASIC appends .BAS to the specified file
name, and attempts to open that file. If FileName is a Long File Name (LFN) or contains spaces, it must be
enclosed in quotes.

PowerBASIC also supports Long File Names in all metastatements, for example:

#INCLUDE "C:\Program Files\PowerBASIC\LIBRARY.INC".

See Also

Running PB/Win

Running PB/Win From Windows

PB/Win Command Line Switches

The Integrated Development Environment

PB/Win Command Line Switches

PB/Win Command Line Switches

Include /I

The /I command-line option provides the compiler with a search path list when looking for #INCLUDE and
#RESOURCE files. Multiple directories can be specified in this path list by separating each path with a
semicolon (;).

During compilation, the compiler scans this path list for the necessary files before checking the current
(default) directory. To ensure that the current (default) directory is searched ahead of this path list, specify a
period followed by a backslash (\) at the beginning of the path list. For example:

/I.\;C:\PBWIN\WINAPI;D:\SOURCE

The Include parameter also works with Long File Name (LFN) paths, provided that individual LFNs are
enclosed in quotes. For example:

/I"C:\Program files\My Applications\";C:\PB;"D:\Source Code\"

See #INCLUDE and #RESOURCE for additional details.

Log /L

The /L command-line option causes the compiler to generate a log file with all of the compile results,
including error code and error line number, if an error occurs during compile-time.

PowerBASIC Compiler for Windows Version 10

62 / 2126

Quiet /Q

The /Q command-line option causes the compiler not to display a message box when compiling is finished.
This should only be used with the /L option.

Command /C

The /C command-line option specifies a filename that contains the complete command-line. This may be
used to specify very long command lines to the compiler of up to 1024 bytes, which may otherwise exceed
the operating system limits. This may be useful in situations where the /I path is very long, and the full path
to the source file is very long. The /C option may not be used in conjunction with any other command-line
options.

See Also

Running PB/Win

Running PB/Win From Windows

Running PB/Win From DOS

The PowerBASIC Integrated Development Environment

The PowerBASIC Integrated Development Environment

The PB/Win Integrated Development
Environment
This topic will help you learn how to use all the options available in the PowerBASIC Integrated Development
Environment (which we will refer to as the IDE). You will learn how to use the editor, move from window to
window, menu to menu, and choose menu commands. See Debugging PB/Win Programs for information on
the Integrated Debugger.

To launch the IDE, double-click the PBEDIT.EXE icon, type PBEDIT at the command-line, or use the START
menu entry.

The PB/Win editor (PBEDIT.EXE) can also be launched from the command-line, and supports the following
command-line options:

PBEDIT.EXE [/G:row,col:] [/P:MainFile] [/D filename] [Filename]

The command-line options may be prefixed with either a forward-slash (/) or a hyphen (-). Multiple files can
be specified for the Filename parameter, each separated by space characters. Long file names should be
enclosed in double-quote marks (").

Goto /G:

The /G: command-line option causes the IDE to move the caret to the row and column specified. For
example, /G:10,20: cause the caret to start at line 10, column 20. The /G option must be terminated by a
trailing colon.

PBEDIT.EXE /G:10,20: "Project Bluepad.bas"

Primary Source File /P:

The /P: command-line option specifies the name of the file that will be set as the Primary Source File. This

PowerBASIC Compiler for Windows Version 10

63 / 2126

option is useful when working on large applications that span multiple source code files, especially when
loading multiple files at startup. When a compile/execute/debug operation begins, the IDE automatically
uses the Primary Source File as the "main" file, regardless of which other files are loaded or have focus in
the IDE.

The Primary Source File will be one of the files loaded into the IDE.

PBEDIT.EXE /P:Project.bas "Support Library.inc" Project.rc "Data file index.txt"

Debug File /D

The /D command-line option specifies the name of the file launch in the debugger when the IDE is loaded.

PBEDIT.EXE /D "My File.bas"

See Also

The PowerBASIC User Interface

Toolbar Buttons

Editor Hot Keys

IDE Context Menu

Custom Help Files

File Templates

Code Finder Dialog Box

Command Line Dialog Box

Debugger Evaluate Dialog Box

Find Dialog Box

Go to Line Dialog Box

Primary Source File Dialog Box

Replace Dialog Box

IDE Options

The PowerBASIC User Interface

The PowerBASIC User Interface
The PowerBASIC IDE was designed to provide you with the tools you need to quickly and intuitively develop
high-performance applications. This section briefly describes each element of the IDE.

· File Menu

· Edit Menu

javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)

PowerBASIC Compiler for Windows Version 10

64 / 2126

· Run Menu

· Tools Menu

· Window Menu

· Debug Menu

· Help Menu

Toolbar Buttons

Toolbar Buttons

Create a new empty document (file) in the editor.

Use the Open File dialog box to load an existing document.

Save the current document if it has been modified and unsaved.

Print the current document to a printer.

Cut the selected text from the document to the clipboard.

Copy the selected text from the document to the clipboard.

Copy the text from the clipboard into the current document.

Search the current document for a word or phrase. See Find dialog for more information.

Search the current document for a word or phrase and replace it. See Replace dialog for more
information.

Compile the current source document (or Primary Source File if specified).

.

Compile and Execute the current (or Primary) source document

javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)

PowerBASIC Compiler for Windows Version 10

65 / 2126

Compile and Debug the current (or Primary) source document.

Launch the Go to Line dialog to jump to a specific line in the current document.

Launch the Code Finder dialog, which presents a list of Subs, Functions, Methods, Properties,
and Macros in current document, to quickly jump to a selected section of code.

Launches the PowerBASIC web site.

Display the PowerBASIC or the WIN32.HLP file.

See Also

Debugger Toolbar Buttons

The PowerBASIC User Interface

Editor Hot Keys

Editor Hot Keys

Editor Hot Keys
The following table summarizes the hot-keys available in the PowerBASIC IDE Editor Window:

Keystroke Description
F1 Dynamic Help
F2 Code Finder dialog
F3 Find dialog/Find next
SHIFT+F3 Find previous
F4 Duplicate current line
CTRL+F4 Close current document
ALT+F4 Exit PBEDIT
F5 Compile and debug (if in edit mode) or Run program

(if in debug mode)
CTRL+F5 Animate program.
F6 Clear to end-of-line
CTRL+TAB Switch to the next document window
CTRL+F6 Switch to the next document window
SHIFT+CTRL+TAB Switch to the previous document window
CTRL+SHIFT+F6 Switch to the previous document window
F8 Step into next program line (when debugging)
CTRL+SHIFT+F8 Step out of current procedure (when debugging)
SHIFT+F8 Step over next program line (when debugging)
CTRL+F8 Run to caret (when debugging)
F9 Break (stop the program being debugged)
CTRL++ Increases the IDE's Font size
CTRL+- Decreases the IDE's Font size
SHIFT+INSERT Paste text from clipboard

PowerBASIC Compiler for Windows Version 10

66 / 2126

SHIFT+DELETE Cut text to clipboard
CTRL+DELETE Cut text to clipboard
CTRL+INSERT Copy text to clipboard
CTRL+HOME Move to start of document
CTRL+END Move to end of document
CTRL+PAGEUP Move to start of document, maintaining caret position

on screen
CTRL+PAGEDOWN Move to end of document, maintaining caret position

on screen
CTRL+ALT+G Insert a GUID
CTRL+ALT+O Display the Open Project dialog box.
CTRL+ALT+P Primary Source File Dialog
SHIFT+CTRL+S Save all opened files
CTRL+0 Go to bookmark 0
ALT+0 Set bookmark 0
CTRL+1 Go to bookmark 1
ALT+1 Set bookmark 1
CTRL+2 Go to bookmark 2
ALT+2 Set bookmark 2
CTRL+3 Go to bookmark 3
ALT+3 Set bookmark 3
CTRL+4 Go to bookmark 4
ALT+4 Set bookmark 4
CTRL+5 Go to bookmark 5
ALT+5 Set bookmark 5
CTRL+6 Go to bookmark 6
ALT+6 Set bookmark 6
CTRL+7 Go to bookmark 7
ALT+7 Set bookmark 7
CTRL+8 Go to bookmark 8
ALT+8 Set bookmark 8
CTRL+9 Go to bookmark 9
ALT+9 Set bookmark 9
TAB Indent marked block by one tab level
SHIFT+TAB Outdent marked block by one tab level
SPACE Indent marked block by one space
SHIFT+SPACE Outdent marked block by one space
CTRL+A Select all
ALT+B Toggle Bookmark
CTRL+B Go to Bookmark dialog
ALT+C Copy text to the clipboard as BB Code for posting in

the PowerBASIC Forums.
CTRL+C Copy text to the clipboard
CTRL+D Duplicate current line
CTRL+E Build and Execute
CTRL+F Find dialog
CTRL+G Go to Line dialog
CTRL+I Toggle auto-indent mode
CTRL+K Clear to end-of-line
CTRL+L Select current line
CTRL+M Compile the current document (or primary source

file, if any)
CTRL+N Create a new document, using the default file

template
CTRL+O Open an existing document
CTRL+P Print the current source document

http://www.powerbasic.com/support/pbforums/index.php

PowerBASIC Compiler for Windows Version 10

67 / 2126

CTRL+Q Comment-out marked block
CTRL+SHIFT+Q Uncomment-out marked block
CTRL+R Find and Replace dialog
CTRL+S Save the current document
CTRL+T Delete the word at the caret
CTRL+U Paste text from clipboard
CTRL+V Paste text from clipboard
CTRL+X Cut text to clipboard
CTRL+Y Cut current line to clipboard
CTRL+Z Undo last change

IDE Context Menu

IDE Context Menu
When editing a file in the PowerBASIC IDE, a popup context menu is available by right-clicking the mouse
within the edit window. The available content of the menu is automatically determined by position and text
located at the point where the context menu is activated. The full context menu looks like this:

Delete Delete the currently selected block of text.

Cut Copy the currently selected block of text to the clipboard, and delete the highlighted
block from the file.

Copy Copy the currently selected block of text to the clipboard.

Copy as BBCode Copy text to the clipboard as BB Code for posting in the PowerBASIC Forums.

Paste Paste the contents of the clipboard into the current file.

Insert File Insert a document (file) at the caret position in the current document.

Select Line Select (highlight) the complete line at the context-menu point.

Select Block Select (highlight) a complete block of code. This menu item is available when the
context menu is activated on the first line of a formal block. Formal blocks include
those that begin with the #PBFORMS metastatement (PB/Win only), the
FOR/NEXT and SELECT CASE blocks, plus the usual CALLBACK, CLASS,

http://www.powerbasic.com/support/pbforums/index.php

PowerBASIC Compiler for Windows Version 10

68 / 2126

, FUNCTION, METHOD, PROPERTY, SUB, TYPE, and UNION
statements.

Select All Select all the text in the current document.

Insert GUID Inserts a new unique GUID at the current insertion point.

Run to Caret Run the program until execution reaches the current caret position (debug mode
only).

Watch Variable Add the variable at the current caret position to the Variable Watcher window (or
remove it, if itʼs already there). The Variable Watcher window is visible only in
debug mode.

Evaluate Variable Evaluate or modify the variable at the current caret position (debug mode only).

Toggle Bookmark Add or remove a bookmark at the current caret position.

Toggle Breakpoint Add or remove a breakpoint at the current caret position. Breakpoints only work in
debug mode.

Help Launch context-sensitive help. If the context menu point is on a PowerBASIC
keyword, the appropriate topic is displayed in the PowerBASIC help file. If the
context point is not a recognized keyword, the WIN32.HLP file is launched instead.
This feature is useful for context-sensitive help on both reserved keywords, and API
functions and data structures, etc.

Open Include File Open the file indicated in the #INCLUDE metastatement at the context menu point.
The item is only enabled when the context menu point is targeting an #INCLUDE
metastatement. Open File works even if the #INCLUDE metastatement is
commented out.

Close File Closes the current document.

See Also

The Integrated Development Environment

Debugging PB/Win Programs

File Templates

File Templates
A file template is the framework for a new file, which you can load into the IDE with the "New File As…"
option. While a template can contain anything you like, it is typically used to automate the basic boilerplate
needed for a new document. For example, the "Generic PB program" template creates a new file with the
following information already filled out:

#COMPILE EXE
#DIM ALL

FUNCTION PBMAIN () AS LONG

END FUNCTION

What's more, the caret is conveniently placed in the middle of the FUNCTION block for you, letting you get
right to programming!

You can readily build templates of your own, or modify the ones that come with the IDE. A template is
simply a text file created according to a few simple rules. Let's look at the default template (you can load it
into the IDE, NotePad, or any other text editor). PowerBASIC templates use ".PBTPL" for their file
extension. The default template is "Default.pbtpl", then. You can find it in the Bin subdirectory for your

PowerBASIC Compiler for Windows Version 10

69 / 2126

compiler ("C:\Program Files\PBWin10\Bin", by default).

The first line starts out with a number:

2

This is the template version number, 2 (two). Version 1 (one) templates are still supported.

The second line contains the target. The target may be PBCC, PBWIN, or CCWIN. If it is CCWIN, any
following lines that start with [PBCC] are used for PB/CC, any lines that start with [PBWIN] are used for
PB/Win, and any lines without a [target] apply to both compilers.

The third line contains the file extension to apply to files that are created with this template:

.bas

The fourth and fifth lines gives the name of the template, which will be used in the "New File As…" menu:

[PBCC]Console program
[PBWIN]Generic PB program

The following lines give the text to be filled into the file created by the template. There is one special
character, the "|" vertical bar or pipe symbol. This indicates where the caret should be placed after the text
is filled in.

#COMPILE EXE
#DIM ALL

FUNCTION PBMAIN () AS LONG

 |

END FUNCTION

That's all there is to it!

After creating a new template, save the .PBTPL file in the Bin subdirectory for your compiler. The default
location for this is, typically, "C:\Program Files\PBWin10\Bin\". Now, the next time you start the
PowerBASIC IDE, your custom template will be available on the "New File As…" menu.

See Also

The Integrated Development Environment

Project Files

Project Files

Keyword Template
Purpose

Syntax

Remarks

See also

Example

Project Files
A project file is used to speed up the process of loading multiple source code files, especially when the
source files are saved in different directories. Project files support a list of files, their scrolling position and
caret position, a primary file, the active tab, breakpoints, bookmarks, command line list, and the debug
Watch list. When the IDE is closed, any open tabs are saved as a default project. When you open a project
file all the individual source code files are opened in the IDE. There is no limit to the number of files that may

PowerBASIC Compiler for Windows Version 10

70 / 2126

make up a project.

A project file is saved with an extension of .PBPRJ extension, unless the list of project file extensions has
been modified, see the Editor Preferences topic for information on modifying the extensions used for project
files.

See Also

The PowerBASIC Integrated Development Environment

File Templates

Custom Help Files

Custom Help Files
The PowerBASIC IDE has built-in context-sensitive help for PowerBASIC keywords. If the caret is placed on
a keyword when you invoke help, you will get help for that specific keyword. Now, you can add context-
sensitive help for your own help files. Here's how.

For each help file, create a text file with a name of your choice, with a file extension of .PBKeys (using the
PowerBASIC IDE, NotePad, or any other text editor). The first line of the text file must contain the name of
the help file, as it will be shown in the IDE's help menu, like so:

MenuName="PowerTree 1.1"

The next line of the PBKeys file specifies the name and location of the help file. If the help file is in the
same directory as the .PBKeys file, you can specify just the filename, without the path. Otherwise, you
must provide a fully-qualified absolute path:

HelpFile="C:\PTreeW11\PwrTree.hlp"

Each following line specifies a help keyword. This keyword must be present in the index of the help file, in
order for context-sensitive help to work.

HelpKey="AccessBlock"
HelpKey="ptCreateIndex"
HelpKey="ptAdd"
…and so forth.

When you're done, save the .PBKeys file in the Bin subdirectory for your compiler. The default location for
this is, typically, "C:\PBWIN10\Bin\". Now, the next time you start the PowerBASIC IDE, your custom
keywords will be recognized by the context-sensitive help system. You will also be able to load the help file
from the Help menu.

If your help file does not appear in the Help menu when you start the IDE, make sure the HelpFile line of the
.PBKeys file specifies the correct location and name for your help file.

The complete PowerTree .PBKeys file, "PowerTree 1.1.PBKeys", is already installed in your compiler's Bin
subdirectory. Please note that the custom help list is only loaded if you have PowerTree 1.1, and it's
installed at the location specified in the HelpFile line of the PBKeys file.

See Also

The Integrated Development Environment

PowerBASIC Compiler for Windows Version 10

71 / 2126

IDE Options

IDE Options

IDE Options

The section describes the options that are available to customize the IDE environment, file paths, and
compiler behavior. These options are divided into eight tabs:

Tab Name Description

File tab Settings for backups, tab compression, and most recently used file list.

Editor tab Settings for file extensions, editor preferences, and Keyword case changes.

Fonts tab Font settings for the source code tabs.

Color tab Syntax color settings for editing and printing

Compiler tab Settings for the compiler.

Debugger tab Settings for the debugger.

General tab General configuration settings and options.

See Also

The Integrated Development Environment

Debugging PB/Win Programs

File tab

File Preferences

PowerBASIC Compiler for Windows Version 10

72 / 2126

No Backup When saving files, the IDE will create no backup.

With timestamp
code

When saving files, the IDE will rename the previous disk file with
Backup.TimeStamp. followed by the original filename and extension, and save the
latest copy under the original filename. This option provides a simple method of
preserving the previously saved versions of the source code.

Numbered up to When saving files, the IDE will rename the previous disk file with Backup. #. followed
by the original filename and extension, and save the latest copy under the original
filename. You may specify the maximum number of backups to be from 0 to 99.
 This option provides a simple method of preserving the previously saved versions of
the source code.

Backup Path The default backup path is ".\", which is the current path of the file. That is, the
backup file will go to the same location as the original file. You may enter either a
relative path or absolute path here. For example, you may specify a backup path of
"C:\Backup\" to place all of your backup files in the C:\Backup folder. Or, you might
 specify a backup path of ".\Backup\" to place all of your backup files in a Backup
folder underneath the location of the original file. If the specified backup path does
not exist, the IDE will attempt to create the path when it is needed.

Save using tab
compression

When saving files, the IDE can compress leading spaces on every line into tabs,
using the tab size specified under Editor Preferences. This helps maintain your
preferred indentation levels when working with others who choose different tab sizes.
It also reduces your source file size.

Clear missing recent
files at start

The IDE checks the Recent Files list (located in the File menu) at start up. If any file
cannot be located and read, the corresponding entry in the Recent Files list is
automatically removed. Where files are located across a network or removable
media, this option may need to be unchecked.

Maximum Recent
files

Specifies the maximum number of Recent Files tracked in the File menu, in the
range of 0 through 9. Select 0 to disable the Recent Files list; otherwise, the
selected number of previous files is tracked between sessions. Also see Reload
previous file set at start.

Select Files to
include on Project
Save

When this option is selected you will be prompted to select which files should be
included in the project when saving a project.

PowerBASIC Compiler for Windows Version 10

73 / 2126

Editor tab

Editor Preferences

PB Source This is the file extension, or list of extensions, you expect to use for main
PowerBASIC source code modules: programs you can compile directly. You may
enter multiple extensions by separating each with the vertical bar or "pipe" character,
"|". The default setting for PB Source is ".bas".

PB Include This is the file extension, or list of extensions, you expect to use for PowerBASIC
include files: bits of code that you will #include in a main module before compiling.
You may enter multiple extensions by separating each with the vertical bar or "pipe"
character, "|". The default setting for PB Include is ".bi|.inc".

RC Source This is the file extension, or list of extensions, you expect to use for resource
scripts: programs that are compiled with the RC.EXE resource compiler. You may
enter multiple extensions by separating each with the vertical bar or "pipe" character,
"|". The default setting for RC Source is ".dlg|.rc".

RC Include This is the file extension, or list of extensions, you expect to use for your
PowerBASIC include files: bits of code that you will #include in a resource script
before compiling with the RC.EXE resource compiler. You may enter multiple
extensions by separating each with the vertical bar or "pipe" character, "|". The
default setting for RC Include is ".h".

PB Project This is the file extension, or list of extensions, you expect to use for your
PowerBASIC Project files. You may enter multiple extensions by separating each
with the vertical bar or "pipe" character, "|". The default setting for a project file
Include is ".PBprj|.prj".

Register file
extensions

Check this box to register your selected file extensions with Windows. This allows
Windows to automatically load files with these extensions into the PowerBASIC IDE
when you click on a file in Explorer, or launch it from the Start menu, for example.

Keep Line Length Clicking the mouse cursor beyond the right-most character of a line does not extend
the line beyond the end of the actual text content.

PowerBASIC Compiler for Windows Version 10

74 / 2126

Home to logical line
start

The Home key functions according to VB6 rules if this option is selected.

Wrap Caret at Line
Ends

Check this box to have left-arrow wrap to the previous line, and right arrow wrap to
the next line, instead of stopping at the start or end of the current line.

Delete line to
clipboard

When this option is selected a line deleted from the source code is placed on the
clipboard.

Auto Indent The IDE provides automatic indenting when ENTER is pressed, in order to assist
with writing visually structured code. The Indent depth depends on the context of the
text on the preceding line. For example, if the previous line starts with the word
FUNCTION, the following line is automatically indented. Auto-indent can be toggled
from within the editor with the CTRL+I hot-key combination. See Tab Size.

Tab Size The number of characters between "tab stops", in the range 1 through 8 inclusive.
When the TAB key is pressed, the IDE substitutes space characters to move the
caret to the next tab stop position. Tab Size also affects the Auto Indent depth.

Keyword Case The IDE automatically sets the capitalization of reserved keywords as directed by
this option. The use of capitalization can help readability of code. By default, the
IDE applies keyword capitalization to BASIC source code files only, which are
determined by the file extensions set under Compiler Preferences. Use care when
applying capitalization to resource files (for example, .RC files, .H, and .DLG files) as
these usually contain case-sensitive keywords. Custom keyword colors can be
configured in the Color Preferences page, and the editor font can be configured on
the Font Preferences page.

Fonts tab

Font Preferences

Combobox Select the location (Editor, Dialogs, or Printer) of where you want to change the font.

Font The currently selected font.

Size The desired point size of the font.

PowerBASIC Compiler for Windows Version 10

75 / 2126

Sample Text How the text will appear with the selected font and at the selected font size.

Color tab

Syntax Color Preferences

Use Syntax
Color in Editor

The IDE can show colored reserved keywords and other types of syntax in the source
code file. Both the text (foreground) and background colors can be individually
customized for each syntax type. The use of highlighting can increase readability of
code. Also see Use Syntax Color when Printing.

Use Syntax
Color when
Printing

The IDE can optionally print source code with coloring applied to the reserved keywords
and other syntax types. Printing with syntax coloring enabled only affects the text
(foreground) - background coloring is not printed. Also see Use Syntax Color in Editor.

Load Defaults Reset the syntax color table back to the default color scheme.

Assembler Launch the color selection dialog to choose the text (foreground) and background colors
for inline assembler code.

Comments Comments and REM statement syntax color.

Keywords The syntax coloring applied to reserved keywords.

PB Forms The coloring applied to PowerBASIC Forms™ named-block metastatements. Note:
PowerBASIC Forms™ is a GUI visual design tool, and therefore IDE support for it is
currently restricted to the PowerBASIC for Windows product line. In the Console
Compiler's IDE, the PB Forms syntax option is disabled, and reserved for future use.

Strings The syntax coloring applied to literal strings.

Text The remaining types of syntax. Typically, this includes variable names, API function
names, etc.

Selection The color used when selecting (highlighting) blocks of text, for example, in anticipation of
clipboard operations such as Cut/Copy/Paste, etc.

Breakpoint The color used to highlight a breakpoint.

Bookmark The color used to highlight a bookmark.

http://www.powerbasic.com/products/pbforms/
http://www.powerbasic.com/products/pbcc/
http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

76 / 2126

Exec point The color used to highlight the execution point, which is the next line to be executed in
the debugger.

Utility The syntax coloring applied to #UTILITY metastatements.

Operators The syntax coloring applied to

.

Syntax Color Selector

Syntax Color Selector

Sample Text Preview of the current foreground and background color selected.
Select Foreground color The launches the Syntax Custom Color Selector dialog to adjust the text color.
Select Background color The launches the Syntax Custom Color Selector dialog to adjust the background color.
OK Accept the current text and background color selections, and return to the Options dialog.
Cancel Abort the Syntax Color Selector dialog without making any changes to the color settings.

Syntax Custom Color Selector

Syntax Custom Color Selector

Basic Colors Set of basic colors determined by the display driver.

Custom Colors Displays any custom colors you have already defined. To Change a custom color,

PowerBASIC Compiler for Windows Version 10

77 / 2126

click on it and then click the Define Custom Colors button. When you have
selected the color click the Add to Custom Colors button. To define a new custom
color, click on an empty custom color and then click the Define Custom Colors
button. Select the new color and then click the Add to Custom Colors button.

Define Custom
colors

Displays the Color Map.

[Color Map] A color map based on the current display color-depth, to facilitate easy selection of
custom colors. To choose a color, click on the desired point in the color map.

Color|Solid Displays the color selected in the Color Map.

Hue Displays the hue of the color selected in the Color Map.

Sat Displays the saturation of the color selected in the Color Map.

Lum Displays the hue of the color selected in the Color Map.

Red Displays the red value of the color selected in the Color Map.

Green Displays the green value of the color selected in the Color Map.

Blue Displays the blue value of the color selected in the Color Map.

Compiler tab

Compiler Preferences

Include File Paths

Include The path (or paths) where the Compiler may search for source code files referenced in
#INCLUDE metastatements, and PBR and RES files referenced with #RESOURCE
metastatements. Multiple paths are automatically separated with semi-colons. Use
the Ellipsis button (…) to adjust the Include path settings - see Browsing for Include
folders for more information. Note that this field behaves identically to the /I
command-line compiler parameter.

Compiler Options

PowerBASIC Compiler for Windows Version 10

78 / 2126

Beep on completion The default system sound is played when compilation is completed successfully. The
default system sound can be changed in Control Panel.

Detailed results After compilation of PowerBASIC source code, the output pane will display detailed
compilation results, providing details on compiled code size, data and string literal
size, code extracted, etc. With this option turned off only a successful compilation
message or compile time error message will be displayed.

Create log file During compilation, a log file is created in the same directory as the primary source
file. The log file contains the same information as the Display Results dialog
discussed above. The file is assigned the same "base name" as the main source
code file, but with the extension .LOG (i.e., PROJECT1.LOG). In case of a compile-
time error, this log file will contain details of the nature of the error (in addition to the
compile-time error message display produced by the compiler itself).

Create a .PBR when

compiling .RC files

Specify this option to create a .PBR file when compiling a .RC resource file.

Browsing for Include folders

Browsing for Include folders
The Include Paths Selection dialog provides a simple method of creating an Include file list for the
PowerBASIC compiler, and the Resource Compiler. The Include folder list specifies the search order that
the compilers use to locate #INCLUDE and #include files. The Include Paths Selection Dialog box is
launched by the Ellipsis buttons on the Compiler Preferences tab page.

Folder list The list of folders in a drag list control. The folders appear in the order in which the
compiler search for #INCLUDE (PowerBASIC) or #include (Resource Compiler) files.
There are two ways to rearrange the order of folders:

1. Click and drag the individual folder names up and down in the Folders List; or…

2. Select (highlight) a folder and use the Move Up and Move Down buttons to
reposition the folder in the list.

Add Folder Launch the standard Windows "Browse for Folder" dialog, where the folder tree can
be navigated. The default folder is the currently selected folder in the Folders list to
the left of the Add Folder button or the current folder if none are selected. The
Browse for Folder dialog looks like this:

PowerBASIC Compiler for Windows Version 10

79 / 2126

Delete Delete the currently selected folder. If all folders are deleted, a new entry specifying
the current folder is automatically created, ensuring at least one folder appears in the
list.

Move Up Move the currently selected folder up one position in the Folders List, increasing the
search priority of the selected folder. The compilers search the Folders List in the
order they appear.

Move Down Move the currently selected folder up down position in the Folders List, decreasing
the search priority of the selected folder. The compilers search the Folders List in
the order they appear.

OK Accept all changes to the Folders List, and return to the Compiler
Preferences dialog.

Cancel Cancel any changes made to the Folder List, and return to the Compiler
Preferences dialog.

Debugger tab

Debugger Preferences

PowerBASIC Compiler for Windows Version 10

80 / 2126

Break on Error Causes the debugger to stop after every statement to check the error status and
then automatically halt program execution when an error occurs (non-zero ERR
value). In debugging with this setting enabled, programmed

 with larger iteration counts can reduce debugging speed to unacceptable levels.
 For best results, it is instead recommend to enable #DEBUG ERROR ON in
your program instead of this option.

Animate Delay The debugger's Animate debug mode pauses for at least the given amount of time
before execution of the next line of code occurs. Animation is very useful for
watching the general flow of a program. The delay is specified in milliseconds
(mSec). The larger the delay value, the greater the delay between execution of lines
of code. The default value is set for 333 milliseconds (1/3 of a second).

Show Exceptions Choose the exceptions (Success, Informational, Warning, Error) you want the
debugger to display.

General tab

General Preferences

PowerBASIC Compiler for Windows Version 10

81 / 2126

General Preferences

Ask before exiting When
selected
, a
confirma
tion
dialog
will
appear
when
the IDE
is about
to be
closed.
Cancelin
g the
dialog
will
prevent
the IDE
from
closing.
The IDE
will
always
prompt
to save
any files
that
have not
been
saved
since
their last

PowerBASIC Compiler for Windows Version 10

82 / 2126

modifica
tion,
regardle
ss of
whether
this
option is
selected
.

Editor output to
messagebox

When
selected
, editor
output
(such as
error
codes
and
compilat
ion
status)
is
displaye
d using
messag
e boxes
as well
as the
output
window.

Debugger output to
messagebox

When
selected
,
debugge
r output
(such as
errors
and
#DEBU
G
PRINT
informati
on) is
displaye
d using
messag
e boxes
as well
as the
output
window.

Allow only one IDE
instance

If
specifie
d only
one
instance
of the
IDE is
allowed

PowerBASIC Compiler for Windows Version 10

83 / 2126

to be
running
at any
one
time.

Filename tab width Specifie
s the
width in
characte
rs that
will be
used to
display
the path
and file
name of
the file
loaded
into a
source
code
tab.

Toolbar button size The IDE
and
debugge
r
toolbars
are
displaye
d with
buttons
and
icons at
the
specifie
d size
(16x16,
24x24,
32x32,
or
48x48)
or even
with no
toolbar
at all,
allowing
the
maximu
m
amount
of
screen
real
estate
for the
editor
windows
. If

PowerBASIC Compiler for Windows Version 10

84 / 2126

changed
, this
option
comes
into
effect
when
the IDE
is next
launche
d.

Display status bar Specifie
s if the
IDE
should
display
a status
bar.

Printer Preferences

Margins Sets the
distance
between
the text
and the
edge of
the
printed
page (in
inches).

inches When
selected
the
margins
are
specifie
d in
inches.

mm When
selected
the
margins
are
specifie
d in
millimet
ers.

Header Sets the
header
to be
printed
on every
page. If
this
entry is
set to
an
empty

PowerBASIC Compiler for Windows Version 10

85 / 2126

string,
no
headers
are
printed.
Otherwi
se, the
header
value
may
contain
any
printable
characte
rs plus
any of
the
following
special
strings:

%
p
c
%

C
u
r
r
e
n
t
p
a
g
e
n
u
m
b
e
r

%
p
t
%

T
o
t
a
l
n
u
m
b
e
r
o
f
p
a
g
e
s

%
f
n
%

F
i
l
e

PowerBASIC Compiler for Windows Version 10

86 / 2126

n
a
m
e

%
f
s
%

F
i
l
e
s
i
z
e

%
f
t
%

F
i
l
e
t
i
m
e
(
l
a
s
t
m
o
d
i
f
i
c
a
t
i
o
n
t
i
m
e
)

%
f
d
%

F
i
l
e
d
a
t
e
(
l
a
s
t
m
o
d
i

PowerBASIC Compiler for Windows Version 10

87 / 2126

f
i
c
a
t
i
o
n
d
a
t
e
)

IDE Dialogs

Code Finder Dialog

Command Line Dialog

Command Line Dialog Box
The Command Line Dialog allows the programmer to specify an arbitrary command-line parameter string
that is passed to the application when the Compile and Execute, or Compile and Debug options are used.

The result can be read with COMMAND$ within the program, for the purposes of testing the application.

Arguments An arbitrary string passed to the application in the COMMAND$ parameter.

OK The text in the Arguments field is accepted and retained for the session.

Cancel The previous command-line text, if any, is retained unaltered.

See Also

The Integrated Development Environment

Debugger Evaluate Dialog

Find Dialog

Find Dialog Box
The Find Dialog Box allows you to search the currently displayed source code file for a specific phrase or
word. You can limit the number of matches by specifying options such as Match Whole Words or Match
Case.

PowerBASIC Compiler for Windows Version 10

88 / 2126

Find What Enter the phrase or word to search for. For example, searching for PRINT will
locate every instance of that word in the current file. The text should be entered as
it is anticipated to be formatted in the current file. For example, the number of
spaces between words must match the number specified in the Find What field.
Do not include quotes unless the anticipated match also includes quotes.

Match Whole Words This excludes matches that occur within a word. For example, with Match Whole
Words enabled, searching for LOG will not match on DIALOG, but will match on
LOG(x).

Match Case When Match Case is enabled, the Find What text must exactly match the
capitalization of the word or phrase in the current file. For example, searching for
Print will match Print, but not PRINT or print.

Wrap Around When enabled the Find what text you specify will be searched beginning at the
place in the document where you are currently positioned, and will continue past
the end (or beginning depending on the Direction specified), to the beginning (or
end depending on the Direction specified) of the document. In other words, a wrap-
around search will search the entire document irrespective of where you may be
positioned within it.

In All Files The Find what text is searched across all files currently loaded in the IDE.

Direction By default, searching starts at the current caret position, and moves toward the
end of the current file. The Direction options allow you to specify whether the
search should proceed from the caret position upward toward the top of the file,
instead of downward.

Find Next Instructs the editor to locate the next match in the current file. If no further
matches are located, a notification appears. If a match is made, the matching
text is highlighted in the file.

Close Cancel the Find Dialog. After the Find Dialog has been closed, you can repeat
the last Find operation by pressing the F3 key, even if you have opened or
switched to a new file. However, the Find What text is not preserved between
sessions of the IDE.

Help This help topic.

See Also

The Integrated Development Environment

Go to Line Dialog

Go to Bookmark Dialog

Go to Bookmark Dialog

PowerBASIC Compiler for Windows Version 10

89 / 2126

The Code Finder Dialog works from within the editor and debugger, presenting a list of bookmarks that have
been set with Toggle Bookmark.

Bookmark The bookmark number.

Line The source code line number that contains this bookmark.

Text The source code text that contains this bookmark.

File The path and source code filename that contains this bookmark.

OK If valid, the IDE jumps to the line number indicated in the Line field, and the Go to
Bookmark Dialog is dismissed. You can alternatively double click on a line and to jump
to the indicated bookmark.

Cancel The Go to Bookmark Dialog is canceled, and the Caret position remains unaltered.

See Also

The Integrated Development Environment

Debugging PB/Win Programs

Print Preview Dialog

IDE Print Preview Dialog Box
The Print Preview dialog displays each page as it will look when printed.

PowerBASIC Compiler for Windows Version 10

90 / 2126

[Preview
Window]

Displays each page as it will look when printed.

Printer Displays the name of the currently selected printer.

Ellipses
button

Displays the Printer Properties dialog box to select a new printer or change the current
printers settings.

View
Range

Displays the currently previewed document page. Click the arrow buttons to preview a
different page in the document.

Print
Range

Allows you to limit the pages that are printed. For example 1-3 will only print pages 1, 2,
and 3.

Print Sends the selected range of pages to the printer.

Cancel Cancels printing and closes the Preview window.

PowerBASIC Compiler for Windows Version 10

91 / 2126

See Also

The Integrated Development Environment

Primary Source File Dialog

Primary Source File Dialog Box
The Primary Source File Dialog allows the programmer to define which source code module is regarded as
the "main" program file. That is, when a compile/execute/debug operation begins, the IDE automatically
uses the Primary Source File as the "main" file, regardless of which other files are loaded or have focus in
the IDE.

The Primary Source File will be one of the files loaded into the IDE, and this can be via the Recent Files list
(if the Reload previous file set at start IDE option is enabled).

Primary Source File The name of the file designated to be the main file to compile and/or debug, even
when multiple files are open. Choose None to disable the Primary Source File
usage.

OK The name in the Primary Source File list box is accepted and retained for the
session as the "main" source code file.

Cancel The previous Primary Source File, if any, remains unaltered.

See Also

The Integrated Development Environment

Replace Dialog Box

PowerBASIC Library Manager

PowerBASIC Library Manager
For your convenience, multiple SLL modules may be collected into a Power Library, which is linked as a
single item. You can readily add, remove, replace, or list the component SLL modules. However, the
PowerBASIC Compiler treats the component modules individually, just as though they were each linked
separately. A component SLL in a Power Library which is not needed is ignored entirely.

When you start the PowerBASIC Library manager you will be prompted to select a PowerBASIC Library
(.PBLib) file. If you are creating a new Library file you enter the name of your new .PBLib file.

PowerBASIC Compiler for Windows Version 10

92 / 2126

After specifying a new library or opening an existing one, you will be shown the Library Manager dialog.

Delete unit(s) Removes the selected file(s) from the library.

Add unit(s) from
another file

Adds either a .SLL or .PBLib file to the library. Adding a .PBLIB to the library
causes all the individual units within the .PBLIB to be added to the library. If a unit
is already within the library, the version within the library will be retained.

Rename unit Renames a .SLL file in the library.

Copy unit(s) to a
new file

Copies the selected SLL file out of the library and to a new SLL file name.

Save changes Saves the changes to the library.

Discard changes Discards any changes made in the Library Manager.

Done Closes the Library Manager dialog.

Optionally, you can also use the supplied command-line librarian Plib.exe with the following syntax:

plib library[.PBLIB] [commands] [,listfile [,newlibrary.PBLIB]]

Commands:

+filename Adds either a .SLL or .PBLib file to the library.

PowerBASIC Compiler for Windows Version 10

93 / 2126

-unitname Removes an SLL file from the library.

-+filename Replace an SLL file in library with another SLL file.

*unitname Copy a SLL file out of the library.

-*unitname Move a SLL file out of the library.

=oldunitname,ne
wname

Renames a .SLL file in the library.

See Also

What is an SLL?

Creating a Static Link Library

Sll example

The PowerBASIC Integrated Development Environment

Writing Programs in PB/Win

Line numbers and Labels

Line numbers and Labels
Line numbers are

 in the range 1 to 65535, which serve to identify program lines. PowerBASIC takes a relaxed stance
toward line numbers. They can be freely interspersed with labels, and used in some parts of a program
and not others. In fact, they do not even need to follow in numeric sequence. No two lines can have the
same number, and no line can have both a label and a number. Line numbers are essentially labels.
While line numbers and labels serve the same purpose, their usage is slightly different. Line numbers are
just a concession to compatibility with Interpretive BASIC. Line numbering can lead to bad programming
style. Since the numbers themselves can be in any order, they give a false sense of structure to a program.
We recommend that you avoid line numbers, and use labels instead.

Using labels instead of numbers allows you to make the flow of your program much more readable. For
example:

GOSUB BuildQuarks

tells you much more than

GOSUB 1723

Each label must appear on a line by itself (though a comment may follow) and it serves to identify the
statement immediately following it. Labels must begin with a letter and contain any number of letters, digits,
and an underscore. Case is insignificant - THISLABEL, thislabel, and ThisLabel are all the same. A colon
must follow a label, however, and statements that refer to the label must not include the colon.

MSGBOX "Now Sorting Invoices"
GOSUB SortInvoices
MSGBOX "All Done!"
EXIT FUNCTION

SortInvoices: ' This is a legal label
{sorting code goes here}
RETURN

The following is illegal, however:

ExitPoint: a = a + 1 ' a label must be on a line by itself

Finally, it should be noted that symbol names must be unique: a label may not share the name of any other

PowerBASIC Compiler for Windows Version 10

94 / 2126

symbol (Sub name, Function name, Method name, Property name, user-defined type or union definition,
variable name, etc), and they are local to the Sub, Function, Method, or Property in which they appear.

See Also

Long lines

Statement separation

Structured Programming

Variables

Long lines

Long lines
The underscore character (_) can be used to split "logical" lines of source code, across physical lines in
the source code file. The underscore character must be preceded by at least one white space character
and is not supported in the ASM statement.

The effect of using a line continuation character is for "visual" appearance only - the compiler itself treats
lines split this way as only one contiguous line of code.

For example, if we take the following line of code:

DECLARE FUNCTION Call32& LIB "CALL32.DLL" ALIAS "Call32" (Param1 AS ANY, BYVAL id&)

We could rewrite this line to place its component parts on separate lines of code for clarity:

DECLARE FUNCTION Call32& _
 LIB "CALL32.DLL" _
 ALIAS "Call32" _
 (Param1 AS ANY, BYVAL id&)

The compiler treats text that appears after the line continuation character as a remark. However, we still
recommend that such comments are preceded by a REM or an apostrophe (') symbol to clearly
distinguish remarks from the actual code.

DECLARE FUNCTION Call32& _ ' The prototype declaration
 LIB "CALL32.DLL" _ ' The DLL name
 ALIAS "Call32" _ ' The exported function name
 (Param1 AS ANY, _ ' 1st parameter
 BYVAL id&) ' 2nd parameter

See Also

Line numbers and Labels

Statement separation

Structured Programming

Variables

Statement separation

Statement separation
The colon character (:) can be used to separate multiple statements on a single (logical) line of source
code. For example:

FOR x& = 1 TO 10 : INCR y& : NEXT x&

PowerBASIC Compiler for Windows Version 10

95 / 2126

…is directly equivalent to:

FOR x& = 1 TO 10
 INCR y&
NEXT x&

In general, placing only one statement per line leads to more readable and maintainable source code;
however, using the colon separator can be useful for combining statements on single-line IF/THEN
statements, etc. For example

IF x! < 0 THEN INCR y# : INCR z# : DECR Count& : GOTO LastX

See Also

Line numbers and Labels

Long lines

Structured Programming

Variables

Variables

Variables
Variables represent

 or values. Unlike constants, the value of a variable can change during program execution. Like labels,
variable names must begin with a letter and can contain up to 255 letters and digits (although in practical
terms you really cannot exceed the length of a line). Be generous in naming important variables. In
PowerBASIC, long variable names do not steal run-time memory.
The Single-precision variables, EndOfMonthTotals and emt, both require exactly four bytes of run-time
storage. A good rule of thumb is to preserve a balance, keeping variable names short enough so that
statements can fit on one line. Many programmers use single-letter variables for

 counters (i, j, k, l and x, y, z are favorites). However, you can use names like count, total, index, and
so on for greater clarity, especially if you have nested loops.
PowerBASIC has many built-in variable types: Dynamic string; Fixed-length string; nul-terminated string;
Field, Integer; Long integer; Quad integer; Byte, Word; Double word; Single; Double; and Extended floating
point; Currency and CurrencyX; Variant, Object, Guid, plus Pointer, arrays, and Bit and Sbit bitfield
subtypes.

Declaring a variable as a specific type:

Use the DIM statement to declare a variable and use the AS type syntax:

DIM iVar AS INTEGER

Appending a type-specifier to the variable name:
bat# = 1.312 ' bat# is a Double-precision variable
hat% = 3 ' hat% is an Integer variable
DEFINT c ' Variables beginning with c are now Integer
cats = 16 ' cats is an Integer variable by DEFINT

Bear in mind that cat?, cat%, cat&, cat&&, cat!, cat#, cat##, cat@, cat@@, and cat$ are ten separate
variables. Although using cat over and over again to create different variables like this is legal, good
programming practice suggests that you use somewhat different names for different variables. It is also
much better to use descriptive and more easily understood names for your variables rather than single

PowerBASIC Compiler for Windows Version 10

96 / 2126

letters. It's extremely difficult to debug a program in which x@ has been entered instead of x! or x#.
Imagine the confusion of trying to distinguish x&& and x&. If you had used variable names like count!,
result#, remain##, and company$, you would have had considerably less trouble keeping your variables (and
their types) apart.

See Also

Default Variable Typing

Variable Scope

INSTANCE statement

Structured Programming

Structured Programming
For most applications, good programmers use an organized approach to programming called structured
programming. The original interpreted BASICs did not really support this kind of programming. However,
PowerBASIC, with its control structures and more advanced functions, subroutines, methods, and
properties, is very well suited to structured programming style.

Structured programming is based on the theory that modularization makes for better programs.
Modularization means grouping statements together (making modules) that have some relation to each
other. In other words, you break up your program into logical functional sections. This makes it easier to
write, debug, and understand the program.

Ideally, modules should be no more than a page long. This seemingly arbitrary constraint makes it easier to
absorb the entire module at a glance. It is easier to understand a series of ten single-page modules than it
is a single ten-page program.

For some projects, after this initial breakup, you're ready to write the program. More complicated problems
might require you to break the modules into subsidiary pieces. This process continues until you have
refined the material enough so that you can write the code that corresponds to your ideas. This entire
process is often described in books as "top-down design", since you start with a general description and
work toward a more specific one.

Once you have the logical organization, you can start to design the overall structure of your program. For
short, simple programs, these steps may only take a few minutes. For complex programs, it could take
months.

To summarize the steps of structured programming (also known as 'top-down programming' or 'top-down
design'):

1. Plan your program on paper. Ask yourself the following questions:

a. What is the overall purpose of the program?

b. What kind of input will it need?

c. How will it process that input?

d. What kind of output will the program produce? To where (screen, printer, disk)?

e. How should the input and output look?

f. How can the program be broken up into discrete processes (modules?)

g. How will those modules fit into the main program, and how will they communicate?

h. Can those modules be broken up into even smaller functional segments?

2. Next, write your main program. Don't worry about writing the individual modules that you separated
out earlier. Instead, write stubs: Dummy statements that allow the main program to continue. This
allows you to test the logic of your main program.

PowerBASIC Compiler for Windows Version 10

97 / 2126

3. Finally (and this step will actually be several steps), write the modules one at a time. Test and
debug each module thoroughly before proceeding to the next. If you've broken your module into
even smaller processes, write the code for those processes first, test and debug each process, and
then put them together to build your module.

See Also

Line numbers and Labels

Long lines

Statement separation

Variables

Debugging PB/Win Programs

Creating Dynamic Link Libraries

What is a Dll?

What is a DLL?
A Dynamic Link Library (DLL) is a Windows executable library module containing one or more Subs,
Functions, or classes that can be called by executables or other DLLs. Unlike executables, DLLs do not
have a single entry point. Instead, like libraries, DLLs have multiple entry points, one for each exported Sub,
Function, or classes.

To get a better idea of how a DLL works, it helps to understand the difference between static and dynamic
linking. Static linking is the process of writing one or more modules, and then linking them, along with
whatever other run-time, third-party, etc., libraries that may be needed to create a complete, stand-alone
executable program. When a program uses a Sub or Function from a static-link library, a copy of that Sub
or Functions code is statically linked into the programs executable file.

If two programs that are running concurrently use the same routine from a library, they would each have their
own copy of that routine. It would be more efficient if the two programs could share a single copy of the
routine. DLLs provide that capability by resolving your application's references to external procedures at run-
time.

In contrast to a static-link library, the code in a DLL is not linked into a program that uses the DLL. Instead,
a DLLs code and resources are in a separate executable file, usually with a .DLL extension. This file must
be present when the application runs. You will still have to write one or more modules to implement the
functions that are specific to your application.

However, the linking process is divided into two stages. You first place DECLARE statements into your
application to temporarily satisfy the references your program makes to the DLL services, in order to create
an EXE (or DLL) file. The second stage happens at run-time, when your program calls one of the DLLs
services.

At that time, the Function calls in the program are dynamically linked to their entry points in the DLL(s).
 The operating system resolves external references by establishing a link between the application calls and
the code, in the DLL, that implement the required functions. The Windows environment supports both static
and dynamic linking.

See Also

Why use Dlls?

Creating a Dynamic Link Library

PowerBASIC Compiler for Windows Version 10

98 / 2126

Private and Exported Procedures

Dll example

LibMain

What is an object, anyway?

Just what is COM?

What is a COM component?

Why use Dlls?

Why use DLLs?
There are a number of mitigating reasons to create a DLL. Among them are:

· Performance
Parts of your code, while functional, might not execute as fast as you would like. Once you've
isolated the bottleneck area(s), a machine code DLL is an obvious choice for optimizing just those
areas of your application that are running too slowly.

· Resources
Unlike conventional libraries, when a DLL is loaded into memory by the operating system, its Subs
and Functions are accessible by all other programs (or DLLs). Only one copy of the DLL needs to be
present in memory. This is possible because the library is not linked into any one of the programs
permanently. It is present, in memory, making its services available to any program (or other DLL)
which may need them.

· Code re-use
You might have a set of procedures that are common to a number of different applications. Instead of
having those procedures appear in every application that needs them, it is better to put them in a DLL
where they can be accessed by all the applications. This reduces the size of your executables while
giving you the flexibility of updating the DLL itself, without having to re-compile every application that
uses its services.

· Maintenance
A DLL can be updated and redistributed without having to re-compile any of the applications (or other
DLLs) that use its services.

See Also

What is a Dll?

Creating a Dynamic Link Library

Private and Exported Procedures

Dll example

LibMain

What is an object, anyway?

Just what is COM?

What is a COM component?

Creating a Dynamic Link Library

Creating a Dynamic Link Library

PowerBASIC Compiler for Windows Version 10

99 / 2126

A DLL contains one or more exported Classes, Subs, or Functions that may be called by applications or
other DLLs. A DLL may also contain any number of private Subs or Functions that can only be called from
within the library. Creating a DLL with PowerBASIC is straightforward. Below are the steps to follow to
convert parts of a Visual Basic program to a DLL.

Step
1:

The first step is to identify the sections of your application that are used in multiple programs,
or in the case of Visual Basic, Subs and Functions that you need to execute faster.

Step
2:

Save those Subs and Functions as text, and change the file extension to .BAS. This will
become the source module that will be compiled into a DLL with PowerBASIC. You could also
create the source file from scratch, if you so wish.

Step
3:

Launch PBEDIT.EXE (the PowerBASIC IDE) and add the EXPORT keyword to any Sub or
Function in the DLL source code (that you wish to be made accessible to external
applications). Add #COMPILE DLL to the top of the source code file, and make any other
changes to your .BAS source module. See the SUB/END SUB and FUNCTION/END
FUNCTION topics for more information on the exact syntax.

Step
4:

Click the compile button on the PowerBASIC IDE toolbar.

Any compile-time errors will be flagged at this point. Repeat steps 3 to 4 above until no more errors are
reported. You are then ready to start testing and debugging your DLL. Debugging is done using the
PowerBASIC symbolic Debugger built into the PowerBASIC IDE (PBEDIT.EXE). See the section on
Debugging for more information.

See Also

What is a Dll?

Private and Exported Procedures

Dll example

LibMain

What is an object, anyway?

Just what is COM?

What is a COM component?

Private and Exported Procedures

Private and Exported Procedures
There are two basic types of procedures in a DLL: private and exported. Exported

 are those which are made available to applications and other DLLs. Private, or local, procedures are
support-type routines, accessible only from within the DLL.
In the following example, the first procedure defines an exported Sub that accepts two arguments: a string
and an Integer. The second procedure defines an exported function that accepts a single string argument,
and returns an Integer. Finally, the third procedure defines a private Sub that accepts a single Integer
argument. The first two routines are callable from an external .EXE or another DLL. The third one is not.

#COMPILE DLL
SUB MySub (sArg AS STRING, BYVAL iArg AS INTEGER) EXPORT
 ' Body goes in here
END SUB
FUNCTION MyFunc (sArg AS STRING) EXPORT AS INTEGER
 ' Body goes in here
END FUNCTION
SUB MyPrivateSub(BYVAL iArg AS INTEGER)

PowerBASIC Compiler for Windows Version 10

100 / 2126

 ' Body goes in here
END SUB

Alternatively, you may specifically declare Subs and Functions as private, by using the PRIVATE keyword:

SUB MyPrivateSub(BYVAL iArg AS INTEGER) PRIVATE
 ' Body goes in here
END SUB

See Also

What is a Dll?

Creating a Dynamic Link Library

Dll example

LibMain

What is an object, anyway?

Just what is COM?

What is a COM component?

Dll example

An Example
A very simple example is a DLL with a function that will add one to any Long-integer passed to it as a
parameter:

#COMPILE DLL
FUNCTION AddOne ALIAS "AddOne" (BYVAL x AS LONG) EXPORT AS LONG
 AddOne = x + 1
END FUNCTION

The ALIAS keyword is used to indicate the capitalization that PowerBASIC will assign the function. In
Win32, all exported (and imported) Sub and Function names are case-sensitive. If the ALIAS keyword was
omitted, PowerBASIC will capitalize the exported name and this could cause " Missing DLL entry point"
errors if the calling code did not match the capitalization exactly.

By default, all Subs and Functions in PowerBASIC are private, which means they cannot be seen outside of
the DLL. The EXPORT keyword is used on the Sub or Function definition line to indicate that the routine is
to be exported, i.e., made accessible to applications and other DLLs.

When compiled into a DLL, AddOne is visible to outside applications. A Visual Basic program needs only
include a prototype, or a DECLARE statement for the function, in order to call it as if it were a VB function:

DECLARE FUNCTION AddOne LIB "ADDONE.DLL" ALIAS "ADDONE" (BYVAL x&) AS LONG

AddOne is then accessible from within your Visual Basic code:

a& = 4
b& = AddOne(a&) ' returns 5

If AddOne were not exported, Visual Basic would generate a run-time error when the example code attempts
to call it.

If the EXPORT keyword is not used in the Sub or Function definition, the procedure will not be visible to
outside applications. See the Visual Basic documentation for more information on calling DLLs from within
Visual Basic code.

By using the ALIAS keyword in the DLL source code, you can have PowerBASIC export the Sub or Function
using any capitalization you want. You can use the ALIAS clause to export the Sub or Function with a
completely different name, in order to enhance or disguise the internal Sub or Function name:

' Exported as "ADDONE1"
FUNCTION AddOne1 (BYVAL x&) EXPORT AS LONG

PowerBASIC Compiler for Windows Version 10

101 / 2126

' Exported as "AddOne2"
FUNCTION AddOne2 ALIAS "AddOne2" (BYVAL x&) EXPORT AS LONG

' Exported as "ExprtFnctn1"
FUNCTION AddOne3 ALIAS "ExprtFnctn1" (BYVAL x&) EXPORT AS LONG

Because the name after the ALIAS keyword is in quotes, the compiler will not convert it to upper case. Note
that the name in the ALIAS clause is the name that you would use to access the Sub or Function from
Visual Basic. Likewise, when importing Subs and Functions from external DLLs into PowerBASIC, the
ALIAS clause must exactly match the capitalization of the exported name in the DLL.

See Also

What is a Dll?

Creating a Dynamic Link Library

Private and Exported Procedures

LibMain

What is an object, anyway?

Just what is COM?

What is a COM component?

LibMain

LIBMAIN
In addition to the functions you want to export (plus any supporting private routines), a DLL can contain an
optional function called LIBMAIN (or its synonyms DLLMAIN and PBLIBMAIN). Windows calls LIBMAIN
when a DLL is loaded into and unloaded from memory by an application. The use of LIBMAIN in your code is
optional.

See Also

What is a Dll?

Creating a Dynamic Link Library

Private and Exported Procedures

Dll example

What is an object, anyway?

Just what is COM?

What is a COM component?

Creating Static Link Libraries

What is an SLL?

What is an SLL?
An SLL is a Static Link Library. It consists of a set of Classes, Subs, and Functions which are compiled

PowerBASIC Compiler for Windows Version 10

102 / 2126

into a machine-code library. Since it is a library, the code cannot be executed standalone. It functions much
like a DLL would, but the pre-compiled machine code is actually embedded into the final .EXE or .DLL to
reduce the number of files in your project.

Why use SLLs?
A Static Link Library is the perfect vehicle for third-party code, because it creates a single final module while
not requiring source code to be distributed. It allows you to create a group of your own libraries, which you
know function correctly and don't require any further debugging. It also offers big advantages to larger group
programming projects to control distribution of various elements.

See Also

Creating a Static Link Library

SLL example

Creating a Static Link Library

Creating a Static Link Library
Creation of an SLL couldn't be easier. All it takes is a single metastatement at the top of your module
source code:

#COMPILE SLL

If your source code file is named "ABC.BAS", then your Static Link Library will automatically be named
"ABC.SLL". (You can check the #COMPILE section for additional naming options.) When you wish to use
the SLL code in a host program, you use:

#LINK "ABC.SLL"

and the contents are automatically embedded in the new .EXE or .DLL. It's just that simple.

Common Subs and Functions
A COMMON Sub or Function is one which is visible between the primary host program and one or more SLL
unit modules. A Sub/Function is defined as COMMON by inserting that word as one of the descriptors:

FUNCTION MyFunc(Parm AS LONG) COMMON AS DOUBLE
 <Function code>...
END FUNCTION

When you create an SLL, you may find you need to reference a Sub or Function which is located in the
main Host Module or another SLL. In that case, you must DECLARE it with the COMMON descriptor:

DECLARE FUNCTION MyFunc(Parm AS LONG) COMMON AS DOUBLE

It is not necessary to DECLARE a COMMON Sub or Function at all in the Host Module. If you choose to
do so (for self-documentation or other reasons), it is generally advisable to omit the COMMON descriptor, as
its presence will force the SLL to be linked, whether needed or not.

Of course, when the host module is compiled, all references to COMMON items must be resolved
accurately, or an appropriate error will be generated. Any Sub/Function not defined as COMMON may not
be shared between modules.

The EXPORT descriptor identifies a Sub/Function which may be accessed between Dynamic Link Libraries
(DLLs), and/or the main executable which links them. If a procedure is not marked EXPORT, it is hidden
from these other modules. Generally speaking, it's best not to mark a Sub/Function in an SLL as EXPORT.
 While it is syntactically acceptable, it may limit your future options when linking the SLL into host modules.
 PowerBASIC recommends that you mark them as COMMON in the SLL, and add the EXPORT attribute in

PowerBASIC Compiler for Windows Version 10

103 / 2126

the host module.

It's easy to create an SLL which can be linked into an executable program or a dedicated DLL for the same
purpose. To add the EXPORT attribute to a linked Sub/Function, just add the word EXPORT to the
DECLARE statement in the host module or add an #EXPORT metastatement.

#EXPORT MyFunc
DECLARE FUNCTION MyFunc(Parm AS LONG) COMMON EXPORT AS DOUBLE

Using this technique, your SLL can be linked directly into an application executable without publishing the
Subs/Functions as EXPORT. However, you can also link the same SLL into a DLL host module which adds
the EXPORT attribute to any or all of the COMMON Subs and Functions in the corresponding DECLARE
statements.

For example, let's say you want to make a library which publishes the SUB named XXX. You want to
provide it in two forms, a linkable SLL and an industry standard DLL. So, first just create the SLL:

#COMPILE SLL = "XXXLib.SLL"

SUB xxx() COMMON
 MSGBOX "Hello"
END SUB

Just compile it, and you're ready to link it into your application. But now you want to create a DLL, too,
since it might be used with other applications. It's just this easy:

#COMPILE DLL = "XXXLib.DLL"

#EXPORT xxx
#LINK "XXXLib.SLL"

That's all there is to it. You now have an SLL and an equivalent DLL to do the job of the XXX procedure.

Common Classes and Objects
A COMMON Class is one which is visible between the primary host module and one or more SLL unit
modules. A Class is defined as COMMON by inserting that word as a Class Descriptor:

CLASS MyClass $MyGuid COMMON
 <Class code>...
END CLASS

A class which is declared AS COM makes it available to external programs through the COM services of
Windows. You can define a class to be both COM and COMMON by adding both descriptors. However, a
COM Class is automatically considered to be COMMON as well.

CLASS MyClass $MyGuid COMMON AS COM
 <Class code>...
END CLASS

Unreferenced Code
Any code in an SLL marked COMMON, COM, or EXPORT is always included in your compiled SLL module.
 Any additional code referenced by them is also included. All other unused code is automatically extracted
at the time the SLL is compiled. Keep in mind that the resulting SLL module is pre-compiled, and cannot
be modified further.

When you link an SLL into a host module, it is examined carefully by the compiler. If it is determined that
no code in the SLL is needed, the SLL is simply not linked. This can reduce the size of your final program
substantially. However, if even one procedure in an SLL is used, the entire SLL is included. Therefore, it
may be in your best interest to split up your code into multiple SLL modules. The PowerBASIC Compiler
will pick and choose exactly which ones are needed and ignore the rest. This assures the smallest
possible size of the resulting application.

Managing Multiple SLL Modules
For your convenience, multiple SLL modules may be collected into a Power Library, which is linked as a
single item. However, the PowerBASIC Compiler treats the component modules individually, just as though

PowerBASIC Compiler for Windows Version 10

104 / 2126

they were each linked separately. A component SLL in a Power Library which is not needed is ignored
entirely.

SLL modules are collected into a Power Library with the PowerLib utility librarian. This GUI application can
readily add, remove, replace, or list the component SLL modules. Optionally, you can also use a command
line librarian if that better serves your needs. The file extension for Power Libraries is ".PBLIB".

See Also

What is an Sll?

Sll example

PowerBASIC Library Manager

SLL example

SLL example
Below is a very simple example of a Static Link Library (SLL). This SLL unit module contains only one
function that converts millimeters to inches.

#COMPILE SLL "conversion.sll"
#DIM ALL

FUNCTION MillimetersToInches(BYVAL mm AS DOUBLE) COMMON AS DOUBLE
 FUNCTION = mm * 0.03937#
END FUNCTION

The #COMPILE SLL metastatement tells the compiler to create an SLL named conversion.sll.

By default, all procedures in PowerBASIC are private, which means they cannot be seen outside of the
SLL. The COMMON keyword is used on the procedure definition line to indicate that the procedure is to be
visible to the host application. If the COMMON keyword is not used in the procedure definition, the
procedure will not be visible to the host application. If the MillimetersToInches function did not contain the
COMMON keyword any attempt to reference it from a host program would result in a Missing Declaration
error when the host program is compiled.

Below is a sample host program that links in the compiled conversion.sll into our program.

#COMPILE EXE
#DIM ALL

#LINK "conversion.sll"

FUNCTION PBMAIN () AS LONG
 LOCAL Inches AS DOUBLE
 LOCAL MilliMeters AS DOUBLE

 MilliMeters = 1000.0#
 Inches = MillimetersToInches(MilliMeters)
END FUNCTION

The #LINK metastatement is used to link the pre-compiled conversion.sll into our host program. Any
procedure in the SLL that contains the COMMON keyword may be called by our host program. We call the
MillimetersToInches function in the SLL just like any other function call.

See Also

What is an SLL?

PowerBASIC Compiler for Windows Version 10

105 / 2126

Creating a Static Link Library

PowerBASIC Library Manager

PowerBASIC Library Manager
For your convenience, multiple SLL modules may be collected into a Power Library, which is linked as a
single item. You can readily add, remove, replace, or list the component SLL modules. However, the
PowerBASIC Compiler treats the component modules individually, just as though they were each linked
separately. A component SLL in a Power Library which is not needed is ignored entirely.

When you start the PowerBASIC Library manager you will be prompted to select a PowerBASIC Library
(.PBLib) file. If you are creating a new Library file you enter the name of your new .PBLib file.

After specifying a new library or opening an existing one, you will be shown the Library Manager dialog.

Delete unit(s) Removes the selected file(s) from the library.

Add unit(s) from
another file

Adds either a .SLL or .PBLib file to the library. Adding a .PBLIB to the library
causes all the individual units within the .PBLIB to be added to the library. If a unit

PowerBASIC Compiler for Windows Version 10

106 / 2126

is already within the library, the version within the library will be retained.

Rename unit Renames a .SLL file in the library.

Copy unit(s) to a
new file

Copies the selected SLL file out of the library and to a new SLL file name.

Save changes Saves the changes to the library.

Discard changes Discards any changes made in the Library Manager.

Done Closes the Library Manager dialog.

Optionally, you can also use the supplied command-line librarian Plib.exe with the following syntax:

plib library[.PBLIB] [commands] [,listfile [,newlibrary.PBLIB]]

Commands:

+filename Adds either a .SLL or .PBLib file to the library.

-unitname Removes an SLL file from the library.

-+filename Replace an SLL file in library with another SLL file.

*unitname Copy a SLL file out of the library.

-*unitname Move a SLL file out of the library.

=oldunitname,ne
wname

Renames a .SLL file in the library.

See Also

What is an SLL?

Creating a Static Link Library

Sll example

The PowerBASIC Integrated Development Environment

Debugging PB/Win Programs

Debugging PB/Win Programs

Debugging PowerBASIC Programs
Once your code is written, the next step is to test it to make sure it performs according to specifications.
Regardless of the computer language used, certain programming errors are common: misspelled or misused
variables, inverted logical tests, mistakes in syntax, and "reasonable" tests that cause disastrous failures
when unreasonable data is supplied. Each language also has its own common errors, unique because of the
peculiarities of its language.

Some of BASIC's unique problems include the free conversion of most

, side effects of global variables, default data types, and overuse of GOTO causing problems with
incorrect branching. These are well known to the experienced BASIC programmer but are not generally
found in other languages.
The PowerBASIC Integrated Development Environment (PBEDIT.EXE) can be used to find, and correct, both
general programming errors and errors specific to BASIC. Nearly every program has bugs at least at first. To
find them, you may need to check any statement in the program, display the value of any variable, and
observe the program flow from line to line. PBEDIT has all these capabilities and more.

This section explains how to use PBEDIT to find and fix errors in a sample program, by providing a list of the
debugging commands, a description of each, and then showing how each is invoked. If you follow certain
guidelines when creating your program, you will find debugging easier (and less necessary). The procedures

PowerBASIC Compiler for Windows Version 10

107 / 2126

we describe here will help you form your own set of guidelines that will make your programs easier to write
and maintain.

See Also

How the integrated debugger works

The DEBUG Menu

Debugging a simple program

The Integrated Development Environment

Debugger Settings

How the integrated debugger works

How the integrated debugger works
The integrated debugger works in conjunction with the PowerBASIC editor and is a part of the PowerBASIC
environment. The debugger allows you to debug at the PowerBASIC level rather than at the machine level.
That makes it a source-level debugger.

To debug a PowerBASIC program using the integrated debugger, first load the program into the editor and
choose Compile and Debug from the toolbar or menu. Your program will be compiled, and if there are no
compile-time errors, it will begin executing.

Breakpoints are places where the program will stop. In most cases, you will want to set one or more
breakpoints in your program. The program executes up to (but not including) the line containing the
breakpoint and then passes control of the debugger over to you. Breakpoints that you set remain in place
until you clear them or exit the IDE.

Once at a breakpoint you can:

· Display the value of a variable (with the Evaluate Variable button or menu item)

· Set up a list of variables (in the Variable Watch window) and see how their values change as the
program executes

· Clear breakpoints, set new ones, or both

· Single-step the program (run it one line at a time)

· Run the program to the next breakpoint

See Also

Debugging PB/Win Programs

The DEBUG Menu

Debugging a simple program

Debugger Settings

Debugger Toolbar Buttons

Debugger Toolbar Buttons

Create a new empty document (file) in the editor.

PowerBASIC Compiler for Windows Version 10

108 / 2126

Use the Open File dialog box to load an existing document.

Print the current document to a printer.

Copy the selected text from the document to the clipboard.

Search the current document for a word or phrase. See Find dialog for more information.

Launch the Go to Line dialog to jump to a specific line in the current document.

Launch the Code Finder dialog, which presents a list of Subs, Functions, Methods, Properties,
and Macros in current document, to quickly jump to a selected section of code.

Begin running the program. It will continue to run until the debugger either encounters a
breakpoint, or runs out of code to execute. F5 is the hot-key for the Run option.

The debugger runs the program using an automated Step-Into technique. Execution continues
until a breakpoint is reached, the Stop button is pressed, or the program completes. The
Animate delay can be set through the IDE's Options Dialog.
The debugger executes the current line of code. If the line contains a reference to a Sub,
Function, Method, or Property, the debugger executes that code without tracing into the
procedure. SHIFT+F8 is the Step Over hot-key.
If the current line contains a call to a Sub, Function, Method, or Property, the debugger traces
execution into that procedure. You cannot step into an API call, or into an external module. F8
is the Step Into hot-key.
The debugger runs the code until the current Sub, Function, Method, or Property exits. If the
current function is PBMAIN or WINMAIN, the code is executed until the program is finished or
another breakpoint is encountered. CTRL+SHIFT+F8 is the Step Out hot-key.

Halt the debugger. If the debugger is already halted, this has no effect.

Show or hide the Register Watcher window, which lets you see the state of the CPU registers
and flags when debugging.

Show or hide the Variable Watcher window, which lets you see the state of the ERR function and
any variables you choose to watch when debugging.

Halts the current program and terminates the debugger. The variable list in the Watch window is
retained between debugging sessions, until the IDE is closed.

Launches the PowerBASIC web site.

Display the PowerBASIC or the WIN32.HLP file.

PowerBASIC Compiler for Windows Version 10

109 / 2126

See Also

Toolbar Buttons

The Debug Menu

The Debug Menu

The DEBUG Menu
The Debug Menu provides the essential tools for debugging a PowerBASIC program. We will run through
these in their order of appearance:

Run Begin running the program. It will continue to run until the debugger either
encounters a breakpoint, or runs out of code to execute. F5 is the hot-key for the
Run option.

Run to Caret Begin running the program. It continues to run until the debugger either reaches
the current line, or encounters a breakpoint, etc. CTRL+F8 is the hot-key for the
Run to Caret option.

Animate The debugger runs the program using an automated Step-Into technique.
Execution continues until a breakpoint is reached, the Stop button is pressed, or
the program completes. The Animate delay can be set through the IDE's Options
Dialog.

Stop Halt the debugger. If the debugger is already halted, this has no effect.

Step Into If the current line contains a call to a Sub, Function, Method, or Property, the
debugger traces execution into that procedure. You cannot step into an API call,
or into an external module. F8 is the Step Into hot-key.

Step Over The debugger executes the current line of code. If the line contains a reference to
a Sub, Function, Method, or Property, the debugger executes that code without
tracing into the procedure. SHIFT+F8 is the Step Over hot-key.

Step Out The debugger runs the code until the current Sub, Function, Method, or Property
exits. If the current function is PBMAIN or WINMAIN, the code is executed until
the program is finished or another breakpoint is encountered. CTRL+SHIFT+F8 is
the Step Out hot-key.

PowerBASIC Compiler for Windows Version 10

110 / 2126

Evaluate
Variable

Evaluate or modify a variable, or add/remove a variable in the Watch window. It is
not possible to use this to change the length of a string. Also see Watch CPU
Registers.

Clear all
Watches

Remove all variables from the Watch window.

Toggle
Breakpoint

Set or release a breakpoint on the current line. F9 is the Toggle Breakpoint hot-
key.

Clear all
Breakpoints

Release all breakpoints in the program.

Watch CPU
registers

Show or hide the Register Watcher window, which lets you see the state of the
CPU registers and flags when debugging.

Variable watch
window

Show or hide the Variable Watcher window, which lets you see the state of the
ERR function and any variables you choose to watch when debugging.

Program Reset If the current program is halted/stopped, the program will be reset, ready for
debugging to commence again. SHIFT+F5 is the Reset hot-key.

Exit Debugger Halts the current program and terminates the debugger. The variable list in the
Watch window is retained between debugging sessions, until the IDE is closed.

See Also

Debugging PB/Win Programs

How the integrated debugger works

Debugger Toolbar Buttons

Debugging a simple program

Debugger Settings

Debugging a simple program

Debugging a simple program

Debugging a simple program
For our first example, we'll use a simple program designed to read a text file and display it. Along the way,
the program counts the number of words and tabulates the lengths of all words found - how many words are
one character long, how many are exactly two characters long, and so on. The sample program,
TWORD.BAS (\PBWin10\Samples\TWord\TWORD.BAS), contains a number of bugs; you will be using the
PowerBASIC integrated debugger to find each of them.

Be sure to make copies of the TWORD.DAT data file; TWORD.BAS reads that file and makes specific
errors because of the data. While another data file may work as well, it is possible that one or more of the
bugs will not occur if you use a different data file.

Here is a listing of the TWORD.BAS program.

When you have loaded TWORD.BAS into the editor, click on the Debugger button on the toolbar, or select
Run from the menu, then Compile and Debug.

At this point, the debugger will have scrolled the program and highlighted the line containing the definition of
the variable MaxWordLen, since that will be the first line executed when the program begins to run. The
highlight is called the execution bar and marks the line of code at the execution position. In other words,
that line will be executed next.

To make the program run, click on the Run button in the toolbar or press F5. The program's output appears

PowerBASIC Compiler for Windows Version 10

111 / 2126

in the User screen, which allows you to see how the program would look if you weren't using the debugger.
If the User screen is not visible you may have to select it by using the Windows Taskbar, ALT+TAB, or by
re-sizing the PowerBASIC IDE to a smaller size and different location until the User screen is visible.
 TWORD prompts you for the name of the file to read. Enter TWORD.DAT and press ENTER. TWORD
displays the first line of the file then locks up because of one of the bugs in the program. To regain control,
click on the Stop button. You can choose Program Reset (or press the SHIFT+F5 hot-key) to quit running
the flawed program. Clicking the Run button lets you restart the program.

Next See: Setting and using breakpoints

See Also

Debugging PB/Win Programs

How the integrated debugger works

The DEBUG Menu

The Integrated Development Environment

Debugger Settings

TWORD.bas Source Listing

TWORD.BAS
'===
'
' Test Word (Debugging) example for PowerBASIC for Windows
' Copyright (c) 1998-2011 PowerBASIC, Inc.
' All Rights Reserved.
'
' Read a text file and count the number of words of length 1, 2, 3, and so
' on. THIS PROGRAM CONTAINS INTENTIONAL BUGS. Use it in conjunction with the
' PowerBasic On-line help (PBWIN.CHM - "Debugging PowerBASIC Programs") to
' learn about the PowerBasic integrated debugger.
'
'===
#COMPILER PBWIN 10
#COMPILE EXE
#IF NOT %DEF(%WINAPI)
 DECLARE FUNCTION GetModuleFileName LIB "KERNEL32.DLL" ALIAS
"GetModuleFileNameA" (BYVAL hModule AS LONG, lpFileName AS ASCIIZ, BYVAL nSize AS
LONG) AS LONG
 %MB_YESNO = &H00000004&
 %IDNO = 7
#ENDIF
DEFLNG A-Z
FUNCTION AppPath () AS STRING
 LOCAL p AS ASCIIZ * 256
 LOCAL ix AS LONG
 GetModuleFileName 0, p, SIZEOF(p)
 FOR ix = LEN(p) TO 1 STEP -1
 IF MID$(p, ix, 1) = "\" OR MID$(p, ix, 1) = "/" THEN
 FUNCTION = LEFT$(p, ix)
 EXIT FUNCTION
 END IF
 NEXT
 FUNCTION = ""

PowerBASIC Compiler for Windows Version 10

112 / 2126

END FUNCTION
FUNCTION PBMAIN () AS LONG
 MaxWordLen = 16 ' count words up to a length of 16 characters
 ' longer words will go into Overlong
 DIM WordLength(MaxWordLen) ' the array used to hold the counts
 Blank$ = CHR$(32) ' a space marks the end of a word.
 FilePath$ = AppPath
 IF LEN(FilePath$) THEN
 CHDRIVE FilePath$
 CHDIR FilePath$
 END IF
 WHILE InFile$ = ""
 InFile$ = INPUTBOX$("Enter the name of the input file: ")
 IF InFile$ <= SPACE$(LEN(InFile$)) THEN InFile$=""
 IF InFile$ = "" _
 AND MSGBOX ("No file name entered! Do you want to try again?", _
 %MB_YESNO, _
 "TWord input") = %IDNO THEN
 EXIT FUNCTION
 END IF
 WEND
 ERRCLEAR
 OPEN InFile$ FOR INPUT AS #1
 'If the file can't be opened, give the user an error message.
 IF ERR THEN
 MSGBOX InFile$,,"Unable to open file"
 EXIT FUNCTION
 END IF
 WHILE NOT(EOF(1)) ' read the file until nothing is left
 LINE INPUT #1,FirstString$ ' get a line
 MSGBOX FirstString$ ' display it
 WHILE FirstString$ <> ""
 GOSUB GetAWord ' pull a word for FirstString$ and
 ' put it in SecondString$
 Test = LEN(SecondString$)
 IF Test <= 16 THEN
 WordLength(Test) = WordLength(Test) + 1
 ELSE
 Overlong = Overlong + 1
 END IF
 WEND
 WEND
 CLOSE 1
 MSGBOX "Length Count"
 FOR Count% = 1 TO 16
 MSGBOX FORMAT$(Count%) + STR$(WordLength(Count%))
 NEXT
 MSGBOX "Greater" + STR$(OverLong)
 EXIT FUNCTION
GetAWord:
 position = INSTR(FirstString$, Blank$) ' a word is a sequence of
 ' characters ended by a
 ' blank or the end of the line
 IF position = 0 THEN
 'the word is the remainder of the line
 SecondString$ = FirstString$
 FirstString$ = ""
 ELSE
 'pull the word from the line
 SecondString$ = LEFT$(FirstString$, position - 1)

PowerBASIC Compiler for Windows Version 10

113 / 2126

 END IF
 RETURN
END FUNCTION

Setting and using breakpoints

Setting and using breakpoints
We know the program did not fail within the first few lines; it requested the name of the input file, and it
successfully opened that file. Therefore, the problem must have been caused by something further along in
the code.

The first suspicious line concerns the GetAWord subroutine. Set a breakpoint at the line reading:

position = INSTR(FirstString$, Blank$)

Use the arrow keys to move to that line. As you do, you'll notice that the execution bar doesn't move. That
is because you are not executing the program; you are just using the source browser to move within the
program source.

To set a breakpoint at the line to which you moved, double-click on it or press the F9 key. The line is
highlighted, indicating that the breakpoint has been set. If you wanted to remove the breakpoint at that line,
double-click on it or press the F9 key again. The breakpoint highlighting differs from the execution
highlighting, and this difference helps you to avoid confusion over highlighted breakpoints and the current
program position.

Once more, click on the Run button (or press F5). TWORD starts running again, and things happen just as
before, with one exception: after the first line from the data file has been displayed on the User screen,
TWORD halts and waits for further commands. PowerBASIC has reached the breakpoint. The caret and
the execution bar are on the line containing the breakpoint.

The breakpoint line cannot be doubly highlighted, so the execution bar obscures the breakpoint highlighting
until the program executes further. The program stops each time it reaches the breakpoint line.

You can also stop a program running within the debugger by clicking the Stop button. When you do this,
the program executes the current line and stops at the beginning of the next. Control is then returned to the
PowerBASIC debugger, and the execution bar highlights the next line to be executed. You may now use
debugger commands to step through the program or resume execution.

Next See: Tracing execution

See Also

Debugging PB/Win Programs

How the integrated debugger works

The DEBUG Menu

Debugging a simple program

Debugger Settings

Tracing execution

Tracing execution
Now that you have executed TWORD to the first breakpoint, you can trace the execution one line at a time
by pressing F8 or by clicking on the Step-Into button. When you press F8, the debugger runs the execution
line and stops at the beginning of the next line.

Perhaps there is something wrong with that INSTR function call? You could not check the value of the

PowerBASIC Compiler for Windows Version 10

114 / 2126

variable position while the breakpoint line was highlighted, because the breakpoint line had not yet
executed. After pressing F8 and executing the breakpoint line, the value of the variable position should be
known. The value of position is critically important, so let's check it.

Next See: Evaluating a variable

See Also

Debugging PB/Win Programs

How the integrated debugger works

The DEBUG Menu

Debugging a simple program

Debugger Settings

Evaluating a variable

Evaluating a variable
To see the value of position right-click on the variable and choose the Evaluate variable item from the
context-menu - since this is a context-sensitive menu, it will actually read "Evaluate position". In either
case, this opens the Evaluate dialog containing two data entry fields. The variable name position should be
automatically filled in the Variable Name field, and the content of the variable shown in the Value field. In
this case, position is expected to contain 3, and it does. There is no error so far. To return from the pop-up
window to the main part of the debugger, click on the Close button or press ESCAPE.

The next few lines are supposed to remove the word from the beginning of the line and put the word into
SecondString$. To check if that routine functions correctly, you should examine the values of FirstString$
and SecondString$ before and after the routine alters them. The debugger should display:

To be or not to be; that is the question.

From the appearance of the string, you can see that the first blank should appear in position 3, and that the
program has correctly determined that position. The variable SecondString$ ought to contain the last word
processed and should have no value yet. You can check that by entering SecondString$ in the Variable
Name field; if you do, you will find no error.

Everything seems normal so far. Press ESCAPE to return to the main part of the debugger, then press F8
to step the program one more line. Since you already know position is not 0, you'll find out what you need
to know by pressing F8 several more times, stopping when the execution bar is over the final END IF of that
routine. At that point, both FirstString$ and SecondString$ have been processed.

Once more, evaluate SecondString$. This time, SecondString$ does contain data: the word "To". This
seems correct. When you ask to see the value of FirstString$, though, you get a surprise: FirstString$ has
not been changed at all! This explains the lockup for the first line; subroutine GetAWord was correctly
supplying the first word, but was not removing that first word from the entry string. Therefore, the first line
never actually became shorter, so it was being processed and reprocessed endlessly.

To correct the bug, exit the debugger and insert a routine in the editor that shortens FirstString$ by the
length of SecondString$. Insert a line reading something like:

FirstString$ = MID$(FirstString$, position + 1)

…immediately before the END IF in GetAWord. Make this correction, then save it. Click on the Compile
and Debug icon in the toolbar and run the program through the debugger again.

Next See: Summary

PowerBASIC Compiler for Windows Version 10

115 / 2126

See Also

Debugging PB/Win Programs

Debugging a simple program

Setting and using breakpoints

Tracing execution

Debugger Settings

Summary

Debugging TWORD.BAS Summary
TWORD fails because the program goes into an infinite

. The infinite loop was caused by the fact that the number of characters removed was not shortening the
input .
While tracking down this bug, you learned to:

· Set and use breakpoints

· Run a program without stopping at each line

· Step through your source one line at a time

· Evaluate the values of variables

See Also

Debugging PB/Win Programs

How the integrated debugger works

The DEBUG Menu

Debugging a simple program

Debugger Settings

Data Types

Data Types

Data Types
The care of numbers constitutes an important part of every programming system. Fortunately, PowerBASIC
allows you to ignore most technical considerations about internal number handling. If you never give a
thought to such matters as calculation speed, precision, and memory requirements, your programs will
usually continue to work as you expect. However, an understanding of the underlying issues will help when
you need to write programs that are faster, more accurate, and require less memory.

For efficiency, PowerBASIC stores and processes data in different forms. It supports eleven unique numeric
types, three string types, and also pointers. The following tables summarize the most important features
and distinctions of these data types. The rest of this section explains these features in detail.

Numeric Data storage requirements and ranges
Data Type Size Decimal Range Binary Range

PowerBASIC Compiler for Windows Version 10

116 / 2126

Integer 16 bits (2 bytes), signed -32,768 to 32,767 -2^15 to 2^15-1

Long-integer 32 bits (4 bytes), signed -2,147,483,648 to
2,147,483,647

-2^31 to 2^31-1

Quad-integer 64 bits (8 bytes), signed -9.22*10^18 to
+9.22*10^18

-2^63 to 2^63-1

Byte 8 bits (1 byte), unsigned 0 to 255 0 to 2^8 -1

Word 16 bits (2 bytes),
unsigned

0 to 65,535 0 to 2^16 -1

Double-word 32 bits (4 bytes),
unsigned

0 to 4,294,967,295 0 to 2^32 -1

Single-precision 32 bits (4 bytes) 8.43*10 -̂37 to 3.40*10^38
Double-precision 64 bits (8 bytes) 4.19*10 -̂307 to

1.79*10^308

Extended-precision 80 bits (10 bytes) 3.4*10 -̂4932 to
1.2*10^4932

Currency 64 bits (8 bytes) -9.22*10^14 to
+9.22*10^14

Extended-currency 64 bits (8 bytes) -9.22*10^16 to
+9.22*10^16

Variant 128 bits (16 bytes) {data-dependent} {data-dependent}

 Variable type-specifiers and keywords
Variable type Type specifier Element size DEF type Type keyword

Pointer N/A 4 N/A PTR/POINTER

Integer % 2 DEFINT INTEGER

Long-integer & 4 DEFLNG LONG

Quad-integer && 8 DEFQUD QUAD

Byte ? 1 DEFBYT BYTE

Word ?? 2 DEFWRD WORD

Double-word ??? 4 DEFDWD DWORD

Single-Float ! 4 DEFSNG SINGLE

Double-Float # 8 DEFDBL DOUBLE

Extended-Float ## 10 DEFEXT EXT/EXTENDED

Currency @ 8 DEFCUR CUR/CURRENCY

Extended-currency @@ 8 DEFCUX CUX/CURRENCYX

String $ 4 DEFSTR STRING

Fixed-length string N/A N/A N/A STRING * x

Null-terminated String N/A N/A N/A ASCIIZ, STRINGZ

FIELD string $ 16 N/A FIELD

Wide String $$ 4 N/A WSTRING

Wide Fixed length String N/A N/A N/A WSTRING * x

Wide Nul-Terminated String N/A N/A N/A WSTRINGZ

Wide Field String N/A 16 N/A WFIELD

Variant N/A 16 N/A VARIANT

GUID N/A 16 N/A GUID

IAUTOMATION N/A 4 N/A IAUTOMATION

IDISPATCH N/A 4 N/A IDISPATCH

IUNKNOWN N/A 4 N/A IUNKNOWN

Integral Data Types

Byte (?)

Byte (?)

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

117 / 2126

Bytes are 8-bit (1 byte) unsigned integers ranging in value from 0 to 255 (0 to 2 8̂-1). The type-specifier
character for a Byte is: ?.

Byte variables are identified by following the variable name with a question mark (i.e., var?), or by using the
DEFBYT statement as described in the previous discussion of Integers. You can also declare Byte
variables using the BYTE keyword with the DIM statement. For example:

DIM I AS BYTE

Byte variables are particularly useful for storing small, unsigned integral quantities like the number of days in
a month. You should not use Byte variables in FOR/NEXT loops, as they are highly inefficient.

A PowerBASIC Byte variable is equivalent to a bool data type (in lowercase) used by most modern C
compilers. A bool is a non-traditional 8-bit unsigned data type, whereas a BOOL data type (in capital
letters) is equivalent to a Long-integer in PowerBASIC. Be aware that some older C compilers may freely
interchange bool and BOOL keywords.

A Delphi byte is equivalent to a PowerBASIC Byte.

See Also

Double-word (???)

Integers (%)

Long integers (&)

Quad integers (&&)

Word (??)

Word (??)

Word (??)
Words are 16-bit (two byte) unsigned integers with a range of 0 to 65535 (0 to 2 1̂6-1). The type-specifier
character for a Word is: ??.

Word variables are identified by following the variable name with two question marks (i.e., var??), or by using
the DEFWRD statement as described in the previous discussion of Integers. You can also declare word
variables using the WORD keyword with the DIM statement. For example:

DIM I AS WORD

Word values effectively extend the positive range for Integer, but still only require two bytes for storage.

A C/C++ UINT16 and a Delphi word are equivalent to a PowerBASIC Word.

See Also

Byte (?)

Double-word (???)

Integers (%)

Long integers (&)

Quad integers (&&)

Integers (%)

Integers (%)

PowerBASIC Compiler for Windows Version 10

118 / 2126

To PowerBASIC, an Integer is a number with no decimal point (what mathematicians would call whole
numbers) with a range of -32,768 to +32,767 (-2 1̂5 to 2 1̂5 - 1). These values stem from the underlying
16-bit representation of an Integer: 32,768 is 2 1̂5, and are therefore 2 bytes (16-bits) wide. The type-
specifier character for Integer is: %.

Integers are identified by following the variable name with a percent sign (eg: var%), or by using the DEFINT
statement. For example, if you use this declaration in your program code:

DEFINT I, J, K

…then all variables following this declaration that start with the letter I, J, or K will be an Integer by default.
You can also declare an Integer variable using the INTEGER keyword with the DIM statement. For example:

DIM I AS INTEGER

A C/C++ short variable and a Delphi smallint are both equivalent to a PowerBASIC Integer.

See Also

Byte (?)

Double-word (???)

Long integers (&)

Quad integers (&&)

Word (??)

Long integers (&)

Long integers (&)
Like regular Integers, Long integers cannot contain decimal points. However, they span a much greater
range, from -2,147,483,648 to +2,147,483,647 (-2 3̂1 to 2 3̂1 - 1) yet occupy just 4 bytes (32-bits). The
type-specifier character for a Long integer is: &.

Long integers are identified by following the variable name with an ampersand (i.e., var&) or by using the
DEFLNG statement as described in the previous discussion of Integers. You can also declare Long-integer
variables using the LONG keyword with the DIM statement. For example:

DIM I AS LONG

Long integers are the most efficient

 data type in PowerBASIC and should be used in all cases where speed is important and a greater
numeric range is not required. (Using Byte and Integer variables in FOR/NEXT loops is actually slower
than using a Long integer.)
A PowerBASIC Long-integer variable is equivalent to the BOOL data type (in capital letters) commonly used
by C/C++ compilers. Note that a bool (lowercase) is a non-traditional data type, equivalent to a Byte in
PowerBASIC. Be aware that some older C compilers may freely interchange bool and BOOL keywords.

A C/C++ int and a Delphi longint variable are also equivalent to a PowerBASIC Long integer.

See Also

Byte (?)

Double-word (???)

Integers (%)

Quad integers (&&)

Word (??)

PowerBASIC Compiler for Windows Version 10

119 / 2126

Double-word (???)

Double-word (???)
Double-words are 32-bit (four byte) unsigned

 with a range of 0 to 4,294,967,295 (0 to 2^32-1). The type-specifier character for a Double-word
is: ???.
Double-word variables are identified by following the variable name with three question marks (i.e., var???),
or by using the DEFDWD statement as described in the previous discussion of Integers. You can also
declare Double word variables using the DWORD keyword with the DIM statement. For example:

DIM I AS DWORD

As for Word values and Integers, Double-word values have a larger positive range than a Long-integer, and
still require only four bytes. Double-word values are useful for indicating absolute memory addresses, such
as may be used to store pointer values.

A PowerBASIC Double-word is equivalent to a UINT32 in C/C++. In 32-bit C/C++ code, a UINT is also
equivalent to a PowerBASIC Double-word variable. Note that 16-bit C/C++ code uses UINT to describe a 16-
bit Word variable.

A C++ unsigned int and a Delphi longword are equivalent to a PowerBASIC Double-word.

See Also

Array Data Types

Bit Data Types

Constants and Literals

GUID Data Types

Object Data Types

Pointers

User Defined Types

Unions

Variant Data Types

Quad integers (&&)

Quad integers (&&)
Quad-integers are 64-bit (8 byte) signed integers (twice as many bits as Long integers) with a range of -
9.22x10 1̂8 to 9.22x10 1̂8 (-2 6̂3 to 2 6̂3 -1). The type-specifier character for a Quad integer is: &&.

Quad-integer variables are identified by following the variable name with two ampersands (i.e., var&&), or by
using the DEFQUD statement as described in the previous discussion of Integers. You can also declare
Quad-integer variables using the QUAD keyword with the DIM statement. For example:

DIM I AS QUAD

Although a Quad integer actually has 19 digits of precision, only 18 digits of accuracy can be "displayed"
with STR$. A 19-digit value will be rounded to 18 digits in scientific notation when used with STR$. STR$
works with up to 16 significant digits by default, so the enhanced form of STR$ (eg: STR$(var,18)), must be
used to generate the 17th and 18th digits of a Quad integer for display purposes.

A C/C++ LARGE_INTEGER and a Delphi int64 are both equivalent to a PowerBASIC Quad integer.

See Also

PowerBASIC Compiler for Windows Version 10

120 / 2126

Byte (?)

Double-word (???)

Integers (%)

Long integers (&)

Word (??)

Floating Point Data Types

Single-precision floating-point (!)

Single-precision floating-point (!)
Single-precision floating-point numbers (or more simply, Single-precision) may be the most versatile numeric
type supported by PowerBASIC. Single-precision values can contain decimal points and have a range of +/-
8.43*10 -̂37 to 3.40*10 3̂8. The type-specifier character for a Single-precision floating-point is: !.

Single-precision variables are identified by following the variable name with an exclamation point (i.e., var!) or
by using the DEFSNG statement as described in the previous discussion of integrals. You can also declare
Single-precision variables using the SINGLE keyword with the DIM statement. For example:

DIM I AS SINGLE

While Single-precision numbers can represent both enormous and microscopic values, they are limited to
six digits of precision. In other words, Single-precision does a good job with figures like $451.21 and
$6,411.92, but $671,421.22 cannot be represented exactly because it contains too many digits. Neither can
234.56789 or 0.00123456789. A Single-precision representation will come as close as it can in six digits:
$671,421, or 234.568, or 0.00123457. Depending on your application, this rounding off can be a trivial or
crippling deficiency. Like most modern compilers, PowerBASIC uses the IEEE standard for all floating-point
arithmetic.

C/C++, Delphi, and Visual Basic all offer a single data type that is identical to the PowerBASIC Single-
precision variable.

See Also

Currency (@) and Extended-currency (@@)

Double-precision floating-point (#)

Extended-precision floating-point (##)

Double-precision floating-point (#)

Double-precision floating-point (#)
Double-precision floating-point numbers are to Single-precision numbers what Long-integers are to
Integers. They take twice as much space in memory (8 bytes versus 4 bytes), but have a greater range (+/-
4.19*10 -̂307 to 1.79*10 3̂08) and a greater accuracy (15 to 16 digits of precision versus the 6 digits of
Single-precision). A Double-precision, 5,000-element array requires 40,000 bytes. An Integer array with the
same number of elements occupies only 10,000 bytes. The type-specifier character for a Double-precision
floating-point is: #.

Double-precision variables are identified by following the variable name with a Number symbol (i.e., var#) or
by using the DEFDBL statement as described in the previous discussion of Integers. You can also declare
Double-precision variables using the DOUBLE keyword with the DIM statement. For example:

DIM I AS DOUBLE

PowerBASIC Compiler for Windows Version 10

121 / 2126

C/C++, Delphi, and Visual Basic all offer a double data type that is identical to the PowerBASIC Double-
precision variable.

See Also

Array Data Types

Bit Data Types

Constants and Literals

GUID Data Types

Object Data Types

Pointers

User Defined Types

Unions

Variant Data Types

Extended-precision floating-point (##)

Extended-precision floating-point (##)
Extended-precision

 numbers are the basis of computation in PowerBASIC. The type-specifier character for an Extended-
precision floating-point is: ##. In PowerBASIC, all floating point calculations are performed in
extended precision for maximum accuracy. Extended-precision has also been provided as a declarable
variable type, so you can take advantage of its extra exponent range and precision.
Extended-precision variables require 10 bytes of storage each. They have a range of approximately +/-
3.4*10 -̂4932 to 1.2*10 4̂932, and offer 18 digits of precision. All 18 digits can be "displayed" using the
extended STR$ format (eg, STR$(var##,18)).

Extended-precision variables are identified by adding two Number symbols following a variable name (i.e.,
var##) or by using the DEFEXT statement.. You can also declare Extended-precision variables using the
EXT or EXTENDED keywords with the DIM statement. For example:

DIM I AS EXT
DIM J AS EXTENDED

See Also

Array Data Types

Bit Data Types

Constants and Literals

GUID Data Types

Object Data Types

Pointers

User Defined Types

Unions

Variant Data Types

PowerBASIC Compiler for Windows Version 10

122 / 2126

Currency (@) and Extended-currency (@@)

Currency (@) and Extended-currency (@@)
Currency variables are 8 byte binary representations of

 numbers, which are considered to always have a fixed number of digits to the right of the decimal
point. Currency numbers have a range of approximately -9.22*10^14 to +9.22*10^14, and
Extended-currency have a range of -9.22*10^16 to +9.22*10^16.
The type-specifier character for Currency and Extended-currency floating-point is: @ and @@ respectively.

You can also use the DEFCUR or DEFCUX statement as described under Integers. They can also be
declared using the CUR/CURRENCY or CUX/CURRENCYX keywords with the DIM statement. For
example:

DIM I AS CUR
DIM J AS CURRENCYX

Currency variables (@) have up to 4 digits of precision after the decimal point, and are useful for prices and
quantities where fractions of a cent are desired. Extended-currency variables (@@) have two digits of
precision after the decimal point. They are optimized for financial calculations where fractions of a cent are
not required.

The currency data types are especially useful for financial calculations, as they avoid the round-off errors
associated with Single, Double, and Extended-precision numbers (which must be an exact power of two in
order to be represented exactly). While many numbers can be represented exactly as a power of two, there
are also many that cannot. For example, 1.10000002384185791 is the closest power of two to 1.1, in single
precision.

So, when assigning numeric literal values to a Currency or Extended-currency variable, we recommend
using a type specifier to ensure the value is given the intended precision. For example:

DIM x1 AS CUR
x1 = 1.0001@

DIM x2 AS CUX
x2 = 1.01@@

Internally, Currency and Extended-currency numbers are stored as Quad-integers with an
implied decimal point (at 4 places for Currency, and at 2 places for Extended-currency). This
approach ensures that all of the digits of the variables can be represented exactly.

Currency and Extended Currency perform a similar role as BCD variables in some BASIC dialects to ensure
monetary values can be represented exactly; however, the internal storage of BCD variables and CUR/CUX
differs substantially.

Delphi and Visual Basic both offer a currency data type that is identical to the PowerBASIC Currency
variable.

See Also

Array Data Types

Bit Data Types

GUID Data Types

Object Data Types

Pointers

User Defined Types

Unions

Variant Data Types

PowerBASIC Compiler for Windows Version 10

123 / 2126

String Data Types

Characters, Strings, and Unicode

Characters, Strings, and Unicode
A

 consists of a set of zero or more characters. A character is an alphabetic letter, a number, a
punctuation mark, or even non-printing control codes, which usually aid in formatting the text. On a
computer, a character is represented by a specific number associated with it. For example, the
character "A" is usually represented by the number 65, while the character "3" is usually associated with
the number 51.
This representation is convenient, since a string of text characters can be readily stored as a series of small
integral numbers. For example, the word "Hello" is stored as 72, 105, 108, 108, 111. Couldn't be any
simpler. How are the numbers assigned and associated? It's just a matter of mutual consent by those who
use them. As long as everyone agrees on the associations, the system works well. That said, we have
experienced a certain amount of growing pains over the years. With the global growth of computer use,
larger character sets are needed to represent the necessary characters. We have clearly reached the point
where every programmer must consider alternate character sets for his applications. Failure to do so can
carry severe penalties. When you find you can no longer read data files from an outside source, or can no
longer read text from the Internet, it will be too late. The following sections describe the most-common and
most-used character sets.

ASCII

ASCII was the first character set to be used on small computers. In fact, all of the other sets described
here use ASCII codes as-is for a base. ASCII is a set of 128 characters, numbered from 0 to 127. It was
designed for American English, so it defines only unaccented letters, numbers, punctuation, and control
codes. As long as you only need English text, ASCII works fairly well.

ASCII needs just 7 bits of storage per character, so it was convenient to store each character in a byte. The
last bit was simply ignored. Of course, that meant that the values from 128 to 255 were unused. That void
wouldn't last long.

OEM

OEM is the acronym for "Original Equipment Manufacturer". IBM introduced the IBM PC in 1981. Along
with it came their version of an expanded character set. It's been known as the OEM character set ever
since. In fact, that character set is still the default for the Windows Console Device on the very latest
version of Windows.

The first 128 characters are identical to ASCII. However, IBM decided to use the remaining 128 characters
for other purposes. They defined them for the most common accented characters, line drawing characters,
and special symbols and punctuation. Of course, this was an improvement, but many characters in non-
English languages were unavailable. This led to new OEM character sets (German, Cyrillic...), with many
different interpretations for that second set of character codes. Of course, this caused a good amount of
confusion trying to understand the contents of strings from an external source. Not an ideal solution.

ANSI

Some time later, the ANSI character set evolved. Once again, the first 128 characters are the same as
ASCII. But there are many ways to handle the second set. The decoding system, called "code pages",
handles these items accurately, even if cumbersome. In reality, many languages need hundreds or
thousands of characters. Clearly, the character codes can't possibly be squeezed into a byte. The
solution? Multi-byte characters. Some characters are one byte, and some are more. If a particular
character needs a multi-byte representation, a special ID byte is inserted, followed by the identifying data.
 A multi-byte character may consist of two, three, or even more bytes. That special ID byte determines

PowerBASIC Compiler for Windows Version 10

124 / 2126

what data will follow.

Multi-byte ANSI imposes a unique problem. You can't just scan your way through a string, byte-by-byte.
 Some characters are multi-byte! You must use care to treat them accurately, or your data will be
destroyed. A word of warning... it's virtually impossible to scan backwards through a multi-byte string.
 That's because ANSI uses the same numeric values for both the ID byte, and the data which follows. When
you look backwards and find an ID value, you can't tell if it's an ID or data. It just won't work well.

UNICODE

Unicode was created to represent every language into a single character set. While there are several
Unicode formats, we'll concentrate on the only two varieties with real usage: UTF-8 and UTF-16.
 PowerBASIC uses UTF-16, which stores each character as a two-byte unsigned word. UTF-16 is used
natively by Windows, COM, Visual Basic, Java, etc.

UTF-16 UNICODE

Just as before, the first 128 values represent ASCII characters. Other characters, primarily in non-English
languages, have been assigned the higher values. At this time, and for the foreseeable future, UTF-16 is
the character set of choice for all of your applications. It is the best way to store all of your data to keep it
secure and understandable.

UTF-8 UNICODE

UTF-8 is somewhat of a hybrid between ANSI and UTF-16. It is used when the size of the text is of utmost
importance. That makes it an obvious choice for downloading from the Internet. UTF-8 uses the same
single byte characters for ASCII values. Further, it even uses the identical algorithm for multi-byte character,
with one glowing exception: the ID byte and the data bytes are always unique! With that knowledge in
hand, it is possible to scan backwards from any position. PowerBASIC does not support the use of UTF-8
within standard code. That's because UTF-8 is much slower in performance than UTF-16. That said,
PowerBASIC does provide conversion functions to/from UTF-8, so you have it readily available for all of your
Internet applications. UTF-8 files are byte orientated and should be opened as an ANSI file (CHR=ANSI).

See Also

#OPTION metastatement

ACODE$ function

ChrToOem$ function

ChrToUtf8$ function

OemToChr$ function

UCODE$ function

UCODEPAGE statement

Utf8ToChr$ function

Dynamic (Variable-length) strings ($)

FIELD strings

Fixed-length strings

Nul-Terminated Strings

Dynamic (Variable-length) strings ($)

Dynamic (Variable-length) strings ($) ($$)
Dynamic

PowerBASIC Compiler for Windows Version 10

125 / 2126

 variables (also known as variable-length) may contain an arbitrary number of characters. Internally,
each variable uses four bytes that contain a handle number, which is used to identify and locate
information about the string. The type-specifier character is $ for an ANSI dynamic string, or $$ for a
wide Unicode string.
String variables are automatically declared when the variable name is followed by one or two dollar signs ($).
 You can also declare dynamic string variables using the STRING or WSTRING keywords with the DIM
statement. For example:

 DIM MyStr AS WSTRING

PowerBASIC allocates strings using the Win32 OLE string engine. This allows you to pass strings from
your program to DLLs, or API calls that support OLE strings. The address of the contents of a non-empty
string can be obtained with the STRPTR function. The address of the string handle can be obtained with
VARPTR function. An empty (null) string may not return a valid STRPTR value. Dynamic strings move in
memory with each assignment statement: that is, STRPTR will return a different address when the content
of the string is changed. However, the associated string handle obtained by VARPTR stays constant for the
duration of the life (scope) of the string variable.

LOCAL dynamic string memory and handles are released when the associated Sub, Function, Method, or
Property ends. Subsequent calls to a routine will result in new storage locations for both the handle and the
string data. The address of the handle of a STATIC or GLOBAL dynamic string stays constant for the
duration of the module. Dynamic strings and field strings cannot be part of UDT (User-Defined Type) or
UNION structures. In C/C++, a dynamic wide string ($$) is referred to as a BSTR data type.

See Also

Nul-Terminated Strings

FIELD strings

Fixed-length strings

String expressions

FIELD strings

FIELD strings
Field strings are a special form of dynamic string, which have all the capabilities of a dynamic string, but
may also represent a defined part of a random file buffer or a defined part of a dynamic string.

Field strings must always be declared using DIM, INSTANCE, LOCAL, STATIC, GLOBAL, or THREADED.
They may be used in the same manner as a dynamic string variable, or they can be bound to a file buffer for
an open random-access file or a dynamic string using a corresponding FIELD statement. Each field string
occupies sixteen bytes of memory, and requires slightly more general overhead than a regular dynamic
string variable. As with other strings, FIELD variables may be declared as either ANSI characters (FIELD) or
wide, Unicode characters (WFIELD).

When used with a file

A random-access file buffer is automatically created for use when GET or PUT statements are used without
a target variable. In this case, the file data is read or written using this file buffer, and the buffer is accessed
with one or more field strings.

If a field is defined by a single field (nSize) parameter, it represents the length of the field, with the start
position implied by the preceding field within the statement. If two parameters are used, they represent the
start (nStart) and end (nEnd) positions, indexed to one.

If a string value shorter than the declared size is assigned to a field string, it is padded with blank spaces
and placed into the file buffer. There is no requirement to use LSET for assignment. When used with a file

PowerBASIC Compiler for Windows Version 10

126 / 2126

buffer, the field string is only valid when the nominated file is open. Once the file has been closed, field
strings bound to the file buffer will be empty (zero length), rather than a string of the length defined in the
FIELD statement. For example:

LOCAL fld1, fld2, fld3 AS FIELD
OPEN "test.dat" FOR RANDOM AS #1 LEN = 30
FIELD #1, 5 AS fld1, 10 AS fld2, 15 AS fld3
fld1 = "Bob" ' Stores "Bob "
CSET fld2 = "Zale" ' Stores " Zale "
RSET fld3 = "#1" ' Stores " #1"
? STR$(LEN(fld1)) ' Displays 5
? STR$(LEN(fld2)) ' Displays 10
? STR$(LEN(fld3)) ' Displays 15
CLOSE #1
? STR$(LEN(fld1)) ' Displays 0

When used with a dynamic string

A field variable bound to a dynamic string works very much like a

, so the programmer must use care in field variable selection. For example, if you bind a GLOBAL
FIELD variable to a LOCAL string variable, then attempt to reference the global string after the local is
destroyed (i.e., released when the owning Sub/Function/Method/Property exits), a fatal exception error
(GPF) is likely to occur. The same could happen after an array has been erased, or a REDIM is used
to change the memory allocation. To avoid problems with scope, it is suggested that field variables be
bound only with strings within the same scope (LOCAL, GLOBAL, etc.).
In addition, the dynamic string must contain data for the bound field strings to reference the data. For
example:

LOCAL x$, sFirst AS FIELD, sSecond AS FIELD
FIELD x$, 3 AS sFirst, 3 AS sSecond
x$ = ""
? STR$(LEN(sFirst)) ' Displays 0 since x$ is empty
x$ = SPACE$(6) ' Allocate data to the string
sFirst = "111"
sSecond = "222"
? STR$(LEN(sFirst)) ' Displays 3 as x$ now contains data

Field strings and dynamic strings cannot be part of UDT (User-Defined Type) or UNION structures.

See Also

Nul-Terminated Strings

Dynamic (Variable-length) strings ($)

Fixed-length strings

String expressions

Fixed-length strings

Fixed-length strings
As their name implies, fixed-length

 have a pre-defined length, and any attempt to assign a string longer than the defined length will result in
truncation. If you assign a string to a fixed-length string that is shorter than the defined length, the string
will be padded on the right with spaces. The major difference between dynamic strings and fixed-length
strings is that once defined, the length of a fixed-length string cannot be changed. It is "fixed" for the

PowerBASIC Compiler for Windows Version 10

127 / 2126

duration of program execution.
You declare fixed-length string variables using STRING * x (for ANSI characters) or WSTRING * x (for WIDE
characters). For example

DIM MyStr1 AS STRING * 10 ' occupies 10 bytes
DIM MyStr2 AS WSTRING * 10 ' occupies 20 bytes

The declared length refers to the number of characters, not the number of bytes. Unlike dynamic strings,
the length of fixed-length strings is determined at compile-time, not run-time. In addition, unlike dynamic
strings, fixed-length strings do not use handles. When you pass a fixed-length string to a

 as a parameter, you are actually passing a to the string data.
In PowerBASIC (and most versions of BASIC), new fixed-length strings (and all variables) are initialized by
filling with nuls, CHR$(0). When you assign a value, that text is padded to the right with the fill character,
which defaults to a space).

A declaration of a fixed-length string or fixed-length string pointer must explicitly state the length of the
variable, because the compiler must know it to allocate memory, and to pad the variable with spaces upon
assignment.

The address of the contents of a fixed length string can always be obtained with the VARPTR function.
 LOCAL fixed-length string memory is released when the associated Sub, Function, Method, or Property
ends. Subsequent calls to the routine will result in new storage locations for the fixed-length string data;
however, the location of a LOCAL fixed-length string does not move until the string memory is released when
the routine terminates.

LOCAL fixed-length strings are created on the stack frame, so LOCAL fixed-length strings will be limited to
available stack space. Typically this is less than 1 MB unless a larger stack frame has been allocated with
the #STACK metastatement. If larger fixed-length strings are required, it is advisable to make them
INSTANCE, STATIC, or GLOBAL, since those are not created within the stack frame.

The address of the contents of STATIC and GLOBAL fixed-length strings stays constant for the duration of
the module. STATIC and GLOBAL Scalar (non-array) fixed-length strings may be up to 16,777,216 bytes
each.

See Also

Nul-Terminated Strings

Dynamic (Variable-length) strings ($)

FIELD strings

String expressions

Nul-Terminated Strings

Nul-Terminated Strings
A Nul-Terminated

 is called a STRINGZ with ANSI characters, or WSTRINGZ with WIDE, Unicode characters. When
declared with ANSI characters, they are commonly known as ASCIIZ strings. You can think of
NulTerm strings as fixed-length strings where the last character is always a nul (binary zero) terminator.
 This allows the data to be variable length, but only up to a predefined maximum. Any attempt to assign
a string longer than the defined length will result in truncation.
If you assign a string that is shorter than the defined length, the string will not be padded on the right. The
contents of the remainder of the string buffer are undetermined. Because a NulTerm string requires a NUL
terminator, they are usually defined with a length of at least two characters.

You declare STRINGZ variables using the STRINGZ or WSTRINGZ keywords with the DIM statement. For
example:

PowerBASIC Compiler for Windows Version 10

128 / 2126

 DIM MyStr1 AS STRINGZ * 40
 DIM MyStr2 AS WSTRINGZ * 40

This creates a 40 byte STRINGZ (ASCIIZ) string named MyStr1, and an 80 byte WSTRINGZ string named
MyStr2. The declared size always refers to the number of characters, not the number of bytes. The number
of characters you can actually store is always one less than the defined length of the string. One character
position is used to hold the NUL terminator. Therefore, MyStr1 and MyStr2 can each hold up to 39
characters.

When assigning string data to a NulTerm string, the assignment will stop if an embedded CHR$(0) (nul) is
encountered. For example:

 DIM a AS STRING
 DIM b AS STRINGZ * 10
 a = "ABC" + CHR$(0) + "DEF"
 b = a ' b will contain "ABC"

Like Fixed-Length strings, the length of NulTerm strings is determined at compile-time, not run-time. In
addition, unlike dynamic strings, NulTerm strings do not use handles. When you pass a NulTerm string to a

 as a parameter, you are actually passing a pointer to the string data.
The address of the contents of a NulTerm string can always be obtained with the VARPTR function. LOCAL
NulTerm string memory is released when the enclosing procedure ends. Subsequent calls to the procedure
will result in new storage locations for them. However, the location of a LOCAL STRINGZ or WSTRINGZ
does not move until the string memory is released when the procedure terminates.

LOCAL NulTerm strings are created on the stack frame, so they will be limited to the available stack space.
 Typically this is less than 1MB, unless a larger stack frame has been allocated with the #STACK
metastatement. If larger NulTerm strings are required, it is advisable to make them INSTANCE, STATIC or
GLOBAL since those are not created within the stack frame.

The address of STATIC and GLOBAL NulTerm strings stays constant for the duration of the module. STATIC
and GLOBAL Scalar (non-array) NulTerm strings may be up to 16,777,216 bytes each.

See Also

Dynamic (Variable-length) strings ($)

FIELD strings

Fixed-length strings

String expressions

String expressions

String expressions
A string expression consists of string literals,

, and string functions, optionally combined with the concatenation operators (+ or &). String
expressions always produce strings as their result. Note that when the ampersand (&) is used as a
string concatenation operator, it must be surrounded by white space, to differentiate it from the Long-
integer type-specifier (i.e., LongVar&) and the number base prefix (i.e. &H0FF, &O77). Examples of
string expressions include:

"Cats and dogs" ' string constant
firstname$ ' string variable
firstname$ + lastname$ ' string concatenation
a$ = "Cats " & "and " & "dogs" ' string concatenation
LEFT$(a$ + z$,7) ' string function
a$ + MID$("Cats and dogs",5,3)
RIGHT$(MID$(a$ + z$,1,6),3)

PowerBASIC Compiler for Windows Version 10

129 / 2126

Note that fixed-length strings are always a fixed length (defined in the corresponding DIM statement), string
concatenation involving these strings works differently than you might expect. For instance, the following
program fragment:

DIM Greeting AS STRING * 40
Greeting = "hello"
Greeting = greeting + "there"

This appends (adds) the five-character string "there" to the 40-character fixed-length string ("hello", followed
by 35 spaces), but the result is truncated to 40 characters (the predefined length of the string variable
Greeting), which causes the newly appended string to be lost. One solution to this problem is to use the
RTRIM$ function to remove the trailing spaces from "hello" before appending "there":

DIM Greeting AS STRING * 40
Greeting = "hello"
Greeting = RTRIM$(Greeting) + " there"

Variables of user-defined types may be used as string operands without any need to specify the individual
UDT members:

TYPE MyType
 ItemOne AS STRING * 10
 ItemTwo AS STRING * 10
END TYPE
DIM SomeData AS MyType
SomeData.ItemOne = "hello"
SomeData.ItemTwo = "world!"
X$ = "Look at this!" + $CRLF + SomeData

See Also

Nul-Terminated Strings

Dynamic (Variable-length) strings ($)

FIELD strings

Fixed-length strings

String Operations

String Operations Commands

String Operations
The following functions manipulate and manage

 data:
ACODE$ Translate a Unicode string into an ANSI string.
ARRAY ASSIGN Assign a number of values to successive elements of an array.
ARRAY DELETE Delete a single item from a given array.
ARRAY INSERT Insert a single item into a given array.
ARRAY SCAN Scan all or part of an array for a given value.
ARRAY SORT Sort all or part of a given array.
BIN$ Return a string with the binary (base 2) representation of a value.
BITS$ Copies string contents without modification.
BUILD$ Concatenate multiple strings with high efficiency.
CHOOSE$ Return one of several values, based upon the value of an index.
CHR$ Convert one or more character codes into ASCII character(s).
CHR$$ Convert one or more character codes into Unicode character(s).
CHRBYTES Determine the size of a single character in a string variable.
ChrToOem$ Translates a string of ANSI/WIDE characters to OEM byte characters.
ChrToUtf8$ Translates a string of ANSI/WIDE characters to UTF-8 byte characters.

PowerBASIC Compiler for Windows Version 10

130 / 2126

CLIP$ Deletes characters from a string.
CLSID$ Return a 16-byte (128-bit) GUID string containing a CLSID.
COMM LINE Receive a CR/LF terminated "line" of data from a serial port.
COMM PRINT Send a "line" of binary data through a serial port.
COMM RECV Receive binary data from a serial port.
COMM SEND Send a string of binary data through a serial port.
COMMAND$ Return the command-line used to start the program.
CSET Center a string within the space of another string or UDT.
CSET$ Return a string containing a centered (padded) string.
CURDIR$ Return the current directory for a given drive.
DATA Declare an array of constants to be read by READ$.
DATACOUNT Return the total count of the number of local data items.
DATE$ Set and retrieve the system date.
DEC$ Convert an integral value to a decimal string.
DIM Declare and dimension arrays, scalar variables, and pointers.
DIR$ Return a filename that matches the given mask.
DIR$ CLOSE Force the release the operating system FindNext handle.
ENVIRON Modify the current program's environment table..
ENVIRON$ Retrieve strings from the operating system's environment table.
ERASE Deallocate array memory.
ERL$ Return the last label, line number, or procedure name executed prior to the most recent error.
ERROR$ Return a string containing the descriptive name of an error.
EXTRACT$ Return up to the first occurrence of a specified character.
EXE Return the path and/or name of the executing program.
FIELD Bind a field string variable to a particular sub-section of a random file buffer or a dynamic string

variable.
FIELD RESET Reset the FIELD string to a nul (zero-length) dynamic string.
FIELD STRING Change the FIELD string to a dynamic string, but first assigns the current sub-section data to it.
FILENAME$ Return the file-system name of an open file.
FORMAT$ Return a string containing formatted numeric data.
FUNCNAME$ Return the name of the current Sub/Function/Method/Property.
GET Read a record from a random-access file.
GET$ Read a string from a file opened in binary mode.
GET$$ Reads WIDE string data from a file opened in binary mode.
GRAPHIC SPLIT Splits a string into two parts for display on a graphic target.
GUID$ Return a 16-byte (128-bit) Globally Unique Identifier GUID.
GUIDTXT$ Return a 38-byte human-readable GUID/UUID string.
HEX$ Hexadecimal (base 16) string representation of an argument.
IIF$ Return one of two values based upon a True/False evaluation.
INPUT# Load variables with data from a sequential file.
INPUTBOX$ INPUTBOX$ displays a dialog box containing a prompt.
INSTR Search a string for the first occurrence of a character or string.
ISNOTNULL Determine if a string is not nul (contains 1 or more characters).
ISNULL Determine if a string is nul (zero-length).
IStringBuilderA.Add Appends an ANSI string to the object.
IStringBuilderA.Capacity <Get> Retrieves the size of the internal buffer.
IStringBuilderA.Capacity <Set> Sets the size of the internal buffer.
IStringBuilderA.Char <Get> Returns the numeric character code of the character at the specified position.
IStringBuilderA.Char <Set> Changes the numeric character code of the character at the specified position.
IStringBuilderA.Clear All data in the object is erased.
IStringBuilderA.Delete Deletes a specified number of characters starting at a specified position.
IStringBuilderA.Insert Inserts a string at a specified position.
IStringBuilderA.Len Returns the number of characters stored in the object.
IStringBuilderA.String The ANSI string stored in the object is returned to the caller.
IStringBuilderW.Add Appends an WIDE string to the object.
IStringBuilderW.Capacity <Get> Retrieves the size of the internal buffer.

PowerBASIC Compiler for Windows Version 10

131 / 2126

IStringBuilderW.Capacity <Set> Sets the size of the internal buffer.
IStringBuilderW.Char <Get> Returns the numeric character code of the character at the specified position.
IStringBuilderW.Char <Set> Changes the numeric character code of the character at the specified position.
IStringBuilderW.Clear All data in the object is erased.
IStringBuilderW.Delete Deletes a specified number of characters starting at a specified position.
IStringBuilderW.Insert Inserts a string at a specified position.
IStringBuilderW.Len Returns the number of characters stored in the object.
IStringBuilderW.String The WIDE string stored in the object is returned to the caller.
JOIN$ Return a string consisting of all of the strings in a string array.
LCASE$ Return a lowercase version of a string argument.
LEFT$ Return the left-most n characters of a string.
LEN Return the logical length of a variable, UDT, or Union.
LET Assign a value to a variable.
LET (with Types) Assign data to a user-defined type variable.
LET (with Variants) Assign a value or an object reference to a variant variable.
LINE INPUT# Read line(s) from a sequential file into a string variable or array.
LPRINT Output text and data to a printer device.
LPRINT$ Return the current printer device used for LPRINT operations.
LSET Left-align a string within the space of another string or UDT.
LSET$ Return a string containing a left-justified (padded) string.
LTRIM$ Return a string with leading characters or strings removed.
MAX$ Return the argument with the largest (maximum) value.
MCASE$ Return a mixed case version of a string argument.
MID$ Return a portion of a string.
MID$ Replace characters in a string with characters from another string.
MIN$ Return the argument with the smallest (minimum) value.
MKBYT$ Convert a Byte value into a binary encoded string.
MKCUR$ Convert a Currency value into a binary encoded string.
MKCUX$ Convert an Extended Currency value into a binary encoded string.
MKD$ Convert a Double-precision value into a binary encoded string.
MKDWD$ Convert a Double-word value into a binary encoded string.
MKE$ Convert an Extended-precision value into a binary encoded string.
MKI$ Convert a integral value into a binary encoded string.
MKL$ Convert a Long-integer value into a binary encoded string.
MKQ$ Convert a Quad-integer value into a binary encoded string.
MKS$ Convert a Single-precision value into a binary encoded string.
MKWRD$ Convert a Word value into a binary encoded string.
MKDIR Create a subdirectory/folder (like the DOS MKDIR command).
NUL$ Return a string containing a specified number of $NUL characters.
OBJRESULT$ Returns a string which describes an OBJRESULT (hResult) code.
OCT$ Return a string that is a octal (base 8) representation of a value.
OemToChr$ Translates a byte string of OEM characters into ANSI/WIDE characters.
PARSE Parse a string and extract all delimited fields into an array.
PARSE$ Return a delimited field from a string expression.
PARSECOUNT Return the count of delimited fields in a string expression.
PATHNAME$ Parse a path/file name to extract component parts.
PATHSCAN$ Find a file on disk and return the path and/or file name parts..
PEEK$ Returns consecutive 1-byte characters starting at a specific memory location.
PEEK$$ Returns consecutive 2-byte wide characters starting at a specific memory location.
POKE$ Store a sequence of bytes starting at a specific memory location.
POKE$$ Store a sequence as 2-byte wide characters starting at a specific memory location.
PRINT# Write a complete array to a sequential file.
PROGID$ Return the alphanumeric PROGID string (text) of a given CLSID.
PUT Write a record to a random-access file or variable to a binary file.
PUT$ Writes an ANSI string to a file opened in binary mode.
PUT$$ Writes a WIDE Unicode string to a file opened in binary mode.

PowerBASIC Compiler for Windows Version 10

132 / 2126

READ$ Retrieve string data from a local DATA list.
REGEXPR Scan a string for a matching "wildcard" or regular expression.
REGREPL Scan a "wildcard" match in a string with a new string.
REMAIN$ Returns the portion of a string which follows the first occurrence of a character or group of characters.
REMOVE$ Return a copy of a string with characters or strings removed.
REPEAT$ Return a string consisting of multiple copies of a specified string.
REPLACE Replace all occurrences of one string with another string.
RESET Clear a string, string array subscript, or an entire array.
RESOURCE$ Returns predefined resource data.
RETAIN$ Return a string with all non-specified characters removed.
RIGHT$ Return the rightmost n characters of a string.
RSET Right justify a string into the space of a string variable or UDT.
RSET$ Return a string containing a right-justified (padded) string.
RTRIM$ Return a copy of a string with trailing characters/strings removed.
SHRINK$ Shrinks a string to use a consistent single character delimiter.
SIZEOF Return the total or physical length of any PowerBASIC variable.
SPACE$ Return a string consisting of a specified number of spaces.
SPLIT Splits a string into two parts.
STR$ Return the string representation of a number in printable form.
STRDELETE$ Delete a specified number of characters from a string expression.
STRING$ Returns an ANSI string consisting of multiple copies of a specified character.
STRING$$ Returns a WIDE string consisting of multiple copies of a specified character.
STRINSERT$ Insert a string at a specified position within another string.
STRPTR Return the address of the data held by a variable length string.
STRREVERSE$ Reverse the contents of a string expression.
SWAP Exchange the values of two strings, pointers, or pointer targets.
SWITCH$ Return one item of a series based upon a True/False evaluation.
TAB$ Return a string with TAB characters expanded with spaces.
TALLY Count the number of occurrences of specified characters/strings.
TIME$ Read and/or set the system time.
TRIM$ Return a string with leading and trailing characters removed.
TYPE SET Assign the value of a UDT or string expression to a UDT.
UCASE$ Return an all-uppercase (capitalized) version of a string.
UCODE$ Translate an ANSI string into a Unicode string.
UCODEPAGE Set the default codepage used for ANSI / UNICODE conversions.
UNWRAP$ Removes paired characters from the beginning and end of a string.
USING$ Format string/numeric expressions using a mask string.
Utf8ToChr$ Translates a byte string of OEM characters into ANSI/WIDE characters.
VAL function Returns the

 equivalent of a string argument.
VAL statement Converts a text string to a numeric value with additional information.
VARIANT$ Returns the ANSI dynamic string contained in a Variant variable.
VARIANT$$ Returns the Unicode dynamic string contained in a Variant variable.
VARPTR Return the 32-bit address of a string handle.
VERIFY Determine if each character of a string is in another string.
WRAP$ Adds paired characters to the beginning and end of a string.

Array Data Types

Array Data Types

Array Data Types
It is often useful to treat a set of variables as a group. This lets you perform repetitive operations more
easily. An array is a group of

PowerBASIC Compiler for Windows Version 10

133 / 2126

 or data sharing the same variable name. The individual values that make up an array are called
elements. An element of an array can be used in a statement or expression wherever you would use a
regular string or numeric variable. In other words, each element of an array is itself a variable.
PowerBASIC provides several statements that perform operations on an array as a whole, allowing you to
sort its contents, scan its contents for data that matches a certain condition, and insert data into or delete
data from the existing structure.

You can think of an array as a row of boxes, numbered from zero to a predetermined number: four, in the
example figure below. Each box holds a distinct value, which may or may not differ from the values in the
other boxes. The boxes and their numbers are represented by parentheses surrounding a number; for
example, item%(3) represents box number three of the array item%. Thus, if the value held within box
number 3 is 1952, the statement total%=item%(3) would place the value 1952 into the variable total%.

Dimensioning a dynamic array with DIM or REDIM also clears each element, unless the PRESERVE option
is present. Each element of each numeric array is set to zero; string arrays are set to the null string ("",
length zero). Declaring the name and type of an array, as well as the number and organization of its
elements, is performed by the DIM statement. For example:

DIM payments(55) AS CURRENCYX

…creates an array variable payments, consisting of 56 Extended-currency elements, numbered 0 through
55. Array payments and an Extended-currency variable also named payments are separate variables. If this
is confusing, you'll understand why we suggest that you use different variable names.

See Also

Subscripts

String arrays

Multidimensional arrays

Array storage requirements

Internal representations of arrays

Arrays within User-Defined Types

Array operations

POWERARRAY Object

Subscripts

Subscripts
Individual array elements are selected with subscripts or index numbers, which are Long-integer expressions
within parentheses to the right of an array variable's name. For example, payments(3) and payments(44) are
two of payments 56 elements. Normally, the first element of an array has a subscript value of zero, although
this can be changed with the DIM statement. Some examples follow:

' This DIM statement declares a 56-element array
' with subscript bounds of 0 TO 55.
DIM payments1(55) AS CURRENCY

' This DIM statement declares a 56-element array
' with subscript bounds of 1 TO 56
DIM payments2(1 TO 56) AS CURRENCYX

You must DIM all arrays before you can use them. This is a different approach then that used by some

PowerBASIC Compiler for Windows Version 10

134 / 2126

BASIC dialects, which assume that an array contains 10 elements (0 to 9) if the array is not explicitly
dimensioned.

PowerBASIC allows you to define a range of subscript values rather than just setting an upper limit. The
statement:

DIM clouds(50 TO 60, 25 TO 45) AS LONG

creates the two-dimensional Long-integer array named clouds, containing 231 (11 * 21) elements.
PowerBASIC's subscript range declaration capability allows you to model a programs data structures more
closely to the problem at hand.

For example, consider a program tracking 19th-century birth statistics. This program's central data
structure is a Long-Integer array of 100 elements that contain the number of babies born in each year of the
last century. Ideally, you would create an array that used subscript values equal to the year in which the
births occurred (for example, births(1851) represents how many babies came into the world in 1851), so that
a code passage like:

DIM births(1899) AS LONG
FOR year& = 1800 TO 1899
 INCR Total&, births(year&)
NEXT year&

would be as straightforward as possible. Unfortunately, DIM births(1899) AS LONG creates a 1900-element
array (from 0 to 1899), of which the first 1800 are wasted. Traditionally, BASIC programmers have tackled
this problem by declaring the array as:

DIM births&(99)

and by playing games with subscripts:

FOR year& = 1800 TO 1899
 INCR Total&, births&(year&-1800)
NEXT year&

While this sort of thing works, it complicates things and slows programs down because suddenly there are
100 subtractions that weren't there before. It's better to declare a range, like this:

DIM births&(1800 TO 1899)' array births has subscripts
 ' ranging from 1800 to 1899
FOR year& = 1800 TO 1899
 Total& = Total& + births&(year&)
NEXT year&

DIM birth1&(99) ' Array has 100 elements from 0 TO 99
DIM birth2&(1 TO 99) ' Array has 99 elements from 1 TO 99
DIM birth3&(3 TO 99) ' Array has 97 elements from 3 TO 99

See Also

Array Data Types

String arrays

Multidimensional arrays

Array storage requirements

Internal representations of arrays

Arrays within User-Defined Types

Array operations

POWERARRAY Object

String arrays

PowerBASIC Compiler for Windows Version 10

135 / 2126

String arrays
The elements of

 arrays hold strings instead of . Each string can be a different length. For example DIM words$(50)
creates a sequence of 51 independent string variables:

DIM words$(50)
words$(0) = "Daniel likes cats." ' 18-character string
words$(1) = "" ' a null string
words$(2) = "Nicki is a sweet child." ' 23-character string
' assign more array values here
words$(50) = SPACE$(200) ' 200-character string

See Also

Array Data Types

Multidimensional arrays

Array storage requirements

Internal representations of arrays

Arrays within User-Defined Types

Array operations

POWERARRAY Object

Multidimensional arrays

Multidimensional arrays
Arrays can have one or more dimensions, up to a maximum of eight. A one-dimensional array such as
payments is a simple list of values. A two-dimensional array represents a table of numbers with rows and
columns of information. Some examples of multidimensional arrays are:

DIM one!(15) ' a one-dimensional list
DIM two!(15,20) ' a two-dimensional table
DIM three!(7,9,1) ' an 8 by 10 game board with room in the third
 ' dimension for 2 items: piece type and color

Arrays of four to eight dimensions are possible, but they become more difficult to conceptualize and keep
straight. You can define:

DIM five%(5,5,10,20,3) ' a five-dimensional array

…but it's probably better to redesign this array into several smaller ones with fewer dimensions, or use an
array of User-Defined Types.

See Also

Array Data Types

Subscripts

String arrays

Array storage requirements

Internal representations of arrays

Arrays within User-Defined Types

Array operations

PowerBASIC Compiler for Windows Version 10

136 / 2126

POWERARRAY Object

Array storage requirements

Array storage requirements
A PowerBASIC array may contain up to 4,294,967,295 elements, and the data may occupy as much as all
available memory. However, all individual index numbers must fall within the range of a Long-integer variable
(-2,147,483,648 to +2,147,483,647).

PowerBASIC stores array data in main memory for all array types (including LOCAL arrays). Therefore,
there is no arbitrary array size limit imposed by the amount of free stack space, such as can be
experienced with large LOCAL nul-terminated, and Fixed-length string variables. The availability of main
memory is the prime consideration (typically up to 2 Gb can be used). However, LOCAL arrays do require
the storage of around 128 bytes on the stack for the array descriptor table.

See Also

Array Data Types

Subscripts

String arrays

Multidimensional arrays

Internal representations of arrays

Arrays within User-Defined Types

Array operations

POWERARRAY Object

Internal representations of arrays

Internal representations of arrays
PowerBASIC stores arrays in column-major order: Array(0,0) is first (lowest) in memory, then Array(1,0),
then Array(2,0), and so on through all the rows of the array. After the rows are taken care of, the next
column is stored.

While PowerBASIC supports lower boundary values that are non-zero, PowerBASIC generates
the most efficient code if the lower boundary parameter is omitted (i.e., the array uses the
default lower boundary of zero).

Array boundary values can be obtained at run-time via the LBOUND and UBOUND functions. Descriptive
attributes of an array can be retrieved with the ARRAYATTR function. These attributes include such
information as the

 and the number of dimensions, etc.

See Also

Array Data Types

Subscripts

String arrays

PowerBASIC Compiler for Windows Version 10

137 / 2126

Multidimensional arrays

Array storage requirements

Arrays within User-Defined Types

Array operations

POWERARRAY Object

Arrays within User-Defined Types

Arrays within User-Defined Types
In prior versions of this compiler, arrays could not be part of a UDT structure. However, we now support both
one and two-dimensional arrays of variables that have a fixed-length (for each element) - this includes nul-
terminated strings, fixed-length strings, and all numeric variable classes. Individual arrays within a UDT may
be up to 16 Megabytes each (although UDTs themselves are limited to 16 Megabytes).

Two-dimensional arrays within Types work exactly as do any other array in PowerBASIC, except that their
dimensions are specified by positive numeric constant values, and are therefore not dynamically alterable.
That is, the dimension sizes must be specified with numeric equates or numeric literal values, and these
cannot be altered at run-time.

Like conventional arrays, the default lower array boundary is zero, but positive non-zero values may be used
to specify a specific range of subscript index values for the array, separated from the upper array boundary
subscript with the TO keyword. Additionally, both the lower and upper subscript index values must be zero
or greater (ie, negative subscript values are not permitted). Examples of valid syntax follow:

TYPE MYTYPE
 id AS INTEGER ' Scalar UDT member
 Styles(6) AS DWORD ' 7 elements (0 TO 6)
 Yrs(1980 TO 2010) AS LONG ' 31 elements
 Team(100 TO 101) AS BYTE ' 2 elements
 Rating(1 TO 10) AS DWORD ' 10 elements
 X(1 TO 5, 0 TO 5) AS EXT ' 30 elements (5x6)
 Y(4,3) AS QUAD ' 20 elements (5x4)
END TYPE

See Also

Array Data Types

Subscripts

String arrays

Multidimensional arrays

Array storage requirements

Internal representations of arrays

Array operations

POWERARRAY Object

Array operations

PowerBASIC Compiler for Windows Version 10

138 / 2126

Array Operations
The following functions can be used to manipulate and manage arrays:

#DEBUG ERROR Control generation of error checking code
#DIM Specify if variables must be declared before use
ARRAY ASSIGN Assign a number of values to successive elements of an array
ARRAY DELETE Delete a single item from a given array
ARRAY INSERT Insert a single item into a given array
ARRAY SCAN Scan all or part of an array for a given value
ARRAY SORT Sort all or part of a given array
ARRAYATTR Return descriptive attributes of a given array
BIT CALC Set or reset a bit in an implied bit-array
BIT Return the value of a particular bit in an implied bit-array
BIT Manipulate individual bits of an implied bit-array
DATA Declare an array of constants to be read by READ$
DATACOUNT Return the total count of the number of local data items
DIM Declare and dimension arrays, scalar variables, and pointers
ERASE Deallocate array memory
FILESCAN Rapidly scan an open file, before loading into an array with GET
GET Read a complete array from a binary file
IPowerArray.ARRAYBASEReturns the address of the first element of the array.
IPowerArray.ARRAYDESCReturns the address of the SAFEARRAY descriptor.
IPowerArray.ARRAYINFO
<Get>

Retrieves the info string, if one is present.

IPowerArray.ARRAYINFO
<Set>

Assigns the info string.

IPowerArray.CLONE An exact duplicate of the SafeArray is created, and stored in the specified
PowerArray object.

IPowerArray.COPYFROM
VARIANT

An exact copy is made of the specified SafeArray and stored in this PowerArray
object.

IPowerArray.COPYTOVAR
IANT

An exact copy is made of the SafeArray in this object and stored in the
specified Variant.

IPowerArray.DIM Dimensions (creates) a new array.
IPowerArray.ELEMENTPT
R

Retrieves the address of the specified data element.

IPowerArray.ELEMENTSIZ
E

Retrieves the storage size (in bytes) of each data element of the array.

IPowerArray.ERASE Destroys the contained array and empties the object.
IpowerArray.LBOUND Retrieves the lower bound number for the dimension specified.
IPowerArray.LOCK Increments the lock count of the SAFEARRAY.
IPowerArray.MOVEFROM
VARIANT

Transfers ownership of the specified SafeArray to the PowerArray object.

IPowerArray.MOVETOVAR
IANT

Transfers ownership of the SafeArray contained in this PowerArray object to a
variant parameter.

IPowerArray.REDIM Allows the SafeArray to be erased and re-dimensioned to a new size.
IPowerArray.REDIMPRES
ERVE

Allows the least significant (rightmost) bound to be changed to a new size. The
remaining data items in the array are preserved.

IPowerArray.RESET All elements in the SafeArray are set back to their initial, default value.
IPowerArray.SUBSCRIPTSRetrieves the number of dimensions (subscripts) for this array.
IPowerArray.UBOUND Retrieves the upper bound number for the dimension specified.
IPowerArray.UNLOCK Decrements the lock count of the SAFEARRAY.
IPowerArray.VALUEGET Retrieves the value of the specified array element.
IPowerArray.VALUESET Assigns the specified value to the specified array element.
IPowerArray.VALUETYPE Retrieves the %VT code which describes the data contained in this array.
JOIN$ Return a

 consisting of all of the strings in a string array

PowerBASIC Compiler for Windows Version 10

139 / 2126

LBOUND Return the lowest subscript of an array's specific dimension
LET Assign a Variant to an array or an array to a Variant
LINE INPUT# Read line(s) from a sequential file into a string variable or array
MAT Matrix calculations on

 arrays
PARSE Parse a string and extract all delimited fields into an array
PRINT# Write a complete array to a sequential file
PUT Write a complete array to a binary file
READ$ Retrieve string data from a local DATA list
REDIM Declare dynamic arrays, allocate, reallocate, deallocate memory
RESET Set an array subscript or an entire array to zero or null/empty
UBOUND Return the highest subscript of an array's specific dimension

POWERARRAY Object

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206

PowerBASIC Compiler for Windows Version 10

140 / 2126

 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

PowerBASIC Compiler for Windows Version 10

141 / 2126

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

PowerBASIC Compiler for Windows Version 10

142 / 2126

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

User-Defined Types and Unions

User-Defined Types (UDTs)

User-Defined Types (UDTs)
Arrays are useful when you need to treat a set of similar variables as a unit. For instance, ten test scores
or ten student names. But what if you need to store several unrelated data types and be able to treat them
as a unit? That is where User-Defined Types come in. When you define a User-Defined Type (UDT), you
are actually defining a template for a new variable Type.

Once created, you can define as many variables of your new Type as you please. Moreover, since User-
Defined Types can be associated with a random file's buffer, this provides you with a whole new way to
access your random files.

PowerBASIC's User-Defined Type is similar to a C struct or Pascal record. The elements of a User-Defined
Type may include any of PowerBASIC's data types, with the exception of dynamic (variable-length) strings,
field strings, and arrays of dynamic strings.

To get an idea of the power of the User-Defined Type, imagine you are a teacher who needs a program to
keep track of student grades. Since your school is on a very tight budget (and what schools aren't these
days?), you decide to write the program yourself in PowerBASIC. For each student in the class you need to
track the following information:

· The student's name

· A student number

· A mailing address

· The name and phone of the person to contact in case of an emergency

· The relationship of the contact person to the student

Currently these records are being kept in a small file box. The information about each student is contained
on a single file card. How do you transfer this information to the computer? Simple. Define a Student
Record Type that will contain all the information about a single student.

The variables you create as User-Defined Types are often called records or record variables, since each
variable of that Type contains one record, or one set of related information. The individual elements are
referred to as fields or members. In the example above, each set of student information is a record, and
each piece of information within that record (the last name for example) is a field.

See Also

Accessing the fields of a User-Defined Type

PowerBASIC Compiler for Windows Version 10

143 / 2126

Nesting User-Defined Types

Arrays within User-Defined Types

Using arrays of User-Defined Types

Using User-Defined Types with procedures and functions

Storage requirements and restrictions

Unions

Defining User-Defined Types

Defining User-Defined Types
The definition of a User-Defined Type begins with the reserved word TYPE and ends with the keywords END
TYPE. In between, you define the names and

of the member elements (fields) that are to be part of the new Type. For example:
TYPE StudentRecord
 LastName AS STRING * 20 ' A 20-character string
 FirstName AS STRING * 15 ' A 15-character string
 IDnum AS LONG ' Student ID, a Long-integer
 Contact AS STRING * 30 ' Emergency contact person
 ContactPhone AS STRING * 14 ' Their phone number
 ContactRel AS STRING * 8 ' Relationship to student.
 AverageGrade AS SINGLE ' Single-precision % grade
END TYPE

Remember that the definition of a User-Defined Type does not set aside memory for storing data of that
Type. Rather, it defines a template for the new Type StudentRecord. Then when the compiler encounters a
statement declaring (or creating) a variable of the new Type, it will "know" how many bytes of storage to set
aside for the variable. In order to use this new Type, you must declare variables of that Type with the DIM
statement:

DIM Student AS StudentRecord

See Also

User-Defined Types (UDTs)

Accessing the fields of a User-Defined Type

Nesting User-Defined Types

Arrays within User-Defined Types

Using arrays of User-Defined Types

Using User-Defined Types with procedures

Storage requirements and restrictions

Unions

Accessing the fields of a User-Defined Type

Accessing the fields of a User-Defined Type
To work with the individual fields within a record variable, separate the field name from the variable name with
a period. Here are some examples using the Student variable in the above DIM statement:

Last$ = Student.LastName
Message$ = "Id number is: " + STR$(Student.IdNum)
Student.FirstName = "Bob"

PowerBASIC Compiler for Windows Version 10

144 / 2126

Student.LastName = "Smith"
Fullname$ = Student.LastName + " " + Student.FirstName
Fullname$ = RTRIM$(Student.LastName) + ", " + RTRIM$(Student.FirstName)

Note that the last two statements above produce slightly differing results. The former produces a string that
contains the text plus any $SPC (space) characters that pad the text in each of the Student.LastName and
Student.FirstName members. Comparatively, the latter statement returns a string with these padding
characters removed. In many cases, it can be easier to use a nul-terminated string members to alleviate
the need to frequently trim such fixed-length strings, but allowance must be made for the additional $NUL
terminator byte required by nul-terminated strings.

See Also

User-Defined Types (UDTs)

Defining User-Defined Types

Accessing the fields of a User-Defined Type

Nesting User-Defined Types

Arrays within User-Defined Types

Using arrays of User-Defined Types

Using User-Defined Types with procedures

Storage requirements and restrictions

Unions

Nesting User-Defined Types

Nesting User-Defined Types
The fields within a User-Defined Type can be made up of other User-Defined Types. Just like a set of
Chinese boxes, with each box containing a smaller box, you can nest one User-Defined Type within
another. The result is that you create data structures that have a hierarchy similar to the directory tree
structure of your hard drive.

Instead of storing the student names as two separate fields, we could instead define a Type called
NameRec as follows:

TYPE NameRec
 Last AS STRING * 20
 First AS STRING * 15
 Initial AS STRING * 1
END TYPE

Then, when we define our Student Record Type, we can define the field containing the individual student's
name as NameRec:

TYPE StudentRecord
 FullName AS NameRec
 IdNum AS LONG
 Contact AS NameRec
 ContactPhone AS STRING * 14
 ContactRel AS STRING * 8
 AverageGrade AS SINGLE
END TYPE

You could, of course carry this idea a step further, and define other components of the student record as
nested records. For instance, a ContactRecord or even a PhoneRec but we'll leave that refinement up to
you. To access the fields of a nested record, simply extend the dot notation. Just as the backslash (\) is
used to separate the individual subdirectory names in a path (i.e., C:\PROJECTS\PROGRAM), the period is
used within record variable names to separate the member elements from the base Type. For instance:

PowerBASIC Compiler for Windows Version 10

145 / 2126

StudentRecord.FullName

refers to the FullName field (which happens to be of Type NameRec) within Student Record, and:

StudentRecord.FullName.First

refers to the sub-field First within the FullName field.

You can nest User-Defined Types as deeply as you want to, as long as the entire name used to refer to a
field is within the maximum identifier length of 255 characters. In practical terms however, you probably
would not want to carry nesting beyond two or, at most, three levels. Beyond that, it becomes clumsy,
difficult to remember, and you are more likely to make typing errors. Note that User-Defined Types cannot
contain circular references - for example, a UDT called StudentRecord cannot contain a field of Type
StudentRecord.

See Also

User-Defined Types (UDTs)

Defining User-Defined Types

Accessing the fields of a User-Defined Type

Arrays within User-Defined Types

Using arrays of User-Defined Types

Using User-Defined Types with procedures

Storage requirements and restrictions

Unions

Arrays within User-Defined Types

Arrays within User-Defined Types
In prior versions of this compiler, arrays could not be part of a UDT structure. However, we now support both
one and two-dimensional arrays of variables that have a fixed-length (for each element) - this includes nul-
terminated strings, fixed-length strings, and all numeric variable classes. Individual arrays within a UDT may
be up to 16 Megabytes each (although UDTs themselves are limited to 16 Megabytes).

Two-dimensional arrays within Types work exactly as do any other array in PowerBASIC, except that their
dimensions are specified by positive numeric constant values, and are therefore not dynamically alterable.
That is, the dimension sizes must be specified with numeric equates or numeric literal values, and these
cannot be altered at run-time.

Like conventional arrays, the default lower array boundary is zero, but positive non-zero values may be used
to specify a specific range of subscript index values for the array, separated from the upper array boundary
subscript with the TO keyword. Additionally, both the lower and upper subscript index values must be zero
or greater (ie, negative subscript values are not permitted). Examples of valid syntax follow:

TYPE MYTYPE
 id AS INTEGER ' Scalar UDT member
 Styles(6) AS DWORD ' 7 elements (0 TO 6)
 Yrs(1980 TO 2010) AS LONG ' 31 elements
 Team(100 TO 101) AS BYTE ' 2 elements
 Rating(1 TO 10) AS DWORD ' 10 elements
 X(1 TO 5, 0 TO 5) AS EXT ' 30 elements (5x6)
 Y(4,3) AS QUAD ' 20 elements (5x4)
END TYPE

See Also

Array Data Types

PowerBASIC Compiler for Windows Version 10

146 / 2126

Subscripts

String arrays

Multidimensional arrays

Array storage requirements

Internal representations of arrays

Array operations

POWERARRAY Object

Using arrays of User-Defined Types

Using arrays of User-Defined Types
You can create arrays of User-Defined Types just as you can create arrays of

 or or any of PowerBASIC's other data types. For example:
DIM Class(1 TO 30) AS StudentRecord

To access the individual elements of the Class array, you use subscript index values just as you do with any
other array. The third student record is Class(3), for instance. The period separator and the field name
follows the array subscript:

Class(3).FullName.First

This would access the first name of the third student in the class array. Think of it this way: the array is
made up of elements of the Type Student Record, so the subscript belongs with the name of the variable as
a whole.

You can create multidimensional arrays of User-Defined Types just as you can with any other PowerBASIC
data type. The limit on the number of elements and dimensions in such arrays is governed by the same
rules as well: The limits are defined by the amount of data storage required for each element. Additionally,
arrays within structures must contain a static subscript list, defined at compile-time. Therefore, arrays
within structures cannot be redimensioned at run-time.

See Also

User-Defined Types (UDTs)

Defining User-Defined Types

Accessing the fields of a User-Defined Type

Arrays within User-Defined Types

Nesting User-Defined Types

Using User-Defined Types with procedures

Storage requirements and restrictions

Unions

Using User-Defined Types with procedures

Using User-Defined Types with procedures
Subroutines, functions, Methods, and Properties can process User-Defined Types as well as any other data
type. This topic covers the following topics:

PowerBASIC Compiler for Windows Version 10

147 / 2126

· Passing fields as arguments

· Passing records as arguments

· Passing record arrays as arguments

Passing fields as arguments

Members in User-Defined Types that are one of the built-in PowerBASIC types (INTEGER, WORD, STRING,
and so on) can be passed to procedures and functions as if they were simple variables. For example, given
the User-Defined Type PatientRecord, as follows:

TYPE PatientRecord
 FullName AS STRING * 32
 AmountDue AS DOUBLE
 IdNum AS LONG
END TYPE
DIM Patient AS PatientRecord

…you could use a procedure PrintStatement:

SUB PrintStatement(Id AS LONG, AmountPastDue AS DOUBLE)
 ' access Id and AmountPastDue
END SUB

…like this:

CALL PrintStatement(Patient.IdNum, Patient.AmountDue)

Passing records as arguments

You can also write your procedures to accept arguments of User-Defined Types. This is especially useful if
you want to pass many arguments; rather than have a long argument list, you can pass a single User-
Defined Type. For example, given the PatientRecord User-Defined Type discussed in the previous section,
you could write your PrintStatement procedure as follows:

SUB PrintStatement(Patient AS PatientRecord)
 ' access Patient.IdNum and Patient.AmountDue
END SUB

You'd call PrintStatement like this:

CALL PrintStatement(Patient)

Passing record arrays as arguments

Procedures can accept arrays of records as easily as they can accept arrays of other Types. For example,
if you had an array of PatientRecords, each containing a patient record with an amount due, you could write
a function that returns the total amount due for all the patient records in the array:

FUNCTION TotalAmountDue(Patients() AS PatientRecord)
 DIM total AS DOUBLE
 RESET total
 FOR ix = LBOUND(Patients) TO UBOUND(Patients)
 total = total + Patients(ix).AmountDue
 NEXT
 TotalAmountDue = total
END FUNCTION

You might call the function like this:

DIM Patients(1 TO 100) AS PatientRecord
' more code here
x$ = "Total amount due:" + STR$(TotalAmountDue(Patients()))

See Also

User-Defined Types (UDTs)

Storage requirements and restrictions

PowerBASIC Compiler for Windows Version 10

148 / 2126

Unions

Storage requirements and restrictions

Storage requirements and restrictions
You can determine the amount of storage required for a variable of a User-Defined Type using the LEN
function. To determine the requirements for a student record, for example, use:

RecordSize = LEN(Student)

The address of a record variable, as returned by the VARPTR function, is the address in memory of the first
byte of data in the record. You can also obtain the starting address of the fields within the record by
passing the full name of the field (Student.IdNum, for example) to the VARPTR function.

A single UDT structure is limited to 16 MB (16,777,216 bytes). Locally dimensioned UDT structures are
limited to the amount of free stack space available, typically less than 1 MB. If larger UDT structures are
required, use a STATIC or GLOBAL declaration instead (since these are not stored on the stack). The same
rules apply to Unions (and LOCAL fixed-length and nul-terminated strings).

Note that the

 statements cannot be directly used on arrays within UDTs. However, you can use DIM..AT to define
an array (of the same data type) at the address of the UDT array, and employ ARRAY statements on
that array. The ARRAY statements can be used on arrays of UDT structures. An individual array
within a UDT may occupy as much as the full 16 MB UDT size limit.

See Also

User-Defined Types (UDTs)

Unions

Built-in User Defined Types

Built-in User-Defined Types
The compiler provides a set of built-in User-Defined Types, including:

TYPE DispParams
 VariantArgs AS VARIANT
 NamedDispID AS VARIANT
 CountArgs AS DWORD
 CountNamed AS DWORD
END TYPE

DispParams is used internally by the compiler to send parameters to Dispatch methods and properties.

TYPE DirData
 FileAttributes AS DWORD
 CreationTime AS QUAD
 LastAccessTime AS QUAD
 LastWriteTime AS QUAD
 FileSizeHigh AS DWORD
 FileSizeLow AS DWORD
 Reserved0 AS DWORD
 Reserved1 AS DWORD
 FileName AS WStringZ * 260
 ShortName AS WStringZ * 14
END TYPE

PowerBASIC Compiler for Windows Version 10

149 / 2126

DirData is used with the DIR$ function to retrieve file or directory information.

TYPE Point
 x AS LONG
 y AS LONG
END TYPE

Used with various API routines.

TYPE NMHDR
 HwndFrom AS DWORD
 IdFrom AS DWORD
 Code AS LONG
END TYPE

NMHDR is used with CB.NMHDR and contains information about notification messages.

TYPE NMCHAR
 Hdr AS NMHDR
 Ch AS DWORD
 dwItemPrev AS DWORD
 dwItemNext AS DWORD
END TYPE

NMCHAR is used with CB.NMHDR and contains information about a character notification messages.

TYPE NMKEY
 Hdr AS NMHDR
 nVKey AS DWORD
 uFlags AS DWORD
END TYPE

NMKEY is used with CB.NMHDR and contains information about key notification messages.

TYPE NMMOUSE
 Hdr AS NMHDR
 dwItemSpec AS DWORD
 dwItemData AS DWORD
 Pt AS POINT
 dwHitInfo AS LONG
END TYPE

NMMOUSE is used with CB.NMHDR and contains information about key notification messages.

TYPE NMTOOLTIPSCREATED
 Hdr AS NMHDR
 HwndToolTips AS DWORD
END TYPE

NMTOOLTIPSCREATED is used with CB.NMHDR and contains information about %
NM_TOOLTIPSCREATED messages.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG

PowerBASIC Compiler for Windows Version 10

150 / 2126

 LowBound4 AS LONG
END TYPE

PowerBounds is used with a PowerArray Object to dimension the array.

See Also

Built-in numeric equates

Built-in string equates

Built-in RGB Color Equates

Unions

Unions

Unions
If you have ever programmed in Pascal or C, you may be familiar with the concept of a Union. A Union is
similar in some ways to a User-Defined Type. Both have data fields that can be made up of any of
PowerBASIC's data types, including records and other Unions, and except for the UNION keyword, they are
defined the same way. The major difference between User-Defined Types and Unions, is that each field
within a Union occupies the same memory location as all the others.

While the concept may appear abstract, Unions provide an avenue to freely convert data from one format to
another, simply by writing the data into the Union as one data format, and reading the data back as
another. Combining the versatility of a UDT with the flexibility of a Union can extend this functionality
dramatically, such as splitting data into its component parts.

For example, the following definition would create a Union called WordFld and a WordFld variable called
MyVar:

TYPE HiLo
 Lo AS BYTE
 Hi AS BYTE
END TYPE

UNION WordFld
 Whole AS WORD
 Part AS HiLo
END UNION

DIM MyVar AS WordFld

MyVar.Whole = &HBC1F 'assign a value to the entire word
a$ = HEX$(MyVar.Part.Hi) 'returns Hi byte of the word
b$ = HEX$(MyVar.Part.Lo) 'returns Lo byte of the word

When you access the field MyVar.Whole, you are reading the entire contents of the Union as a word. On
the other hand, when you refer to MyVar.Part.Hi, you are referring to the high byte of MyVar.

See Also

User-Defined Types (UDTs)

Union Storage requirements and restrictions

PowerBASIC Compiler for Windows Version 10

151 / 2126

Storage requirements and restrictions

Storage requirements and restrictions
A single Union structure is limited to 16 MB (16,777,216 bytes). Locally dimensioned Union structures are
limited to the amount of free stack space available, typically less than 1 MB. If larger UDT structures are
required, use a STATIC, GLOBAL, or INSTANCE declaration instead, since these are not created on the
stack. The same rules apply to User-Defined Types (and LOCAL fixed-length and nul-terminated strings).
An individual array within a Union may occupy as much as the full 16 MB Union size limit.

See Also

User-Defined Types (UDTs)

Unions

Pointer Data Types

Pointers (@)

Pointers (@)
A pointer is a variable that holds the 32-bit (4 byte) address of code or data located elsewhere in memory. It
is called a pointer because it literally points to that location. The location pointed to is known as the target
of the pointer.

Pointers represent a powerful addition to the BASIC programmer's arsenal. The address is defined at run-
time, so your program can reference any memory location as if it were a standard variable. When a pointer
is used to access a memory location, it is called "indirect addressing".

Pointers are declared using the DIM statement, and the type of the target must be specified. The keywords
PTR and POINTER are synonymous.

DIM i AS INTEGER PTR 'declares i as a pointer to an Integer

or:

DIM i AS INTEGER POINTER

The above example declares i as an Integer pointer. Before it can be used, i must be initialized with an
actual address of a variable (easily done with the VARPTR function; or STRPTR for

). When you assign a value to a pointer variable, you are giving it an address to use later when you wish
to reference the actual target. A pointer's name alone references the pointer variable. A pointer's name
with an at sign (@) prefix, references the pointer's target:

DIM Ptr1 AS BYTE PTR ' declares Ptr1 as a byte pointer
DIM Ptr2 AS BYTE PTR ' declares Ptr2 as a byte pointer
DIM Byte1 AS BYTE ' Declares Byte1 as a byte variable
DIM Byte2 AS BYTE ' Declares Byte2 as a byte variable
Ptr1 = VARPTR(Byte1) ' Ptr1 points to Byte1
@Ptr1 = 36 ' Sets Byte1 to the value 36
Ptr2 = VARPTR(Byte2) ' Ptr2 points to Byte2
@Ptr2 = @Ptr1 + 4 ' Sets Byte2 to 40 (36 + 4)

In summary, when you reference a pointer variable without an at-sign, you are referencing the
32-bit address contained in it. When you precede the name with an at-sign, you are referencing
the target data located at the address "pointed to" by the pointer.

By assigning the address of another pointer to a pointer, we can set up another level of indirection. Pointers
to pointers are useful when setting up linked lists in memory. You can then access the target by adding a
second at-sign in front of the pointer's name:

DIM y AS STRING POINTER

PowerBASIC Compiler for Windows Version 10

152 / 2126

DIM z AS STRING POINTER
DIM TmpStr AS STRING
y = VARPTR(TmpStr) ' y points to TmpStr
z = VARPTR(y) ' z points to y
@y = "A" ' put an "A" in TmpStr
@@z = "B" ' overwrite it with a "B"
Display @y ' display the target value of y

PowerBASIC supports up to 200 levels of indirection. For each level, you add another preceding at-sign to
the pointer name. You can only use the (@) prefix with pointer variables.

A pointer with a value of zero (0) is considered a null-pointer by PowerBASIC. Windows will
generate a General Protection Fault (GPF) if you attempt to access data at an invalid pointer
address. See the section on assembler programming for more information.

The true power of pointers resides in their speed and flexibility. Traditionally, to access memory, a BASIC
programmer had to use combinations of PEEK and POKE. This allowed the programmer to address
memory as bytes. If the target data took any other form, conversion was necessary. Pointers allow you to
address the target data in any fashion you desire, even as a user-defined structure. Moreover, because the
setup of calling PEEK and POKE is no longer necessary, access is much faster.

Let's say that we want to scan all the characters in a buffer, replacing all upper case "A"s with lower case
"a"s. The code might look something like this:

SUB Lower(zStr AS STRING)
 DIM s AS BYTE PTR, ix AS INTEGER
 s = STRPTR(zStr) ' Access the dynamic string directly
 FOR ix = 1 TO LEN(zStr)
 IF @s = 65 THEN @s = 97 ' "A" -> "a"
 INCR s
 NEXT
END SUB

When using a pointer to a structure, the prefix is placed before the structure name when you wish to access
an element of the structure. The structure name by itself refers to its address. This distinction is extremely
important when treating structures as a whole. The following example shows two ways of doing a simple
bubble sort of an array of User-Defined Types. The first uses conventional BASIC methods, the second
uses pointers to illustrate their speed and efficiency.

'-- Example 1 --------------
#COMPILE EXE
#DIM ALL
TYPE NameRec
 Last AS STRING * 20 ' Last name
 First AS STRING * 20 ' First name
END TYPE
FUNCTION PBMAIN () AS LONG
 DIM Rec(1 TO 10) AS NameRec
 DIM RP AS NameRec POINTER
 DIM ix AS LONG, ij AS LONG
 DIM hFile AS DWORD
 '-- Put some data in the records --
 FOR ix = 1 TO 10
 Rec(ix).First = CHOOSE$(ix,"Jacob","Michael","Joshua","Matthew","Ethan", _
 "Emily","Emma","Madison","Abigail","Olivia")
 Rec(ix).Last = CHOOSE$(ix,"SMITH","JOHNSON","WILLIAMS","JONES","BROWN", _
 "DAVIS","MILLER","WILSON","MOORE","TAYLOR")
 NEXT ix
 '-- Sort UDT array in ascending order using a bubble sort
 '-- ARRAY SORT Rec(),FROM 1 TO 20,ASCEND will do this as well
 FOR ix = 9 TO 1 STEP -1
 FOR ij = 1 TO ix

PowerBASIC Compiler for Windows Version 10

153 / 2126

 IF Rec(ij-1).Last > Rec(ij).Last THEN
 SWAP Rec(ij-1), rec(ij)
 END IF
 NEXT ij
 NEXT ix
 #IF %DEF(%PB_CC32)
 FOR ix = 1 TO 10
 PRINT TRIM$(Rec(ix).Last)+ ", " +TRIM$(Rec(ix).First)
 NEXT ix
 PRINT
 PRINT "Press any key to quit ... "
 WAITKEY$
 #ELSE
 DIM msg AS STRING
 FOR ix = 1 TO 10
 msg = msg + TRIM$(Rec(ix).Last)+ ", " +TRIM$(Rec(ix).First) + $CRLF
 MSGBOX msg
 NEXT ix
 #ENDIF
END FUNCTION

'-- Example 2 --------------
' The difference between example 1 and this example is
' that we're manipulating pointers (4 bytes) instead
' of whole records (40 bytes).
#COMPILE EXE
#DIM ALL
TYPE NameRec
 Last AS STRING * 20 ' Last name
 First AS STRING * 20 ' First name
END TYPE
FUNCTION PBMAIN () AS LONG
 DIM Rec(1 TO 10) AS NameRec
 DIM RP AS NameRec POINTER
 DIM ix AS LONG, ij AS LONG
 DIM hFile AS DWORD

 '-- Put some data in the records --
 FOR ix = 1 TO 10
 Rec(ix).First = CHOOSE$(ix,"Jacob","Michael","Joshua","Matthew","Ethan", _
 "Emily","Emma","Madison","Abigail","Olivia")
 Rec(ix).Last = CHOOSE$(ix,"SMITH","JOHNSON","WILLIAMS","JONES","BROWN",
_
 "DAVIS","MILLER","WILSON","MOORE","TAYLOR")
 NEXT ix
 '-- Sort UDT array in ascending order using a bubble sort with pointers
 '-- note a bubble sort is not recommended for large collections
 '-- and note ARRAY SORT Rec(),FROM 1 TO 20,ASCEND will do this as well
 '-- so this is only to show pointers to UDT arrays in action!
 RP = VARPTR(Rec(1))
 FOR ix = 9 TO 1 STEP -1
 FOR ij = 1 TO ix
 'note pointers to array elements use zero based subscripts in brackets!
 IF @RP[ij-1].Last > @RP[ij].Last THEN
 SWAP @RP[ij-1], @RP[ij]
 END IF
 NEXT ij
 NEXT ix
 #IF %DEF(%PB_CC32)
 FOR ix = 1 TO 10

PowerBASIC Compiler for Windows Version 10

154 / 2126

 PRINT TRIM$(Rec(ix).Last)+ ", " +TRIM$(Rec(ix).First)
 NEXT ix
 PRINT
 PRINT "Press any key to quit ... "
 WAITKEY$
 #ELSE
 DIM msg AS STRING
 FOR ix = 1 TO 10
 msg = msg + TRIM$(Rec(ix).Last)+ ", " +TRIM$(Rec(ix).First) + $CRLF
 MSGBOX msg
 NEXT ix
 #ENDIF
END FUNCTION

If you declare a member of a structure as a pointer, the @ prefix is used with the member name, not the
structure name. The previous example could be improved by adding a couple of pointers to the structure to
point to the previous and next record, respectively. This lets you allocate memory for a record only when
needed, instead of pre-allocating a fixed-size array of records. The modified structure would look something
like this:

TYPE NameRec
 Last AS STRING * 20 ' Last name
 First AS STRING * 20 ' First name
 Nxt AS NameRec PTR ' Pointer to next record
 Prv AS NameRec PTR ' Pointer to previous record
END TYPE
DIM Rec AS NameRec

The pointer members are then accessed like this:

Rec.@Nxt ' next record
Rec.@Prv ' previous record

Putting the @ prefix in front of the structure name (i.e., @Rec) would cause a compile-time error, as Rec
itself is not a pointer.

When calculating the length of the Type, all pointers are internally stored as Double-word (DWORD)
variables, so NameRec is 48 bytes long (20 + 20 + 4 + 4). If you need to know the length of a Type, it is
easier to let PowerBASIC calculate it for you using the LEN function than doing it yourself:

length = LEN(structure)

See Also

Pointers to nul-terminated and fixed-length strings

Pointers to arrays

Pointers to arrays with dual indexes

Pointers to Nul-Terminated and fixed-length strings

Pointers to Nul-Terminated and fixed-length
strings
A declaration of an Nul-Terminated or fixed-length string must explicitly state the maximum length of the
string, in order for the compiler to allocate memory accordingly. When declaring pointers to fixed-length
strings, you may also state the maximum length of the string. This will allow INCR and DECR to move the
pointer to the next or previous string, respectively. If you do not supply the length for a fixed-length string
pointer, INCR and DECR will move the pointer by one byte.

However, with an Nul-Terminated string pointer, the length limit may be explicitly stated, or it may be left as
an ambiguous value, by skipping the length clause entirely. For example, the following lines are valid:

DIM x AS ASCIIZ PTR * 41

PowerBASIC Compiler for Windows Version 10

155 / 2126

DIM y AS STRINGZ PTR * 2
DIM z AS WSTRINGZ PTR

This rule applies to scalar pointers, arrays of pointers, pointers as function parameters, and pointers as
members of a User-Defined Type or Union. If the optional length limit is specified, PowerBASIC will always
truncate a string assignment to fit correctly in the memory allocated to the variable.

If the length is ambiguous, it becomes the programmer's responsibility to ensure the target buffer is not
overflowed leading to memory corruption or General Protection Faults (GPF). Use caution in this case.

See Also

Pointers (@)

Pointers to arrays

Pointers to arrays with dual indexes

Pointers to arrays

Pointers to arrays
In order to work with arrays created by other languages, such as VB arrays, PowerBASIC supports an
extension of the pointer syntax, called "Pointer Indexing". As noted above, a pointer allows you access a
data element at specific address in memory. An index pointer allows you to access data elements beyond
the memory address in the base pointer. Consider an array with 6 elements:

DIM x%(0 TO 5)

The address of the first element, x%(0), is the base with the remaining elements stored in memory, one
after the other. To access the array using an index pointer, you simply assign the address of the first
element to your base pointer:

DIM xPtr AS INTEGER POINTER
xPtr = VARPTR(x%(0))

@xPtr[0] = 0 ' same as x%(0)
@xPtr[1] = 1 ' same as x%(1)
@xPtr[2] = 2 ' same as x%(2)
@xPtr[3] = 3 ' same as x%(3)
@xPtr[4] = 4 ' same as x%(4)
@xPtr[5] = 5 ' same as x%(5)

Note the syntax used to access the elements of the array. It consists of the pointer's name, with the @
prefix, and followed by the array index in square brackets. The number used inside of the brackets is a
multiplier. The number inside the brackets is multiplied by the size of the target data (a two byte Integer in
this case) to calculate the target address.

The primary differences between arrays and index pointers are than index pointers do not allocate any
memory of their own - they use memory which has already been allocated elsewhere. Their lower bound is
always zero. For example, you can dimension your six-element array from 1990 to 1995. However, to
access the array data using an index pointer, you will still need to use 0 through 5:

x%(1990 TO 1995)
DIM xPtr AS INTEGER PTR
xPtr = VARPTR(x%(1990))

@xPtr[0] = 0 ' same as x%(1990)
@xPtr[1] = 1 ' same as x%(1991)
@xPtr[2] = 2 ' same as x%(1992)
@xPtr[3] = 3 ' same as x%(1993)
@xPtr[4] = 4 ' same as x%(1994)
@xPtr[5] = 5 ' same as x%(1995)

Consider the following VB code:

PowerBASIC Compiler for Windows Version 10

156 / 2126

Sub Sum_Click()
 ReDim PriceData!(1 TO TotalElements%)
 Call FillSumArray(PriceData!())
 Total! = GetSum(PriceData!(1), TotalElements%)
End Sub

When the "Sum" button is pressed, a dynamic array is created and filled. FillSumArray() is VB code to read
the price data from a database file and place it into the array. GetSum() is PowerBASIC code to add up all
of the prices and return the total, since PowerBASIC handles calculations faster than VB does.

FUNCTION GetSum!(Price!, BYVAL TotalElements%) EXPORT
 DIM PriceData AS SINGLE PTR
 DIM Total!
 DIM k%
 PriceData = VARPTR(Price!)
 FOR k% = 0 TO TotalElements% - 1
 Total! = Total! + @PriceData[k%]
 NEXT
 GetSum! = Total!
END FUNCTION

In the above example, GetSum! takes the Visual Basic array, adds up all the values, and returns the total
as a result. Since a pointer is a memory address, we need the memory address of the first element in the
array. In VB, you can pass the memory address of a variable by passing it "by reference", or

. This tells Visual Basic not to pass the value of a variable to a Sub, Function, Method, or Property,
but to pass the address in memory where the variable is located. This is handled through the
DECLARE statement in Visual Basic.

DECLARE FUNCTION GetSum! LIB "SUMS.DLL" (Prices!, BYVAL Elements%)

By not using the

 keyword before the variable Prices!, we've told Visual Basic to pass a memory address to the
variable. You'll notice in the DECLARE statement that the variable Prices! does not include any
parentheses to indicate that it is an array. If we were to change it to Prices!(), VB would pass a handle
to an array descriptor, not an address to the array data. The PowerBASIC code also needs to know
how many elements there are in the array, so that is passed as the second parameter.
Since only the first element of the array is passed to GetSum!, we'll need to use a pointer to access the
remainder of the elements.

DIM PriceData AS SINGLE PTR

Remember that all pointers are initialized to null (zero). To access the array, we need to assign the memory
address for the element passed. VARPTR is used to get the address of the passed element.

PriceData = VARPTR(Price!)

An indexed pointer can then be used to access all of the elements in the array. The VB array was
dimensioned from 1 to TotalElements; however indexed pointers in PowerBASIC all start with a subscript of
zero. So to reconcile the difference, we subtract the lower bound (1) from TotalElements in our FOR/NEXT
loop. A DIM statement is not required to access an array using this method.

FOR k% = 0 TO Elems% - 1
 Total! = Total! + @PriceData[k%]
NEXT

It is also possible to use indexed-pointers with dynamic string arrays. For example:

DIM Arr1(1 TO 3) AS STRING
DIM pArr1 AS STRING POINTER

Arr1(1) = "a1"
Arr1(2) = "a2"
Arr1(3) = "a3"
PArr1 = VARPTR(Arr1(1)) ' The 1st array element
DisplayText @pArr1[2] ' This references Arr1(3)

PowerBASIC Compiler for Windows Version 10

157 / 2126

Indexed pointers make it easy to manipulate arrays created by other languages such as VB,
Delphi, C/C++, etc.

See Also

Pointers (@)

Pointers to nul-terminated and fixed-length strings

Pointers to arrays with dual indexes

Pointers to arrays with dual indexes

Pointers to arrays with dual indexes
Indexed pointers with dual indexes require an "OF limit" clause on both indexes. While simple arrays
(arrays with one index) store data sequentially, dual indexes interleave each row of data. The OF clause is
used by the compiler to calculate the size of each row and column. limit is the upper bound of the index
(zero-based):

DIM DataPtr AS INTEGER PTR
DIM z%(0 TO 8, 0 TO 3)
DataPtr = VARPTR(z%(0, 0))
FOR y = 0 TO 3
 FOR x = 0 TO 8
 Value% = @DataPtr[x OF 8, y OF 3]
 NEXT x
NEXT y

The following example uses a lower bound other than zero:

DIM DataPtr AS INTEGER PTR
DIM z%(1990 TO 1998, -1 TO 3)
DataPtr = VARPTR(z%(1990, -1))
FOR y = 0 TO 4
 FOR x = 0 TO 8
 Value% = @DataPtr[x OF 8, y OF 4]
 NEXT x
NEXT y

If you subtract the lower bound from itself and the upper bound (to get a lower bound of zero), you get 8 for
the upper bound, which is then used for limit after the OF keyword.

See Also

Pointers (@)

Pointers to nul-terminated and fixed-length strings

Pointers to arrays

Constants

Constants and Literals

Constants and Literals
PowerBASIC programs process two distinct classes of data: variables and constants. A variable is allowed
to change its value as a program runs. A constant's value is fixed at compile-time, and cannot change

PowerBASIC Compiler for Windows Version 10

158 / 2126

during program execution (hence, it remains constant). PowerBASIC supports four types of constants:
string literals, numeric literals, string equates and numeric equates.

· String literals

· Numeric literals

· Integral constants in binary, octal, and hexadecimal

· Numeric Equates

· String Equates

See Also

Defining Constants

Array Data Types

Bit Data Types

GUID Data Types

Object Data Types

Pointers

User Defined Types

Unions

Variant Data Types

Defining Constants

Defining Constants
PB/Win constants (also known as equates) are defined by prefixing the name of the constant with a "%"
character. MSBASIC and VB define constants with the CONST keyword. The MSBASIC/VB compiler then
does type conversions at the point of use, if the constant's type was not specified. That overhead does not
happen (and is not necessary) with PB/Win. String equates are specified with a leading "$" character.

However, the MACRO facilities in PB/Win offer a way to retain the CONST syntax in your code, while
maintaining the low overhead advantage of PowerBASIC. For example:

MACRO CONST = MACRO
[statements]
CONST Something = 1&
CONST Something_Else = 2???
CONST AppTitle = "My Application"
[statements]
MSGBOX FORMAT$(Something), ,AppTitle

During compilation, the CONST keyword is replaced by the MACRO word, which dynamically creates a new
macro that, in turn, defines a constant.

See Also

Constants and Literals

Numeric Equates

Built-in numeric equates

Built In RGB Color Equates

javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)

PowerBASIC Compiler for Windows Version 10

159 / 2126

String Equates

Built-in string equates

Numeric Equates

Numeric Equates
PowerBASIC allows you to refer to numeric constants by name. Be aware that equates have global scope;
that is, they are visible throughout your program. Unlike variables, you can use an equate on the left side of
an assignment statement only once, and only a constant value (or a simple constant/literal expression) may
be assigned to it. If an expression is used, all parts of the expression must consist of constants, numeric
equates; bitwise operators like AND, OR; and NOT; the arithmetic operators +, -, *, /, and \, and the
relational operators >, <, >=, <=, <>, =; and the CVQ function. For example, the following are all legal
equate definitions:

%X = 1
%Y = 1 + 1
%Z = %X * %Y
%Q = (1& OR 2&) + (NOT 0)
%R = (%Q <> 100&)
%S = CVQ("DemoOnly")

A value must be assigned to each equate before it is referenced, even if that value is zero. If you fail to
define an equate, an error will be generated during compilation. Numeric equates must be created outside
of any SUB, FUNCTION, METHOD, or PROPERTY. All equates are global, and may be referenced
anywhere in the module. For readability, we suggest placing equates at the top of your code.

A numeric equate name must always begin with a leading percent sign (%) and a letter (A-Z). This is
optionally followed by any combination of letters (A-Z), numbers (0-9), and underscores (_). Equates
created within an ENUM structure may also contain one period (.), which is inserted by the compiler as a
delimiter. All other characters are illegal.

If you are using a version of PowerBASIC which creates COM servers, you can easily include numeric
equates in your type library; just append the words AS COM to the equate definitions:

%SCROLL_FLAG = 99 AS COM

You can also use equates to reduce the incidence of "magic numbers" in your programs. Magic numbers
are mysterious values that mean something to you when you first write a program, but not when you come
back to it six months later. Equates are particularly well suited for making programs more readable. For
example, consider an array to track chess pieces. If we define:

%MAXPIECES = 32
%NPARAM = 3
%NTYPE = 1
%RANK = 2
%FILE = 3
%KING = 1
%PAWN = 2

…we can then define an array of pieces and make statements like the following:

DIM piece(1:%MAXPIECES, 1:%NPARAM)
piece(1, %NTYPE) = %KING
piece(1, %RANK) = 4
piece(1, %FILE) = 1

This sets up a 32 x 3 array for piece information. The first element is the type of unit, the second and third
give its current position on the board. Note how much more readable this is than:

DIM piece(1:32, 1:3)
piece(1, 1) = 1
piece(1, 2) = 4
piece(1, 3) = 1

We could achieve a similar effect by using comments, but there is no way to ensure that when the program

PowerBASIC Compiler for Windows Version 10

160 / 2126

changes, the comments will be updated. Using equates reduces the need for comments.

Besides being more readable, equates allow us to easily change a program by changing only the definition
of a single equate, rather than changing every occurrence of a particular value. For example: say you run a
preschool, and you want to keep track of some data that depends on how many kids you have.
Furthermore, you have to print out reports each week. Rather than type the number in several places, only
to have to change it every week, you can assign the number to a constant.

%NUMKIDS = 28

Then, you can use the constant, %NUMKIDS, throughout your program.

' Calculate income; the enrollment fee is $85 a week;
' Parents pay whether their kids miss days or not
income% = %NUMKIDS * 85
' Calculate actual attendance
attend% = %NUMKIDS - absent%
' Calculate how much the lunches cost per kid; note the
' use of another constant for cost; it may vary too!
perkid% = %LUNCHCOST / attend%
' Calculate net profit per kid after paying for lunches (you'd
' actually have far more overhead than this, but we'll keep it simple)
net% = (income% - perkid%) / %NUMKIDS
' and so on

If your enrollment stays stable, you still have a program that is much easier to follow. Moreover, if your
enrollment changes, you only need to change the constant assignment statements to run a revised
program. Think of the time you will save - enough to take the kids on an extra field trip.

You might also want to assign the value of an equate conditionally, using the #IF metastatement. For
example:

%BIGCLASS = 1
#IF %BIGCLASS
 %NUMKIDS = 40
#ELSE
 %NUMKIDS = 20
#ENDIF

Equates make SELECT statements more readable too:

SELECT CASE piece(x, %NTYPE)
 CASE %KING
 ' process king moves
 CASE %PAWN
 ' process pawn moves
 CASE %QUEEN
 ' process queen moves
END SELECT

This code will continue to make sense when you return to it after a long absence.

Numeric equates may be assigned a specific

 if the literal value has a type-specifier appended. For example:
%MAX_BYTE = 255?
%MAXIMUM_INT = 32767%
%MAXIMUM_DWORD = &HFFFFFFFF???
%MAXIMUM_LONG = &H7FFFFFFF&
%MINIMUM_LONG = &H80000000&

Numeric equates which are derived from an equation are pre-calculated by PowerBASIC during the
compilation process, to ensure that unnecessary calculations are eliminated from the executable code. If
this optimization was not performed, PowerBASIC code would need to perform the same calculation every
time the equate was used in the code. Examples of numeric equates derived from expressions follows:

%WHATEVER1 = 10
%WHATEVER2 = (%WHATEVER1 * 3) + 1
%DEBUG = -1&

PowerBASIC Compiler for Windows Version 10

161 / 2126

%RELEASE = NOT %DEBUG
%DEMO = %RELEASE AND (NOT %DEBUG)

During compilation the actual numeric value of %WHATEVER2 is pre-calculated as 31, and the values of %
RELEASE and %DEMO are calculated from the value of %DEBUG. Note that operators like AND and OR
work as bitwise operators, rather than logical operators, in numeric equate assignments.

Duplicate definitions of both numeric and string equates are permitted by PowerBASIC, provided the actual
equate content is identical. If the content is not identical, a compile-time Error 468 ("Duplicate Equate") will
occur.

If you need a set of equates which are logically related, you can define them as a group in an enumeration.
 This provides meaningful names for the enumeration, its members, and therefore the name by which it is
referenced.

When an equate is created in an enumeration, its name is composed of a leading percent sign (%), the
enumeration name, a period (.), and then the member name. For example:

ENUM abc
 count = 7
END ENUM

In the above example, the equate is referenced as %abc.count, and returns the value seven (7).

Each member of an enumeration may be assigned a specific integral value (in the range of a 64-bit quad
integer) by using the optional [=value] syntax. In this case, only a constant value (or a simple
constant/literal expression) may be assigned to it. If an expression is used, all of the terms in the
expression must be constants; numeric equates; bitwise operators like AND, OR, NOT; arithmetic operators
+, -, *, /, \; the relational operators >, <, >=, <=, <>, =; and the CVQ function.

If the [=value] option is omitted, each member of the enumeration is assigned an integral value in sequence
beginning with the value 0. If one or more equates are assigned an explicit value, equates which follow are
assigned the next value in the sequence. For example:

ENUM abc
 direction
 count = 8
 scope
END ENUM

In the above example, %abc.direction = 0, %abc.count = 8, and %abc.scope = 9.

See Also

Constants and Literals

Defining Constants

Built-in numeric equates

String Equates

Built-in string equates

ENUM/END ENUM statements

Built-in numeric equates

Built-in numeric equates
The compiler provides a convenient set of built-in numeric equates.

The first to consider should be the group which determines the compiler version and the supported feature
level. Additional information may be found with the %DEF equate operator.

Compiler Version:

%PB_CC32, %PB_DLL32, %PB_EXE, %PB_REVISION, %PB_REVLETTER, %PB_WIN32

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

162 / 2126

Compile-Time information:

%PB_COMPILETIME

At each compile, this equate is filled with the current date and time of the compilation in PowerTime binary
format. You can use the PowerTime Class to convert it to a text equivalent for use in your application.

For use with #RESOURCE FILEFLAGS:

%VS_FF_DEBUG, %VS_FF_INFOINFERRED, %VS_FF_PATCHED, %VS_FF_PRERELEASE, %
VS_FF_PRIVATEBUILD, %VS_FF_SPECIALBUILD

For use with ARRAYATTR:

%VARCLASS_BYT, %VARCLASS_WRD, %VARCLASS_DWD, %VARCLASS_INT, %VARCLASS_LNG, %
VARCLASS_QUD, %VARCLASS_SNG, %VARCLASS_DBL, %VARCLASS_EXT, %VARCLASS_CUR, %
VARCLASS_CUX, %VARCLASS_VRNT, %VARCLASS_IFAC, %VARCLASS_TYPE, %VARCLASS_GUID, %
VARCLASS_ASC, %VARCLASS_STRZ %VARCLASS_FIX, %VARCLASS_STR, %VARCLASS_FLD, %
VARCLASS_WSTRZ, %VARCLASS_WFIX, %VARCLASS_WSTR, %VARCLASS_WFLD

For use with BUTTONS:

%BN_CLICKED, %BN_DBLCLK, %BN_DISABLE, %BN_DOUBLECLICKED, %BN_HILITE, %BN_KILLFOCUS, %
BN_PAINT, %BN_SETFOCUS, %BN_UNHILITE, %IDOK, %IDCANCEL, %IDABORT, %IDRETRY, %IDIGNORE,
%IDYES, %IDNO, %IDCLOSE, %IDHELP, %IDTRYAGAIN, %IDCONTINUE, %BS_TEXT, %BS_PUSHBUTTON,
%BS_DEFPUSHBUTTON, %BS_DEFAULT, %BS_CHECKBOX, %BS_AUTOCHECKBOX, %BS_RADIOBUTTON, %
BS_3STATE, %BS_AUTO3STATE, %BS_GROUPBOX, %BS_USERBUTTON, %BS_AUTORADIOBUTTON, %
BS_OWNERDRAW, %BS_LEFTTEXT, %BS_ICON, %BS_BITMAP, %BS_LEFT, %BS_RIGHT, %BS_CENTER, %
BS_TOP, %BS_BOTTOM, %BS_VCENTER, %BS_PUSHLIKE, %BS_MULTILINE, %BS_NOTIFY, %BS_FLAT, %
BS_RIGHTBUTTON

For use with Callback functions:

%NM_OUTOFMEMORY, %NM_CLICK, %NM_DBLCLK, %NM_RETURN, %NM_RCLICK, %NM_RDBLCLK, %
NM_SETFOCUS, %NM_KILLFOCUS, %NM_CUSTOMDRAW, %NM_HOVER, %NM_NCHITTEST, %NM_KEYDOWN, %
NM_RELEASEDCAPTURE, %NM_SETCURSOR, %NM_CHAR, %NM_TOOLTIPSCREATED, %NM_LDOWN, %
NM_RDOWN, %NM_THEMECHANGED, %SC_SIZE, %SC_MOVE, %SC_MINIMIZE, %SC_MAXIMIZE, %
SC_NEXTWINDOW, %SC_PREVWINDOW, %SC_CLOSE, %SC_VSCROLL, %SC_HSCROLL, %SC_MOUSEMENU, %
SC_KEYMENU, %SC_ARRANGE, %SC_RESTORE, %SC_TASKLIST, %SC_SCREENSAVE, %SC_HOTKEY, %
SC_DEFAULT, %SC_MONITORPOWER, %SC_CONTEXTHELP, %WM_ACTIVATE, %WM_ACTIVATEAPP, %
WM_CANCELMODE, %WM_CAPTURECHANGED, %WM_CHAR, %WM_CLOSE, %WM_COMMAND, %WM_CREATE, %
WM_DESTROY, %WM_DRAWITEM, %WM_HELP, %WM_HSCROLL, %WM_INITDIALOG, %WM_KEYDOWN, %
WM_KEYUP, %WM_KILLFOCUS, %WM_LBUTTONDBLCLK, %WM_LBUTTONDOWN, %WM_LBUTTONUP, %
WM_MBUTTONDBLCLK, %WM_MBUTTONDOWN, %WM_MBUTTONUP, %WM_MOUSEACTIVATE, %WM_MOUSEFIRST, %
WM_MOUSEHOVER, %WM_MOUSELAST, %WM_MOUSELEAVE, %WM_MOUSEMOVE, %WM_MOUSEWHEEL, %WM_MOVE,
%WM_NCACTIVATE, %WM_NCCALCSIZE, %WM_NCCREATE, %WM_NCDESTROY, %WM_NCHITTEST, %
WM_NCLBUTTONDBLCLK, %WM_NCLBUTTONDOWN, %WM_NCLBUTTONUP, %WM_NCMBUTTONDBLCLK, %
WM_NCMBUTTONDOWN, %WM_NCMBUTTONUP, %WM_NCMOUSEMOVE, %WM_NCPAINT, %WM_NCRBUTTONDBLCLK,
%WM_NCRBUTTONDOWN, %WM_NCRBUTTONUP, %WM_NCXBUTTONDBLCLK, %WM_NCXBUTTONDOWN, %
WM_NCXBUTTONUP, %WM_NOTIFY, %WM_NULL, %WM_PAINT, %WM_QUIT, %WM_RBUTTONDBLCLK, %
WM_RBUTTONDOWN, %WM_RBUTTONUP, %WM_SETFOCUS, %WM_SIZE, %WM_SYSKEYDOWN, %WM_SYSKEYUP, %
WM_TIMER, %WM_VSCROLL, %WM_USER

For use with CONTROL SHOW STATE and DIALOG SHOW STATE:

%SW_HIDE, %SW_SHOWNORMAL, %SW_NORMAL, %SW_SHOWMINIMIZED, %SW_SHOWMAXIMIZED, %
SW_MAXIMIZE, %SW_SHOWNOACTIVATE, %SW_SHOW, %SW_MINIMIZE, %SW_SHOWMINNOACTIVE, %
SW_SHOWNA, %SW_RESTORE, %SW_SHOWDEFAULT, %SW_FORCEMINIMIZE, %SW_MAX

For use with COMBOBOXES:

%CBS_SIMPLE, %CBS_DROPDOWN, %CBS_DROPDOWNLIST, %CBS_OWNERDRAWFIXED, %
CBS_OWNERDRAWVARIABLE, %CBS_AUTOHSCROLL, %CBS_OEMCONVERT, %CBS_SORT, %CBS_HASSTRINGS,
%CBS_NOINTEGRALHEIGHT, %CBS_DISABLENOSCROLL, %CBS_UPPERCASE, %CBS_LOWERCASE, %
CBN_CLOSEUP, %CBN_DBLCLK, %CBN_DROPDOWN, %CBN_EDITCHANGE, %CBN_EDITUPDATE, %
CBN_ERRSPACE, %CBN_KILLFOCUS, %CBN_SELENDCANCEL, %CBN_SELCHANGE, %CBN_SELENDOK, %
CBN_SETFOCUS

For use with DIALOG and/or CONTROL styles:

%DLGC_WANTARROWS, %DLGC_WANTTAB, %DLGC_WANTALLKEYS, %DLGC_WANTMESSAGE, %

PowerBASIC Compiler for Windows Version 10

163 / 2126

DLGC_HASSETSEL, %DLGC_DEFPUSHBUTTON, %DLGC_UNDEFPUSHBUTTON, %DLGC_RADIOBUTTON, %
DLGC_WANTCHARS, %DLGC_STATIC, %DLGC_BUTTON, %DS_ABSALIGN, %DS_SYSMODAL, %DS_3DLOOK, %
DS_FIXEDSYS, %DS_NOFAILCREATE, %DS_LOCALEDIT, %DS_SETFONT, %DS_MODALFRAME, %
DS_NOIDLEMSG, %DS_SETFOREGROUND, %DS_CONTROL, %DS_CENTER, %DS_CENTERMOUSE, %
DS_CONTEXTHELP, %DS_SETFOREGROUND, %WS_OVERLAPPED, %WS_POPUP, %WS_CHILD, %WS_MINIMIZE,
%WS_VISIBLE, %WS_DISABLED, %WS_CLIPSIBLINGS, %WS_CLIPCHILDREN, %WS_MAXIMIZE, %
WS_CAPTION, %WS_BORDER, %WS_DLGFRAME, %WS_VSCROLL, %WS_HSCROLL, %WS_SYSMENU, %
WS_THICKFRAME, %WS_GROUP, %WS_TABSTOP, %WS_MINIMIZEBOX, %WS_MAXIMIZEBOX, %WS_TILED, %
WS_ICONIC, %WS_SIZEBOX, %WS_OVERLAPPEDWIN, %WS_OVERLAPPEDWINDOW, %WS_TILEDWINDOW, %
WS_POPUPWINDOW, %WS_CHILDWINDOW, %WS_EX_DLGMODALFRAME, %WS_EX_NOPARENTNOTIFY, %
WS_EX_TOPMOST, %WS_EX_ACCEPTFILES, %WS_EX_TRANSPARENT, %WS_EX_TOOLWINDOW, %
WS_EX_SMCAPTION, %WS_EX_WINDOWEDGE, %WS_EX_CLIENTEDGE, %WS_EX_CONTEXTHELP, %
WS_EX_RIGHT, %WS_EX_LEFT, %WS_EX_RTLREADING, %WS_EX_LTRREADING, %WS_EX_LEFTSCROLLBAR,
%WS_EX_RIGHTSCROLLBAR, %WS_EX_CONTROLPARENT, %WS_EX_STATICEDGE, %WS_EX_APPWINDOW, %
WS_EX_OVERLAPPEDWINDOW, %WS_EX_PALETTEWINDOW, %WS_EX_LAYERED, %WS_EX_NOINHERITLAYOUT,
%WS_EX_LAYOUTRTL, %WS_EX_COMPOSITED, %WS_EX_NOACTIVATE

For use with the DIALOG NEW statement:

%HWND_DESKTOP, %DS_SHELLFONT

For use with the DIR$ function:

%NORMAL, %HIDDEN, %SYSTEM, %VLABEL, %SUBDIR

For use with the DISPLAY BROWSE statement:

%BIF_RETURNONLYFSDIRS, %BIF_DONTGOBELOWDOMAIN, %BIF_RETURNFSANCESTORS, %BIF_EDITBOX, %
BIF_NEWDIALOGSTYLE, %BIF_USENEWUI, %BIF_BROWSEINCLUDEURLS, %BIF_UAHINT, %
BIF_NONEWFOLDERBUTTON, %BIF_NOTRANSLATETARGETS, %BIF_BROWSEINCLUDEFILES, %
BIF_SHAREABLE

For use with the DISPLAY COLOR statement:

%CC_FULLOPEN, %CC_PREVENTFULLOPEN, %CC_SHOWHELP

For use with the DISPLAY FONT statement:

%CF_SCREENFONTS, %CF_PRINTERFONTS, %CF_BOTH, %CF_SHOWHELP, %CF_INITTOLOGFONTSTRUCT, %
CF_USESTYLE, %CF_EFFECTS, %CF_APPLY, %CF_ANSIONLY, %CF_SCRIPTSONLY, %CF_NOVECTORFONTS,
%CF_NOSIMULATIONS, %CF_LIMITSIZE, %CF_FIXEDPITCHONLY, %CF_WYSIWYG, %CF_FORCEFONTEXIST,
%CF_SCALABLEONLY, %CF_TTONLY, %CF_NOFACESEL, %CF_NOSTYLESEL, %CF_NOSIZESEL, %
CF_SELECTSCRIPT, %CF_NOSCRIPTSEL, %CF_NOVERTFONTS

For use with the DISPLAY OPENFILE and DISPLAY SAVEFILE statements:

%OFN_ALLOWMULTISELECT, %OFN_CREATEPROMPT, %OFN_DONTADDTORECENT, %OFN_ENABLESIZING, %
OFN_EXPLORER, %OFN_EXTENSIONDIFFERENT, %OFN_FILEMUSTEXIST, %OFN_FORCESHOWHIDDEN, %
OFN_HIDEREADONLY, %OFN_LONGNAMES, %OFN_NODEREFERENCELINKS, %OFN_NOLONGNAMES, %
OFN_NONETWORKBUTTON, %OFN_NOREADONLYRETURN, %OFN_NOTESTFILECREATE, %OFN_NOVALIDATE, %
OFN_OVERWRITEPROMPT, %OFN_PATHMUSTEXIST, %OFN_READONLY, %OFN_SHAREAWARE, %OFN_SHOWHELP

For use with ERR and ERRCLEAR:

%ERR_NOERROR, %ERR_ILLEGALFUNCTIONCALL, %ERR_OVERFLOW (reserved), %ERR_OUTOFMEMORY, %
ERR_SUBSCRIPTPOINTEROUTOFRANGE, %ERR_DIVISIONBYZERO (reserved), %ERR_DEVICETIMEOUT, %
ERR_INTERNALERROR, %ERR_BADFILENAMEORNUMBER, %ERR_FILENOTFOUND, %ERR_BADFILEMODE, %
ERR_FILEISOPEN, %ERR_DEVICEIOERROR, %ERR_FILEALREADYEXISTS, %ERR_DISKFULL, %
ERR_INPUTPASTEND, %ERR_BADRECORDNUMBER, %ERR_BADFILENAME, %ERR_TOOMANYFILES, %
ERR_DEVICEUNAVAILABLE, %ERR_COMMERROR, %ERR_PERMISSIONDENIED, %ERR_DISKNOTREADY, %
ERR_DISKMEDIAERROR, %ERR_RENAMEACROSSDISKS, %ERR_PATHFILEACCESSERROR, %
ERR_PATHNOTFOUND, %ERR_OBJECTERROR, %ERR_GLOBALMEMORYCORRUPT (formerly %
ERR_FARHEAPCORRUPT), %ERR_STRINGSPACECORRUPT, %ERR_DIVISIONBYZERO, %
ERR_FARHEAPCORRUPT, %ERR_GLOBALMEMORYCORRUPT, %ERR_OVERFLOW

For use with GRAPHIC COPY, GRAPHIC GET MIX, GRAPHIC SET MIX, GRAPHIC STRETCH, XPRINT
COPY, XPRINT GET MIX, XPRINT SET MIX, and XPRINT STRETCH (some statements may accept only a
subset of these equates):

%MIX_BLACKNESS, %MIX_NOTMERGESRC, %MIX_MASKNOTSRC, %MIX_NOTCOPYSRC, %MIX_MASKSRCNOT, %
MIX_NOT, %MIX_XORSRC, %MIX_NOTMASKSRC, %MIX_MASKSRC, %MIX_NOTXORSRC, %MIX_NOP, %
MIX_MERGENOTSRC, %MIX_COPYSRC, %MIX_MERGESRCNOT, %MIX_MERGESRC, %MIX_WHITENESS, %

PowerBASIC Compiler for Windows Version 10

164 / 2126

BLACKONWHITE, %WHITEONBLACK, %COLORONCOLOR, %HALFTONE

For use with GRAPHIC IMAGELIST and XPRINT IMAGELIST:

%ILD_NORMAL, %ILD_TRANSPARENT, %ILD_MASK, %ILD_BLEND25, %ILD_BLEND50, %ILD_IMAGE, %
ILD_ROP, %ILD_OVERLAYMASK

For use with LABELS and GRAPHIC CONTROLS:

%SS_LEFT, %SS_CENTER, %SS_RIGHT, %SS_ICON, %SS_BLACKRECT, %SS_GRAYRECT, %SS_WHITERECT,
%SS_BLACKFRAME, %SS_GRAYFRAME, %SS_WHITEFRAME, %SS_USERITEM, %SS_SIMPLE, %
SS_LEFTNOWORDWRAP, %SS_NOWORDWRAP, %SS_OWNERDRAW, %SS_BITMAP, %SS_ENHMETAFILE, %
SS_ETCHEDHORZ, %SS_ETCHEDVERT, %SS_ETCHEDFRAME, %SS_REALSIZECONTROL, %SS_NOPREFIX, %
SS_NOTIFY, %SS_CENTERIMAGE, %SS_RIGHTJUST, %SS_REALSIZEIMAGE, %SS_REALSIZE, %
SS_SUNKEN, %SS_ENDELLIPSIS, %SS_PATHELLIPSIS, %SS_WORDELLIPSIS, %SS_ELLIPSISMASK

For use with HEADERS:

%HDM_GETITEMCOUNT, %HDM_INSERTITEM, %HDM_INSERTITEMW, %HDM_DELETEITEM, %HDM_GETITEM, %
HDM_GETITEMW, %HDM_SETITEM, %HDM_SETITEMW, %HDM_LAYOUT, %HDM_HITTEST, %
HDM_GETITEMRECT, %HDM_SETIMAGELIST, %HDM_GETIMAGELIST, %HDM_ORDERTOINDEX, %
HDM_CREATEDRAGIMAGE, %HDM_GETORDERARRAY, %HDM_SETORDERARRAY, %HDM_SETHOTDIVIDER, %
HDM_SETBITMAPMARGIN, %HDM_GETBITMAPMARGIN, %HDM_SETUNICODEFORMAT, %
HDM_GETUNICODEFORMAT, %HDM_SETFILTERCHANGETIMEOUT, %HDM_EDITFILTER, %HDM_CLEARFILTER,
%HDN_FIRST, %HDN_ITEMCHANGING, %HDN_ITEMCHANGINGW, %HDN_ITEMCHANGED, %
HDN_ITEMCHANGEDW, %HDN_ITEMCLICK, %HDN_ITEMCLICKW, %HDN_ITEMDBLCLICK, %
HDN_ITEMDBLCLICKW, %HDN_DIVIDERDBLCLICK, %HDN_DIVIDERDBLCLICKW, %HDN_BEGINTRACK, %
HDN_BEGINTRACKW, %HDN_ENDTRACK, %HDN_ENDTRACKW, %HDN_TRACK, %HDN_TRACKW, %
HDN_GETDISPINFO, %HDN_GETDISPINFOW, %HDN_BEGINDRAG, %HDN_ENDDRAG, %HDN_FILTERCHANGE, %
HDN_FILTERBTNCLICK, %HHT_NOWHERE, %HHT_ONHEADER, %HHT_ONDIVIDER, %HHT_ONDIVOPEN, %
HHT_ONFILTER, %HHT_ONFILTERBUTTON, %HHT_ABOVE, %HHT_BELOW, %HHT_TORIGHT, %HHT_TOLEFT,
%HDF_BITMAP, %HDF_BITMAP_ON_RIGHT, %HDF_CENTER, %HDF_IMAGE, %HDF_JUSTIFYMASK, %
HDF_LEFT, %HDF_OWNERDRAW, %HDF_RIGHT, %HDF_RTLREADING, %HDF_SORTDOWN, %HDF_SORTUP, %
HDF_STRING, %HDFT_HASNOVALUE, %HDFT_ISNUMBER, %HDFT_ISSTRING, %HDI_BITMAP, %
HDI_DI_SETITEM, %HDI_FILTER, %HDI_FORMAT, %HDI_HEIGHT, %HDI_IMAGE, %HDI_LPARAM, %
HDI_ORDER, %HDI_TEXT, %HDI_WIDTH, %HDS_BUTTONS, %HDS_DRAGDROP, %HDS_FILTERBAR, %
HDS_FLAT, %HDS_FULLDRAG, %HDS_HIDDEN, %HDS_HORZ, %HDS_HOTTRACK

For use with LISTBOXES:

%LBN_DBLCLK, %LBN_ERRSPACE, %LBN_KILLFOCUS, %LBN_SELCANCEL, %LBN_SELCHANGE, %
LBN_SETFOCUS, %LBS_NOTIFY, %LBS_SORT, %LBS_NOREDRAW, %LBS_MULTIPLESEL, %
LBS_OWNERDRAWFIXED, %LBS_OWNERDRAWVARIABLE, %LBS_HASSTRINGS, %LBS_USETABSTOPS, %
LBS_NOINTEGRALHEIGHT, %LBS_MULTICOLUMN, %LBS_WANTKEYBOARDINPUT, %LBS_EXTENDEDSEL, %
LBS_DISABLENOSCROLL, %LBS_NODATA, %LBS_NOSEL, %LBS_STANDARD

For use with LISTVIEWS:

%LVN_BEGINDRAG, %LVN_BEGINLABELEDIT, %LVN_BEGINRDRAG, %LVN_COLUMNCLICK, %
LVN_DELETEALLITEMS, %LVN_DELETEITEM, %LVN_ENDLABELEDIT, %LVN_GETDISPINFO, %
LVN_INSERTITEM, %LVN_ITEMCHANGED, %LVN_ITEMCHANGING, %LVN_KEYDOWN, %LVN_SETDISPINFO, %
LVS_ALIGNLEFT, %LVS_ALIGNTOP, %LVS_ALIGNMASK, %LVS_AUTOARRANGE, %LVS_EDITLABELS, %
LVS_OWNERDRAWFIXED, %LVS_NOCOLUMNHEADER, %LVS_NOSORTHEADER, %LVS_ICON, %LVS_REPORT, %
LVS_SMALLICON, %LVS_LIST, %LVS_TYPEMASK, %LVS_SINGLESEL, %LVS_SORTASCENDING, %
LVS_SORTDESCENDING, %LVS_SHAREIMAGELISTS, %LVS_NOLABELWRAP, %LVS_EDITLABELS, %
LVS_OWNERDATA, %LVS_NOSCROLL, %LVS_OWNERDRAWFIXED, %LVS_SHOWSELALWAYS, %
LVS_EX_GRIDLINES, %LVS_EX_SUBITEMIMAGES, %LVS_EX_CHECKBOXES, %LVS_EX_TRACKSELECT, %
LVS_EX_HEADERDRAGDROP, %LVS_EX_FULLROWSELECT, %LVS_EX_ONECLICKACTIVATE, %
LVS_EX_TWOCLICKACTIVATE, %LVS_EX_FLATSB, %LVS_EX_REGIONAL, %LVS_EX_INFOTIP, %
LVS_EX_UNDERLINEHOT, %LVS_EX_UNDERLINECOLD, %LVS_EX_MULTIWORKAREAS, %LVS_EX_LABELTIP,
%LVS_EX_BORDERSELECT, %LVS_EX_DOUBLEBUFFER, %LVS_EX_HIDELABELS, %LVS_EX_SINGLEROW, %
LVS_EX_SNAPTOGRID, %LVS_EX_SIMPLESELECT, %LVNI_ALL, %LVNI_FOCUSED, %LVNI_SELECTED, %
LVNI_CUT, %LVNI_DROPHILITED, %LVNI_ABOVE, %LVNI_BELOW, %LVNI_TOLEFT, %LVNI_TORIGHT, %
LVM_GETSELECTEDCOLUMN, %LVM_ISGROUPVIEWENABLED, %LVM_GETOUTLINECOLOR, %
LVM_SETOUTLINECOLOR, %LVM_CANCELEDITLABEL, %LVM_MAPINDEXTOID, %LVM_MAPIDTOINDEX, %
LVM_SETTILEVIEWINFO, %LVM_GETTILEVIEWINFO, %LVM_SETTILEINFO, %LVM_GETTILEINFO, %
LVM_SETINSERTMARK, %LVM_GETINSERTMARK, %LVM_INSERTMARKHITTEST, %LVM_GETINSERTMARKRECT,

PowerBASIC Compiler for Windows Version 10

165 / 2126

%LVM_SETINSERTMARKCOLOR, %LVM_GETINSERTMARKCOLOR, %LVM_SETINFOTIP, %LVM_GETHOVERTIME,
%LVM_SETTOOLTIPS, %LVM_GETTOOLTIPS, %LVM_SORTITEMSEX, %LVM_SETSELECTEDCOLUMN, %
LVM_SETTILEWIDTH, %LVM_SETVIEW, %LVM_GETVIEW, %LVM_GETSUBITEMRECT, %
LVM_SUBITEMHITTEST, %LVM_SETCOLUMNORDERARRAY, %LVM_GETCOLUMNORDERARRAY, %
LVM_SETHOTITEM, %LVM_GETHOTITEM, %LVM_SETHOTCURSOR, %LVM_GETHOTCURSOR, %
LVM_APPROXIMATEVIEWRECT, %LVM_GETSELECTIONMARK, %LVM_SETSELECTIONMARK. %
LVM_SETBKIMAGE, %LVM_GETBKIMAGE, %LVM_SETHOVERTIME, %LVM_GETTOPINDEX, %
LVM_GETCOUNTPERPAGE, %LVM_GETORIGIN, %LVM_UPDATE, %LVM_SETITEMSTATE, %
LVM_GETITEMSTATE, %LVM_SETITEMTEXT, %LVM_GETITEMTEXT, %LVM_SETITEMCOUNT, %
LVM_SORTITEMS, %LVM_SETITEMPOSITION32, %LVM_GETSELECTEDCOUNT, %LVM_GETITEMSPACING, %
LVM_GETISEARCHSTRING, %LVM_SETICONSPACING, %LVM_SETEXTENDEDLISTVIEWSTYLE, %
LVM_GETEXTENDEDLISTVIEWSTYLE, %LVM_ARRANGE, %LVM_EDITLABEL, %LVM_GETEDITCONTROL, %
LVM_GETCOLUMN, %LVM_SETCOLUMN, %LVM_INSERTCOLUMN, %LVM_DELETECOLUMN, %
LVM_GETCOLUMNWIDTH, %LVM_SETCOLUMNWIDTH, %LVM_GETHEADER, %LVM_CREATEDRAGIMAGE, %
LVM_GETVIEWRECT, %LVM_GETTEXTCOLOR, %LVM_SETTEXTCOLOR, %LVM_GETTEXTBKCOLOR, %
LVM_SETTEXTBKCOLOR, %LVM_GETITEM, %LVM_SETITEM, %LVM_INSERTITEM, %LVM_DELETEITEM, %
LVM_DELETEALLITEMS, %LVM_GETCALLBACKMASK, %LVM_SETCALLBACKMASK, %LVM_GETNEXTITEM, %
LVM_FINDITEM, %LVM_GETITEMRECT, %LVM_SETITEMPOSITION, %LVM_GETITEMPOSITION, %
LVM_GETSTRINGWIDTH, %LVM_HITTEST, %LVM_ENSUREVISIBLE, %LVM_SCROLL, %LVM_REDRAWITEMS, %
LVM_GETBKCOLOR, %LVM_SETBKCOLOR, %LVM_GETIMAGELIST, %LVM_SETIMAGELIST, %
LVM_GETITEMCOUNT, %LVSIL_NORMAL, %LVSIL_SMALL, %LVSIL_STATE, %LVM_EDITLABELW, %
LVM_ENABLEGROUPVIEW, %LVM_FINDITEMW, %LVM_GETBKIMAGEW, %LVM_GETGROUPINFO, %
LVM_GETGROUPMETRICS, %LVM_GETISEARCHSTRINGW, %LVM_GETITEMTEXTW, %LVM_GETITEMW, %
LVM_GETNUMBEROFWORKAREAS, %LVM_GETSTRINGWIDTHW, %LVM_GETWORKAREAS, %LVM_HASGROUP, %
LVM_INSERTGROUP, %LVM_INSERTGROUPSORTED, %LVM_INSERTITEMW, %LVM_MOVEGROUP, %
LVM_MOVEITEMTOGROUP, %LVM_REMOVEALLGROUPS, %LVM_REMOVEGROUP, %LVM_SETBKIMAGE, %
LVM_SETBKIMAGEW, %LVM_SETCOLUMNW, %LVM_SETGROUPINFO, %LVM_SETGROUPMETRICS, %
LVM_SETITEMTEXTW, %LVM_SETITEMW, %LVM_SETSELECTIONMARK, %LVM_SETWORKAREAS, %
LVM_SORTGROUPS, %LVN_BEGINLABELEDITW, %LVN_ENDLABELEDITW, %LVN_GETDISPINFOW, %
LVN_SETDISPINFOW

For use with MENU CONTEXT:

%TPM_BOTTOMALIGN, %TPM_CENTERALIGN, %TPM_LEFTALIGN, %TPM_LEFTBUTTON, %TPM_RIGHTALIGN,
%TPM_RIGHTBUTTON, %TPM_TOPALIGN, %TPM_VCENTERALIGN, %TPM_HORIZONTAL, %TPM_NONOTIFY, %
TPM_RETURNCMD, %TPM_VERTICAL

For use with MENU ADD POPUP, MENU ADD STRING, MENU GET STATE, and MENU SET STATE:

%MF_CHECKED, %MF_ENABLED, %MF_GRAYED, %MF_DISABLED, %MF_UNHILITE, %MF_HILITE, %
MF_UNCHECKED, %MFS_CHECKED, %MFS_DEFAULT, %MFS_DISABLED, %MFS_ENABLED, %MFS_GRAYED, %
MFS_HILITE, %MFS_UNCHECKED, %MFS_UNHILITE

For use with

:
%MB_OK, %MB_OKCANCEL, %MB_ABORTRETRYIGNORE, %MB_YESNOCANCEL, %MB_YESNO, %
MB_RETRYCANCEL, %MB_CANCELTRYCONTINUE, %MB_ICONHAND, %MB_ICONQUESTION, %
MB_ICONEXCLAMATION, %MB_ICONASTERISK, %MB_USERICON, %MB_ICONWARNING, %MB_ICONERROR, %
MB_ICONINFORMATION, %MB_ICONSTOP, %MB_DEFBUTTON1, %MB_DEFBUTTON2, %MB_DEFBUTTON3, %
MB_DEFBUTTON4, %MB_APPLMODAL, %MB_SYSTEMMODAL, %MB_TASKMODAL, %MB_HELP, %MB_NOFOCUS, %
MB_SETFOREGROUND, %MB_DEFAULT_DESKTOP_ONLY, %MB_TOPMOST, %MB_RIGHT, %MB_RTLREADING, %
MB_SERVICE_NOTIFICATION, %MB_SERVICE_NOTIFICATION_NT3X, %MB_TYPEMASK, %MB_ICONMASK, %
MB_DEFMASK, %MB_MODEMASK, %MB_MISCMASK

For use with OBJRESULT and IDISPINFO:

%S_OK, %S_FALSE, %E_UNEXPECTED, %E_NOTIMPL, %E_NOINTERFACE, %E_POINTER, %E_ABORT, %
E_FAIL, %E_ACCESSDENIED, %E_HANDLE, %E_OUTOFMEMORY, %E_INVALIDARG, %
DISP_E_ARRAYISLOCKED, %DISP_E_BADINDEX, %DISP_E_BADPARAMCOUNT, %DISP_E_BADVARTYPE, %
DISP_E_EXCEPTION, %DISP_E_MEMBERNOTFOUND, %DISP_E_NONAMEDARGS, %DISP_E_OVERFLOW, %
DISP_E_PARAMNOTFOUND, %DISP_E_TYPEMISMATCH, %DISP_E_UNKNOWNINTERFACE, %
DISP_E_UNKNOWNLCID, %DISP_E_UNKNOWNNAME, %DISP_E_PARAMNOTOPTIONAL

For use with PowerArray:

%VT_I2, %VT_UI4, %VT_I4, %VT_I8, %VT_R4, %VT_INT, %VT_R8, %VT_UINT, %VT_CY, %VT_PTR, %

PowerBASIC Compiler for Windows Version 10

166 / 2126

VT_DATE, %VT_USERDEFINED, %VT_BSTR, %VT_FILETIME, %VT_DISPATCH, %VT_ASTR, %VT_BOOL, %
VT_STRINGFIX, %VT_VARIANT, %VT_WSTRINGFIX, %VT_UNKNOWN, %VT_STRINGZ, %VT_DECIMAL, %
VT_WSTRINGZ, %VT_I1, %VT_TYPE, %VT_UI1, %VT_EXT, %VT_UI2, %VT_CURX

For use with PROCESS GET PRIORITY and PROCESS SET PRIORITY:

%HIGH_PRIORITY_CLASS, %IDLE_PRIORITY_CLASS, %NORMAL_PRIORITY_CLASS, %
REALTIME_PRIORITY_CLASS

For use with PROGRESSBARS:

%PBS_SMOOTH, %PBS_VERTICAL

For use with SCROLLBARS::

%SB_HORZ, %SB_VERT, %SB_CTL, %SB_BOTH, %SB_LINEUP, %SB_LINELEFT, %SB_LINEDOWN, %
SB_LINERIGHT, %SB_PAGEUP, %SB_PAGELEFT, %SB_PAGEDOWN, %SB_PAGERIGHT, %
SB_THUMBPOSITION, %SB_THUMBTRACK, %SB_TOP, %SB_LEFT, %SB_BOTTOM, %SB_RIGHT, %
SB_ENDSCROLL, %SBS_HORZ, %SBS_VERT, %SBS_TOPALIGN, %SBS_LEFTALIGN, %SBS_BOTTOMALIGN, %
SBS_RIGHTALIGN, %SBS_SIZEBOXTOPLEFTALIGN, %SBS_SIZEBOXBOTTOMRIGHTALIGN, %SBS_SIZEBOX,
%SBS_SIZEGRIP, %SIF_RANGE, %SIF_PAGE, %SIF_POS, %SIF_DISABLENOSCROLL, %SIF_TRACKPOS, %
SIF_ALL, %SBARS_SIZEGRIP, %SBARS_TOOLTIPS

For use with STATUSBARS:

%SBT_OWNERDRAW, %SBT_NOBORDERS, %SBT_POPOUT, %SBT_RTLREADING, %SBT_TOOLTIPS, %
SBT_NOTABPARSING

For use with TAB Controls:

%TCHT_NOWHERE, %TCHT_ONITEMICON, %TCHT_ONITEMLABEL, %TCHT_ONITEM, %TCIF_TEXT, %
TCIF_IMAGE, %TCIF_RTLREADING, %TCIF_PARAM, %TCIF_STATE, %TCIS_BUTTONPRESSED, %
TCIS_HIGHLIGHTED, %TCN_KEYDOWN, %TCN_SELCHANGE, %TCN_SELCHANGING, %TCN_GETOBJECT, %
TCN_FOCUSCHANGE, %TCS_SCROLLOPPOSITE, %TCS_FLATBUTTONS, %TCS_FORCEICONLEFT, %
TCS_FORCELABELLEFT, %TCS_HOTTRACK, %TCS_TABS, %TCS_BUTTONS, %TCS_FIXEDWIDTH, %
TCS_RAGGEDRIGHT, %TCS_FOCUSONBUTTONDOWN, %TCS_OWNERDRAWFIXED, %TCS_TOOLTIPS, %
TCS_FOCUSNEVER, %TCS_EX_FLATSEPARATORS, %TCS_EX_REGISTERDROP

For use with TCP NOTIFY:

%FD_ACCEPT, %FD_CLOSE, %FD_CONNECT, %FD_READ, %FD_WRITE

For use with TEXTBOXES:

%EN_CHANGE, %EN_ERRSPACE, %EN_HSCROLL, %EN_KILLFOCUS, %EN_MAXTEXT, %EN_SETFOCUS, %
EN_UPDATE, %EN_VSCROLL, %ES_LEFT, %ES_CENTER, %ES_RIGHT, %ES_MULTILINE, %ES_UPPERCASE,
%ES_LOWERCASE, %ES_PASSWORD, %ES_AUTOVSCROLL, %ES_AUTOHSCROLL, %ES_NOHIDESEL, %
ES_OEMCONVERT, %ES_READONLY, %ES_WANTRETURN, %ES_NUMBER, %EN_ALIGN_LTR_EC, %
EN_ALIGN_RTL_EC

For use with THREAD GET PRIORITY and THREAD SET PRIORITY:

%THREAD_PRIORITY_ABOVE_NORMAL, %THREAD_PRIORITY_BELOW_NORMAL, %
THREAD_PRIORITY_HIGHEST, %THREAD_PRIORITY_IDLE, %THREAD_PRIORITY_LOWEST, %
THREAD_PRIORITY_NORMAL, %THREAD_PRIORITY_TIME_CRITICAL

For use with TOOLBARS:

%CCS_ADJUSTABLE, %CCS_BOTTOM, %CCS_LEFT, %CCS_NODIVIDER, %CCS_NOMOVEX, %CCS_NOMOVEY, %
CCS_NOPARENTALIGN, %CCS_NORESIZE, %CCS_RIGHT, %CCS_TOP, %CCS_VERT, %BTNS_AUTOSIZE, %
BTNS_BUTTON, %BTNS_CHECK, %BTNS_GROUP, %BTNS_CHECKGROUP, %BTNS_DROPDOWN, %
BTNS_NOPREFIX, %BTNS_SEP, %BTNS_SHOWTEXT, %BTNS_WHOLEDROPDOWN, %TBSTYLE_AUTOSIZE, %
TBSTYLE_BUTTON, %TBSTYLE_CHECK, %TBSTYLE_GROUP, %TBSTYLE_CHECKGROUP, %
TBSTYLE_DROPDOWN, %TBSTYLE_SEP, %TBSTYLE_TOOLTIPS, %TBSTYLE_FLAT, %TBSTYLE_LIST, %
TBSTYLE_TRANSPARENT, %TBSTYLE_WRAPABLE, %TBSTATE_CHECKED, %TBSTATE_DISABLED, %
TBSTATE_ELLIPSES, %TBSTATE_ENABLED, %TBSTATE_HIDDEN, %TBSTATE_INDETERMINATE, %
TBSTATE_MARKED, %TBSTATE_PRESSED, %TBSTATE_WRAP, %TBN_BEGINADJUST, %TBN_BEGINDRAG, %
TBN_CUSTHELP, %TBN_ENDADJUST, %TBN_ENDDRAG, %TBN_GETBUTTONINFO, %TBN_QUERYDELETE, %
TBN_QUERYINSERT, %TBN_RESET, %TBN_TOOLBARCHANGE, %TB_ADDBITMAP, %TB_ADDBUTTONS, %
TB_ADDBUTTONSW, %TB_ADDSTRING, %TB_ADDSTRINGW, %TB_AUTOSIZE, %TB_BUTTONCOUNT, %
TB_BUTTONSTRUCTSIZE, %TB_CHANGEBITMAP, %TB_CHECKBUTTON, %TB_COMMANDTOINDEX, %
TB_CUSTOMIZE, %TB_DELETEBUTTON, %TB_ENABLEBUTTON, %TB_GETANCHORHIGHLIGHT, %
TB_GETBITMAP, %TB_GETBUTTON, %TB_GETBUTTONINFO, %TB_GETBUTTONINFOW, %TB_GETBUTTONSIZE,

PowerBASIC Compiler for Windows Version 10

167 / 2126

%TB_GETBUTTONTEXT, %TB_GETBUTTONTEXTW, %TB_GETDISABLEDIMAGELIST, %TB_GETEXTENDEDSTYLE,
%TB_GETHOTIMAGELIST, %TB_GETHOTITEM, %TB_GETIMAGELIST, %TB_GETINSERTMARK, %
TB_GETINSERTMARKCOLOR, %TB_GETITEMRECT, %TB_GETMAXSIZE, %TB_GETMETRICS, %TB_GETOBJECT,
%TB_GETPADDING, %TB_GETRECT, %TB_GETROWS, %TB_GETSTATE, %TB_GETSTRING, %TB_GETSTRINGW,
%TB_GETSTYLE, %TB_GETTEXTROWS, %TB_GETTOOLTIPS, %TB_HIDEBUTTON, %TB_HITTEST, %
TB_INDETERMINATE, %TB_INSERTBUTTON, %TB_INSERTBUTTONW, %TB_INSERTMARKHITTEST, %
TB_ISBUTTONCHECKED, %TB_ISBUTTONENABLED, %TB_ISBUTTONHIDDEN, %TB_ISBUTTONHIGHLIGHTED,
%TB_ISBUTTONINDETERMINATE, %TB_ISBUTTONPRESSED, %TB_LOADIMAGES, %TB_MAPACCELERATOR, %
TB_MAPACCELERATORW, %TB_MARKBUTTON, %TB_MOVEBUTTON, %TB_PRESSBUTTON, %
TB_REPLACEBITMAP, %TB_SAVERESTORE, %TB_SAVERESTOREW, %TB_SETANCHORHIGHLIGHT, %
TB_SETBITMAPSIZE, %TB_SETBUTTONINFO, %TB_SETBUTTONINFOW, %TB_SETBUTTONSIZE, %
TB_SETBUTTONWIDTH, %TB_SETCMDID, %TB_SETDISABLEDIMAGELIST, %TB_SETDRAWTEXTFLAGS, %
TB_SETEXTENDEDSTYLE, %TB_SETHOTIMAGELIST, %TB_SETHOTITEM, %TB_SETIMAGELIST, %
TB_SETINDENT, %TB_SETINSERTMARK, %TB_SETINSERTMARKCOLOR, %TB_SETMAXTEXTROWS, %
TB_SETMETRICS, %TB_SETPADDING, %TB_SETPARENT, %TB_SETROWS, %TB_SETSTATE, %TB_SETSTYLE,
%TB_SETTOOLTIPS, %TBN_GETBUTTONINFOW, %TBSTYLE_ALTDRAG, %TBSTYLE_CUSTOMERASE, %
TBSTYLE_EX_DOUBLEBUFFER, %TBSTYLE_EX_DRAWDDARROWS, %TBSTYLE_EX_HIDECLIPPEDBUTTONS, %
TBSTYLE_EX_MIXEDBUTTONS, %TBSTYLE_NOPREFIX, %TBSTYLE_REGISTERDROP

For use with TREEVIEWS:

%TVS_HASBUTTONS, %TVS_HASLINES, %TVS_LINESATROOT, %TVS_EDITLABELS, %
TVS_DISABLEDRAGDROP, %TVS_SHOWSELALWAYS, %TVS_RTLREADING, %TVS_NOTOOLTIPS, %
TVS_CHECKBOXES, %TVS_TRACKSELECT, %TVS_SINGLEEXPAND, %TVS_INFOTIP, %TVS_FULLROWSELECT,
%TVS_NOSCROLL, %TVS_NONEVENHEIGHT, %TVS_NOHSCROLL, %TVI_ROOT, %TVI_FIRST, %TVI_LAST, %
TVI_SORT, %TVE_COLLAPSE, %TVE_EXPAND, %TVE_TOGGLE, %TVE_EXPANDPARTIAL, %
TVE_COLLAPSERESET, %TVN_BEGINDRAG, %TVN_BEGINLABELEDIT, %TVN_BEGINRDRAG, %
TVN_DELETEITEM, %TVN_ENDLABELEDIT, %TVN_GETDISPINFO, %TVN_ITEMEXPANDED, %
TVN_ITEMEXPANDING, %TVN_KEYDOWN, %TVN_SELCHANGED, %TVN_SELCHANGING, %TVN_SETDISPINFO,
%TVN_BEGINDRAGW, %TVN_BEGINLABELEDITW, %TVN_BEGINRDRAGW, %TVN_DELETEITEMW, %
TVN_ENDLABELEDITW, %TVN_GETDISPINFOW, %TVN_ITEMEXPANDEDW, %TVN_ITEMEXPANDINGW, %
TVN_SELCHANGEDW, %TVN_SELCHANGINGW, %TVN_SETDISPINFOW

For use with VARIANTVT:

%VT_EMPTY, %VT_NULL, %VT_I2, %VT_I4, %VT_R4, %VT_R8, %VT_CY, %VT_DATE, %VT_BSTR, %
VT_DISPATCH, %VT_ERROR, %VT_BOOL, %VT_VARIANT, %VT_DECIMAL, %VT_UNKNOWN, %VT_I1, %
VT_UI1, %VT_UI2, %VT_UI4, %VT_I8, %VT_UI8, %VT_INT, %VT_UINT, %VT_VOID, %VT_HRESULT, %
VT_PTR, %VT_SAFEARRAY, %VT_CARRAY, %VT_USERDEFINED, %VT_LPSTR, %VT_LPWSTR, %VT_RECORD,
%VT_FILETIME, %VT_BLOB, %VT_STREAM, %VT_STORAGE, %VT_STREAMED_OBJECT, %
VT_STORED_OBJECT, %VT_BLOB_OBJECT, %VT_CF, %VT_CLSID, %VT_VECTOR, %VT_ARRAY, %VT_BYREF

For use with XPRINT ATTACH CHOOSE:

%PD_ALLPAGES, %PD_SELECTION, %PD_PAGENUMS, %PD_NOSELECTION, %PD_NOPAGENUMS, %
PD_COLLATE, %PD_PRINTTOFILE, %PD_PRINTSETUP, %PD_NOWARNING, %PD_RETURNDC, %
PD_RETURNIC, %PD_RETURNDEFAULT, %PD_SHOWHELP, %PD_ENABLEPRINTHOOK, %
PD_ENABLESETUPHOOK, %PD_ENABLEPRINTTEMPLATE, %PD_ENABLESETUPTEMPLATE, %
PD_ENABLEPRINTTEMPLATEHANDLE, %PD_ENABLESETUPTEMPLATEHANDLE, %PD_USEDEVMODECOPIES, %
PD_USEDEVMODECOPIESANDCOLLATE, %PD_DISABLEPRINTTOFILE, %PD_HIDEPRINTTOFILE, %
PD_NONETWORKBUTTON, %PD_CURRENTPAGE, %PD_NOCURRENTPAGE, %PD_EXCLUSIONFLAGS, %
PD_USELARGETEMPLATE, %PD_RESULT_CANCEL, %PD_RESULT_PRINT, %PD_RESULT_APPLY, %
PDERR_PRINTERCODES, %PDERR_SETUPFAILURE, %PDERR_PARSEFAILURE, %PDERR_RETDEFFAILURE, %
PDERR_LOADDRVFAILURE, %PDERR_GETDEVMODEFAIL, %PDERR_INITFAILURE, %PDERR_NODEVICES, %
PDERR_NODEFAULTPRN, %PDERR_DNDMMISMATCH, %PDERR_CREATEICFAILURE, %
PDERR_PRINTERNOTFOUND, %PDERR_DEFAULTDIFFERENT

For use with the XPRINT GET COLLATE and XPRINT SET COLLATE statements:

%DMCOLLATE_FALSE, %DMCOLLATE_TRUE

For use with the XPRINT GET COLORMODE and XPRINT SET COLORMODE statements:

%DMCOLOR_MONOCHROME, %DMCOLOR_COLOR

For use with the XPRINT GET DUPLEX and XPRINT SET DUPLEX statements:

%DMDUP_SIMPLEX, %DMDUP_VERTICAL, %DMDUP_HORIZONTAL

PowerBASIC Compiler for Windows Version 10

168 / 2126

For use with the XPRINT GET PAPER, XPRINT GET PAPERS, and XPRINT SET PAPER statements:

%DMPAPER_LETTER, %DMPAPER_TABLOID, %DMPAPER_LEDGER, %DMPAPER_LEGAL, %
DMPAPER_STATEMENT, %DMPAPER_EXECUTIVE, %DMPAPER_A3, %DMPAPER_A4, %DMPAPER_A5, %
DMPAPER_B4, %DMPAPER_B5, %DMPAPER_FOLIO, %DMPAPER_QUARTO, %DMPAPER_10X14, %
DMPAPER_11X17, %DMPAPER_NOTE, %DMPAPER_ENV_9, %DMPAPER_ENV_10

For use with the XPRINT GET TRAY, XPRINT GET TRAYS, and XPRINT SET TRAY statements:

%DMBIN_UPPER, %DMBIN_LOWER, %DMBIN_MIDDLE, %DMBIN_MANUAL, %DMBIN_ENVELOPE, %
DMBIN_ENVMANUAL, %DMBIN_AUTO, %DMBIN_TRACTOR, %DMBIN_SMALLFMT, %DMBIN_LARGEFMT, %
DMBIN_LARGECAPACITY, %DMBIN_CASSETTE, %DMBIN_FORMSOURCE

For use with Miscellaneous API routines:

%BIF_VALIDATE, %CF_BITMAP, %CF_DIB, %CF_DIBV5, %CF_DIF, %CF_ENHMETAFILE, %CF_HDROP, %
CF_LOCALE, %CF_METAFILEPICT, %CF_OEMTEXT, %CF_PALETTE, %CF_PENDATA, %CF_RIFF, %
CF_SYLK, %CF_TEXT, %CF_TIFF, %CF_UNICODETEXT, %CF_WAVE, %CS_BYTEALIGNCLIENT, %
CS_BYTEALIGNWINDOW, %CS_CLASSDC, %CS_DBLCLKS, %CS_DROPSHADOW, %CS_GLOBALCLASS, %
CS_HREDRAW, %CS_IME, %CS_KEYCVTWINDOW, %CS_NOCLOSE, %CS_NOKEYCVT, %CS_OWNDC, %
CS_PARENTDC, %CS_SAVEBITS, %CS_VREDRAW, %MAX_FNAME, %MAX_PATH, %MAXIMUM_WAIT_OBJECTS,
%OFN_NOCHANGEDIR, %SND_ALIAS, %SND_ALIAS_ID, %SND_APPLICATION, %SND_ASYNC, %
SND_FILENAME, %SND_LOOP, %SND_MEMORY, %SND_NODEFAULT, %SND_NOSTOP, %SND_NOWAIT, %
SND_PURGE, %SND_RESOURCE, %SND_VALID, %TCS_BOTTOM, %TCS_MULTILINE, %TCS_MULTISELECT, %
TCS_RIGHT, %TCS_RIGHTJUSTIFY, %TCS_SINGLELINE, %TCS_VERTICAL, %WS_EX_MDICHILD

See Also

Built-in RGB Color Equates

Constants and Literals

Numeric Equates

String Equates

Built-in string equates

Built-in Interfaces

Built-in User Defined Types

Built In RGB Color Equates

Built-in RGB Color Equates

The following is a list of RGB color equates built into the compiler, which can be used with routines that
accept RGB color values.

Red Colors

%RGB_INDIANRED = &H5C5CCD

%RGB_LIGHTCORAL = &H8080F0

%RGB_SALMON = &H7280FA

%RGB_DARKSALMON = &H7A96E9

%RGB_LIGHTSALMON = &H7AA0FF

%RGB_CRIMSON = &H3C14DC

%RGB_RED = &H0000FF

%RGB_FIREBRICK = &H2222B2

%RGB_DARKRED = &H00008B

PowerBASIC Compiler for Windows Version 10

169 / 2126

Pink Colors

%RGB_PINK = &HCBC0FF

%RGB_LIGHTPINK = &HC1B6FF

%RGB_HOTPINK = &HB469FF

%RGB_DEEPPINK = &H9314FF

%RGB_MEDIUMVIOLETRED = &H8515C7

%RGB_PALEVIOLETRED = &H9370DB

Orange Colors

%RGB_LIGHTSALMON = &H7AA0FF

%RGB_CORAL = &H507FFF

%RGB_TOMATO = &H4763FF

%RGB_ORANGERED = &H0045FF

%RGB_DARKORANGE = &H008CFF

%RGB_ORANGE = &H00A5FF

Yellow Colors

%RGB_GOLD = &H00D7FF

%RGB_YELLOW = &H00FFFF

%RGB_LIGHTYELLOW = &HE0FFFF

%RGB_LEMONCHIFFON = &HCDFAFF

%
RGB_LIGHTGOLDENRODYEL
LOW

= &HD2FAFA

%RGB_PAPAYAWHIP = &HD5EFFF

%RGB_MOCCASIN = &HB5E4FF

%RGB_PEACHPUFF = &HB9DAFF

%RGB_PALEGOLDENROD = &HAAE8EE

%RGB_KHAKI = &H8CE6F0

%RGB_DARKKHAKI = &H6BB7BD

Purple Colors

%RGB_LAVENDER = &HFAE6E6

%RGB_THISTLE = &HD8BFD8

%RGB_PLUM = &HDDA0DD

%RGB_VIOLET = &HEE82EE

%RGB_ORCHID = &HD670DA

%RGB_MAGENTA = &HFF00FF

%RGB_MEDIUMORCHID = &HD355BA

%RGB_MEDIUMPURPLE = &HDB7093

%RGB_BLUEVIOLET = &HE22B8A

%RGB_DARKVIOLET = &HD30094

%RGB_DARKORCHID = &HCC3299

%RGB_DARKMAGENTA = &H8B008B

%RGB_PURPLE = &H800080

%RGB_INDIGO = &H82004B

%RGB_SLATEBLUE = &HCD5A6A

%RGB_DARKSLATEBLUE = &H8B3D48

%RGB_MEDIUMSLATEBLUE = &HEE687B

PowerBASIC Compiler for Windows Version 10

170 / 2126

Green Colors

%RGB_GREENYELLOW = &H2FFFAD

%RGB_CHARTREUSE = &H00FF7F

%RGB_LAWNGREEN = &H00FC7C

%RGB_LIME = &H00FF00

%RGB_LIMEGREEN = &H32CD32

%RGB_PALEGREEN = &H98FB98

%RGB_LIGHTGREEN = &H90EE90

%
RGB_MEDIUMSPRINGGREEN

= &H9AFA00

%RGB_SPRINGGREEN = &H7FFF00

%RGB_MEDIUMSEAGREEN = &H71B33C

%RGB_SEAGREEN = &H578B2E

%RGB_FORESTGREEN = &H228B22

%RGB_GREEN = &H008000

%RGB_DARKGREEN = &H006400

%RGB_YELLOWGREEN = &H32CD9A

%RGB_OLIVEDRAB = &H238E6B

%RGB_OLIVE = &H008080

%RGB_DARKOLIVEGREEN = &H2F6B55

%RGB_MEDIUMAQUAMARINE = &HAACD66

%RGB_DARKSEAGREEN = &H8FBC8F

%RGB_LIGHTSEAGREEN = &HAAB220

%RGB_DARKCYAN = &H8B8B00

%RGB_TEAL = &H808000

Blue Colors

%RGB_CYAN = &HFFFF00

%RGB_LIGHTCYAN = &HFFFFE0

%RGB_PALETURQUOISE = &HEEEEAF

%RGB_AQUAMARINE = &HD4FF7F

%RGB_TURQUOISE = &HD0E040

%RGB_MEDIUMTURQUOISE = &HCCD148

%RGB_DARKTURQUOISE = &HD1CE00

%RGB_CADETBLUE = &HA09E5F

%RGB_STEELBLUE = &HB48246

%RGB_LIGHTSTEELBLUE = &HDEC4B0

%RGB_POWDERBLUE = &HE6E0B0

%RGB_LIGHTBLUE = &HE6D8AD

%RGB_SKYBLUE = &HEBCE87

%RGB_LIGHTSKYBLUE = &HFACE87

%RGB_DEEPSKYBLUE = &HFFBF00

%RGB_DODGERBLUE = &HFF901E

%RGB_CORNFLOWERBLUE = &HED9564

%RGB_MEDIUMSLATEBLUE = &HEE687B

%RGB_ROYALBLUE = &HE16941

%RGB_BLUE = &HFF0000

%RGB_MEDIUMBLUE = &HCD0000

PowerBASIC Compiler for Windows Version 10

171 / 2126

%RGB_DARKBLUE = &H8B0000

%RGB_NAVY = &H800000

%RGB_MIDNIGHTBLUE = &H701919

Brown Colors

%RGB_CORNSILK = &HDCF8FF

%RGB_BLANCHEDALMOND = &HCDEBFF

%RGB_BISQUE = &HC4E4FF

%RGB_NAVAJOWHITE = &HADDEFF

%RGB_WHEAT = &HB3DEF5

%RGB_BURLYWOOD = &H87B8DE

%RGB_TAN = &H8CB4D2

%RGB_ROSYBROWN = &H8F8FBC

%RGB_SANDYBROWN = &H60A4F4

%RGB_GOLDENROD = &H20A5DA

%RGB_DARKGOLDENROD = &H0B86B8

%RGB_PERU = &H3F85CD

%RGB_CHOCOLATE = &H1E69D2

%RGB_SADDLEBROWN = &H13458B

%RGB_SIENNA = &H2D52A0

%RGB_BROWN = &H2A2AA5

%RGB_MAROON = &H000080

White Colors

%RGB_WHITE = &HFFFFFF

%RGB_SNOW = &HFAFAFF

%RGB_HONEYDEW = &HF0FFF0

%RGB_MINTCREAM = &HFAFFF5

%RGB_AZURE = &HFFFFF0

%RGB_ALICEBLUE = &HFFF8F0

%RGB_GHOSTWHITE = &HFFF8F8

%RGB_WHITESMOKE = &HF5F5F5

%RGB_SEASHELL = &HEEF5FF

%RGB_BEIGE = &HDCF5F5

%RGB_OLDLACE = &HE6F5FD

%RGB_FLORALWHITE = &HF0FAFF

%RGB_IVORY = &HF0FFFF

%RGB_ANTIQUEWHITE = &HD7EBFA

%RGB_LINEN = &HE6F0FA

%RGB_LAVENDERBLUSH = &HF5F0FF

%RGB_MISTYROSE = &HE1E4FF

Gray Colors

%RGB_GAINSBORO = &HDCDCDC

%RGB_LIGHTGRAY = &HD3D3D3

%RGB_SILVER = &HC0C0C0

%RGB_DARKGRAY = &HA9A9A9

%RGB_GRAY = &H808080

%RGB_DIMGRAY = &H696969

PowerBASIC Compiler for Windows Version 10

172 / 2126

%RGB_LIGHTSLATEGRAY = &H998877

%RGB_SLATEGRAY = &H908070

%RGB_DARKSLATEGRAY = &H4F4F2F

%RGB_BLACK = &H000000

See Also

Built-in numeric equates

Built-in string equates

Built-in Interfaces

Built-in User Defined Types

Constants and Literals

Numeric Equates

String Equates

String Equates

String Equates
You can create a

 equate by prefixing $ (for ANSI) or $$ (for WIDE) to the equate name. The value on the right side of
the equate assignment must be a string literal, or an expression created from string literals. The string
literal expression can be constructed from combinations of other string equates or quoted string literals,
the CHR$ function, SPACE$ function, and the STRING$ function when used with numeric parameters.
 ANSI string equates can also use the GUID$ function. For example:

$Name = "John Smith"
$$Fullname = "John"$$ & " Smith"$$
$$UserNam = $$First & $$Last
$PrintCode = CHR$(27, 34, "E") + SPACE$(10) + CHR$(65 TO 90)
$AppGuid = GUID$("{01234567-89AB-CDEF-FEDC-BA9876543210}")

A string equate can include the double-quote character, simply by doubling the character within the string.
For example:

$ABC = "This is a ""string"""

ANSI string equates are each limited to 255 characters, while WIDE equates are limited to 127 characters.
 An attempt to create a longer string equate will trigger a compile-time Error 489 ("Invalid string length").

As with numeric equates, PowerBASIC pre-calculates the string equate content during compilation to limit
calculations at run-time. Duplicate definitions of both numeric and string equates are permitted by
PowerBASIC, provided the actual content is identical. If the content is not identical, a compile-time Error
468 ("Duplicate Equate") will be generated.

A string equate name must always begin with one or two leading dollar signs ($) and a letter (A-Z). This is
optionally followed by any combination of letters (A-Z), numbers (0-9), and underscores (_). All other
characters are illegal.

String equates must be created outside of any SUB, FUNCTION, METHOD, or PROPERTY. String equates
are global, and may be referenced anywhere in the module. For readability, we suggest placing equates at
the top of your code.

See Also

PowerBASIC Compiler for Windows Version 10

173 / 2126

Constants and Literals

Defining Constants

Numeric Equates

Built-in numeric equates

Built In RGB Color Equates

Built-in string equates

Built-in string equates

Built-in string equates
The compiler also provides a set of built-in string equates. These offer convenience as well as self-
documentation.

The following table shows the ANSI form, each of which begins with a single dollar-sign ($). The compiler
also includes and offers a wide Unicode version of each of them, identified by a double dollar-sign ($$). For
example, $NUL returns a byte with the character code zero (0), while $$NUL returns a word with the
character code zero (0).

ANSI Character(s) Definition
$NUL CHR$(0) Null
$BEL CHR$(7) Bell
$BS CHR$(8) Back Space
$TAB CHR$(9) Horizontal Tab
$LF CHR$(10) Line Feed
$VT CHR$(11) Vertical Tab
$FF CHR$(12) Form Feed
$CR CHR$(13) Carriage Return
$CRLF CHR$(13,10) CR and LF
$EOF CHR$(26) End-of-File
$ESC CHR$(27) Escape
$SPC CHR$(32) Space
$DQ CHR$(34) Double-Quote
$DQ2 CHR$(34,34) Two Double-Quotes ("")
$SQ CHR$(39) Single-Quote
$SQ2 CHR$(39,39) Two Single-Quotes ('')
$QCQ CHR$(34, 44, 34) Double-Quote, Comma, Double-

Quote
$WHITESPACE CHR$(32, 9, 13, 10) Space, Tab, CR, LF

See Also

Constants and Literals

Numeric Equates

Built-in numeric equates

Built-in string equates

String Equates

Built-in Interfaces

Built-in User Defined Types

PowerBASIC Compiler for Windows Version 10

174 / 2126

Built-in RGB Color Equates

Bit Data Types

Bit Data Types
TYPE and UNION structures may contain bit variables, which are named BIT (unsigned values) or SBIT
(signed values). Each bit variable may occupy from 1 to 31 bits. When used in a TYPE, bit variables are
packed one after another up to a total of 32 bits per bit field. When used in a UNION, all bit variables overlay
each other, starting at the first bit position.

Bit variables may only be used as TYPE or UNION members, not as scalar, array, or pointer variables. The
size of a bit variable is defined as:

var AS BIT * nlit [IN BYTE|WORD|DWORD]

where the term "* nlit" defines the number of bits (1 to 31), and the optional term "IN BYTE|WORD|
DWORD", if present, defines the start of a new bit field of 1, 2, or 4 bytes.

TYPE abcd
 valu AS BIT * 31 IN DWORD
 sign AS SBIT * 1
 nybl2 AS BIT * 4 IN BYTE
 nybl1 AS BIT * 4
END TYPE

The example type above is 5 bytes in size, containing a 4-byte bit field and a 1-byte bit field. In this case,
each contain 2 bit variables of varying size. The range of values which may be stored depends upon the
number of bits available. For example, "BIT * 4" has a range of 0 to 15, "SBIT * 1" has a range of -1 to 0,
and "SBIT * 5" has a range of -16 to +15. BIT and SBIT variables may not be used with SHIFT or ROTATE
statements.

UNION abcde
 Part1 AS BIT * 8 IN DWORD
 Part2 AS BIT * 16
END UNION

The example union above is 2 bytes in size, containing an 8-bit field and an overlapping 16-bit field.

See Also

TYPE/END TYPE block

UNION/END UNION statements

GUID data types

GUID Data Types
PowerBASIC introduces another new variable class: GUID variables. These are a special form of 16-byte
string that are used to contain a 128-bit Globally Unique Identifier (GUID), primarily for use with COM
Objects.

Generally speaking, a GUID variable is assigned a value with the GUID$ function, or with a string equate,
and that value usually remains constant throughout the program. The GUID variable is typically used only
as a parameter, rather than as a term in an expression.

GUID variables must be explicitly declared with DIM, LOCAL, etc, and are used in much the same way as a
16-byte fixed-length string or a user-defined type of that size. A GUID variable is only valid as a parameter
when its 16 bytes of data are in an appropriate format. For example:

PowerBASIC Compiler for Windows Version 10

175 / 2126

$idNull = STRING$(16,0)
' code here
DIM abc AS LOCAL GUID
DIM def AS LOCAL STRING
DIM xyz AS GLOBAL GUID
abc = $idNull
abc = GUID$("{00000000-0000-0000-C000-000000000046}")
xyz = abc
def = GUIDTXT$(xyz)
' def contains "{00000000-0000-0000-C000-000000000046}"

See Also

GUID$ function

What is an object, anyway?

Just what is COM?

How are GUID's used with objects?

Object Data Type

Object Data Types
Object variables are used to access an object. Object variables contain a pointer to the desired object, so
they are considered to contain an "Object Reference". They contain no other value of any kind. Object
variables are declared by the name of the interface they represent. This could be the generic IDISPATCH,
IUNKNOWN, and IAUTOMATION interfaces, or one that is explicitly defined with an INTERFACE structure.
 For example:

' Generic IDispatch Object variable
DIM oWord AS IDISPATCH
LET oWord = NEWCOM "Word.Application"

' Generic IUnknown Object variable
DIM MyObj as IUNKNOWN
DIM oWord as Int_Application
LET MyObj = NEWCOM "Word.Application"
LET oWord = MyObj

' Interface-specific Object variable
DIM oWord AS Int_Application
LET oWord = NEWCOM "Word.Application"

An object variable may only be used in specific situations, such as execution of an Object Method. It is
never legal to reference Object variables in normal

 or string expressions, nor is it possible to even output their value without the use of the special new
functions like OBJPTR. Methods are executed by using an object variable with a Method name. For
example, to call the Method ABC in an interface represented by the object variable MyObject, you
would
write:

CALL MyObject.abc()

See Also

What is an object, anyway?

Just what is COM?

PowerBASIC Compiler for Windows Version 10

176 / 2126

How do you create an object?

How do you call a Direct Method?

How do you call a DISPATCH METHOD?

Late Binding

ID Binding

Variant Data Types

Variant Data Types
Variant variables are now supported by PowerBASIC, but their use is limited to that of a parameter
assignment for conversion of data, for compatibility with other languages and applications, especially COM
Objects.

Although notoriously lacking in efficiency, Variants are commonly used as COM Object parameters due to
their flexibility. You can think of a Variant as a kind of container, which can hold a variable of most any data
type,

, , or even an entire array. This simplifies the process of calling procedures in a COM Object Server,
as there is little need to worry about the myriad of possible data types for each parameter.
This flexibility comes at a great price in performance, so PowerBASIC limits their use to data storage and
parameters only. You may assign a numeric value, a string value, or even an entire array to a Variant with
the LET statement, or its implied equivalent. In the same way, you may assign one Variant value to another
Variant variable, or even assign an array contained in a Variant to a compatible PowerBASIC array, or the
reverse.

You may extract a simple scalar value from a Variant with the VARIANT# function for numeric values
(regardless of the internal numeric data type), or with the VARIANT$ and VARIANT$$ functions for string
values. You may determine the type of data a Variant variable contains with the VARIANTVT function. The
following table summarizes the predefined (built-in) equates that can be used to examine a Variant:

Result Equate Content Type

0 %VT_EMPTY An Empty Variant

1 %VT_NULL Null value

2 %VT_I2 Integer

3 %VT_I4 Long-Integer

4 %VT_R4 Single

5 %VT_R8 Double

6 %VT_CY Currency

7 %VT_DATE Date

8 %VT_BSTR Dynamic String

9 %VT_DISPATCH IDispatch

10 %VT_ERROR Error Code

11 %VT_BOOL Boolean

12 %VT_VARIANT Variant

13 %VT_UNKNOWN IUnknown

14 %VT_DECIMAL Decimal

16 %VT_I1 Byte (signed)

17 %VT_UI1 Byte (unsigned)

PowerBASIC Compiler for Windows Version 10

177 / 2126

18 %VT_UI2 Word

19 %VT_UI4 DWORD

20 %VT_I8 Quad (signed)

21 %VT_UI8 Quad (unsigned)

22 %VT_INT Long-Integer

23 %VT_UINT DWord

24 %VT_VOID A C-style void type

25 %VT_HRESULT COM result code

26 %VT_PTR Pointer

27 %VT_SAFEARRAY VB Array

28 %VT_CARRAY A C-style array

29 %VT_USERDEFINED User Defined Type

30 %VT_LPSTR ANSI string

31 %VT_LPWSTR Unicode string

64 %VT_FILETIME A FILETIME value

65 %VT_BLOB An arbitrary block of memory

66 %VT_STREAM A stream of bytes

67 %VT_STORAGE Name of the storage

68 %VT_STREAMED_OBJECT A stream that contains an object

69 %VT_STORED_OBJECT A storage object

70 %VT_BLOB_OBJECT A block of memory that represents an object

71 %VT_CF Clipboard format

72 %VT_CLSID Class ID

&H1000 %VT_VECTOR An array with a leading count

&H2000 %VT_ARRAY Array

&H4000 %VT_BYREF A reference value

Variants may not be used in an expression, be directly output (PRINT#, etc), or used as a member of a
structure such as a User-Defined Type (UDT) or UNION, etc. Instead, you must first extract the value with
one of the above conversion functions, and use that acquired value for calculations.

Internally, a Variant is always 16-bytes in size, and may be passed as either a BYVAL or a BYREF
parameter, at the programmer's discretion. However, when a BYREF Variant is required as a parameter,
only an explicit Variant variable may be passed by the calling code - a BYCOPY expression is not allowed.

All dynamic strings contained in a Variant must be Wide/Unicode, and PowerBASIC handles these
conversions automatically through the LET statement and its implied equivalent.

There may be some cases where you wish to manipulate the internal structure of a Variant directly. Though
possible, you must exercise caution or a serious memory leak could occur. Since a Variant could be the
owner of a string, array, etc., you must always reset a Variant ([LET] VrntName = EMPTY) prior to
manipulation with POKE, or pointers, etc.

When you use the standard PowerBASIC assignment syntax, for example: [LET] VrntName = 21, all this
"housekeeping" is completely automatic and handled by PowerBASIC for you.

Every Variant variable must be explicitly declared with an appropriate statement such as:

DIM xyz AS VARIANT or LOCAL xyz AS VARIANT

See Also

What is an object, anyway?

PowerBASIC Compiler for Windows Version 10

178 / 2126

Just what is COM?

What is a COM component?

Comparative Data Types

C/C++

Comparative Data Types C/C++
When dealing with C, intrinsic types are in lowercase. Defined types are in all caps by convention. C data
types are case-sensitive. Integer-class types can take a modifier of "signed" or "unsigned", and are signed
by default.

C arrays are defined by the number of elements and are indexed from zero:

"char foo[32]" translates to DIM foo(0 TO 31) AS BYTE, or DIM foo AS STRING * 32, depending on the
context of the code.

C arrays are stored in row-major order whereas PowerBASIC arrays are stored in column-major order. Bear
in mind that when accessing C arrays the following C code:

k = arr[i,j]

…would translate to PowerBASIC as:

k = arr(j,i)

C arrays are accessed as follows:

(0,0), (0,1), (0,2), ...
(1,0), (1,1), (1,2), ...

…whereas PowerBASIC arrays are accessed:

(0,0), (1,0), (2,0), ...
(0,1), (1,1), (2,1), ...

Commonly, C/C++ code prefixes data types with "LP" which indicates a pointer. Therefore, items with the
LP prefix usually correspond to a pointer in PowerBASIC; however, the size of the pointer's target will
depend on the data type.

More information on C/C++ syntax can be found on the Internet, such as at http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1124.pdf and http://www.open-std.org/JTC1/SC22/WG21/

C/C++ Data Types

Type Language Format PowerBASIC
bool C++ unsigned 8-bit BYTE (2)
char C/C++ signed 8-bit BYTE (2)
char* C/C++ char pointer STRINGZ (1)
double C/C++ 8-byte float DOUBLE
float C/C++ 4-byte float SINGLE
int C/C++ signed 32-bit LONG (3)
long C/C++ signed 32-bit LONG
short C/C++ signed 16-bit INTEGER
void C/C++ (no return value) SUB
void * C/C++ pointer (ANY) [PTR] (1)

Defined types (SDK types)

Type Format PowerBASIC
ATOM unsigned 16-bit WORD
BOOL signed 32-bit LONG
boolean 8-bit integer BYTE
Boolean signed 16-bit INTEGER

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/JTC1/SC22/WG21/
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

179 / 2126

BOOLEAN 8-bit integer BYTE
BSTR dynamic string WSTRING {unicode}
BYTE unsigned 8-bit BYTE
COLORREF unsigned 32-bit DWORD
DWORD unsigned 32-bit DWORD
HANDLE unsigned 32-bit DWORD
HWND/HDC/… unsigned 32-bit DWORD
INT32 signed 32-bit LONG
INT64 signed 64-bit QUAD
LARGE_INTEGER signed 64-bit QUAD
LPARAM signed 32-bit LONG
LP… pointer (ANY) [PTR] (4)
LPCSTR STRINGZ pointer STRINGZ [PTR]
LPDWORD DWORD pointer DWORD [PTR]
LPINT LONG pointer LONG [PTR]
LPSTR STRINGZ pointer STRINGZ [PTR]
LPUINT DWORD pointer DWORD [PTR]
LPVOID 32-bit pointer (ANY) [PTR]
LPWSTR WSTRINGZ pointer WSTRINGZ [PTR]
LRESULT signed 32-bit LONG
NULL 32-bit 0 or %NULL
PASCAL {calling convention} /STDCALL
QWORD unsigned 64-bit QUAD (2)
STDCALL {calling convention} SDECL/STDCALL
UCHAR unsigned 8-bit BYTE
UINT unsigned 32-bit DWORD (3)
UINT16 unsigned 16-bit WORD
UINT32 unsigned 32-bit DWORD
UINT64 unsigned 64-bit QUAD (2)
VOID SUB {no return value}
VOID * pointer (ANY) [PTR] (1)
WINAPI {calling convention} SDECL/STDCALL
WORD unsigned 16-bit WORD
WPARAM signed 32-bit LONG

Delphi

Comparative Data Types Delphi
Delphi uses integer conventions similar to C, although the names are case-insensitive, as with BASIC. That
is, a Delphi INTEGER value may be either a PowerBASIC INTEGER or LONG, depending on whether the
Delphi code is 16-bit or 32-bit.

The elements of multi-dimensional arrays, in Delphi, are not necessarily stored in a straightforward order in
memory. Such arrays are not compatible with other languages.

Delphi Data Types

Type Format PowerBASIC
ansistring dynamic ANSI string STRING
boolean unsigned 8-bit BYTE
byte unsigned 8-bit BYTE
bytebool unsigned 8-bit BYTE
cardinal unsigned 16/32-bit WORD/DWORD (5)
comp signed 64-bit QUAD
currency 8-byte fixed point CURRENCY
double 8-byte floating point DOUBLE

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

180 / 2126

extended 10-byte floating point EXT
int64 signed 64-bit QUAD
integer signed 16/32-bit INTEGER/LONG (5)
longbool signed 32-bit LONG
longint signed 32-bit LONG
longword unsigned 32-bit DWORD
pchar STRINGZ string STRINGZ
shortint signed 8-bit BYTE (2)
shortstring 2 to 256 byte string STRING * 256
single 4-byte float SINGLE
smallint signed 16-bit INTEGER
variant data-dependent VARIANT
wstring dynamic Unicode string WSTRING
word unsigned 16-bit WORD
wordbool unsigned 16-bit WORD

Visual Basic 6

Comparative Data Types Visual Basic 6
Visual Basic Data Types

Type Format PowerBASIC
Boolean signed 16-bit INTEGER
Byte unsigned 8-bit BYTE
Const numeric constant {Equate} (2)
Currency 8-byte fixed point CURRENCY
Double 8-byte float DOUBLE
Integer signed 16-bit INTEGER
Long signed 32-bit LONG
Single 4-byte float SINGLE
String dynamic string STRING
String * n fixed-length string STRING * n
Variant data-dependent VARIANT

Variables and Variable Scope

Variables

Variables
Variables represent

 or values. Unlike constants, the value of a variable can change during program execution. Like labels,
variable names must begin with a letter and can contain up to 255 letters and digits (although in practical
terms you really cannot exceed the length of a line). Be generous in naming important variables. In
PowerBASIC, long variable names do not steal run-time memory.
The Single-precision variables, EndOfMonthTotals and emt, both require exactly four bytes of run-time
storage. A good rule of thumb is to preserve a balance, keeping variable names short enough so that
statements can fit on one line. Many programmers use single-letter variables for

 counters (i, j, k, l and x, y, z are favorites). However, you can use names like count, total, index, and
so on for greater clarity, especially if you have nested loops.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

181 / 2126

PowerBASIC has many built-in variable types: Dynamic string; Fixed-length string; nul-terminated string;
Field, Integer; Long integer; Quad integer; Byte, Word; Double word; Single; Double; and Extended floating
point; Currency and CurrencyX; Variant, Object, Guid, plus Pointer, arrays, and Bit and Sbit bitfield
subtypes.

Declaring a variable as a specific type:

Use the DIM statement to declare a variable and use the AS type syntax:

DIM iVar AS INTEGER

Appending a type-specifier to the variable name:
bat# = 1.312 ' bat# is a Double-precision variable
hat% = 3 ' hat% is an Integer variable
DEFINT c ' Variables beginning with c are now Integer
cats = 16 ' cats is an Integer variable by DEFINT

Bear in mind that cat?, cat%, cat&, cat&&, cat!, cat#, cat##, cat@, cat@@, and cat$ are ten separate
variables. Although using cat over and over again to create different variables like this is legal, good
programming practice suggests that you use somewhat different names for different variables. It is also
much better to use descriptive and more easily understood names for your variables rather than single
letters. It's extremely difficult to debug a program in which x@ has been entered instead of x! or x#.
Imagine the confusion of trying to distinguish x&& and x&. If you had used variable names like count!,
result#, remain##, and company$, you would have had considerably less trouble keeping your variables (and
their types) apart.

See Also

Default Variable Typing

Variable Scope

INSTANCE statement

Default Variable Typing

Default Variable Typing
In most older versions of BASIC (including PowerBASIC for DOS), all variables without a TypeID (%, !, &,
etc.) are automatically considered to be single precision floating point. Other compilers have chosen other
defaults (for example, VB defaults to Variant).

To avoid this ambiguity, PowerBASIC asks you to make this determination instead. You can use the DEF
statement to specify your preferred default variable type to be applied to untyped variable names. For
example, to mimic the single precision default of PB/DOS, simply add a DEFSNG statement to the top of
your program:

DEFSNG A-Z

See Also

Variables

Variable Scope

Variable scope

http://www.powerbasic.com/products/pbdos/

PowerBASIC Compiler for Windows Version 10

182 / 2126

Variable Scope
The scope of a variable is defined as its visibility and its lifetime. Visibility means what parts of your program
can access it. Lifetime defines when it is created and when it is destroyed. In PowerBASIC, there are
many choices of scope to afford the maximum flexibility. You may choose any scope which best fits the
needs of your program. When any variable is created in PowerBASIC, it is automatically initialized.

 variables are initialized to zero (0). Dynamic strings, Field strings, and nul-terminated strings are
initialized to a length of zero (no characters). Fixed-length strings and UDTs are filled with CHR$(0).
 PowerBASIC automatically destroys every variable at the appropriate time, so you never need worry
about this type of memory leak.

LOCAL Local variables are only accessible within a single SUB, FUNCTION, METHOD, or
PROPERTY. They are automatically created and initialized each time you enter the
procedure. They are automatically destroyed when you exit the procedure. This is the default
variable scope unless you declare otherwise.

STATIC Static variables are only accessible within a single SUB, FUNCTION, METHOD, or
PROPERTY. They are initialized when your program starts, but retain their value regardless
of how many times the procedure is entered and exited. They are destroyed only when the
program ends.

INSTAN
CE

Instance variables are accessible from any method or property in a class. Each object will
have its own unique copy of them. They are created and initialized when an object is
created. They are destroyed when the object is destroyed.

THREA
DED

Threaded variables are accessible from anywhere in your program, but each thread within
your program will have its own unique copy of them. They are created and initialized when a
thread is created. They are destroyed when the thread ends. Threaded variables are
commonly called Thread Local Storage (TLS). They serve a purpose similar to global
variables, but never require synchronization since they can't be accessed across threads.

GLOBA
L

Global variables are accessible from anywhere in your program. They are initialized when
your program starts and are destroyed when the program ends.

Variable Precedence
In PowerBASIC, variables have a defined precedence based upon their scope. Therefore, if two or more
variables are created with the same name, the programmer can know, with certainty, which variable is being
accessed when the name is referenced. For example, you might use abc%, abc#, and abc$ in the same
function using default typing defined by the Type ID character. You could even create a local variable named
"counters" and a global variable also named "counters".

So, when you reference a variable name in your program, which variable is actually used? Depending upon
the location of the reference, the compiler chooses the variable with the smallest scope. The precedence of
variable scopes is:

1. Local or Static

2. Instance

3. Global or Threaded

By Default, PowerBASIC first tries to find a LOCAL or STATIC. Next, an INSTANCE, and finally a GLOBAL
or THREADED. It selects the first one it finds, in that sequence. Of course, you cannot use the same
name for a LOCAL and a STATIC, unless you use a Type ID character to differentiate them. You can never
use the same name for a GLOBAL and a THREADED, as it would be impossible to tell them apart. While
this method offers the most flexibility, it can be confusing, and can lead to the creation of insidious, hard-to-
find errors in your program. When you accidentally reference the wrong variable, the results can be
disastrous.

If you prefer to avoid name duplication, PowerBASIC offers an optional metastatement to enforce that
concept. If #UNIQUE VAR ON is enabled, PowerBASIC will require that variable names be unique. The can
make your job a good deal easier, as it removes the ambiguity found with identifier reuse. There are a few
exceptions to the uniqueness rule, which are designed to improve readability in your code:

PowerBASIC Compiler for Windows Version 10

183 / 2126

1. Local, Static, and Parameter names may be reused in other Subs, Functions, and Methods.

2. Instance names may reused in other Classes.

3. Scalar and array names may co-exist if they are the same data type and scope.

Additional Scope Considerations
LOCAL variables are stored on the stack frame of the procedure, so the address will change throughout the
program. Therefore, it may not be safe to rely upon a pointer to them. Likewise, INSTANCE and
THREADED variables exist only as long as the object or

 is active, though their lifetime is generally somewhat longer. STATIC and GLOBAL variables are
stored in main memory, so their address remains constant for the entire program.
The stack has a defined size limit. It defaults to 1 MB, but can be expanded with the #STACK
metastatement. You should use care with very large local data items, like fixed or nul-terminated strings
and user defined types, as they could overflow the stack. Local dynamic strings do not pose the same
problem, as they require just 4 bytes of stack space each for an identifier handle.

Similarly, each local array has an associated "array descriptor". This small table is stored on the stack
frame, but the actual array data is stored in main memory. Therefore, local arrays also have a small impact
on the stack frame.

See Also

Variables

Default Variable Typing

Operators

Arithmetic Operators

Arithmetic Operators
Arithmetic operators perform normal mathematical operations. Several of these operators merit a word of
explanation. The backslash (\) represents integral division. Integral division rounds its operands to an
integral value, to produce a truncated quotient with no remainder. For example, 5 \ 2 evaluates to 2, and 9 \
10 evaluates to 0. Integral division is also faster than floating-point division when using integral-class
variables or expressions.

The remainder of an integral division can be determined with the MOD (modulo) operator (MOD is valid for all
numeric types). MOD is similar to integer division except that it returns the remainder of the division rather
than the quotient. For example, 5 MOD 2 returns the value 1, and 9 MOD 10 returns the value 9.

The ISTRUE operator returns TRUE only if its operand is TRUE (non-zero). ISTRUE is guaranteed to return -
1 as its TRUE value, whereas the operators can return any non-zero value.

The ISFALSE operator returns TRUE only if its operand is FALSE (zero). ISFALSE is guaranteed to return -
1 as its TRUE value, where the operators can return any non-zero value.

PowerBASIC arithmetic operators

Operator Action Example
^ Exponentiation 10 4̂
- Negation -16
* Multiplication 45 * 19
/ Floating-point division 45 / 19
\ Integral division 45 \ 19

PowerBASIC Compiler for Windows Version 10

184 / 2126

+ Add 45 + 19
- Subtract 45 - 19

MOD Modulo 45 MOD 19
ISFALSE Boolean False ISFALSE 45
ISTRUE Boolean True ISTRUE 19

NOT, AND,
OR, XOR,
EQV, IMP

Bit manipulation operations NOT 0, 45 AND 19
45 OR 19, 45 XOR 19
45 EQV 19, 45 IMP 19

Note: PowerBASIC does not trap numeric overflow or underflow errors in equation and
expression evaluation. Please refer to the topics Errors and Error Trapping for more
information.

It is recommended that this table be read in conjunction with the Mathematical Order of Operator
Precedence table, and the effects that operator precedence has on the evaluation of numeric expressions.

See Also

Relational Operators

Operator Precedence

LET statement

Relational Operators

Relational Operators
Relational operators allow you to compare the values of two expressions, to obtain a Boolean result of TRUE
or FALSE. Although they can be used in any

 expression (for example, a = (b > c) / 13), the numeric results returned by relational operators are
generally used in an or other decision statements, to make a judgment regarding program flow.

PowerBASIC relational operators

Operator Relation Example
= Equality 5 = 5

<>, >< Inequality 5 <> 6
< Less than 5 < 6
> Greater than 6 > 5

<=, =< Less than or equal to 5 <= 6
>=, => Greater than or equal to 6 >= 5

When arithmetic and relational operators are combined in an expression, arithmetic operations are always
evaluated first. For example, 4 + 5 < 4 * 3 evaluates to TRUE (non-zero), because the arithmetic operations
(addition and multiplication) are carried out before the relational operation. This then tests the truth of the
assertion 9 < 12.

Strings and relational operators

PowerBASIC lets you compare

 data. String expressions can be tested for equality, as well as for "greater than" and "less than"
alphanumeric ordering.
Two string expressions are equal if and only if they contain exactly the same characters in exactly the same
order. For example:

a$ = "CAT"

PowerBASIC Compiler for Windows Version 10

185 / 2126

x1% = (a$ = "CAT") : x2% = (a$ = "CATS") : x3% = (a$ = "cat")

String ordering is based on two criteria: first, the ASCII values of the characters they contain, and second,
the length of the strings.

For example, the letter A is less than the letter B because the ASCII code for A, 65, is less than the code
for B, 66. Note, however, that B is less than a because the ASCII code for each lowercase letter is greater
than the corresponding uppercase character (exactly 32 greater). When comparing mixed uppercase and
lowercase information, use the UCASE$ or LCASE$ functions to keep case differences from interfering with
the test.

city1$ = "Seattle"
city2$ = "Tucson"
IF UCASE$(city1$) > UCASE$(city2$) THEN
 city$ = city1$
ELSE
 city$ = city2$
END IF
city1$ = UCASE$(city1$)
city2$ = UCASE$(city2$)
IF city1$ > city2$ THEN
 city$ = city1$
ELSE
 city$ = city2$
END IF

Note the difference between the two sets of statements. In the first case, the string variables city1$ and
city2$ are converted to uppercase for the comparison only, so the first IF/THEN returns Tucson. In the
second case, the conversion is performed on the variables themselves, so the result will be TUCSON.

Length is important only if both strings are identical up to the length of the shorter string, in which case the
shorter one evaluates as less than the longer one; for example, CAT is less than CATS.

The ARRAY SORT and ARRAY SCAN statements allow you to specify whether lower case characters are
to be treated as uppercase for comparison purposes. You can also specify a string that explicitly
determines the sorting order for all 256 ASCII characters.

See Also

Arithmetic Operators

Operator Precedence

Operator Precedence

Mathematical order of Operator Precedence
· parentheses ()

· exponentiation ()̂

· negation (-)

· multiplication (*),

 division (/)
 division (\)

· modulo (MOD)

· addition (+), subtraction (-)

· relational operators (<, <=, =, >=, >, <>)

· NOT, ISFALSE, ISTRUE

· AND

PowerBASIC Compiler for Windows Version 10

186 / 2126

· OR, XOR (exclusive OR)

· EQV (equivalence)

· IMP (implication)

For example, the expression 3+6 / 3 evaluates to 5, not 3. Division has a higher priority than addition, so
the division operation (6 / 3) is performed first. Even though the compiler will not get confused, people still
could, so a better programming style might be to use 3 + (6 / 3) or 3 + 6/3, either using parentheses or
spacing to make the intent clear. Otherwise it is easy to misread the statement as (3 + 6) / 3.

To handle operations of the same priority, PowerBASIC proceeds from left to right. For example, in the
expression 4 - 3 + 6, the subtraction (4 - 3) is performed before the addition (3 + 6), producing the
intermediate expression 1 + 6.

Operations inside parentheses are of the highest priority and are always evaluated first. Within
parentheses, standard precedence is used. Use parentheses like garlic: generously, but not to excess.

Another example of the effect of Order of Precedence on an expression follows:

x = -1^2

At first glance, the result of 1 may be the expected result (since -1 * -1 = 1); however, the unary negation
operator has a lower precedence than exponentiation, so the expression is evaluated as x& = -(1 2̂) which
gives a result value of -1. As noted above, the use of parentheses can clarify the intended expression:

x = (-1)^2

See Also

Arithmetic Operators

Relational Operators

Errors and Error Trapping

Error Overview

Error Overview
Unlike the DOS versions of PowerBASIC, Windows versions of PowerBASIC employ a completely different
philosophy: to generate the smallest and fastest possible code. Consequently, error handling is placed
firmly in the hands of the programmer. PowerBASIC does not stop your program when a run-time error
occurs. It is responsibility of the programmer to check for any conceivable errors that may occur after
executing a statement. This is especially true with disk access routines. This section describes the types
of errors that may be encountered, and follows on with a discussion on error detection and error handling
techniques.

Compile-time errors

Compile-time errors are generated when the compiler cannot resolve a problem in your source code while it
is compiling. Examples include: typographical errors; assigning incorrect values to variables (such as "x$ =
5"); and attempting to use a variable name which has not been dimensioned when OPTION EXPLICIT (or
#DIM ALL) has been turned on.

When a compile-time error is detected, PowerBASIC will display a message box indicating the error code,
plus a brief description, along with the line number in the code where the error occurred. The offending line
of code will also be displayed. If you are using the PowerBASIC IDE, the caret will move to the offending
line once the error dialog has been dismissed.

Run-time errors

Run-time errors are generated when execution of a particular code statement or function results in an error

http://www.powerbasic.com/products/pbdos/

PowerBASIC Compiler for Windows Version 10

187 / 2126

condition being set. Run-time errors caught by PowerBASIC include Disk access violations (i.e., trying to
write data to a full disk), out of bounds array and pointer access, and Memory allocation failures. Array
bounds and null-pointer checking is only performed when #DEBUG ERROR ON is used.

Run-time errors can be trapped; that is, you can cause a designated error-handling subroutine to get control
should an error occur. Use the ON ERROR statement to accomplish this. This routine can "judge" what to
do next based on the type of error that occurs. File-system errors (for example, disk full) in particular are
prime candidates for run-time error-handling routines. They are the only errors that a thoroughly debugged
program should have to deal with.

The ERROR statement (which simulates run-time errors) can be used to debug your error-handling routines.
It allows you to deliberately cause an error condition to be flagged. Avoid using error numbers higher than
240, as they are reserved for use in critical error situations which can never be trapped with ON ERROR.
Run-time error values are restricted to the range 1 through 255, and the compiler reserves codes 0 through
150, and 241 through 255 for predefined errors. Attempting to set an error value (with the ERROR
statement) outside of the valid range 1 to 255 will result in a run-time Error 5 ("Illegal function call") instead.
In addition to the predefined run-time errors, you may also set your own customized run-time error codes in
the range 151 through 240. These error codes may be useful to signal specific types of errors in your own
applications, ready to be handled by your error trapping code.

In the situation where an undocumented run-time error occurs, the chief suspect is memory corruption. This
can typically be cause by writing beyond an array boundary, improper use of pointers, bad Inline Assembly
code, etc.

Disk Errors

Disk and I/O errors are always trapped at run-time by PowerBASIC. If a run-time Disk or I/O error is
detected, the error code is placed in the ERR system variable. If ON ERROR is enabled, code execution
will branch to the designated local error handler.

All error handling in PowerBASIC is local to each Sub, Function, Method, and Property. You cannot create
a global error handler routine as you can in some DOS BASICs.

When an error occurs in PowerBASIC, an error code is placed into the ERR system variable. If Error
Trapping has been enabled, execution branches to the error trap. Otherwise, execution continues. If an
error occurs and your code does not take care of it, either by using an error trap or by explicitly testing the
ERR or ERRCLEAR variables, your program may produce unpredictable results. For example, in the
following code, several problems can occur which would cause the code to fail, and possibly even trigger a
General Protection Fault (GPF) in Windows:

SUB ReadFile(Filnam$, buffer$(), Lines%)
 RESET Lines%
 OPEN Filnam$ FOR INPUT AS #1
 WHILE ISFALSE EOF(1)
 INCR Lines%
 LINE INPUT #1, buffer$(Lines%)
 WEND
 CLOSE #1
END SUB

Here, the ERR variable is not checked after the OPEN statement to see if it was successful. If the file does
not exist or has been locked by another process, a run-time error can occur. In this case, EOF(1) will never
be able to return TRUE (non-zero) since the file was not able to be opened, and therefore the end of the file
cannot be determined. Further, checking the EOF of a file that has not been opened will trigger yet another
run-time error.

The result is that without adequate error testing, this small loop will begin to run continuously.

While certainly a flaw in the code, no harm will come to the program for period. However, a fatal error in the
LINE INPUT# statement is imminent if the Lines% variable value exceeds the UBOUND of the buffer$()
array. A fatal error could also occur if buffer$() was not previously dimensioned, or it wasn't dimensioned
with enough elements to store the entire file (that is, assuming the file was opened successfully).

In these cases, a General Protection Fault (GPF) is quite likely to occur, as soon as invalid memory
addresses begin to be accessed in an attempt to store the string data. You can prevent the array boundary

PowerBASIC Compiler for Windows Version 10

188 / 2126

GPF by turning on error checking using the #DEBUG ERROR ON metastatement. However, if the array
was not previously dimensioned or does not have enough space, the code will still fail in its overall objective.

A more robust version of this example code follows:

#DEBUG ERROR ON
SUB ReadFile(Filnam$, buffer$(), Lines%)
 LOCAL Temp$
 ON ERROR RESUME NEXT

 RESET Lines%
 OPEN Filnam$ FOR INPUT AS #1
 IF ERR THEN 'error opening file
 EXIT SUB
 END IF

 WHILE ISFALSE EOF(1)
 INCR Lines%
 LINE INPUT #1, Temp$
 IF ERR then EXIT SUB 'abort if disk error
 buffer$(Lines%) = Temp$
 IF ERR = 9 THEN 'subscript out of range
 REDIM PRESERVE buffer$(Lines%) 'increase array size
 buffer$(Lines%) = Temp$
 END IF
 WEND
 CLOSE #1
END SUB

Numeric Errors

In order to generate tight, fast code, we have eliminated quite a bit of error checking that was done in earlier
compilers (such as Division-by-Zero, Numeric Overflow, and most other numeric checking errors). While
this results in code that is considerably smaller and faster than any other Windows compiler product, it
does put more of an onus on the programmer to write code that is bug-free, or code that does its own error
checking and validation of its data.

For example, an application that performs exponentiation of a negative value to a fractional power (-5 1̂.9)
will not trigger a run-time error, but the result of the expression will be undefined. Therefore, it makes sense
for the application to make some attempt to validate or restrict the numeric range of the arguments of this
kind of expression.

See Also

Error Trapping

Error Trapping

Error Trapping

Error Trapping
Error traps let you intercept and deal with run-time errors, rather than having programs unceremoniously
abort or ignore a fatal error, possibly causing loss of data.

There are three steps you must take to trap errors, as described in the following sections:

PowerBASIC Compiler for Windows Version 10

189 / 2126

1. Set the error trap. Use the ON ERROR GOTO statement.

2. Write the error-handling routine. The error-handling routine receives control when an error occurs.

3. Exit the error-handling routine. You exit the error handler using the RESUME statement so
execution can continue at an appropriate location in the code.

For example, here is a piece of code that fills an array with the filenames from a directory. This section will
add complete Error Trapping to prevent run-time errors when the user chooses a directory that does not have
any files or a drive that is not ready.

SUB GetFileNames(File() AS STRING)
 DIM CurrentDir AS STRING
 DIM fName AS STRING, Mask AS STRING
 DIM X AS INTEGER

 Mask = "*.*"
 CurrentDir = CURDIR$
 Path = AskUserForPath$()
 fName = DIR$(RTRIM$(Path) + Mask)
 IF LEN(fName) = 0 THEN EXIT SUB
 X = 1

 WHILE LEN(fName)
 Files(X) = fName
 fName = DIR$
 INCR X
 WEND
END SUB

See Also

Error Overview

How error traps work

Setting an error trap

Writing an error handler

Exiting an error handler

Error Trapping Summary

How error traps work

How error traps work
In PowerBASIC, error codes - returned by the ERR or ERRCLEAR functions - and error traps are local to
each Sub, Function, Method, or Property. An error trap will only trap errors that occur within the procedure
where it is defined.

PowerBASIC uses the following steps to determine what to do when a run-time error occurs:

· Does an error trap exist? If so, PowerBASIC uses it.

· If no error trap exists, PowerBASIC places an error code in the ERR and ERRCLEAR system
variables and continues execution.

Consider the following:

SUB Proc1
 ON ERROR GOTO ErrorTrap
 ' some code goes in here
 CALL Proc2

PowerBASIC Compiler for Windows Version 10

190 / 2126

 ' some more code goes in here

Proc1Resume:
 EXIT SUB

ErrorTrap:
 ' Error-handling code goes in here
 RESUME Proc1Resume
END SUB

See Also

Error Overview

Error Trapping

Setting an error trap

Writing an error handler

Exiting an error handler

Error Trapping Summary

Setting an error trap

Setting an error trap
To enable an error trap, use the ON ERROR GOTO statement where you want trapping enabled within the

. The error-handling code must be within that procedure. An error trap is enabled only while the
procedure is executing. Use the ON ERROR GOTO 0 statement where you want trapping disabled
within the procedure.

See Also

Error Overview

Error Trapping

How error traps work

Writing an error handler

Exiting an error handler

Error Trapping Summary

Writing an error handler

Writing an error handler
When an error occurs and an error trap invokes your error-handling routine, the first thing the code should do
is to determine which error occurred. PowerBASIC's ERR and ERRCLEAR functions return the code of the
most recent error. You can use one of PowerBASIC's control structures (like SELECT CASE) to take
appropriate action based on the error code. The ERROR$ function can be used to help formulate a suitable
error message to log or report to the user.

See Also

PowerBASIC Compiler for Windows Version 10

191 / 2126

Error Overview

How error traps work

Setting an error trap

Exiting an error handler

Error Trapping Summary

Exiting an error handler

Exiting an error handler
You must exit an error handler with the RESUME LABEL statement. Execution branches immediately to
the specified local label, and the original error trap operation is restored ready to catch the next run-time
error.

In the sample program, you want to use RESUME to a specific line. Put the line label before the line that
requests user input to give the user another chance to enter a correct path.

Here is the sample program, complete with Error Trapping:

SUB GetFileNames(File() AS STRING)
 DIM CurrentDir AS STRING
 DIM fName AS STRING, Mask AS STRING
 DIM X AS INTEGER
 ON ERROR GOTO ErrorTrap
 Mask = "*.*"
 CurrentDir = CURDIR$

GetPath:
 Path = AskUserForPath$()
 fName = DIR$(RTRIM$(Path) + Mask)
 IF LEN(fName) = 0 THEN EXIT SUB
 X = 1
 WHILE LEN(fName)
 Files(X) = fName
 fName = DIR$
 INCR X
 WEND
 EXIT SUB

ErrorTrap:
 SELECT CASE ERRCLEAR
 CASE 53 : ErrorMsg "No files in this directory."
 CASE 71 : ErrorMsg "Drive not ready."
 CASE 76 : ErrorMsg "That path doesn't exist."
 CASE ELSE : ErrorMsg "Unknown error!"
 END SELECT
 RESUME GetPath
END SUB

See Also

Error Overview

Error Trapping

How error traps work

Setting an error trap

PowerBASIC Compiler for Windows Version 10

192 / 2126

Writing an error handler

Error Trapping Summary

Error Trapping Summary

Error Trapping Summary
Error Trapping is a useful and powerful feature of PowerBASIC. Many programmers avoid trapping errors
because of the substantial penalties other BASIC dialects impose when Error Trapping is turned on.
Fortunately, PowerBASIC's hit is much lower. Still, having Error Trapping turned on may increase the size
of your executable. You may wish to investigate other ways to accomplish the same results, whilst
ensuring the stability of your code.

Finally, PowerBASIC now includes the following list of predefined (built-in) equates to assist in the creation
of more verbose error handling code. They include:
%ERR_NOERROR = 0
%ERR_ILLEGALFUNCTIONCALL = 5
%ERR_OVERFLOW = 6 (reserved)
%ERR_OUTOFMEMORY = 7
%ERR_SUBSCRIPTPOINTEROUTOFRANGE = 9
%ERR_DIVISIONBYZERO = 11 (reserved)
%ERR_DEVICETIMEOUT = 24
%ERR_INTERNALERROR = 51
%ERR_BADFILENAMEORNUMBER = 52
%ERR_FILENOTFOUND = 53
%ERR_BADFILEMODE = 54
%ERR_FILEISOPEN = 55
%ERR_DEVICEIOERROR = 57
%ERR_FILEALREADYEXISTS = 58
%ERR_DISKFULL = 61
%ERR_INPUTPASTEND = 62
%ERR_BADRECORDNUMBER = 63
%ERR_BADFILENAME = 64
%ERR_TOOMANYFILES = 67
%ERR_DEVICEUNAVAILABLE = 68
%ERR_COMMERROR = 69
%ERR_PERMISSIONDENIED = 70
%ERR_DISKNOTREADY = 71
%ERR_DISKMEDIAERROR = 72
%ERR_RENAMEACROSSDISKS = 74
%ERR_PATHFILEACCESSERROR = 75
%ERR_PATHNOTFOUND = 76
%ERR_OBJECTERROR = 99
%ERR_GLOBALMEMORYCORRUPT = 241 (Previously %ERR_FARHEAPCORRUPT)
%ERR_STRINGSPACECORRUPT = 242

See Also

Error Overview

Error Trapping

How error traps work

Setting an error trap

Writing an error handler

Exiting an error handler

PowerBASIC Compiler for Windows Version 10

193 / 2126

Compile Time Errors

Error 401 Expression too long/complex

Error 401 - Expression too long/complex
Expression too long/complex - The expression contained too many

; break it down into two or more simplified expressions.

Error 402 - Statement too long/complex

Error 402 - Statement too long/complex
Statement too long/complex - The statement complexity caused an overflow of the internal compiler
buffers; break the statement down into two or more simplified statements. This error can also occur if a
SELECT CASE structure using the AS CONST optimization causes the internal jump table to exceed the
maximum size (approximately 3200 entries or 12 Kb).

Error 403 - #IF nesting overflow

Error 403 - #IF nesting overflow
#IF nesting overflow - Conditional compilation blocks (#IF/#ELSE/#ENDIF) can only be nested up to 16
levels deep.

Error 404 - #INCLUDE file/Macro nesting overflow

Error 404 - #INCLUDE file/Macro nesting
overflow
#INCLUDE file/Macro nesting overflow - Include files and macros may be nested up to twelve levels
deep. The most common cause of this error stems from excessive nesting and/or circular references. For
example, a nested #INCLUDE file that includes itself or an ancestor file that in turn includes the file again,
etc. Likewise, a macro that references itself either directly or indirectly can cause a circular reference. See
the MACRO statement for more information on the limits of macro expansions.

Error 405 - Block nesting overflow

Error 405 - Block nesting overflow
Block nesting overflow - Your program has too many statement block structures nested within each other.
In PowerBASIC block structures may be nested 64 levels deep.

Error 406 - Compiler out of memory

Error 406 - Compiler out of memory
Compiler out of memory - Available compiler memory for symbol space, buffers, and so on, has been
exhausted.

PowerBASIC Compiler for Windows Version 10

194 / 2126

If no more memory is available, separate your program into a small main program which uses the #INCLUDE
metastatement to include the rest of your program. You can also try the following steps:

· Remove unnecessary line numbers and labels.

· Shorten your variable and procedure names.

· If your code includes WIN32API.INC: Try adding the "code exclusion" equates such as %NOGDI = 1
to your code to cause the compiler to ignore large sections of the API file. Please review the first few
pages of notes in WIN32API.INC for more information.

Alternatively, create a customized version of WIN32API.INC that contains just the definitions and
declarations actually used by your code. The latter solution, whilst more work initially, will have the added
benefit of much faster compilation times, and make your code more resistant to changes in subsequent
releases of WIN32API.INC.

Error 407 - Source line too long

Error 407 - Source line too long
Source line too long - The line of code is too long for the compiler to process. This can also occur if the
file contains lines of source code that are not CR/LF delimited. Try breaking the line of code up into smaller
logical lines with the use of line continuation characters, and ensure that the file is using the Win32
standard of CR/LF line delimiting. If you are using a 3rd-party editor, try opening the source code file in the
PowerBASIC IDE and examine the lines where the error occurred -- merged lines here will be a good
indication of invalid line delimiting.

Error 408 - Wrong compiler for this program

Error 408 - Wrong compiler for this program
Wrong compiler for this program - The compiler you are using is not compatible with the compiler version
specified by the #COMPILER metastatement. Use the compiler specified by the #COMPILER
metastatement. Another approach would be to change the #COMPILER settings to match your compiler
but, this should be done with caution, since the program may no longer work the same way (or at all) with a
different compiler.

Error 409 - Sub/Function is too large

Error 409 - Sub/Function/Method/Property is
too large
Sub/Function/Method/Property is too large - There is a reasonable limit for the physical size of a single
Sub, Function, Method, or Property. The limit is imposed for practical reasons (such as the size of internal
compiler buffers), but also for logical suitability. A huge block of code is very difficult to maintain. In the
current version of PowerBASIC, this absolute limit is set at approximately 12,000 lines of source code per
procedure. PowerBASIC recommends that each procedure perform one logical function, with a general goal
of no more than perhaps 100 lines of source code. If you encounter this error, just break up your code into
two or more procedures.

Error 411 - "," expected

WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

195 / 2126

Error 411 - "," expected
"," expected - The statement's syntax requires a comma (,).

Error 412 - ";" expected

Error 412 - ";" expected
";" expected - The statement's syntax requires a semicolon (;).

Error 413 - "(" expected

Error 413 - "(" expected
"(" expected - The statement's syntax requires a left parenthesis (().

Error 414 - ")" expected

Error 414 - ")" expected
")" expected - The statement's syntax requires a right parenthesis ()). The compiler encountered text or
symbols where a right parenthesis was expected, or a parenthesis is missing. This error can also occur
when attempting to pass more than 32 parameters to a Sub, Function, Method, or Property.

Error 415 - "=" expected

Error 415 - "=" expected
 "="expected - The statement's syntax requires an equal sign (=).

Error 416 - "-" expected

Error 416 - "-" expected
"-" expected - The statement's syntax requires a hyphen (-).

Error 417 - "*" expected

Error 417 - "*" expected
"*" expected - The statement's syntax requires an asterisk (*).

Error 418 - Statement expected

Error 418 - Statement expected
Statement expected - A PowerBASIC statement was expected. Some character could not be identified
as a statement, metastatement, or variable.

PowerBASIC Compiler for Windows Version 10

196 / 2126

Error 419 - Label/line number expected

Error 419 - Label/line number expected
Label/line number expected - A valid label or line-number reference was expected in an

, GOTO, GOSUB, or statement.

Error 420 - Relational operator expected

Error 420 - Relational operator expected
Relational operator expected - The compiler has found a

 operand in a position where a operand should be, or a type mismatch has been detected.
For example, the statement X& = Y$ triggers an error because a string cannot be assigned or compared
to numeric variable, hence the compiler expected to find an additional operator that would return a numeric
result. For example, X& = Y$ > Z$.

Error 421 - String operand expected

Error 421 - String operand expected
String operand expected - The compiler expected a string expression and found something else; for
example, X$ = A$ + 3.

Error 422 - Scalar variable expected

Error 422 - Scalar variable expected
Scalar variable expected - The compiler expected a scalar variable as a formal parameter to a user-
defined function. Scalar variables are non-array variables.

Error 423 - Array variable expected

Error 423 - Array variable expected
Array variable expected - An array variable was expected in a DIM statement.

Error 424 - Numeric variable expected

Error 424 - Numeric variable expected
Numeric variable expected - A

 variable was expected, such as in an INCR or DECR.

Error 425 - String variable expected

PowerBASIC Compiler for Windows Version 10

197 / 2126

Error 425 - String variable expected
String variable expected - A

 variable was expected, such as in a PUT$ or a GET$ statement.

Error 426 - Variable expected

Error 426 - Variable expected
Variable expected - A variable was expected, but not found. A common cause for this error is the use of a
reserved keyword as a variable.

Error 427 - Integer constant expected

Error 427 - Integer constant expected
Integer constant expected - An

 constant, numeric literal, or numeric equate was expected, such as in a named constant assignment.
This error can occur when attempting to use a numeric variable to dictate the size of the target of a fixed-
length or Nul-Terminated string pointer. For example:

DIM X AS STRING PTR * Y&

…is not permitted as this statement could only be evaluated at run-time. However:

DIM X AS STRING PTR * 1024

…is acceptable as the target size is known at compile-time.

Another cause of this error is specifying a non-integral CASE argument in a SELECT CASE AS CONST
block.

Error 428 - Positive integer constant expected

Error 428 - Positive integer constant expected
Positive integer constant expected - A positive

 constant was expected, but not found.

Error 429 - String constant expected

Error 429 - String constant expected
String constant expected - A string constant was expected, but not found. For example, this error can
occur when in a SELECT CASE AS CONST$ block when a non-string CASE argument is specified.

Error 430 - Integer variable expected

Error 430 - Integer variable expected
Integer variable expected - An

 variable was expected, but not found

PowerBASIC Compiler for Windows Version 10

198 / 2126

Error 431 - Numeric scalar variable expected

Error 431 - Numeric scalar variable expected
Numeric scalar variable expected - The counter variable in a FOR/NEXT counter variable is a

 parameter passed to the Sub/Function/Method/Property, a target, a THREADED variable, an array
variable (non-scalar), or the counter variable is not a data type. Scalar variables are non-array
variables.

Error 432 - Long-integer variable expected

Error 432 - Long-integer variable expected
Long-integer variable expected - A Long-integer variable is expected.

Error 433 - Matrix array expected (integer/float)

Error 433 - Matrix array expected (integer/float)
Matrix array expected (integer/float) - Matrix arrays may only be of

 or types.

See Also

MAT Statement

Error 434 - End of line expected

Error 434 - End of line expected
End of line expected - No characters are allowed on a line (except for a comment) following a
metastatement, END SUB, or a label.

Error 435 - #IF expected

Error 435 - #IF expected
#IF expected - An #ENDIF conditional compilation metastatement is missing its accompanying #IF. Look
for all #ENDIF metastatements and figure out where to put the associated #IF.

Error 436 - #ENDIF expected

Error 436 - #ENDIF expected
#ENDIF expected - An #IF conditional compilation metastatement is missing its accompanying #ENDIF.
Examine all #IF metastatements to determine where to put the associated #ENDIF.

Error 437 - AS expected

PowerBASIC Compiler for Windows Version 10

199 / 2126

Error 437 - AS expected
AS expected - The AS reserved word is missing, such as in a variable declaration.

Error 438 - Member name expected

Error 438 - Member name expected
Member name expected - The compiler encountered a statement or other text where a structure member
name was expected.

Error 439 - GOSUB expected

Error 439 - GOSUB expected
GOSUB expected - An ON statement is missing its accompanying GOSUB part.

Error 440 - GOTO expected

Error 440 - GOTO expected
GOTO expected - An ON statement is missing its accompanying GOTO part.

Error 441 - IN expected

Error 441 - IN expected
IN expected - The IN reserved word is missing in a REGEXPR, REGREPL, or REPLACE
statement. Check the syntax of the relevant statement in the reference directory section.

Error 442 - THEN expected

Error 442 - THEN expected
THEN expected - An

 is missing its accompanying THEN part.

Error 443 - TO expected

Error 443 - TO expected
TO expected - Missing TO in a FOR statement. This can also be reported for a missing TO in the CALL
FuncName TO syntax.

Error 444 - PREFIX clause expected

Error 444 - PREFIX clause expected

PowerBASIC Compiler for Windows Version 10

200 / 2126

WITH clause expected - A PREFIX clause is expected in this statement.

Error 445 - OF expected

Error 445 - OF expected
OF expected - Indexed

 with dual indexes require an "OF Limit" clause on both indexes. For example:
x = @w[i& OF m&, j& OF n&]

Error 446 - FUNCTION expected

Error 446 - FUNCTION expected
FUNCTION expected - The compiler found an END FUNCTION or EXIT FUNCTION statement without a
FUNCTION defined. When defining a FUNCTION, it must begin with a FUNCTION statement.

Error 447 - IF expected

Error 447 - IF expected
IF expected - The compiler found an END IF or an EXIT IF statement without a beginning IF statement
defined.

Error 448 - DO loop expected

Error 448 - DO loop expected
DO loop expected - The compiler found a LOOP or EXIT LOOP statement without a beginning DO
statement defined.

Error 449 - SELECT expected

Error 449 - SELECT expected
SELECT expected - When defining a SELECT CASE statement, you either forgot to include the reserved
word SELECT or the compiler ran into an END SELECT or EXIT SELECT without a beginning SELECT
CASE statement. This error can also occur if you try to use the reserved word CASE as a variable name in
your program.

Error 450 - CASE expected

Error 450 - CASE expected
CASE expected - When defining a SELECT CASE statement, you forgot to include the reserved word
CASE. This error can also occur if you try to use the reserved word SELECT as a variable name in your
program.

PowerBASIC Compiler for Windows Version 10

201 / 2126

Error 451 - FOR loop expected

Error 451 - FOR loop expected
FOR loop expected - A NEXT, EXIT FOR, or ITERATE FOR was encountered here without the associated
FOR statement to begin the FOR/NEXT loop.

Error 452 - SUB expected

Error 452 - SUB expected
SUB expected - An END SUB was encountered here without the associated SUB statement to begin the
procedure.

Error 453 - Equate (%xyz) expected

Error 453 - Equate (%xyz) expected
Equate (%xyz) expected - The %DEF() function requires a numeric or string equate name as the
parameter. It returns true (non-zero) or false (zero) to advise whether this equate has been defined in the
program.

Error 454 - END FUNCTION expected

Error 454 - END FUNCTION expected
END FUNCTION expected - A FUNCTION block was not terminated with an associated END FUNCTION
statement. It's likely you tried to start a new procedure block, without first terminating the current
FUNCTION.

Error 455 - END IF expected

Error 455 - END IF expected
END IF expected - An IF block was not terminated with a corresponding END IF statement.

Error 456 - LOOP/WEND expected

Error 456 - LOOP/WEND expected
LOOP/WEND expected - A DO or WHILE loop was not terminated with a corresponding LOOP or WEND
statement.

Error 457 - END SELECT expected

Error 457 - END SELECT expected
END SELECT expected - A SELECT CASE statement was not properly terminated with an END SELECT
statement.

PowerBASIC Compiler for Windows Version 10

202 / 2126

Error 458 - END SUB expected

Error 458 - END SUB expected
END SUB expected - A SUB block was not terminated with an associated END SUB statement. It's likely
you tried to start a new procedure block, without first terminating the current SUB.

Error 459 - NEXT expected

Error 459 - NEXT expected
NEXT expected - A FOR loop was not properly terminated with a NEXT statement.

Error 460 - Undefined equate

Error 460 - Undefined equate
Undefined equate - A named constant (numeric equate or string equate) was referenced in your program,
but it has not yet been defined.

Error 461 - INSTANCE arrays must be declared

Error 461 - INSTANCE arrays must be declared
INSTANCE arrays must be declared before any CLASS code.

Error 462 - Undefined SUB/FUNCTION reference

Error 462 - Undefined Procedure reference
Undefined Procedure reference - You attempted to execute or reference a SUB or FUNCTION, but it has
not been declared or defined anywhere in the program. Check for the possibility of spelling errors.

Error 463 - Undefined label/line reference

Error 463 - Undefined label/line reference
Undefined label/line reference - You used a label or line number, but it does not exist. Check for the
possibility of spelling errors. Note that labels and line numbers are local to the

 where they are defined.

Error 464 - Undefined class reference

Error 464 - Undefined class reference
Undefined class reference - You used a CLASS name which does not exist. You must define a CLASS
before it can be used. Check for the possibility of spelling errors.

PowerBASIC Compiler for Windows Version 10

203 / 2126

Error 465 - May be defined only once

Error 465 - May be defined only once
May be defined only once - A program element which should only appear once was duplicated in your
program. For example, two #STACK metastatements could cause this error to be generated. A common
source of this problem is multiple #INCLUDE files which define the same term.

Error 466 - This name is already in use

Error 466 - This name is already in use
This name is already in use - This name (identifier) is used for more than one purpose, causing a fatal
conflict. For example, you might have used the name ABC as both a variable and a label. You must
rename one or both uses of this particular name. PowerBASIC generates this error when it sees the second
use of the name.

Error 467 - Duplicate line number

Error 467 - Duplicate line number
Duplicate line number - A line number was used more than once.

Error 468 - This equate may not be redefined

Error 468 - This equate may not be redefined
This equate may not be redefined - A numeric or string equate is defined a second time with a different
value. Equate definitions may appear more than once, but the value must remain constant.

Error 469 - Quad integer variable expected

Error 469 - Quad integer variable expected
Quad integer variable expected - A Quad integer variable is required as a parameter in this statement.

Error 471 - Invalid line number

Error 471 - Invalid line number
Invalid line number - Line numbers must be in the range 1 through 65535.

Error 472 - Invalid label

Error 472 - Invalid label
Invalid label - A label in your code contains invalid characters, such as the period character or the label

PowerBASIC Compiler for Windows Version 10

204 / 2126

conflicts with another function, sub, variable, etc. name.

Error 473 - Invalid numeric format

Error 473 - Invalid numeric format
Invalid numeric format - Your program declared a

 with more than 18 digits or a number with an E component without the exponent value. This error can
also occur if the "&" concatenation operator is used without leading whitespace. For example: a$ =
a$&b$ should be written a$ = a$ & b$

Error 474 - Invalid name

Error 474 - Invalid name
Invalid name - A function, sub, method, property, macro, or label has an invalid name. In the case of a
Sub, Function, Method, or Property, the name must begin with a letter and can be followed by other letters,
digits, and underscores, but may not include a type-specifier or period. In the case of a macro you may have
a duplicate macro name defined.

Error 475 - Metastatements not allowed here

Error 475 - Metastatements not allowed here
Metastatements not allowed here - A metastatement must be the first statement on a line.

Error 476 - Block/scanned statements not allowed here

Error 476 - Block/scanned statements not
allowed here
Block/scanned statements not allowed here - Block statements (like WHILE/WEND, DO/LOOP, and
SELECT CASE) are not allowed in single line IF statements. In addition, you may not have a Sub, Function,
Method, or Property definition nested within the body of another definition. A missing END SUB, END
FUNCTION, END METHOD, or END PROPERTY can also cause this error.

Error 477 - Syntax error

Error 477 - Syntax error
Syntax error - Something is incorrect on the line; however, the compiler could not determine a proper error
message or decode the line further. A common cause is mixing two statement keywords together, using a
reserved keyword for a variable name, or attempting to use an undefined interface member (in an OBJECT
statement) when using ID Binding, etc.

Error 478 - Resource file error

PowerBASIC Compiler for Windows Version 10

205 / 2126

Error 478 - Resource file error
Resource file error - The resource file referenced has not been found or is not identifiable as a valid
resource file. A common cause of this problem is attempting to use #RESOURCE with a non-PBR file, or if
the PBR file was not able to be opened by the compiler (for example, because the file is locked by another
process or application).

Error 479 - Array bounds error

Error 479 - Array bounds error
Array bounds error - You dimensioned an array within a User-Defined Type that contains invalid array
boundaries. For example:

TYPE MyType
 ArrayWithinUDT(5 TO 1)
END TYPE

Error 480 - Parameter mismatches definition

Error 480 - Parameter mismatches definition
Parameter mismatches definition - You attempted to reference a

 using a parameter which does not match (or cannot be converted to) the data type found in the original
declaration/definition. This might also be caused by passing too few or too many parameters,
misspellings, etc.

Error 481 - Mismatch with prior definition

Error 481 - Mismatch with prior definition
Mismatch with prior definition - This program element (TYPE, UNION, SUB, FUNCTION, etc.) does not
match a declaration or definition found previously in the program. It could be a SUB or FUNCTION which
mismatches a declaration, a duplicate TYPE or

 which is not identical, or another similar condition.

Error 482 - Data type mismatch

Error 482 - Data type mismatch
Data type mismatch - Many PowerBASIC statements and functions require parameters which evaluate to a
variable or expression of a particular data type. This error is generated if there is a mismatch with the
expected data type. Consult the documentation for the specific statement or function to determine the
exact parameter requirements.

Error 483 - Requires Object Procedure (Method/Property)

Error 483 - Requires Object Procedure
(Method/Property)
Requires Object Procedure (Method/Property) - The statement or function found here is only allowed
within a METHOD or PROPERTY. Elsewhere, it has no valid meaning and must be removed.

PowerBASIC Compiler for Windows Version 10

206 / 2126

Error 484 - Requires procedure (Sub/Function)

Error 484 - Requires procedure
(Function/Method...)
Requires procedure (Sub/Function/Method/Property) - The statement or function found here is only
allowed within a procedure (SUB, FUNCTION, METHOD or PROPERTY). Elsewhere, it has no valid
meaning and must be removed.

Error 485 - Dynamic/Field strings not allowed

Error 485 - Dynamic/Field strings not allowed
Dynamic/Field strings not allowed - A TYPE or UNION may not include a dynamic string or a field string
as a member, because the total size of the structure must be known at compile-time. Fixed-length strings
and Nul-Terminated Strings should be used instead.

Error 486 - BYVAL option not allowed

Error 486 - BYVAL option not allowed
BYVAL option not allowed - Use of the

 option in this context is not allowed. This error is most frequently generated by an attempt to pass an
array as a BYVAL parameter. Generally speaking, you should change this to instead.

Error 487 - Multiple NEXT not allowed

Error 487 - Multiple NEXT not allowed

Multiple NEXT not allowed - Prior versions of PowerBASIC allowed multiple NEXT statements implied by,
or separated by commas. This is no longer supported.

Error 488 - Numeric processor overflow

Error 488 - Numeric processor overflow
Numeric processor overflow - Execution of this line of source code is complex, and requires more

 registers than are currently available in the FPU. One solution might be to add the metastatement
#REGISTER NONE to the current , if register variables are being allocated. Another solution would be
to break up the source code into multiple simpler statements.

Error 489 - Invalid string length

Error 489 - Invalid string length
Invalid string length - You attempted to DIM a fixed-length string with a length of zero, or you attempted to

PowerBASIC Compiler for Windows Version 10

207 / 2126

create a string equate whose length exceeds 255 characters. Fixed-length strings must be at least 1 byte
long, and individual string equates may not exceed 255 bytes in length

Error 490 - Static array too large

Error 490 - Static array too large
Static array too large - You attempted to dimension a static array larger than 16 MB in a User-Defined
Type.

Error 491 - Invalid register variable

Error 491 - Invalid register variable
Invalid register variable - You specified a register variable which is not allowed in this context. Register
variables must be LOCAL, and must be one of: Integer, Long, Word, DWord, or Extended float. It's also
possible this variable was used with a function such as VARPTR(), which requires a memory variable for
correct execution.

Error 492 - Invalid SORT function

Error 492 - Invalid SORT function
Invalid SORT function - ARRAY SORT of a custom array requires a custom user FUNCTION with a
specific signature (2

 parameters, calling conventions, etc.). The function you supplied did not meet these requirements.

Error 493 - Compiler file not found/accessible

Error 493 - Compiler file not found/accessible
Compiler file not found/accessible - A source file could not be found in the specified directory path, or the
current directory, or in the search path specified in the compiler /I command-line option. Alternatively, the
file may be locked by another process. Check the directory paths or make sure that the specified file exists,
and that another process or application has not locked the file.

Error 494 - ASM not allowed here

Error 494 - ASM not allowed here
ASM not allowed here - You tried to use multiple statements on a line containing an ASM statement. An
ASM statement must be the only statement on a line (plus an optional comment or REM statement).

Error 495 - Compiler file read error

Error 495 - Compiler file read error
Compiler file read error - During the compilation process, the compiler tried to open an #INCLUDE or

PowerBASIC Compiler for Windows Version 10

208 / 2126

#RESOURCE file, but a disk error was encountered. Verify that the file is present, not locked by another
process, and that the disk itself is free from errors.

Error 496 - Destination file write error

Error 496 - Destination file write error
Destination file write error - During compilation the compiler received a disk write error. This can occur if
the destination EXE is, for example, still running in memory when you attempt to compile, the target file is
write locked by another process or compile session, or the target file is write-protected (read-only).

Error 497 - Assembler syntax error

Error 497 - Assembler syntax error
Assembler syntax error - An ASM statement contains an invalid assembly-language construction.

Error 498 - Assembler variables must be declared

Error 498 - Assembler variables must be
declared
Assembler variables must be declared - An attempt was made to reference an assembler variable before
it was defined.

Error 499 - Statement must be first on line

Error 499 - Statement must be first on line
Statement must be first on line - Certain PowerBASIC statements, and all metastatements, must be the
first statement on a line. This includes block structures like PREFIX and MACRO, as well as constructs
like SELECT CASE elements. If this error is generated, split compound statements apart so that each
statement is on a separate line.

Error 500 - Variable name must be unique

Error 500 - Variable name must be unique
Variable name must be unique - All Global, Threaded, and Instance variable names must be unique to
guarantee access to a specific variable. If #UNIQUE VAR ON is specified, then all variable names must be
unique.

Error 501 - Parameters too large (exceed 64 Kb)

Error 502 - COM interface name expected

PowerBASIC Compiler for Windows Version 10

209 / 2126

Error 502 - COM interface name expected
COM interface name expected - This form of the LET (assignment) statement is used to create a COM
object, one which is created externally using the COM services provided by Windows. The associated
interface name is not valid.

Error 503 - Invalid MAIN Function(s)

Error 503 - Invalid MAIN Function(s)
Invalid MAIN Function(s) - Main/LibMain Function(s) do not match the target file type.

Error 504 - Executable requires PBMAIN/WINMAIN function

Error 504 - Executable requires
PBMAIN/WINMAIN function
Executable requires PBMAIN/WINMAIN function - No WINMAIN or PBMAIN function was located in an
executable program. Without one of these functions, it is not possible for Windows to execute the program.

Error 505 - Debugging requires EXE file, not DLL

Error 505 - Debugging requires EXE file, not
DLL
Debugging requires EXE file, not DLL - An attempt was made to launch the debugger on a DLL rather
than an EXE file (PB/Win only). Be sure to use an explicit #COMPILE EXE metastatement to ensure the
compiler generates the correct type of compiled code.

Error 506 - Declaration must precede statements

Error 506 - Declaration must precede
statements
Declaration must precede statements - You attempted to use a declaration, such as a #DIM ALL
metastatement after executable code. Move the declaration to a position before any statements that
generate executable code.

Error 507 - OLE variable expected

Error 507 - OLE variable expected
OLE variable expected - The OBJECT statement requires that all parameters, return values, and
assignment values be in the form of COM-compatible variables. Literals and expressions are not allowed.
 COM-compatible variables include BYTE, WORD, DWORD, INTEGER, LONG, QUAD, SINGLE, DOUBLE,
CURRENCY, STRING, WSTRING, and VARIANT.

PowerBASIC Compiler for Windows Version 10

210 / 2126

Error 508 - INSTANCE not allowed here

Error 508 - INSTANCE not allowed here
INSTANCE not allowed here - INSTANCE statements may only be placed at the beginning of a CLASS/END
CLASS block, preceding all INTERFACE blocks and METHODS.

Error 509 - Interface mismatches class

Error 509 - Interface mismatches class
Interface mismatches class - This form of the LET (assignment) statement is used to create an internal
object, but the associated class and interface are not defined in the program.

Error 510 - Interface name expected

Error 510 - Interface name expected
Interface name expected - The compiler encountered a statement or other text where an

 name was expected.

Error 511 - Numeric operand expected

Error 511 - Numeric operand expected
Numeric operand expected - The compiler encountered a statement or other text where a

 operand was expected.

Error 512 - Brackets not supported (use OPTIONAL)

Error 512 - Brackets not supported (use
OPTIONAL)
Brackets not supported (use OPTIONAL) - Brackets are no longer supported for optional parameters.

Error 513 - "]" expected

Error 513 - "]" expected
"]" expected - The statement's syntax requires a closing bracket (]).

Error 514 - Enclosing <...> angle brackets expected

Error 514 - Enclosing <...> angle brackets
expected

PowerBASIC Compiler for Windows Version 10

211 / 2126

Enclosing <...> angle brackets expected - An

 definition block member item requires a parameter enclosed with angle brackets to identify the member
ID.

Error 515 - Fixup overflow

Error 515 - Fixup overflow
Fixup overflow - You have a jump short instruction that exceeds its maximum length.

Error 516 - DEFtype, Type ID or type-specifier required

Error 516 - DEFtype, Type ID or type-specifier
required
DEFtype, Type ID or type-specifier (?%&!#$), or AS ... required - A variable with no type declaration was
found and no DEFtype statement (such as DEFINT) was found. The compiler was unable to identify the
type of variable indicated. The misspelling of variable names commonly causes this error. The DEFtype
statement may not be supported in future editions of PowerBASIC. Use explicit declarations wherever
possible to maintain future compatibility.

Error 517 - OPTIONAL requires CDECL or SDECL

Error 517 - OPTIONAL requires CDECL or
SDECL
OPTIONAL requires CDECL or SDECL - The

 (or OPT) clause in a DECLARE, SUB, FUNCTION, METHOD, or PROPERTY statement requires
the or calling convention. You may not use OPTIONAL or OPT parameters with calling convention.

Error 519 - Missing declaration

Error 519 - Missing declaration
Missing declaration - You specified that all variables must be declared before use, but this one was not
declared. Use DIM, GLOBAL, INSTANCE, LOCAL, STATIC, or THREADED to declare the data type and
dimensions, if an array. To declare Register Variables use the REGISTER statement.

Error 520 - TYPE expected

Error 520 - TYPE expected
TYPE expected - An END TYPE was encountered here without the associated TYPE statement to initiate
the data block.

register.htm

PowerBASIC Compiler for Windows Version 10

212 / 2126

Error 521 - UNION expected

Error 521 - UNION expected
UNION expected - An END UNION was encountered here without the associated UNION statement to
initiate the data block.

Error 522 - END TYPE expected

Error 522 - END TYPE expected
END TYPE expected - The compiler found a TYPE statement without a terminating END TYPE statement.

Error 523 - END UNION expected

Error 523 - END UNION expected
END UNION expected - The compiler found a UNION statement without a terminating END UNION
statement.

Error 524 - Undefined type

Error 524 - Undefined type
Undefined type - You referenced a TYPE or UNION which was not defined. Check for the possibility of
spelling errors.

Error 525 - Type ID or specifier (?%&!#$) not allowed

Error 525 - Type ID or specifier (?%&!#$) not
allowed
Type ID or specifier (?%&!#$) not allowed - Members in a User-Defined Type (UDT) or UNION variable
must not include type ID or type-specifier characters. Change the definition to use the AS type syntax
instead.

Error 526 - Period not allowed

Error 526 - Period not allowed
Period not allowed - Periods are not allowed within any identifier names. They may only be used as a
separator for member names. A good alternative is to use an underscore (_) character to decorate variable
names.

Error 527 - End of statement expected

Error 527 - End of statement expected
End of statement expected - There were one or more extra characters at the end of this statement.

PowerBASIC Compiler for Windows Version 10

213 / 2126

Error 528 - Type too large

Error 528 - Type too large
Type too large - This TYPE or UNION exceeded the 16 Megabyte structure size limit.

Error 529 - Pointer variable error

Error 529 - Pointer variable error
Pointer variable error - You used pointer variable syntax incorrectly, such as placing a leading "@" on a
variable which is not declared as a pointer.

Error 530 - Invalid member name/definition

Error 530 - Invalid member name/definition
Invalid member name/definition - This usage of a member name or definition is not allowed in a TYPE,
UNION, or

. The name could be invalid, or the data type could be disallowed. See the specific statement definition
for more information.

Error 531 - Object variable expected

Error 531 - Object variable expected
Object variable expected - The syntax of this statement or function requires an object variable here.
 Substitution with another data type is not possible. See the specific statement definition for more
information.

Error 532 - Variant variable expected

Error 532 - Variant variable expected
Variant variable expected - The syntax of this statement or function requires a VARIANT variable here.
 Substitution with another data type is not possible. See the specific statement definition for more
information.

Error 533 - Dispatch object variable expected

Error 533 - IDispatch object variable expected
IDispatch object variable expected - The OBJECT statement requires an object variable which has either
been declared as IDISPATCH (for late binding), or by a specific dispatch interface (for ID binding).

Error 534 - Bit field error

Error 534 - Bit field error

PowerBASIC Compiler for Windows Version 10

214 / 2126

Bit field error - An error was made in defining a bit field of BIT/SBIT variables. For example, it could be that
the first variable in the bit field did not define the total size (using IN BYTE|WORD|DWORD), or the total
number of bits may have exceeded the maximum of 32.

Error 535 - Dynamic string variable expected

Error 535 - Dynamic string variable expected
Dynamic string variable expected - The syntax of this statement or function requires a dynamic string
variable here. Substitution with another data type is not possible. See the specific statement definition for
more information.

Error 536 - Too many imports

Error 536 - Too many imports
Too many imports - The program has exceeded the maximum number of allowed imports.

Error 537 - Pointer expected

Error 537 - Pointer expected
Pointer expected - This operation expects a pointer. For example:

... @PtrName[n]

Error 538 - Invalid FOR/NEXT limits

Error 538 - Invalid FOR/NEXT limits
Invalid FOR/NEXT limits - The specified start, stop and/or increment value(s) for a FOR/NEXT loop are not
within the allowable range for the class of counter variable used. For example, you attempted to specify an
increment value of -1 (a signed value) when the loop counter uses an unsigned variable. This error is also
generated if the compiler is able to determine, at compile time, that the start and stop values chosen will
prevent the FOR/NEXT from ever executing, e.g., FOR x = 10 TO 1.

Error 539 - Invalid thread function

Error 539 - Invalid thread function
Invalid thread function - A valid thread Function may only take one 32-bit LONG or DWORD parameter,
which must be received by value (

). This error can occur if the thread Function does not match the following syntax:
FUNCTION ThreadFuncName (BYVAL param AS {LONG | DWORD}) AS {LONG | DWORD}

An error 539 can also occur if the target thread Function is declared to use a DWORD parameter but is
passed a Long-integer, or vice-versa. You must pass the correct (matching)

 for the thread Function parameter. For example:
THREAD CREATE MyThread(y&) TO hThread???
[statements]
FUNCTION MyThread(BYVAL x AS LONG) AS LONG

PowerBASIC Compiler for Windows Version 10

215 / 2126

Or

THREAD CREATE MyThread(y???) TO hThread???
[statements]
FUNCTION MyThread(BYVAL x AS DWORD) AS LONG

See Also

THREAD CREATE statement

Error 540 - Invalid operation with a register variable

Error 540 - Invalid operation with a register
variable
Invalid operation with a register variable - This assembler opcode or operands are invalid using a register
variable.

Error 541 - Register size conflict

Error 541 - Register size conflict
Register size conflict - An inline assembler statement (ASM) used registers or a memory operand which
conflicted in size. For example, an attempt might have been made to move a value such as:

ASM MOV AX, EBX
ASM SUB EBX, DL

Error 542 - May not be altered

Error 542 - May not be altered
May not be altered - An attempt was made to change the value of a read-only parameter. For example,
COMM SET cannot be used with RING, RLSD, RXQUE or TXQUE.

Error 543 - Must be outside Sub/Function/Class...

Error 543 - Must be outside
Sub/Function/Class...
Must be outside Sub/Function/Class... - This statement/function is only allowed outside of any Sub,
Function, Method, or Property block. It should be moved to the correct location.

Error 544 - Field variable expected

Error 544 - Field variable expected
Field variable expected - The syntax of this statement or function requires a field variable here.
 Substitution with another data type is not possible. See the specific statement definition for more
information.

Error 545 - AT expected

register.htm

PowerBASIC Compiler for Windows Version 10

216 / 2126

Error 545 - AT expected
AT expected - The syntax of this statement or function requires the word AT here. See the specific
statement definition for more information.

Error 546 - Use only as a Callback

Error 546 - Use only as a Callback
Use only as a Callback - You tried to explicitly call a DDT Callback function. Callback functions may only
be invoked by the DDT engine or Windows. To reference it indirectly, send an appropriate window message
using CONTROL SEND or DIALOG SEND. To send custom messages, be sure to use message values
higher than %WM_USER+500 to avoid conflicts with other notification messages.

Error 547 - Callback function required

Error 547 - Callback function required
Callback function required - A Callback Function was named but the target function was not defined as a
CALLBACK, or the nominated function was not a Callback Function. (PB/Win only)

Error 548 - No parameters with Callback

Error 548 - No parameters with Callback
No parameters with Callback - A Callback Function definition cannot specify parameters. (PB/Win only)

Omit the parameters from the function definition. For example:

CALLBACK FUNCTION Dlg1Callback()
[statements]
END FUNCTION

Error 549 - BYVAL required with pointers

Error 549 - BYVAL required with pointers
BYVAL required with pointers - Pointers may only be passed

. Add an explicit BYVAL to the Sub/Function/Method/Property declaration and prototype. Previous
versions of PowerBASIC used an implied BYVAL.

Error 550 - Too many data statements

Error 550 - Too many data statements
Too many data statements - Data is limited to 64 Kb per Sub, Function, Method, or Property, and 16384
individual data items. Either reduce the number of DATA statements, or split the data into separate
procedures.

Error 551 - Not supported in this version

PowerBASIC Compiler for Windows Version 10

217 / 2126

Error 551 - Not supported in this version
Not supported in this version - An attempt was made to use a feature that is not supported by this version
of the compiler. This error may also occur if a reserved word is used as a variable, label, Sub, Function,
Method, or Property name. For example, using INP or OUT.

Error 552 - TRY statement expected

Error 552 - TRY statement expected
TRY statement expected - PowerBASIC expected to find a TRY statement at or before the indicated
position in the code. Check the syntax of the surrounding code for other syntax errors, such as the
misplacement of a CATCH or END TRY statement, conditional compilation excluding required portions of the
code, etc.

Error 553 - CATCH statement expected

Error 553 - CATCH statement expected
CATCH statement expected - A TRY/END TRY block did not include a CATCH statement. Recheck the
syntax of the block.

Error 554 - END TRY statement expected

Error 554 - END TRY statement expected
END TRY statement expected - A TRY/END TRY block appears to be missing its END TRY clause. This
can typically occur if an END SUB, END FUNCTION, END METHOD, END PROPERTY statement was
encountered within the TRY/END TRY block.

Error 555 - ON ERROR/RESUME not allowed here

Error 555 - ON ERROR/RESUME not allowed
here
ON ERROR/RESUME not allowed here - An attempt was made to include an ON ERROR or a RESUME
statement inside a TRY/END TRY block. Remove the ON ERROR or RESUME statement or move it out of
the TRY/END TRY block. Error handling is automatic within a TRY/END TRY block.

Error 556 - Function restricted to threads

Error 556 - Function restricted to threads
Function restricted to threads - Functions that are called with THREAD CREATE may not be called in the
conventional manner. This restriction is necessary because thread Functions require additional initialization
steps that are not included in standard function code.

One situation that can arise is where a Function may need to be invoked both directly and used as a thread
Function. The easiest solution is to create a small wrapper function for the function, then use THREAD
CREATE with the wrapper function, or call the original function directly. For example:

PowerBASIC Compiler for Windows Version 10

218 / 2126

FUNCTION WorkerFunc(BYVAL x AS LONG) AS LONG
 ' code here
END FUNCTION

FUNCTION WorkerThread(BYVAL x AS LONG) AS LONG
 FUNCTION = WorkerFunc(x)
END FUNCTION

' more code here

' Execute the worker function directly, thus:
lResult& = WorkerFunc(var&)

' Execute the worker thread as a thread, using
' the wrapper function:
THREAD CREATE WorkerThread(var&) TO hThread???

Error 557 - Macro too long/complex

Error 557 - Macro too long/complex
Macro too long/complex - An attempt was made to create a MACRO that is too long or complex. An
individual macro can contain replacement text of up to approximately 4000 characters, and can specify up
to 240 parameters occupy up to approximately 2000 bytes expanded space per macro. Macro substitutions
are limited to an expanded total of approximately 16000 characters per line of original source code.

Error 558 - MACRO expected

Error 558 - MACRO expected
MACRO expected - An END MACRO statement was found without a matching MACRO statement.
Please recheck the syntax of the macro block.

Error 559 - END MACRO expected

Error 559 - END MACRO expected
END MACRO expected - A MACRO block appears to be missing a terminating END MACRO statement.
Please recheck the syntax of the macro block.

Error 560 - FASTPROC expected

Error 560 - FASTPROC expected
FASTPROC expected - A FASTPROC statement must precede other related statements like EXIT
FASTPROC and END FASTPROC.

Error 561 - END FASTPROC expected

Error 561 - END FASTPROC expected
END FASTPROC expected - A FASTPROC statement must be matched with an associated END
FASTPROC.

PowerBASIC Compiler for Windows Version 10

219 / 2126

Error 562 - INTERFACE expected

Error 562 - INTERFACE expected
INTERFACE expected - An END INTERFACE statement was found to be without a matching

 statement. Please recheck the syntax of the interface definition block.

Error 563 - END INTERFACE expected

Error 563 - END INTERFACE expected
END INTERFACE expected - An

 statement was found without a matching END INTERFACE statement. Please recheck the syntax of
the interface definition block.

Error 564 - MACROTEMP not allowed here

Error 564 - MACROTEMP not allowed here
MACROTEMP not allowed here - PowerBASIC encountered a MACROTEMP statement outside the
scope of a MACRO block.

Error 565 - Macro mismatch with code position

Error 565 - Macro mismatch with code position
Macro mismatch with code position - The compiler encountered a multi-line MACRO statement in a non-
statement position.

Error 566 - CLASS expected

Error 566 - CLASS expected
CLASS expected - An END CLASS statement was encountered here without the associated CLASS
statement to initiate the block.

Error 567 - END CLASS expected

Error 567 - END CLASS expected
END CLASS expected - A CLASS block was not terminated with an associated END CLASS statement.

Error 568 - METHOD expected

Error 568 - METHOD expected
METHOD expected - An END METHOD statement was encountered here without the associated METHOD

PowerBASIC Compiler for Windows Version 10

220 / 2126

statement to initiate the block.

Error 569 - END METHOD expected

Error 569 - END METHOD expected
END METHOD expected - A METHOD block was not terminated with an associated END METHOD
statement. It's likely you tried to start a new procedure block, without first terminating the current METHOD.

Error 570 - PROPERTY expected

Error 570 - PROPERTY expected
Property expected - An END PROPERTY statement was encountered here without the associated
PROPERTY statement to initiate the block.

Error 571 - END PROPERTY expected

Error 571 - END PROPERTY expected
END METHOD expected - A PROPERTY block was not terminated with an associated END PROPERTY
statement. It's likely you tried to start a new procedure block, without first terminating the current
PROPERTY.

Error 572 - PROPERTY GET expected

Error 572 - PROPERTY GET expected
PROPERTY GET expected - A PROPERTY = nnnn statement (for assigning the return value) was found,
but it was not located within a PROPERTY GET block. It is not allowed at any other location in your
program.

Error 573 - Valid only in a CALLBACK FUNCTION

Keyword Template
Purpose

Syntax

Remarks

See also

Example

Error 573 - Valid only in a CALLBACK
FUNCTION
Error 573 - Valid only in a CALLBACK FUNCTION - FUNCTION = x,y with two parameters is only valid in
a CALLBACK FUNCTION.

PowerBASIC Compiler for Windows Version 10

221 / 2126

Error 574 - Not allowed in an Event Class

Error 574 - Not allowed in an Event Class
Not allowed in an Event Class - The statement or function found here is not allowed within an EVENT
CLASS. It has no valid meaning and must be removed. See the specific statement definition for more
information.

Error 575 - EVENT SOURCE is not declared

Error 575 - EVENT SOURCE is not declared
EVENT SOURCE is not declared - You included code which generates events with the RAISEEVENT
statement, but did not declare an event source with the EVENT SOURCE statement.

Error 576 - Too many Interfaces

Error 576 - Too many Interfaces
Too many Interfaces - PowerBASIC allows up to 32 interfaces per CLASS, but you have exceeded that
limit. You should try to combine two or more of those interfaces.

Error 577 - EVENT INTERFACE expected

Error 577 - EVENT INTERFACE expected
EVENT INTERFACE expected - The EVENT INTERFACE you specified could not be found.

Error 578 - INHERIT of Base Class expected

Error 578 - INHERIT of Base Class expected
INHERIT of Base Class expected - Every INTERFACE must INHERIT from a base class, which may be
nested any level. Ultimately, every interface inherits from IUnknown. The INHERIT statement must be the
first statement in every INTERFACE block.

Error 579 - BYREF variable or BYVAL/BYREF variant expected

Error 579 - BYREF variable or BYVAL/BYREF
variant expected
BYREF variable or BYVAL/BYREF variant expected - The ISMISSING() function can only detect a
missing parameter for a BYREF variable, or a BYVAL/BYREF variant.

Error 580 - Duplicate GUID usage

Error 580 - Duplicate GUID usage

PowerBASIC Compiler for Windows Version 10

222 / 2126

Duplicate GUID usage - You have used a single GUID to identify two or more elements of your program.
 Change at least one of the GUIDs to a new value.

Error 581 - Type Library creation error

Error 581 - Type Library creation error
Type Library creation error - A system error occurred while creating the COM Type Library. The common
cause of this error is using a data type not supported by Type Libraries. Type Libraries only support the
following data types: BYTE, WORD, DWORD, INTEGER, LONG, QUAD, SINGLE, DOUBLE, CURRENCY,
OBJECT, STRING, and VARIANT. Either suppress the creation of a Type Library by using the #COM TLIB
OFF metastatement or by changing the Methods and Properties to only use supported data types.

Error 582 - Duplicate Dispatch interface

Error 582 - Duplicate Dispatch interface
Too many DISPATCH interfaces - Only one Dispatch (DUAL) interface is allowed per CLASS.

Error 583 - Unpaired PROPERTY definition

Error 583 - Unpaired PROPERTY definition
Unpaired PROPERTY definition - If you create both a PROPERTY GET and a PROPERTY SET, they
must be paired. The parameters and the property value must be identical in both forms, and the
PROPERTY SET must immediately follow the PROPERTY GET.

Error 584 - Mismatched PROPERTY pair

Error 584 - Mismatched PROPERTY pair
Mismatched PROPERTY pair - If you create both a PROPERTY GET and a PROPERTY SET, they must
be paired. The parameters and the property value must be identical in both forms, and the PROPERTY SET
must immediately follow the PROPERTY GET.

Error 585 - PROPERTY requires BYVAL parameters

Error 585 - PROPERTY requires BYVAL
parameters
PROPERTY requires BYVAL parameters - PROPERTY methods created in PowerBASIC must have
BYVAL parameters.

Error 586 - User Defined Type or AS expected

Error 586 - User Defined Type or AS expected
User Defined Type or AS expected - The name of a User-Defined TYPE, or an "AS <type>" clause is

PowerBASIC Compiler for Windows Version 10

223 / 2126

required here.

Error 587 - Invalid Constructor/Destructor

Error 587 - Invalid Constructor/Destructor
Invalid Constructor/Destructor - Constructor and Destructor Methods must be CLASS METHODS. They
must take no parameters and return no result.

Error 588 - Indirect operand must be bracketed: [12]

Error 588 - Indirect operand must be
bracketed: [12]
Indirect operand must be bracketed: [12] - An inline assembler (ASM) opcode which includes indirect
addressing must enclose that operand in square brackets.

Error 589 - Dual/IDispatch interface is required

Error 589 - Dual/IDispatch interface is required
Dual/IDispatch interface is required - This statement or construct may only be used in a DUAL interface.

Error 590 - PROPERTY SET requires at least one parameter

Error 590 - PROPERTY SET requires at least
one parameter
PROPERTY SET requires at least one parameter - PROPERTY SET is used to assign a value to an
INSTANCE variable. At least one parameter is mandatory to hold that value.

Error 591 - BYVAL with OUT is not allowed

Error 591 - BYVAL with OUT is not allowed
BYVAL with OUT is not allowed - OUT parameter may not be BYVAL, because those are destroyed
before the OUT value could be retrieved.

Error 592 - Return value required

Error 592 - Return value required
Return value required - GET PROPERTY requires a return value to hold the retrieved value.

Error 593 - Dual or Automation interface is required

PowerBASIC Compiler for Windows Version 10

224 / 2126

Error 593 - Dual or Automation interface is
required
Dual or Automation interface is required - OBJRESULT is only valid in a DUAL or IAUTOMATION
interface.

Error 594 - Macro ends with continuation '_'

Error 594 - Macro ends with continuation '_'
Macro ends with continuation '_' - MACRO body text may not end with an underscore continuation
character.

Error 595 - Object return type required

Error 595 - Object return type required
Object return type required - Component methods in a Compound Object Reference must each return an
object variable to be used by the next method.

Error 596 - Inherited interface expected

Error 596 - Inherited interface expected
Inherited interface expected - MYBASE may only be used on an interface which is derived from an
inherited user-created interface.

Error 597 - Invalid name or sequence in the interface

Error 597 - Invalid name or sequence in the
interface
Invalid name or sequence in the interface - To OVERRIDE an inherited METHOD, the replacement
must have the same name and signature, and appear in the same sequence.

Error 598 - CLASS METHOD name expected

Error 598 - CLASS METHOD name expected
METHOD or PROPERTY name expected - A valid METHOD or PROPERTY name must appear in this
context.

Error 599 - Requires CLASS but outside of Interfaces

Error 599 - Requires CLASS but outside of
Interfaces

PowerBASIC Compiler for Windows Version 10

225 / 2126

Requires CLASS but outside of Interfaces - This item must be enclosed within a CLASS, but outside of
Interfaces.

Error 600 - Macro phase error, referenced before define

Error 600 - Macro phase error, referenced
before define
Macro phase error, referenced before define - A macro was referenced before it was defined.

Error 601 - One INHERIT per interface

Error 601 - One INHERIT per interface
One INHERIT per interface - PowerBASIC offers single inheritance, so just one INHERIT is allowed per
interface. However, the inherited interface may itself inherit from another interface, to virtually any level of
nesting.

Error 602 - Hidden interface referenced by COM

Error 602 - Hidden interface referenced by COM
Hidden interface referenced by COM - The compiler was not able to create a Type Library. The most
likely cause is the use of a Hidden Interface as a parameter or return value in a METHOD or PROPERTY
published AS COM.

Error 603 - Incompatible with a Dual/IDispatch interface

Error 603 - Incompatible with a Dual/IDispatch
interface
Incompatible with a Dual/IDispatch interface - This data type cannot be passed as a variant.

Error 604 - Incompatible with #COM TLIB generation

Error 604 - Incompatible with #COM TLIB
generation
Incompatible with #COM TLIB generation - This data type cannot be described in a Type Library.

Error 605 - Macro parameter mismatch

Keyword Template
Purpose

Syntax

PowerBASIC Compiler for Windows Version 10

226 / 2126

Remarks

See also

Example

Error 605 - Macro parameter mismatch
Macro parameter mismatch - A Macro parameter does not match the original definition.

Error 606 - PowerCollection / LinkListCollection required

Keyword Template
Purpose

Syntax

Remarks

See also

Example

Error 606 - PowerCollection /
LinkListCollection requiredrequired
PowerCollection / LinkListCollection required - FOR EACH loops require an object of a specific class.

Error 607 - New syntax requires GETCOM/NEWCOM/ANYCOM

Error 607 - New syntax requires
GETCOM/NEWCOM/ANYCOM
New syntax requires GETCOM/NEWCOM/ANYCOM - The LET statement syntax for COM OBJECT
creation has been changed. Previous syntax is no longer recognized. Refer to LET.

Error 609 - Too many macro expansions

Error 609 - Too many macro expansions
Too many macro expansions - You have used more than 65,535 macros in this program.

Error 610 - Invalid within a FastProc

Error 610 - Invalid within a FastProc
Invalid within a FastProc - You have used a feature which is not supported within a FastProc.

Error 611 - FASTPROC params must be ByVal Long Integer

PowerBASIC Compiler for Windows Version 10

227 / 2126

Error 611 - FASTPROC params must be ByVal
Long Integer
FASTPROC params must be ByVal Long Integer - FASTPROC parameters must be ByVal Long Integer.

Error 612 - FASTPROC return may only be Long Integer

Error 612 - FASTPROC return may only be
Long Integer
FASTPROC return may only be Long Integer - FASTPROC return value must be Long Integer or nothing.

Error 613 - Cannot compile - the program is now running

Error 613 - Cannot compile - the program is
now running
Cannot compile - the program is now running - The program you are trying to compile is currently
executing. You may have to use Task Manager to force the program to end.

Error 614 - Mismatched CHR Mode (Ansi/Wide)

Error 614 - Mismatched CHR Mode (Ansi/Wide)
Mismatched CHR Mode (Ansi/Wide) - The

 operand does not match the required Ansi or Wide mode.

Error 615 - PREFIX expected

Error 615 - PREFIX expected
WITH expected - A PREFIX statement must precede each END WITH statement.

Error 616 - END PREFIX expected

Error 616 - END PREFIX expected
END WITH expected - A PREFIX statement must be matched with an associated END WITH.

Error 617 - ASMDATA expected

Error 617 - ASMDATA expected
ASMDATA expected - An ASMDATA statement must precede each END ASMDATA statement.

Error 618 - END ASMDATA expected

PowerBASIC Compiler for Windows Version 10

228 / 2126

Error 618 - END ASMDATA expected
END ASMDATA expected - An ASMDATA statement must be matched with an associated END
ASMDATA.

Error 619 - ENUM expected

Error 619 - ENUM expected
ENUM expected - An ENUM statement must precede each END ENUM statement.

Error 620 - END ENUM expected

Error 620 - END ENUM expected
END ENUM expected - An ENUM statement must be matched with an associated END ENUM.

Error 621 - Interface cannot inherit from itself

Error 621 - Interface cannot inherit from itself
Interface cannot inherit from itself - An interface cannot inherit from itself.

Error 622 - AS STRING required for variant conversion

Error 622 - AS STRING required for variant
conversion
AS STRING required for variant conversion - If you assign a user defined TYPE to a variant variable, it is
now necessary to add the words AS STRING to confirm the type conversion.

Error 623 - THREADPARM Instance variable required

Error 623 - THREADPARAM Instance variable
required
THREADPARM Instance variable required - THREAD Class must declare a THREADPARM Instance
variable.

Error 624 - Invalid THREADPARM variable type

Error 624 - Invalid THREADPARAM variable
type
Invalid THREADPARM variable type - THREADPARM must be a LONG, DWORD, or UDT PTR
INSTANCE variable.

PowerBASIC Compiler for Windows Version 10

229 / 2126

Error 625 - THREAD Method required

Error 625 - THREAD Method required
THREAD Method required - THREAD Class must include a THREAD Method.

Error 626 - Duplicate THREAD Method

Error 626 - Duplicate THREAD Method
Duplicate THREAD Method - THREAD Class must have exactly one THREAD Method.

Error 627 - INHERIT IPowerThread expected

Error 627 - INHERIT IPowerThread expected
INHERIT IPowerThread expected - THREAD METHOD is only allowed with a threaded interface.

Error 628 - Not valid in a Static-Lin-Lib (SLL)

Error 628 - Not valid in a Static-Link-Lib (SLL)
Not valid in a Static-Link-Lib (SLL) - This language element is invalid in a Static-Link-Library.

Error 629 - ALIAS disallows Private/Thread/Callback

Error 629 - ALIAS disallows
Private/Thread/Callback
ALIAS disallows Private/Thread/Callback - ALIAS clause is not valid with Private, Thread, or Callback.

Error 630 - Link File Error

Error 630 - Link File Error
Link File Error - The SLL Link File is not valid for this compiler.

Error 631 - Nested Link Files

Error 631 - Nested Link Files
Nested Link Files - You cannot link an SLL file into an SLL file.

Error 632 - COMMON name is a duplicate

PowerBASIC Compiler for Windows Version 10

230 / 2126

Error 632 - COMMON name is a duplicate
COMMON name is a duplicate - COMMON procedure name was previously defined.

Error 633 - COMMON signature is mismatched

Error 633 - COMMON signature is mismatched
COMMON signature is mismatched - COMMON procedure signature (params, return type...) is
mismatched.

Error 634 - Undefined COMMON reference

Error 634 - Undefined COMMON reference
Undefined COMMON reference - COMMON item was referenced but not defined.

Error 635 - USING clause is required

Error 635 - USING clause is required
USING clause is required - USING <ProcName> is required to describe the function signature.

Error 636 - Invalid VersionInfo Resource

Error 636 - Invalid VersionInfo Resource
Invalid VersionInfo Resource - Invalid VersionInfo, may be out of sequence.

Error 637 - SLL mismatch with this compiler

Error 637 - SLL mismatch with this compiler
SLL mismatch with this compiler - This SLL requires CONSOLE (PB/CC only) or DDT support which is
not available.

Error 638 - Please change AS STRING to AS WSTRING

Error 638 - Please change AS STRING to AS
WSTRING
Please change AS STRING to AS WSTRING - Strings stored in a variant must be in wide Unicode format.

Error 639 - TYPE variable expected

Error 639 - TYPE variable expected

http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

231 / 2126

TYPE variable expected - A user-defined type variable is expected here.

Error 801 to 815 - Internal error

Error 801 to 815 - Internal error
Internal error - If one of these errors occurs, please report it to the PowerBASIC Technical Support group.

Error 640 - Invalid use of BYCOPY

Error 640 - Invalid use of BYCOPY
Invalid use of BYCOPY - The BYCOPY override may not be used with certain parameters (for example,
entire arrays).

Run Time Errors

Error 0 - No error

Error 0 - No error
No error (%ERR_NOERROR)

Error 5 - Illegal function call

Error 5 - Illegal function call
Illegal function call - (%ERR_ILLEGALFUNCTIONCALL) - This is a catch-all error related to passing an
inappropriate argument to some statement or function.

There are many things that can cause an Error 5, for example:

· A record number is too large (or negative) in a GET or PUT.

· Attempting to use the WIDTH# statement on a

.

· The run-time execution of a LET, LET (with Objects), LET (with Types), LET (with Variants), or
OBJECT statement failed (see OBJRESULT and OBJRESULT$ to obtain an extended error code).

Error 6 - Overflow

Error 6 - Overflow
Overflow (%ERR_OVERFLOW) - This error is not currently supported.

Error 7 - Out of memory

Error 7 - Out of memory
Out of memory - (%ERR_OUTOFMEMORY) - Many different situations can cause this message, including

PowerBASIC Compiler for Windows Version 10

232 / 2126

dimensioning too large an array, or running out of virtual memory due to insufficient free disk space for the
Windows swap file.

Error 9 - Subscript / Pointer out of range

Error 9 - Subscript / Pointer out of range
Subscript / Pointer out of range - (%ERR_SUBSCRIPTPOINTEROUTOFRANGE) - You attempted to use
a subscript smaller than the minimum or larger than the maximum value established when the array was
dimensioned. Attempting to use a null or invalid pointer may also cause this error. Error 9 will only be
generated if you have specified #DEBUG ERROR ON.

Error 11 - Division by zero

Error 11 - Division by zero
Division by zero (%ERR_DIVISIONBYZERO) - This error is not currently supported.

Error 24 - Device time-out

Error 24 - Device time-out
Device time-out - (%ERR_DEVICETIMEOUT) - The specified time-out value for a UDP or TCP
communications operation has expired.

Error 51 - Internal error

Error 51 - Internal error
Internal error - (%ERR_INTERNALERROR) - A malfunction occurred within the PowerBASIC run-time
system, or the operating system reported an error that PowerBASIC was not expecting (or was unable to
decipher). For example, attempting to KILL (delete) an open file can cause this kind of problem.

If you are unable to identify the cause of the problem, contact the PowerBASIC Technical Support group with
information about your program.

Error 52 - Bad file name or number

Error 52 - Bad file name or number
Bad file name or number - (%ERR_BADFILENAMEORNUMBER) - The file number you gave in a file
statement does not match the file number given in an OPEN statement, or the file number may be out of the
range of valid file numbers.

Error 53 - File not found

Error 53 - File not found
File not found - (%ERR_FILENOTFOUND) - The file name specified could not be found on the indicated
drive.

PowerBASIC Compiler for Windows Version 10

233 / 2126

Error 54 - Bad file mode

Error 54 - Bad file mode
Bad file mode - (%ERR_BADFILEMODE) - You attempted a PUT or a GET (or PUT$ or GET$) on a file
opened in sequential mode.

Error 55 - File is already open

Error 55 - File is already open
File is already open - (%ERR_FILEISOPEN) - You attempted to OPEN a file that was already open, or
you attempted to delete an open file.

Error 57 - Device I/O error

Error 57 - Device I/O error
Device I/O error - (%ERR_DEVICEIOERROR) - A hardware problem occurred when trying to carry out
some device-orientated command.

For example, a COMM connection was lost during a session, or a TCP/UDP statement failed to be
connected, etc. Alternatively, a TCP/UDP port may have been closed unexpectedly or the network refused
the connection requested.

If an ERROR 57 occurs with a TCP OPEN statement under Windows 98 when using a dotted IP address
string (i.e., "202.123.456.1"), then check to ensure that "Client for Microsoft Networks" is installed in the
Network applet in Control Panel. Alternatively, manually add a DNS entry in the HOSTS file in the
\WINDOWS folder.

For example, add the following line into the HOSTS file, and change the TCP OPEN statement to use the
(dummy) domain name instead of the dotted IP address:

202.123.456.1 dummyname.com

Error 58 - File already exists

Error 58 - File already exists
File already exists - (%ERR_FILEALREADYEXISTS) - The new name argument specified in your NAME
statement already exists.

Error 61 - Disk full

Error 61 - Disk full
Disk full - (%ERR_DISKFULL) - There is not enough free space on the indicated or default disk to carry out
a file operation. Create more free disk space and retry your program.

Error 62 - Input past end

Error 62 - Input past end

PowerBASIC Compiler for Windows Version 10

234 / 2126

Input past end - (%ERR_INPUTPASTEND) - You tried to read more data from a file than it had to read.
Use the EOF (end of file) function to avoid this problem. Trying to read from a sequential file opened for
output or append can also cause this kind of error.

Error 63 - Bad record number

Error 63 - Bad record number
Bad record number - (%ERR_BADRECORDNUMBER) - A number less than the BASE option specified in
the OPEN statement or a number larger than 2 6̂3-1 was specified as the record argument to a random file
PUT or a GET statement.

Error 64 - Bad file name

Error 64 - Bad file name
Bad file name - (%ERR_BADFILENAME) - The file name specified in a KILL or NAME statement contains
invalid characters.

Error 67 - Too many files

Error 67 - Too many files
Too many files - (%ERR_TOOMANYFILES) - This error can be caused either by trying to create too many
files in a drive's root directory, or by an invalid file name that affects the performance of the Create File
system call.

Error 68 - Device unavailable

Error 68 - Device unavailable
Device unavailable - (%ERR_DEVICEUNAVAILABLE) - You tried to

 a device or to a device or graphic without that device present or installed.
For example, opening COM1 on a system without a serial adapter or modem, or attempting to use
TCP/IP or UDP/IP on a machine without Winsock 2.0 (or better) installed. Also, trying to attach to a
graphic or printer that is not available will cause this error.

Error 69 - COMM error

Error 69 - COMM error
COMM error - (%ERR_COMMERROR) - A communications error occurred. For example, a framing error
may have occurred.

Error 70 - Permission denied

Error 70 - Permission denied
Permission denied - (%ERR_PERMISSIONDENIED) - You tried to write to a write-protected disk. This

PowerBASIC Compiler for Windows Version 10

235 / 2126

error can also be generated as a result of network permission errors, such as accessing a locked file, or a
locked record. It can also occur when attempting to open a subdirectory as a file.

Error 71 - Disk not ready

Error 71 - Disk not ready
Disk not ready - (%ERR_DISKNOTREADY) - The door of a floppy disk drive is open, or there is no disk in
the indicated drive.

Error 72 - Disk media error

Error 72 - Disk media error
Disk media error - (%ERR_DISKMEDIAERROR) - The controller board of a floppy or hard disk indicates a
hard media error in one or more sectors.

Error 74 - Rename across disks

Error 74 - Rename across disks
Rename across disks - (%ERR_RENAMEACROSSDISKS) - You cannot rename a directory across disk
drives or partitions.

Error 75 - Path/file access error

Error 75 - Path/file access error
Path/file access error - (%ERR_PATHFILEACCESSERROR) - During a command capable of specifying a
path name (OPEN, NAME, or MKDIR, for example), a path was used inappropriately. For example,
attempting to delete a directory that is in-use.

Error 76 - Path not found

Error 76 - Path not found
Path not found - (%ERR_PATHNOTFOUND) - The path you specified during a CHDIR, MKDIR, OPEN, etc,
cannot be found.

Error 98 - XPrint Preview error

Error 98 - XPrint Preview error
XPrint Preview error - XPrint Preview failed because it was not executed immediately after the XPrint
Attach statement.

Error 99 - Object error

PowerBASIC Compiler for Windows Version 10

236 / 2126

Error 99 - Object error
Object error - (%ERR_OBJECTERROR) - A run-time error occurred involving an object.

Error 241 - Global memory corrupt

Error 241 - Global memory corrupt
Global memory corrupt - (%ERR_GLOBALMEMORYCORRUPT) - PowerBASIC detected a global
memory corruption.

Typical causes include misuse of

, accessing an array beyond its boundary, or bad Inline Assembly code. The cause of the problem may
actually be in a seemingly unrelated portion of the program, and/or in a DLL or module used by the
program.
Error 241 was formerly deemed "Far heap corrupt" (%ERR_FARHEAPCORRUPT). While this equate
remains supported for a short period, source code should be updated to maintain compatibility with future
versions of PowerBASIC.

Error 242 - String space corrupt

Error 242 - String space corrupt
String space corrupt - (%ERR_STRINGSPACECORRUPT) - PowerBASIC detected a memory or

 space corruption. Typical causes include misuse of , accessing an array beyond its boundary, or bad
Inline Assembly code. The cause of the problem may actually be located in a seemingly unrelated
portion of the program, and/or in a DLL or module used by the program.

Dynamic Dialog Tools (DDT)

Dynamic Dialog Tools (DDT)

Dynamic Dialog Tools (DDT)
Welcome to PowerBASIC's powerful and improved Dynamic Dialog Tools™. DDT allows a BASIC
programmer to easily create a Graphical User Interface (GUI) for an application using simple BASIC
statements. With DDT, there's no need to stress over learning how to effectively use GUI design software
that contains icons you don't understand and also hundreds of cryptic "property" settings. With DDT, your
PowerBASIC application or DLL can create user interface dialogs "on the fly".

For programmers who are familiar with DDT, you will find that PowerBASIC has expanded the DDT
implementation even further in this version of PowerBASIC, with advanced features such as User Data
storage and accelerator tables.

This chapter describes PowerBASIC's Dynamic Dialog Tools and how to easily create full-featured Graphical
User Interfaces in your code.

See Also

Creating a Dialog

Adding Controls to the Dialog

PowerBASIC Compiler for Windows Version 10

237 / 2126

Modal vs. Modeless

Controls

Control Styles

Callbacks

Dialog Styles

Menus

Menu Walkthrough

More on the Menu

Menu State

Menu Example

Creating a Dialog

Creating a Dialog
In this example, we will create a simple dialog that asks the user to enter his/her name, providing a text box
for input, plus both "OK" and "Cancel" buttons. To create the dialog, first we use the DIALOG NEW
statement:

LOCAL hParent AS DWORD
LOCAL hDlg AS DWORD
[statements]
DIALOG NEW hParent, Caption$,,, 160, 50, Style&, exStyle& TO hDlg

hParent refers to the parent window handle. If this value is 0 (or %HWND_DESKTOP), the dialog has no
parent window, and may be referred to as a "top-level" window. However, if the dialog has a parent window
and the dialog is a MODAL dialog, Windows will automatically disable the parent window while the DDT
dialog is displayed.

Caption$ is the text displayed in the caption of the dialog. This may be the name of your program, or it can
be used to convey other information to the user.

The next two parameters for the location on the screen are omitted (this causes the dialog to be centered on
the screen), and the size is set to 160 dialog units wide by 50 dialog units tall. Style& specifies how the
dialog is drawn on the screen (with a caption, without a caption, etc). exStyle& specifies an extended style
attributes for drawing the dialog. For information on the range of possible dialog styles, please see the
DIALOG NEW statement.

Once the dialog has been created, the handle for it is placed in the hDlg variable. hDlg may be a Long-
integer or Double-word variable (i.e., hDlg& or hDlg???), but a Double-word variable is recommended.
This handle is used by Windows (and your program) code to identify the dialog. Windows gives each dialog
a unique handle value at run-time; no two windows, dialogs, or controls can have the same handle value.
This means that the actual handle value will be different every time the dialog is created.

Note that the height and width values determine the client size of the dialog, if the dialog style explicitly
includes the %WS_CAPTION style. Otherwise, they are interpreted as the outer dimensions of the
complete dialog.

Note: The location and size of a dialog are specified in Dialog Units or, optionally, Pixels.

See Also

Dynamic Dialog Tools (DDT)

Adding Controls to the Dialog

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

238 / 2126

Modal vs. Modeless

Controls

Control Styles

Callbacks

Dialog Styles

Menus

Adding Controls to the Dialog

Adding Controls to the Dialog
Once the dialog has been created, we can add controls to it. For our example, we will add a text box to let
the user type in their name, and also add two BUTTON controls ("OK" and "Cancel"):

CONTROL ADD TEXTBOX, hDlg, IdText&, "", 14, 21, 134, 12, Style&, exStyle&
CONTROL ADD BUTTON, hDlg, 1, "&OK", 44, 38, 40, 14, %BS_DEFAULT or %WS_TABSTOP CALL Ok
CONTROL ADD BUTTON, hDlg, 2, "&Cancel", 90, 38, 40, 14 CALL Cancel

hDlg refers to the handle of the dialog you're adding the control to, as returned by the DIALOG NEW
statement.

The next parameter IdText&, 1, and 2 in the example lines above) is the unique numeric identifier (ID) for the
control. Whereas dialog handles are determined by Windows at run-time, controls use ID values that are
specified by the programmer. By knowing the dialog handle and a control ID, we can identify and interact
programmatically with any control on a DDT dialog using any of the control-related DDT statements.

In general, ID values should be kept within in the range 100 to 65535. It should also be noted that some
values below 100 are reserved by Windows for special purposes. For example, the special ID value 1 (%
IDOK) is usually assigned to a Button control that is to be activated when the ENTER key is pressed (this
would typically be the "OK" button on a dialog). Similarly, the special ID value of 2 (%IDCANCEL) is usually
assigned to a Button control that is to be activated when the ESCAPE key is pressed (typically this would
be the "Cancel" button).

In general, two controls on a given dialog should not use the same ID value, as it prevents them from being
identified uniquely. However, it is common to assign the special value -1& to plain Label (static) controls that
will not have their content, style, or color changed at run-time.

It is always a good idea to plan the values of control identifiers carefully. For example, a set of related
Option (radio) controls should use ID values that are ordered sequentially, as this makes it very easy to
manipulate them as a group with the CONTROL SET OPTION statement, etc. Another common scheme is
keep all the ID numbers for the controls in a specific range. For example, the first dialog in a program might
use controls whose ID values are in the range 100 to 199, the second dialog might use the range 200 to
299, etc.

The identifier parameter is followed by the caption text for the control. The ampersand symbols "&" within
the caption text fields is surprisingly helpful - the letter that follows the symbol specifies a command
accelerator (hot-key). At run-time, the accelerator character is drawn underscored: OK and Cancel. In this
case, the underscored character informs the user that pressing the ALT+O keys has the same effect as
using the mouse to click the "OK" button. Similarly, the ALT+C combination will trigger the "Cancel" button.

Coordinates used in the

 statement are specified in the same terms (dialog units or pixels) as the parent dialog. The final Style&
(primary style) and exStyle& (extended style) parameters tell Windows how to draw the control, and
how the control should behave. These parameters are optional, and if omitted, receive default styles
according to the type of control.

Each type of control has its own unique set of style options. Most of the equates have been
predefined in the DDT.INC and WIN32API.INC files supplied with PowerBASIC.
It should be noted that explicit (custom) style values replace the default values for the

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

239 / 2126

control. That is, custom styles are not additional to the default style values - your code must
specify all necessary style parameters. This also applies to the extended styles parameter - if
your code specifies a custom primary style, the default extended style will no longer be in
effect either. In this case, an explicit extended style may also need to be added to the
CONTROL ADD statement if an explicit primary style is specified.

The CONTROL ADD statement for the "OK" button includes the keyword CALL. This tells Windows to call
the "OK" function each time the "OK" button is pressed. The "OK" function is simply a Callback Function
that contains the code you want to execute when the button is pressed (or when some other control-related
event occurs).

In this example, we want to assign the text from the text box control to a global string, and then close the
dialog box. However, we first must check that our code is executed only in response to a "click" event - we
would not want our dialog to end if some other notification message was sent to the callback! We do this by
testing the values of the message parameters held in the CB.HNDL, CB.MSG, and CB.CTLMSG system
variables:

CALLBACK FUNCTION Ok() AS LONG
 IF CB.MSG = %WM_COMMAND AND CB.CTLMSG = %BN_CLICKED THEN
 CONTROL GET TEXT CB.HNDL, %IDTEXT TO gsUserName
 DIALOG END CB.HNDL, 1 ' Return 1
 FUNCTION = 1
 END IF
END FUNCTION

Similarly, we provide a Callback Function for the "Cancel" button, which will close the dialog box, ignoring
any text entered into the text box:

CALLBACK FUNCTION Cancel() AS LONG
 IF CB.MSG = %WM_COMMAND AND CB.CTLMSG = %BN_CLICKED THEN
 DIALOG END CB.HNDL, 0 ' Return 0
 FUNCTION = 1
 END IF
END FUNCTION

Once the dialog has been created and the controls added, we are ready to display the dialog on the screen.
In this example, we will create it as a Modal dialog. That means that when the DIALOG SHOW MODAL
statement is executed, the execution of this portion of our program will block (halt) until the dialog is closed:
(see Modal vs. Modeless below for more information on modal and modeless dialogs)

LOCAL lResult AS LONG
...
DIALOG SHOW MODAL hDlg TO lResult

During the time that the "main" part of our code is blocked by the modal dialog, DDT may call the code in
the Callback Functions in response to user interaction, etc. If no events occur, our code is not executed at
all, and therefore uses no CPU time. In this example, the dialog only closes when the user eventually clicks
the OK or the Cancel button (or presses the ENTER or ESCAPE keys).

Once the dialog is closed, the lResult variable will contain the value set using the DIALOG END statement,
and execution of the statements following the DIALOG SHOW statement will resume. In our example, we
use a return value of one (1) to indicate that the user clicked the OK button, and a return value of 0 to
indicate the user clicked the Cancel button.

The complete example code can be found in the HELLODDT.BAS file in the
\PB\SAMPLES\DDT\HELLODDT folder:

#COMPILE EXE
#INCLUDE "DDT.INC"

%IDOK = 1
%IDCANCEL = 2
%IDTEXT = 100
%BS_DEFAULT = 1

' Global variable to receive the user name

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

240 / 2126

GLOBAL gsUserName AS STRING

CALLBACK FUNCTION OkButton()
 IF CB.MSG = %WM_COMMAND AND CB.CTLMSG = %BN_CLICKED THEN
 CONTROL GET TEXT CB.HNDL, %IDTEXT TO gsUserName
 DIALOG END CB.HNDL, 1
 FUNCTION = 1
 END IF
END FUNCTION

CALLBACK FUNCTION CancelButton()
 IF CB.MSG = %WM_COMMAND AND CB.CTLMSG = %BN_CLICKED THEN
 DIALOG END CB.HNDL, 0
 FUNCTION = 1
 END IF
END FUNCTION

FUNCTION PBMAIN() AS LONG

LOCAL hDlg AS DWORD
LOCAL lResult AS LONG

' ** Create a new dialog template
DIALOG NEW 0, "What is your name?", ,, 160, 50, 0, 0 TO hDlg

' ** Add controls to it
CONTROL ADD TEXTBOX, hDlg, %IDTEXT, "", 14, 12, 134, 12
CONTROL ADD BUTTON, hDlg, %IDOK, "OK", 34, 32, 40, 14, %BS_DEFAULT OR %WS_TABSTOP CALL
OkButton
CONTROL ADD BUTTON, hDlg, %IDCANCEL, "Cancel", 84, 32, 40, 14 CALL CancelButton

' ** Display the dialog
DIALOG SHOW MODAL hDlg TO lResult

' ** Check the dialog return result
IF lResult THEN
 MSGBOX "Hello " & gsUserName, &H00002000& ' = %MB_TASKMODAL
END IF

END FUNCTION

See Also

Dynamic Dialog Tools (DDT)

Creating a Dialog

Modal vs. Modeless

Controls

Control Styles

Callbacks

Dialog Styles

Menus

Modal vs. Modeless

PowerBASIC Compiler for Windows Version 10

241 / 2126

Modal vs. Modeless
To support the different ways that applications use dialog boxes, PowerBASIC provides two types of dialog
box: modal and modeless.

A modal dialog box requires the user to supply information, or cancel the dialog box, before allowing the
application to continue. Applications use modal dialog boxes in conjunction with commands that require
additional information before they can proceed.

A modeless dialog box allows the user to supply information and return to the previous task without closing
the dialog box. Modal dialog boxes are simpler to manage than modeless dialogs because they are
displayed, perform their task, and are destroyed by calling a single DIALOG SHOW MODAL statement.

In the above example, we display the dialog as modal. The DIALOG SHOW MODAL statement displays the
dialog and waits until your code calls DIALOG END (or if there is a Close box in the caption, the dialog will
end when the Close box is clicked). When Windows displays a modal dialog box, it disables the parent
window to keep the user focused on the dialog. When the dialog box is closed, the parent window is
automatically re-enabled.

By comparison, a modeless dialog box does not cause your code to stop and wait while the dialog is
displayed. An example of a modeless dialog box is the "Cancel" dialog displayed by many programs that
print long documents on the printer. The application code sits in a loop sending data to the printer. The
"Cancel" dialog allows the user to cancel printing at any time. The following is a simplistic example of this
process:

DIALOG SHOW MODELESS hDlg TO lResult&
DO
 DIALOG DOEVENTS
 Done& = PrintNextLineFunction()
LOOP UNTIL lResult& = %IDCANCEL OR Done& = %TRUE

The DIALOG DOEVENTS statement is necessary so that Windows can process messages for your
modeless dialog. Without it, events such as clicking on the "Cancel" button or redrawing the dialog would
not be processed. This loop is known as a Message Pump.

A modeless dialog must always have a message pump running while the dialog is running.
Without a message pump, a modeless dialog will not be able to receive messages to redraw
itself, etc.

Because of this consideration, applications should be written in such a way as to ensure that the message
pump is able to run. The following example is of a modeless dialog message pump that relies on the fact
that when the dialog is destroyed, DIALOG GET SIZE will return 0.

DIALOG SHOW MODELESS hDlg TO lResult&
DO
 DIALOG DOEVENTS
 DIALOG GET SIZE hDlg TO x&, y&
LOOP UNTIL ISFALSE (x& * y&)

This works fine for applications that have a single modeless dialog showing at any given moment, but this is
not always practical. For example, consider an application that uses a tabbed dialog. Typically, this is
constructed around a single dialog containing a "Tab Control", plus an additional set of modeless dialogs,
each of which would form a "page" of the tabbed dialog.

In this case, we need to reconstruct our message pump so that it terminates only when all of the modeless
dialogs have been destroyed. If the main dialog is modal, the application design would become quite
complex - the modeless dialogs and the message pump would need to be launched from within the main
dialog's Callback Function. Such an approach is technically feasible, but unnecessary. By changing the
main dialog from modal to modeless, the whole design can be simplified to use a single message pump.

DIALOG SHOW MODELESS hMainDlg TO lResult&
DIALOG SHOW MODELESS hPage1
DIALOG SHOW MODELESS hPage2
' more code here
DO
 DIALOG DOEVENTS TO Count&

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

242 / 2126

LOOP UNTIL ISFALSE Count&

See Also

Dynamic Dialog Tools (DDT)

Creating a Dialog

Adding Controls to the Dialog

Controls

Control Styles

Callbacks

Dialog Styles

Menus

Controls

Controls
A

 is a special Window that provides a method for interacting with the user. Buttons, Combo boxes, List
boxes, and Text boxes are all examples of controls. Whenever the user interacts with a control (clicks a
button or types into a text box), an event occurs causing Windows to send a message to your
application. Your application processes these messages in special functions called Callback Functions.
When you add a control to a dialog, it is important that each control has a unique numeric identifier. This
identifier helps your application to know which control is sending an event. For example, if your program has
two buttons in it, the control ID allows you distinguish between them.

As each control is created, Windows assigns a unique window handle to identify the control. Because your
program does not assign these handle values, your code cannot directly use them to identify individual
controls. Further, each time a control is destroyed and recreated, a new unique handle value is assigned,
further complicating the task. The control ID overcomes these problems, as the programmer determines the
ID for each control.

Controls are added to your dialog with the CONTROL ADD statement. Make sure that each
control you create has a unique numeric identifier, so that you (and Windows) can tell it apart
from other controls on the dialog.

Given the ID of a control, DDT provides the CONTROL HANDLE statement to retrieve the window handle
value of the control. If a given ID is duplicated in a dialog, CONTROL HANDLE is only able to identify the first
control that matches the ID, and the remaining controls will essentially be ignored. Control ID's can often be
duplicated for Label (static) text controls, provided these controls (and their contents, color, or styles) are
not going to be modified at run-time. If such a Label control is to be modified, its control ID must be unique.

PowerBASIC provides a comprehensive set of statements and functions for dealing with controls. The
following is a small sample of these statements and functions with a brief description of the purpose of each:

Function Description
#MESSAGES Specify which messages should be sent to a Control Callback Function
CB.CTL Return the ID of the control sending a message to your Callback Function.

(Only valid inside a Callback Function).
CB.CTLMSG Return the notification ID of the control sending a message to your Callback

Function. (Only valid inside a Callback Function).
CB.HNDL Returns the dialog handle sending a message to your Callback Function.

(Only valid inside a Callback Function).

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

243 / 2126

CB.LPARAM Returns the lParam& value sent to your Callback Function. (Only valid
inside a Callback Function).

CB.MSG Returns the wMsg& value sent to your Callback Function. (Only valid inside
a Callback Function).

CB.NMCODE Returns the specific notification message describing the event which
occurred. (Only valid inside a Callback Function).

CB.NMHDR Returns the address (a pointer) to the NMHDR UDT for a notification
message sent to your Callback Function. (Only valid inside a Callback
Function).

CB.NMHDR$ Returns the contents of the NMHDR UDT as a dynamic string. (Only valid
inside a Callback Function).

CB.NMHWND Returns the handle of the control which sent this message to your Callback
Function. (Only valid inside a Callback Function).

CB.NMID Returns the ID number assigned to this control which sent this message to
your Callback Function. (Only valid inside a Callback Function).

CB.WPARAM Returns the wParam& value sent to your Callback Function. (Only valid
inside a Callback Function).
Create a control in a dialog.

CONTROL DISABLE Disable a control so that it can no longer send messages to a callback. If
the control is a button, it is grayed. If it is a text box, it becomes grayed out
and you can no longer edit the text contained within it.

CONTROL ENABLE Enable a control that was previously disabled. A control must be enabled in
order for it to send notifications to a Callback Function.

CONTROL GET SIZE Get the size of a control.
CONTROL GET LOC Get the location of a control inside of its parent dialog.
CONTROL GET TEXT Retrieve the text from a control, such as a Text box or Label, etc.
CONTROL HANDLE Return a window handle for a given control.
CONTROL KILL Remove a control from a dialog.
CONTROL SEND Send a message to a control.
CONTROL SET FOCUS Set the keyboard focus to a given control. If the control is a button, it

receives keyboard focus. If the control is a text box, the caret is placed in
the text box to allow the user to edit the text.

CONTROL SET FONT Select a font to be used for a particular control.
CONTROL SET IMAGE Change the image on an image button or image control. Also see

CONTROL SET IMAGEX.
CONTROL SET SIZE Change the size of a control.
CONTROL SET LOC Change the location of a control within its parent dialog.
CONTROL SET TEXT Place new text into a control. Any existing text in the control is replaced.
WINDOW GET ID Returns the Control ID for a given control.
WINDOW GET PARENT Returns the handle of a controls parent.

For a more comprehensive list of DDT statements and functions, See the Command Summary
for DDT.

See Also

Dynamic Dialog Tools (DDT)

Creating a Dialog

Adding Controls to the Dialog

Modal vs. Modeless

Control Styles

Callbacks

PowerBASIC Compiler for Windows Version 10

244 / 2126

Dialog Styles

Menus

Control Styles

Control Styles
When creating child controls for your dialogs, you are free to use almost any control style permitted by
Windows. These styles mostly start with the %WS_ prefix (Window Style), and are included in the
WIN32API.INC file included in your WINAPI directory.

If the style parameter in your CONTROL ADD statements is set to 0, DDT will set default styles
automatically for you. The default styles will depend on the type of control you are adding to your dialog. For
example, a button will be given the %WS_TABSTOP style.

Note that DDT always gives your controls certain styles, such as %WS_CHILD and %WS_VISIBLE,
regardless of the styles you specify. When setting your style parameter, you can safely ignore these two
styles and concentrate on the more important styles that are required. This has the advantage of reducing
the clutter of your code. The exception is custom controls - in this case you must explicitly specify all
required styles.

The "tab-order" of controls (also known as the "z-order") is determined by the order that DDT controls are
created at run-time. That is, the first control added to a dialog is the first control in the z-order, the second
control added is second, and so forth. When a dialog is initially displayed, keyboard focus is automatically
given to the first control in the z-order that has the %WS_TABSTOP style. Each time the TAB key is
subsequently pressed, the keyboard focus moves to the next control in the tab-order. To ensure all controls
in a dialog can be selected using the TAB key, each control in the dialog should include the %
WS_TABSTOP style. The z-order also determines the order that controls are drawn on a dialog, to help
ensure that control that overlap one another can be drawn in a predictable manner.

Controls that are disabled (because either they have the %WS_DISABLED style or they have been
dynamically disabled with CONTROL DISABLE) are skipped over.

Most DDT controls are created with the %WS_TABSTOP style by default. However, you should explicitly
include the %WS_TABSTOP style in the control style parameter, if your DDT code creates controls with
custom (non-default) styles. If you do not include this style, these control(s) may not be able to receive
keyboard focus.

The following table lists the default DDT styles for many of the standard controls:

Control type Default DDT Styles * Hex Value

BUTTON %WS_TABSTOP 50010000

CHECK3STATE %WS_TABSTOP, {%BS_AUTO3STATE} 50010006

CHECKBOX %WS_TABSTOP, {%BS_AUTOCHECKBOX} 50010003

COMBOBOX %WS_TABSTOP, %CBS_SORT, %CBS_DROPDOWN, {%
CBS_HASSTRINGS}

50010302

FRAME %BS_LEFT, {%BS_TOP, %BS_GROUPBOX} 50000507

GRAPHIC %WS_CHILD, %WS_VISIBLE, %SS_OWNERDRAW 5001000D

IMAGE either {%SS_ICON}
or {%SS_BITMAP}

50000003
5000000E

IMAGEX either {%SS_ICON}
or {%SS_BITMAP}

50000003
5000000E

IMGBUTTON either %WS_TABSTOP, {%BS_ICON}
or %WS_TABSTOP, {%BS_BITMAP}

50010040
50010080

IMGBUTTONX either %WS_TABSTOP, {%BS_ICON}
or %WS_TABSTOP, {%BS_BITMAP}

50010040
50010080

LABEL %SS_LEFT 50000000

LINE %SS_ETCHEDFRAME 50000012

WIN32API_INC_Updates.htm
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

245 / 2126

LISTBOX %WS_TABSTOP, %LBS_SORT, %LBS_NOTIFY, %
WS_VSCROLL

50210003

LISTVIEW %WS_TABSTOP, %LVS_REPORT, %
LVS_SHOWSELALWAYS

50000009

OPTION %WS_TABSTOP, {%BS_AUTORADIOBUTTON} 50010009

PROGRESSBAR %WS_BORDER 50800000

SCROLLBAR either {%SBS_HORZ}
or {%SBS_VERT}

50000000
50000001

STATUSBAR %CCS_BOTTOM 50000003

TAB %WS_CHILD, %WS_TABSTOP 54010000

TEXTBOX %WS_TABSTOP, %WS_BORDER, %ES_AUTOHSCROLL, %
ES_LEFT

50810080

TOOLBAR %WS_CHILD, %WS_VISIBLE, %WS_BORDER, %CCS_TOP,
and %TBSTYLE_FLAT

50808801

TREEVIEW %WS_TABSTOP, %TVS_HASBUTTONS, %
TVS_LINESATROOT, %TVS_HASLINES, and %
TVS_SHOWSELALWAYS

50010027

"custom control" No default style (%WS_CHILD and %WS_VISIBLE not used)** 0

See Also

Dynamic Dialog Tools (DDT)

Creating a Dialog

Adding Controls to the Dialog

Modal vs. Modeless

Controls

Callbacks

Dialog Styles

Menus

Callbacks

Callbacks
A callback is a Function called by Windows when an event occurs. In the previous modal dialog example,
when the OK button is clicked by the user, Windows calls the OkButton() function. PowerBASIC's Dynamic
Dialog Tools allows you to create a single callback to handle all events for the dialog, or you can create
individual Callback Functions for each

 in your dialog. You can even use a combination of the two methods.

Control Callback
If you've used Visual Basic, you'll be familiar with the concept of a Control Callback even though it's not
called by that name. A Control Callback is a function that is called when a %WM_COMMAND or %
WM_NOTIFY event is generated for a particular control. In the earlier example, we arranged it so the
OkButton() function was called when the OK button was clicked. Further, when the Cancel button was
clicked, the CancelButton() function was called. A Control Callback function is enabled when you execute a

 statement using the CALL CtlProc option at the end.
CONTROL ADD BUTTON, hDlg, %IDOK, "OK", 34, 32, 40, 14, %BS_DEFAULT OR %WS_TABSTOP CALL
OkButton

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

246 / 2126

CONTROL ADD BUTTON, hDlg, %IDCANCEL, "Cancel", 84, 32, 40, 14 CALL CancelButton

Some controls, like text boxes, list boxes, and combo boxes, can generate more than one type of event. In
VB, each separate event on each control is handled by a new function. For example, if your VB form
includes a list box, it may include a Callback Function such as List1_Change() that is called whenever the
current selected item changes. In PowerBASIC, only a single Callback Function is needed for each control.
 When an event occurs, the Callback Function just chooses which events to handle, and which events to
ignore. If your PowerBASIC callback wanted to process the Change event for a list box, your code would
look like this:

CALLBACK FUNCTION List1() AS LONG
 IF CB.MSG = %WM_COMMAND THEN
 IF CB.CTLMSG = %LBN_SELCHANGE THEN
 [your code here]
 FUNCTION = 1
 END IF
 END IF

END FUNCTION

You can use a combination of the CB.MSG and CB.CTLMSG functions to decide exactly which event has
occurred. Generally speaking, in a Control Callback, CB.MSG will contain either %WM_COMMAND or %
WM_NOTIFY. The CB.CTLMSG will return the specific message is either of those two categories. In this
example situation, the control notification %LBN_SELCHANGE is sent to the callback for the list box
whenever the item in the list box changes (the user clicks on the new item or uses the keyboard to select a
new item).

All of the control and dialog message equates are located in the DDT.INC file. This file is
simply a subset of the much larger WIN32API.INC file and is provided only for convenience.
Therefore, the use of these two files is mutually exclusive.

If your code processes a message, it should return TRUE (any non-zero value) by setting FUNCTION =
number within the Control Callback. This advises that there is no need to process that message further. If
you return the value FALSE (zero), the message is passed on to your Dialog Callback, if you have one. If the
message is still unhandled by your Dialog Callback, the DDT dialog engine itself will handle the message on
your behalf.

If your code processes a %WM_NOTIFY message, the return value is generally ignored. Because of the
nature of %WM_NOTIFY messages, they are always directed to both Control callbacks and Dialog
callbacks to use as needed.

Prior to version 9.0 of PowerBASIC for Windows, Control Callback Functions received only %
WM_COMMAND messages. Beginning with PB 9.0, %WM_NOTIFY messages are sent as well.
 There are many situations where these added messages will prove to be very important. If
your existing callback functions are written with complete error checking (ensuring that
CB.MSG = %WM_COMMAND), this minor addition will cause no problems. It just presents
additional information which can be acted upon, or just ignored. However, if callbacks were
written without complete error checking, some ambiguity is possible. In this case, you should
either update your Control Callback code, or suppress %WM_NOTIFY messages with a
#MESSAGES COMMAND metastatement.

When a Control Callback receives a click notification for a control, the callback will receive a %
WM_COMMAND message in the CB.MSG variable. A common mistake made by programmers is to fail to
test both CB.MSG and CB.CTLMSG parameters before responding to the message. If the message is truly
generated from a click event, CB.CTLMSG will contain %BN_CLICKED. This simple test ensures that your
code responds correctly to notification messages.

CALLBACK FUNCTION OkButton() AS LONG
 IF CB.MSG = %WM_COMMAND AND CB.CTLMSG = %BN_CLICKED THEN
 '...Process the click event here
 FUNCTION = 1
 END IF
END FUNCTION

It pays to be sure you are responding to the correct message in your callback. Subtle bugs can

javascript:void(0);
WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

247 / 2126

occur if you aren't very careful to notice and recognize unanticipated messages.

It should also be noted that there are ranges of notification messages that individual controls can send to
the Control Callback or Dialog Callback. However, many of these messages are suppressed unless the
controls have been initially assigned a "notify" style. For controls that are members of the Button class
(CHECKBOX, OPTION, FRAME, etc.), this is the %BS_NOTIFY style. Please refer to the statements for
additional information on notification styles for other control types.

Dialog callback
If you review the example code in most Windows programming books (particularly the Windows 32-bit SDK),
you will see that most of the examples create a single callback for the entire dialog. Each time the user
presses a button, a message is sent to this Callback Function. Within this Callback Function, there is often
a large SELECT CASE or IF/ELSEIF/THEN structure, designed to pick out the incoming event messages
and then process the selected messages.

C programmers are usually quite familiar with this concept, and often resort to using "Message Cracker"
functions to separate their event handling code into a set of independent functions. On the other hand,
PowerBASIC's DDT takes much of this drudgery away. By permitting separate callbacks for each
CONTROL ADD statement, you become free to enclose your event handling code in separate functions, just
like a C programmer may do, but without the confusing macros C programmers are often forced to use.

DDT gives the programmer the choice of either using a single callback to handle all dialog and control
events, or writing a callback for each (or any) specific control. If you intentionally omit a callback for a
particular control, the programmer has the choice of handling messages for that control within the dialog
Callback Function, or ignoring them altogether.

In addition to handling control messages within the dialog callback, this Callback Function also provides a
way to handle events that concern the actual dialog box itself. For example, handling a %WM_PAINT
message, or notification that the dialog was minimized, etc.

A Dialog Callback function is enabled when you execute a

 statement using the CALL DlgProc option.
DIALOG SHOW MODELESS hDlg CALL DlgProc TO lResult&

or:

DIALOG SHOW MODAL hDlg CALL DlgProc TO lResult&

These two lines of code specify that dialog related event messages should be directed to the Callback
Function DlgProc(). If we rewrote the earlier DDT example to use a single Dialog Callback instead of
individual Control Callback Functions, the function might look something like this:

CALLBACK FUNCTION DlgProc()
 SELECT CASE CB.MSG
 CASE %WM_COMMAND
 IF CB.CTLMSG = %BN_CLICKED THEN
 IF CB.CTL = %IDOK THEN
 DIALOG END CB.HNDL, 1
 FUNCTION = 1
 ELSEIF CB.CTL = %IDCANCEL THEN
 DIALOG END CB.HNDL, 0
 FUNCTION = 1
 END IF
 END IF
 END SELECT
END FUNCTION

To complete this stage of modifications, you would also remove the "CALL OkButton" and "CALL
CancelButton" parameters from the CONTROL ADD lines. Once changed, this modified code produces the
identical behavior of the original example with only a single Callback Function.

This simple example only scrapes the surface of what can be achieved in a Dialog Callback Function. For
example, by intercepting a %WM_ERASEBKGND message, you could draw onto the dialog client area,
producing colorful dialogs with ease.

PowerBASIC Compiler for Windows Version 10

248 / 2126

Callback Return Values
Callback functions always return a long integer result. The primary purpose of this return value is to tell the
PowerBASIC DDT engine and the Windows operating system whether your Callback Function has
processed this particular message. If you return the value TRUE (any non-zero value), you are asserting
that the message was processed and no further handling is needed. If you return the value FALSE (zero),
the PowerBASIC DDT engine will manage the message for you, using the default message procedures in
Windows. If you do not specify a return value in the function, PowerBASIC chooses the value FALSE (zero)
for you.

The term "process a message" may have many meanings. If it's a simple notification of a change in focus
or style, which has no impact on your program, you may decide to consider it processed, yet do nothing. In
other cases, your reaction could be quite complex and involved. As the programmer, that's your decision to
make. But, regardless of your reaction, you should consider a message "processed" (returning a true value)
whenever no further handling of the message (by DDT or Windows) is needed.

In some cases, especially when dealing with Common Controls and custom controls, you may be required
to return a second result value through a special Windows data area named DWL_MSGRESULT. When
you complete a Callback Function, PowerBASIC automatically copies any non-zero return value to
DWL_MSGRESULT, if you haven't done so already. Therefore, it's generally safe to ignore this requirement
in your code.

In most cases, when you process a message, you'll return a generic value for TRUE, such as: FUNCTION
= 1. However, some messages require that you return a special value for TRUE, such as a graphical brush
handle. As long as the value is non-zero, you can return it in the normal manner (with FUNCTION=n), since
any non-zero value automatically implies that the message was processed.

That said, there are a few unique messages which may require special handling. Luckily, they're rare, but
some just "break all the rules" listed above. For example, you might find one which requires a zero result,
even when you have processed the message. You may find another which requires the return value be
different from DWL_MSGRESULT. For these very special cases, you can simply specify two return values:

FUNCTION = 1, BrushHandle&

In this form, the first numeric expression specifies the value to be returned from the Callback Function. The
second numeric expression tells the value to be assigned to DWL_MSGRESULT. When you use this
double parameter assignment, the results are absolute. PowerBASIC assumes you have processed the
message, regardless of the values given. PowerBASIC makes no other assumptions of any kind about these
values. A double parameter function assignment is only allowed in a Callback Function.

Previous versions of PowerBASIC did not offer a double parameter form of function return.
 This caused some difficulty with a few Windows messages which required a special return
value of zero. If you return a value of zero (0) with the single parameter form, it implies the
message was not processed at all by the Callback. This issue is totally circumvented by the
double parameter form.

See Also

Dynamic Dialog Tools (DDT)

Creating a Dialog

Adding Controls to the Dialog

Modal vs. Modeless

Controls

Control Styles

Dialog Styles

Menus

PowerBASIC Compiler for Windows Version 10

249 / 2126

Dialog Styles

Dialog Styles
Like control styles, DDT provides a default style for a dialog window, if the DIALOG NEW statement does
not specify a specific style parameters.

The default style comprises the combination of %WS_POPUP, %WS_CAPTION, %DS_SETFONT, %
DS_NOFAILCREATE, %DS_MODALFRAME, and %DS_3DLOOK. These equates are equivalent to a style
of &H080C00D4. The extended style default is zero.

If you explicitly specify %WS_CAPTION in your DIALOG NEW statement, DDT will interpret the width and
height values as client dimensions, rather then as overall dialog dimensions. This can be very useful for the
times when you need to build a dialog with particular client dimensions.

You can create dialogs using combinations of the following styles:

Style Equate Description

%WS_BORDER Dialog has a thin-line border.

%WS_CAPTION Dialog has a title bar (includes the %WS_BORDER style).

%WS_HSCROLL Dialog contains a horizontal scroll bar.

%WS_MAXIMIZE Dialog is initially maximized.

%
WS_MAXIMIZEBOX

Dialog has a Maximize button, but must be used in conjunction with the %
WS_SYSMENU style. You cannot combine this style with the %
WS_EX_CONTEXTHELP extended style.

%WS_MINIMIZE Dialog is initially minimized.

%WS_MINIMIZEBOX Dialog has a Minimize button, but must be used in conjunction with the %
WS_SYSMENU style. You cannot combine this style with the %
WS_EX_CONTEXTHELP extended style.

%WS_SIZEBOX Dialog has a resizable border. Equivalent to the %WS_THICKFRAME style.

%WS_SYSMENU Dialog contains a system-menu on its title bar. Must be used in conjunction
with the %WS_CAPTION style.

%
WS_THICKFRAME

See %WS_SIZEBOX.

%WS_VSCROLL Dialog contains a vertical scroll bar.

%DS_3DLOOK Dialog uses a non-bold font and uses three-dimensional borders around child
controls. Not required with applications marked for #OPTION VERSION4 or
#OPTION VERSION5, as Windows provides this style automatically.

%DS_CENTER Centers the dialog box in the region of the screen that is not obscured by the
taskbar and tray (i.e., the work area).

%
DS_CENTERMOUS
E

Centers the mouse cursor in the dialog.

%
DS_CONTEXTHELP

Places a "question mark" button in the title bar of the dialog. If this button is
clicked, the cursor changes to a pointer with a question mark. If the next click
is on a control in the dialog, the control's Callback Function will receive a %
WM_HELP message. When a dialog containing this style is created, Windows
automatically adds the %WS_EX_CONTEXTHELP extended style. %
DS_CONTEXTHELP is mutually exclusive with the %WS_MAXIMIZEBOX and
%WS_MINIMIZEBOX styles.

%DS_CONTROL Dialog operates as a child of another dialog. For example, a modeless dialog is
able to operate as a child window of a tab control (although the parent must be
the tab control's owner, not the tab control itself). This style permits the TAB
key to move from control to control in both the parent and the modeless dialog
seamlessly, provided the parent includes the extended style %
WS_EX_CONTROLPARENT.

PowerBASIC Compiler for Windows Version 10

250 / 2126

%DS_FIXEDSYS Dialog uses the %SYSTEM_FIXED_FONT instead of the %SYSTEM_FONT.

%
DS_MODALFRAME

Used in combination with %WS_CAPTION and %WS_SYSMENU to produce a
dialog with a title bar and system-menu.

%
DS_NOFAILCREATE

Dialog is created even if an error occurs during creation. Such an error may
occur if a child control cannot be created successfully.

%DS_SETFONT During dialog creation, the child controls in the dialog will be sent a %
WM_SETFONT message in order to receive the handle of the font specified by
the dialog.

See Also

Dynamic Dialog Tools (DDT)

Creating a Dialog

Adding Controls to the Dialog

Modal vs. Modeless

Controls

Control Styles

Menus

Menus

Menus
Just like regular GUI windows and dialog boxes, DDT dialogs can use menus too. With just a handful of
statements, you can create a menu and add or remove items, depending on the context of your application.

A menu bar is positioned just below the caption bar of a dialog box. From this menu bar, popup menus (or
sub-menus as they are also known) can be displayed, each containing commands. Popup menus may
contain even deeper levels of popup menus.

Menus are constructed in a hierarchical manner: the top-most level is positioned on the menu bar, and the
lower levels of the menu are the popup portions. The items on the menu bar are always visible, but the
popup menus are never visible until a menu bar item is either clicked by the mouse, or activated by a
command accelerator (hot-key) which is indicated by an underscored character in the menu item text.

Please note that command accelerators differ slightly from keyboard accelerators. The latter are configured
and described in the ACCEL ATTACH statement topic.

Typically, a popup menu contains a range of associated commands. For example, a FILE popup menu
usually contains a range of commands to permit the opening, saving and closing of files, etc.

When the user activates a popup menu item, and a command is selected, a %WM_COMMAND message is
sent to the dialog Callback Function to notify the program that a menu item has been selected.

See Also

Menu Walkthrough

More on the Menu

Menu State

Menu Example

Menu Walkthrough

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

251 / 2126

Menu Walkthough
In order to create an example menu for our DDT dialog, we will need one Double-word variable to hold the
handle of the menu, and one for each of the popup menu levels that our menu will contain. In the following
code, we will work towards creating a menu with two items on the menu bar (therefore two popup menus). In
all, we will need three 32-bit variables:

DIM hMenu AS DWORD
DIM hPopup1 AS DWORD

To begin creating our menu, we use the MENU NEW BAR statement:

MENU NEW BAR TO hMenu

The value returned in hMenu is termed the menu handle. We use this handle to attach each of our popup
menus. In order to create these popup menus, we will also need to create a handle:

MENU NEW POPUP TO hPopup1

Now we will "glue" our new popup menu to the menu bar. We do this using the MENU ADD POPUP
statement, which results in an entry on the menu bar labeled "File", complete with a command accelerator:

MENU ADD POPUP, hMenu, "&File", hPopup1, %MF_ENABLED

The ampersand character in "&File" means that pressing ALT+F on the keyboard, in addition to the
conventional mouse click, can open the menu. The hPopup1 parameter instructs the DDT engine to attach
the menu to the menu bar (hMenu), and it is initially enabled.

Using the handle returned in hPopup1, we can begin adding items to the newly created popup menu. For
each menu item that is a command (Open, Save, etc), we assign an ID value and specify the state of the
item. When the user clicks on a menu item, the dialog Callback Function receives a %WM_COMMAND
message.

In turn, we can then use the CB.CTL function to obtain this ID value, to determine which menu item the user
has selected. The state parameter allows us to specify whether the menu item is initially enabled, grayed
(disabled), checked, or unchecked, etc.

Now let's begin to add items to our new popup menu:

MENU ADD STRING, hPopup1, "&Open", 201, %MF_ENABLED
MENU ADD STRING, hPopup1, "&Exit", 202, %MF_ENABLED
MENU ADD STRING, hPopup1, "-", 0, 0

Here we created two items that form part of our first popup menu. These menu items have the ID values 201
and 202 respectively, and each is initially enabled. The third item is a special type of menu item, called a
separator. A separator is a horizontal line within the menu, and can be used to visually separate groups of
menu items from each other within the same popup menu.

We recommend using equates for the ID parameters, as they make your code more readable
and maintainable. For this example we use hard-coded values simply for clarity.

Let's add an additional popup menu to this original popup menu, just to demonstrate how simple it can be to
create menus with multiple "layers". First, we will need to create a new popup menu handle:

MENU NEW POPUP TO hPopup2

Using this new popup menu handle, we attach menu items in exactly the same order as we did as before:

MENU ADD STRING, hPopup2, "Option &1", 403, %MF_ENABLED
MENU ADD STRING, hPopup2, "Option &2", 404, %MF_ENABLED

Now comes the tricky part... we must attach this new menu to the previous menu, rather than the menu bar:

MENU ADD POPUP, hPopup1, "&More Options", hPopup2, %MF_ENABLED

This statement "glues" the second popup menu to the end of the first popup menu. If we changed the
hPopup1 parameter to hMenu, the popup menu would appear on the menu bar. Making multiple level menus
is that simple!

With our menu created, we then attach the menu to our DDT dialog:

MENU ATTACH hMenu, hDlg

This code is almost self-explanatory - DDT is instructed to attach our menu structure to the dialog handle
contained in hDlg. The only thing left now is to show the dialog, complete with a menu.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

252 / 2126

DIALOG SHOW MODAL hDlg, CALL DlgProc TO lResult

See Also

Menus

Menu Walkthrough

More on the Menu

Menu State

Menu Example

More on the Menu

More on the Menu
When adding new menu items to a menu, additional parameters may be included in the following
statements:

MENU ADD POPUP, hMenu, txt$, hPopup, state&[, AT [BYCMD] position&]
MENU ADD STRING, hMenu, txt$, hPopup, state&[, AT [BYCMD] position&] [, CALL callback]

AT position& An optional position parameter that allows the programmer to specify an absolute
position of the menu item within the popup menu, inserted immediately before the value
of position&. Omitting this parameter causes the menu item to be appended to the
menu at the "current position". Position values are indexed to 1. For example:

' Insert a new menu item at position 3 in the popup menu hPopup
position& = 3
MENU ADD STRING, hPopup, "&Print", %id_Print, _
ItemState&, AT position&

BYCMD The BYCMD keyword (also applicable to other forms of the MENU statement) changes
the interpretation of position& to an identifier value, rather than an absolute position
value. For example:

' Insert the "Print Setup" menu item before the "Print" menu item
Position& = %id_Print
MENU ADD STRING, hPopup, "Print Se&tup", _
 %id_PrintSetup, ItemState&, AT BYCMD Position&

callback (MENU ADD STRING only) The Callback parameter provides a mechanism to specify a
Callback Function that is executed, to process %WM_COMMAND messages for the
menu item.

See Also

Menus

Menu Walkthrough

Menu State

Menu Example

Menu State

Menu State
The

PowerBASIC Compiler for Windows Version 10

253 / 2126

 statements provide for an ItemState& parameter. For popup menus, this may be either %
MFS_ENABLED or %MFS_DISABLED. For menu items, the state may be one of %
MFS_ENABLED, %MFS_DISABLED, %MFS_CHECKED, %MFS_UNCHECKED, or %
MFS_GRAYED.
A DDT menu requires the parent DDT dialog to contain at least one child control for the menu to operate
correctly. This control may be a BUTTON or LABEL, etc, and the control may be located out of the visible
client area of the dialog if necessary.

The Dessert Menu
In addition to creating menus dynamically, DDT provides a rich set of additional menu functions to allow you
to manipulate your menus at run-time. The following is a brief summary of these functions:

MENU DELETE Delete (remove) a menu item from a menu, or a popup menu from a menu bar.
MENU DRAW BAR Redraw the menu bar for a given menu. This must be used if a menu is changed

at run-time, regardless of whether the menu is visible or not.
MENU GET STATE Obtain the current state of a menu item (%MF_ENABLED, etc). If the menu item

is a separator, the returned value will be %MF_SEPARATOR.
MENU GET TEXT Retrieve the text for a given menu item.
MENU SET STATE Set the current state of a menu item.
MENU SET TEXT Change the text of a specific menu item, and can be used to change the

command accelerator of the item.

For a more comprehensive list of menu statements and functions, See the Command Summary
for DDT.

See Also

Menus

Menu Walkthrough

More on the Menu

Menu Example

Menu Example

Menu Example
In the following code example, we create a dialog with a menu, outlining the concepts discussed in this
chapter. Feel free to use this code as a base for your own DDT projects. This example is also available in
your PowerBASIC installation, in the \PBWIN\SAMPLES\DDT\MENU folder.

'===
'
' Simple example of an application that has a menu and
' requires absolutely no API calls!
'
'===

#COMPILE EXE

%IDOK = 1
%IDCANCEL = 2
%IDTEXT = 100

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

254 / 2126

%BN_CLICKED = 0
%BS_DEFAULT = 1
%MF_ENABLED = 0
%WM_COMMAND = &H111

%ID_OPEN = 401
%ID_EXIT = 402
%ID_OPTION1 = 403
%ID_OPTION2 = 404
%ID_HELP = 405
%ID_ABOUT = 406

'---

' ** Global variable to receive the user name
GLOBAL gsUserName AS STRING

'---

CALLBACK FUNCTION OkButton()
 IF CB.MSG = %WM_COMMAND AND CB.CTLMSG = %BN_CLICKED THEN
 CONTROL GET TEXT CB.HNDL, %IDTEXT TO gsUserName
 DIALOG END CB.HNDL, 1
 FUNCTION = 1
 END IF
END FUNCTION

'---

CALLBACK FUNCTION CancelButton()
 IF CB.MSG = %WM_COMMAND AND CB.CTLMSG = %BN_CLICKED THEN
 DIALOG END CB.HNDL, 0
 FUNCTION = 1
 END IF
 END FUNCTION

'---

CALLBACK FUNCTION DlgProc()
 IF CB.MSG = %WM_COMMAND THEN
 IF CB.CTL => %ID_OPEN AND CB.CTL <= %ID_ABOUT THEN
 MSGBOX "WM_COMMAND received from a menu item!", &H00002000& ' = %MB_TASKMODAL
 FUNCTION = 1
 END IF
 END IF
END FUNCTION

'---

FUNCTION PBMAIN () AS LONG
 LOCAL hDlg AS DWORD
 LOCAL lResult AS LONG
 LOCAL hMenu AS DWORD
 LOCAL hPopup1 AS DWORD
 LOCAL hPopup2 AS DWORD

 ' ** First create a top-level menu:
 MENU NEW BAR TO hMenu

 ' ** Add a top-level menu item with a popup menu:

PowerBASIC Compiler for Windows Version 10

255 / 2126

 MENU NEW POPUP TO hPopup1
 MENU ADD POPUP, hMenu, "&File", hPopup1, %MF_ENABLED
 MENU ADD STRING, hPopup1, "&Open", %ID_OPEN, %MF_ENABLED
 MENU ADD STRING, hPopup1, "&Exit", %ID_EXIT, %MF_ENABLED
 MENU ADD STRING, hPopup1, "-", 0, 0

 ' ** Now we can add another item to the menu that will bring up a sub-menu.
 ' First we obtain a new popup menu handle to distinguish it from the first
 ' popup menu:
 MENU NEW POPUP TO hPopup2

 ' ** Now add a new menu item to the first menu.
 ' This item will bring up the sub-menu when selected:
 MENU ADD POPUP, hPopup1, "&More Options", hPopup2, %MF_ENABLED

 ' ** Now we will define the sub menu:
 MENU ADD STRING, hPopup2, "Option &1", %ID_OPTION1, %MF_ENABLED
 MENU ADD STRING, hPopup2, "Option &2", %ID_OPTION2, %MF_ENABLED

 ' ** Finally, we'll add a second top-level menu and popup.
 ' For this popup, we can reuse the first popup variable:
 MENU NEW POPUP TO hPopup1
 MENU ADD POPUP, hMenu, "&Help", hPopup1, %MF_ENABLED
 MENU ADD STRING, hPopup1, "&Help", %ID_HELP, %MF_ENABLED
 MENU ADD STRING, hPopup1, "-", 0, 0
 MENU ADD STRING, hPopup1, "&About", %ID_ABOUT, %MF_ENABLED

 ' ** Create a new dialog template
 DIALOG NEW 0, "What is your name?", ,, 160, 60, 0, 0 TO hDlg

 ' ** Add controls to it
 CONTROL ADD TEXTBOX, hDlg, %IDTEXT, "", 14, 12, 134, 12, 0
 CONTROL ADD BUTTON, hDlg, %IDOK, "OK", 34, 32, 40, 14, %BS_DEFAULT CALL OkButton
 CONTROL ADD BUTTON, hDlg, %IDCANCEL, "Cancel", 84, 32, 40, 14, 0 CALL CancelButton

 MENU ATTACH hMenu, hDlg

 ' ** Display the dialog
 DIALOG SHOW MODAL hDlg, CALL DlgProc TO lResult

 ' ** Check the dialog return result
 IF lResult THEN
 MSGBOX "Hello " & gsUserName
 END IF
END FUNCTION

'---

See Also

Menus

Menu Walkthrough

More on the Menu

Menu State

PowerBASIC Compiler for Windows Version 10

256 / 2126

Files

Files

Files
PowerBASIC offers three distinct ways to store and retrieve information from disk: sequential, random, and
binary file input and output. Each has its advantages and disadvantages; the one that works best for you
will depend on your application.

See Also

Sequential Files

Random Access Files

Binary Files

Sequential Files

Sequential Files
Sequential file techniques provide a straightforward way to read and write files. PowerBASIC's sequential file
commands manipulate text files: files of ANSI or WIDE characters with carriage-return/linefeed pairs
separating records.

Quite possibly, the best reason for using sequential files is their degree of portability to other programs,
programming languages, and computers. Because of this, you can often look at sequential files as the
common denominator of data processing, since they can be read by word-processing programs and editors
(such as PowerBASIC's), absorbed by other applications (such as database managers), and sent over the
Internet to other computers.

The idea behind sequential files is simplicity itself: write to them as though they were the screen and read
from them as though they were the keyboard.

Create a sequential file using the following steps:

1. Open the file in sequential output mode. To create a file in PowerBASIC, you must use the OPEN
statement. Sequential files have two options to prepare a file for output:
OUTPUT: If a file does not exist, a new file is created. If a file already exists, its contents are erased,
and the file is then treated as a new file.
APPEND: If a file does not exist, a new file is created. If a file already exists, PowerBASIC appends
(adds) data at the end of that file.

2. Output data to a file. Use WRITE# or PRINT# to write data to a sequential file.

3. Close the file. The CLOSE statement closes a file after the program has completed all I/O
operations.

To read a sequential file:

1. First, OPEN the file in sequential INPUT mode. This prepares the file for reading.

2. Read data in from the file. Use PowerBASIC's INPUT# or LINE INPUT# statements.

3. Close the file. The CLOSE statement closes a file after the program has completed all I/O
operations.

The drawback to sequential files is, not surprisingly, that you only have sequential access to your data. You
access one line at a time, starting with the first line. This means if you want to get to the last line in a

PowerBASIC Compiler for Windows Version 10

257 / 2126

sequential file of 23,000 lines, you will have to read the preceding 22,999 lines.

Sequential files, therefore, are best suited to applications that perform sequential processing (for example,
counting words, checking spelling, printing mailing labels in file order) or in which all the data can be held in
memory simultaneously. This allows you to read the entire file in one fell swoop at the start of a program
and to write it all back at the end. In between, the information can be stored in an array (in memory) which
can be accessed randomly.

Although the SEEK statement can be used to change the point in the file where the next read or write will
occur, the calculations required to determine the position of the start of each record in a sequential file
would add considerable overhead. Sequential files typically consist of records of varying sizes. Either you
would have to maintain a separate index file indicating the starting byte position of each record, or you would
have to seek randomly until you found the correct position. However, SEEK does have its uses with
sequential files. For instance, after reading an entire file, you could use SEEK to reposition the file pointer
to the start of the file, in order to process the data a second time. This is certainly quicker than closing and
re-opening the file.

Sequential files lend themselves to database situations in which the length of individual records is variable.
For example, suppose an alumni list had a comments field. Some people may have 100 bytes or more of
comments. Others, perhaps most, will have none. Sequential files handle this problem without wasting
disk space.

The OPEN statement provides an optional LEN parameter for use with sequential files. This instructs
PowerBASIC to use internal buffering to speed up reading of sequential files, using a buffer of the size
specified by the LEN parameter. A buffer of 8192 bytes is suggested for best general performance,
especially when networks are involved. However, this value can be increased in size to gain additional
performance - the best value will always be specific to a particular combination of hardware and software,
and may vary considerably from PC to PC, network to network, etc.

The OPEN statement also provides an optional character mode parameter. This specifies the character
mode for this file: ANSI or WIDE (Unicode). Since sequential files consist of text alone, the selected mode
is enforced by PowerBASIC. All data read or written to the file is automatically forced to the selected mode,
regardless of the type of variables or expressions used. With binary or random files, this specification has
no effect, but it may be included in your code for self-documentation purposes.

ANSI characters in the U.S. range of CHR$(0) to CHR$(127) are known as ASCII, and are always
represented by a single byte. International ANSI characters in the range of CHR$(128) to CHR$(255) may
be followed by one or more additional bytes in order to accurately represent non-U.S. characters. The exact
definition of these characters depends upon the character set in use. WIDE characters are always
represented by two bytes per character. If the Chr option is not specified, the default mode is ANSI.

See Also

Files

Random Access Files

Binary Files

Random Access Files

Random Access Files
Random access files consist of records that can be accessed in any sequence. This means the data is
stored exactly as it appears in memory, thus saving processing time (because no translation is necessary)
both in when the file is written and in when it is read.

Random files are a better solution to database problems than sequential files, although there are a few
disadvantages. For one thing, random files are not especially transportable. Unlike sequential files, you
cannot peek inside them with an editor, or type them in a meaningful way to the screen. In fact, moving a
PowerBASIC random file to another computer or language will probably require that you write a translator

PowerBASIC Compiler for Windows Version 10

258 / 2126

program to read the random file and output a text (sequential) file.

One example of the transportability problem strikes close to home. Interpretive BASIC uses Microsoft's
non-standard format for

 values, and PowerBASIC uses IEEE standard floating-point conventions, this means you cannot read
the floating-point fields of random files created by Interpretive BASIC with a PowerBASIC program,
or vice versa, without a bit of extra work.
The major benefit of random files is implied in their name: every record in the file is available at any time.
For example, in a database of 23,000 alumni, a program can go straight to record number 11,663 or 22,709
without reading any of the other records. This capability makes it the only reasonable choice for large files,
and probably the better choice for small ones, especially those with relatively consistent record lengths.

However, random access files can be wasteful of disk space because space is allocated for the longest
possible field in every record. For example, a 100-byte comment field forces every record to use an extra
100 bytes of disk space, even if only one in a thousand actually uses it.

At the other extreme, if records are consistent in length, especially if they contain mostly numbers, random
files can save space over the equivalent sequential form. In a random file, every number of the same type
(Integer, Long-integer, Quad-integer, Byte, Word, Double-word, Single-precision, Double-precision,
Extended-precision or Currency) occupies the same amount of disk space, regardless of the value itself.
For example, the following five Single-precision values each require four bytes (the same space they occupy
in memory):

0
1.660565E-27
15000.1
641
623000000

By contrast, numbers in a sequential file require as many bytes as they have ASCII characters when printed
(plus one for the delimiting comma if WRITE# was used instead of PRINT#). For example:

WRITE #1, 0;0 ' takes 3 bytes
PRINT #1, 0;0 ' takes 5 bytes
PRINT #1, 1.660565E-27 ' takes 13 bytes

You can create, write, and read random access files using the following steps:

1. First, OPEN the file and specify the length of each record:

OPEN filespec FOR RANDOM AS [#]filenum [LEN = recordsize]

The LEN parameter indicates to PowerBASIC the total size of each record in bytes. If you do not
specify a LEN parameter, PowerBASIC assumes 128. Unlike sequential files, you do not have to
declare whether you are opening for input or output because you can simultaneously read and write a
random file.

2. Define a structure for records in the file using the TYPE statement.

TYPE StudentRecord
 LastName AS STRING * 20 ' A 20-character string
 FirstName AS STRING * 15 ' A 15-character string
 IDnum AS LONG ' Student ID, a Long-integer
 Contact AS STRING * 30 ' Emergency contact person
 ContactPhone AS STRING * 14 ' Their phone number
 ContactRel AS STRING * 8 ' Relationship to student.
 AverageGrade AS SINGLE ' Single-precision % grade
END TYPE

DIM Student AS StudentRecord

3. Fill the UDTs members with the values you want, and write records to the file using the PUT
statement.

Student.LastName = "Anderson"
Student.FirstName = "Bob"
Student.IDnum = 494425610

PowerBASIC Compiler for Windows Version 10

259 / 2126

Student.Contact = "Ma Anderson"
Student.ContactPhone = "(800) BOBSMOM"
Student.ContactRel = "Mother"
Student.AverageGrade = 98.9

PUT #fileNumber, recordNumber, Student

4. Read records from the file using the GET statement.

GET #fileNumber, recordNumber, Student

5. When finished, CLOSE the file.

See Also

Files

Sequential Files

Binary Files

Binary Files

Binary Files
PowerBASIC's binary file technique, an extension to Interpretive BASIC, allows you to treat any file as a
numbered sequence of bytes without regard to anything, including the following: ASCII characters, number
versus string considerations, record length, carriage returns. With the binary approach to a file problem, you
read and write a file by specifying exactly which bytes to read or write. This is similar to the services
provided by Windows API functions used for reading and writing files.

Flexibility always comes at a price. Binary files require that you do all the work to decide what goes where.
 Binary may be the best option when dealing with alien files that aren't in ASCII format; for example, a file
created by a spreadsheet or database product. Of course, you will have to know the precise structure of the
file before you can even attempt to break it down into numbers and strings agreeable to PowerBASIC.

Every file opened in binary mode has an associated position indicator that points to the place in the file that
will be read or written to next. Use the SEEK statement to set the position indicator, and the SEEK
function to read it.

Binary files are accessed in the following way:

1. First, OPEN the file in BINARY mode. You need not specify whether you are reading or writing; you
can do either, or both.

2. To read the file, use SEEK to position the file pointer at the byte you want to read. Then use GET$
to read a specified number of characters into a string variable.

3. To write to the file, load a string variable with the information to be written. Then use SEEK to
position the point in the file to which it should be written, and use PUT$ to write the data.

4. When finished, CLOSE the file.

See Also

Files

Sequential Files

Random Access Files

PowerBASIC Compiler for Windows Version 10

260 / 2126

Graphics

Graphics
This version of PowerBASIC offers an excellent graphics package for most any programming need. It's fast.
It's complete. And it handles all those messy Windows details for you... automatically!

First, it's good to know that graphics in PowerBASIC are persistent. Create it once... and forget it. You'll
never worry about redrawing when your window is minimized or temporarily covered. PowerBASIC handles
everything. Automatically!

So, how about a quick overview? Just what can you do? First, how about some fancy text? Any font. Any
size. Any color. Bold. Italic. Underline and Strikeout. Mix any combination of fonts on a single Window.
Print just about anything, just about anywhere. Then add bitmaps. Stretch them or condense them. Copy
them or change them. Circles, ovals, lines and boxes. Fat lines, skinny lines, ellipses, rounded rectangles.
Filled forms or empty. Colors or not. You'll create a custom scaling system -- even with fractional floating
point coordinates!

So, let's get started. You should know that almost every graphical function name starts with the word

. You'll find all of them together in the help file or the book.
Step one -- you'll need a canvas. A place to create these works of art. So, create a GRAPHIC WINDOW. Or
two. Or ten. They'll be visible right away and give you quick feedback.

GRAPHIC WINDOW "PowerGraphics", 600, 200, 400, 300 TO hWin???

You'll get a new window, with the title "PowerGraphics". It's positioned on the upper right side of the screen
at x=600, y=200. It's 400 pixels wide, and 300 pixels high.

A second option is a memory bitmap. These aren't visible at all. You create your image "behind-the-scenes",
then copy or stretch it to a visible window whenever you're ready. Use GRAPHIC BITMAP NEW for a blank
bitmap, or GRAPHIC BITMAP LOAD to get one from a resource or a disk file. You can have one window or
five. One bitmap or twenty. As each is created, it returns a handle that you need to save. That's how you'll
identify each of your canvases.

Step two Use GRAPHIC ATTACH to choose a "graphic target". This tells PowerBASIC which window or
memory bitmap to use, for the actions which follow. Until you execute another GRAPHIC
ATTACH to change it again. Move back and forth, as often as necessary. There is no limitation
here.

Step three Draw-Draw-Draw. Arcs. Circles. Lines. Boxes. Text. Display them. Copy them. Save them to
disk.

Step four Clean up when you're done. You must close every graphic window with GRAPHIC WINDOW
END, and every memory bitmap with GRAPHIC BITMAP END.

It's just that simple!

Some GRAPHIC functions use the concept of an implied "graphic position" to determine the default point on
the graphic target where the next operation will take place. In PowerBASIC, we use the keyword POS to
refer to this position (See GRAPHIC GET POS and GRAPHIC SET POS to alter or retrieve this position).
POS is also commonly known as the LPR (Last Point Referenced) or even NPR (Next Point Referenced).
For most purposes, you can consider these three terms to be synonymous.

When a Graphic Window or Graphic Bitmap is created, the default POS is set to (0,0), which is the upper
left corner. Unless you specify otherwise, the first graphical operation starts at that point, and the
completion point is then saved as the new POS. So, if you draw a line from (0,0) to (100,100), that last point
(100,100) is saved as the new POS. The next line you draw would then, by default, start at (100,100), and
then automatically save its completion point as the updated POS for next time.

The "Graphic Position" (POS) is used by GRAPHIC LINE, GRAPHIC PAINT, GRAPHIC PRINT, and
GRAPHIC SET PIXEL. Other graphic functions neither use nor update POS.

Other GRAPHIC functions, namely those involved with the drawing of curves (GRAPHIC ARC, GRAPHIC
ELLIPSE, and GRAPHIC PIE), utilize the concept of a "bounding rectangle" to determine their size and

PowerBASIC Compiler for Windows Version 10

261 / 2126

position on the graphic target. A bounding rectangle is defined as the smallest rectangle which can be drawn
around the circle or ellipse. For example, let's say you wish to draw a circle centered at position (200,200),
which has a radius of 50 pixels. The upper left corner (x1,y1) of the bounding rectangle would be at
(150,150), while the lower right corner of the bounding rectangle would be at (250,250).

See Also

Graphic Commands

GRAPHIC Code Group

Printing

Printing

Printing
PowerBASIC supports two general classes of printers. We categorize them as Line Printers or Host
Printers. Generally speaking, we recommend using Host Printers whenever possible, as they have far
greater capabilities, including an extensive graphics package.

A line printer is one which will accept standard ASCII text and associated control codes, such as CR, LF,
and FF. A line printer is identified by the port to which it is attached (LPT1, etc.) because data is sent
directly to the port, not through a device driver. Print to Line Printers by using the LPRINT family of
functions.

A host printer is one which works through the Windows printing system and a Windows printer driver. These
printers are sometimes known as "Windows-only printers" or "GDI printers". They achieve device
independence because the printer driver handles the task of converting ASCII text into the manufacturers
proprietary binary format used by the printer. Print to Host Printers by using the XPRINT family of functions.

An interesting feature of this version is the new PRINTER$ function. This will let you retrieve both the printer
name and the port name for every printer connected to the computer. Also, the new XPRINT ATTACH
statement will optionally display a Printer Common Dialog to assist the user in selecting a printer, and the
associated options.

In contrast to single-tasking systems like DOS, you'll need to select a printer when you're ready to print.
Use either LPRINT ATTACH or XPRINT ATTACH to do that. That assures two applications won't try to print to
the same printer at the same time. Then print your report. Print your graphics. Print your charts. When
you're done, don't forget to detach the printer with LPRINT CLOSE or XPRINT CLOSE. This frees up the
printer for another application to use. Perhaps even more important, Host Printers normally won't even begin
to print to the physical paper until the print job is closed!

PowerBASIC Compiler for Windows Version 10

262 / 2126

Some XPRINT functions use the concept of an implied "XPrint Position", to determine the default point on
the host printer page where the next operation will take place. In PowerBASIC, we use the keyword POS to
refer to this position (See XPRINT GET POS and XPRINT SET POS to alter or retrieve this position). POS is
also commonly known as the LPR (Last Point Referenced) or even NPR (Next Point Referenced). For most
purposes, you can consider these three terms to be synonymous.

When a new host printer page is created (with XPRINT ATTACH of a host printer, or XPRINT FORMFEED
which ends a printer page), the default POS is set to (0,0), which is the upper left corner. Unless you
specify otherwise, the first XPRINT operation starts at that point, and the completion point is then saved as
the new POS. So, if you draw a line from (0,0) to (100,100), that last point (100,100) is saved as the new
POS. The next line you draw would then, by default, start at (100,100), and then automatically save its
completion point as the updated POS for next time.

The "XPrint Position" (POS) is used by XPRINT, XPRINT LINE, and XPRINT SET PIXEL. Other XPRINT
functions neither use nor update POS.

Other XPRINT functions, namely those involved with the drawing of curves (XPRINT ARC, XPRINT ELLIPSE,
and XPRINT PIE), utilize the concept of a "bounding rectangle" to determine their size and position on the
host printer page. A bounding rectangle is defined as the smallest rectangle which can be drawn around the
circle or ellipse. For example, let's say you wish to draw a circle centered at position (200,200), which has a
radius of 50 pixels. The upper left corner (x1,y1) of the bounding rectangle would be at (150,150), while the
lower right corner of the bounding rectangle would be at (250,250).

See Also

Print Preview

Printing Commands

XPRINT Code Group

Print Preview

Print Preview
Print Preview is a powerful concept which should be considered in most application programs which provide
printed reports. Briefly, the idea involves displaying a replica of a printed document on the screen before it is
committed to printing on paper. There are other related benefits available as well, such as the opportunity to
save this replica report permanently to a disk file. PowerBASIC offers a simple and straightforward method
to create printed reports which can be previewed on the screen.

The algorithm implemented by PowerBASIC can be summarized:

1. Select a printer to be used for the printed report using the XPRINT ATTACH statement.

XPRINT ATTACH {DEFAULT | PrinterName$} [,JobName$]

PowerBASIC Compiler for Windows Version 10

263 / 2126

XPRINT ATTACH CHOOSE [USING Flags&] [,JobName$]

2. Use the XPRINT PREVIEW statement to select a graphic target (a graphic bitmap, graphic control, or
graphic window) for the preview display. You may create a new graphic target, or reuse one which
already exists. The target is identified by the handle and ID given when it was created. You can
optionally specify a callback function which is called upon every execution of an XPRINT FORMFEED
or XPRINT PREVIEW CLOSE. This statement should immediately follow the XPRINT ATTACH.

XPRINT PREVIEW hWin, ID [, CALL xxx]

3. At this point, all subsequent

 output will be redirected to the graphic target. All data will be adjusted in size and position to
the specification of the graphic target. It is best to use care to keep the proportions of the
graphic page similar to the printer page to avoid distortion of the previewed report.

4. When XPRINT PREVIEW CLOSE is executed, it signals that the previewed report is completed.
 Redirection of XPRINT data is ended, and the XPRINT data stream is now sent to the original
attached printer.

5. Repeat the XPRINT statements to create the desired report on the attached printer. Generally, these
XPRINT statements are best placed in a subroutine which can be repeated with a single line of code.

A simplified PRINT PREVIEW:

GRAPHIC WINDOW NEW "Preview", 200, 100, 400, 550 TO h&
XPRINT ATTACH DEFAULT
XPRINT PREVIEW h&, 0
CALL PrintIt ' print to the preview window
XPRINT PREVIEW CLOSE
CALL PrintIt ' print to the host printer
XPRINT CLOSE
...
...
SUB PrintIt()
 XPRINT "This is a test of preview..."
 XPRINT ELLIPSE (300,300) - (500,400), %rgb_red
 XPRINT RENDER "xx.bmp", (300,500)-(500,700)
END SUB

XPRINT PREVIEW must be executed immediately after XPRINT ATTACH or an error 98 "XPrint
Preview Error" will be generated at run time. No XPRINT statements (other than the XPRINT$
function) may be executed between XPRINT ATTACH and XPRINT PREVIEW.

If you include the CallBack option, the callback procedure must be a simple SUB with no parameters and no
return value. It is called automatically by the XPRINT engine at the completion of each preview page (upon
execution of XPRINT FORMFEED or XPRINT PREVIEW CLOSE. This Sub can perform all sorts of
housekeeping help, such as copying the preview bitmap for separate storage, counting pages in the report,
or most anything else needed by your program. Copying the bitmap is important in multi-page reports as
XPRINT FORMFEED erases the graphic target for preview of the next page.

See Also

Printing

Printing Commands

XPRINT Code Group

Serial Communications

PowerBASIC Compiler for Windows Version 10

264 / 2126

Serial Communications

Serial Communications
This section introduces telecommunications. For many programmers, writing a communications program is
difficult. It is not that the programs themselves are especially long; it is that the procedures and terminology
are unfamiliar. That means programs take longer to write and debug, making writing such programs
frustrating. To compound the problem, performing serial communications using the Windows API can be a
daunting task.

In this section, we define common communications terms and discuss some of the more regular ways of
transmitting and receiving data, using the native COMM statements and related features of PowerBASIC.
There are plenty of examples and some working PowerBASIC program code (included on your distribution
disks) for you to try out. Feel free to use this code as a starting point for your own communications
programs.

Before presenting any sample code or delving further into the mysteries of communications, let's define a
few terms:

ACK An acknowledgment signal sent by the receiver of a message.

Asynch Asynchronous; not synchronous. The receiver and transmitter are free to send signals
without matching clocks.

Baud Rate Baud (from J. M. E. Baudot, a communications pioneer) refers to the total number of
signal changes that could possibly be sent between transmitter and receiver per second.
Signal changes do not necessarily mean bits, and not all bits are necessarily data, so
baud rate isn't equivalent to a fixed number of characters (or even a fixed number of bits)
per second.

Buffer An area of memory used to hold transmitted or received signals before processing them.

CD Carrier Detect. A signal used to tell that a carrier has been detected; the DCE (modem)
has connected with another computer and is ready for use.

CRC Cyclic Redundancy Check. A way of summing the data bits sent between transmitter
and receiver so as to detect transmission errors.

CTS Clear To Send. A handshaking signal that indicates the receiver is ready to receive data.
Typically, a modem uses this signal for to control data flow from the computer. CTS (and
sometimes DSR) are often used in response to an RTS signal.

DCE Data Circuit-terminating Equipment. Typically, a DCE is a modem. A DCE is often
inaccurately referred to as the "Data Communications Equipment".

DSR Data Set Ready. A handshaking signal that serves to indicate that an RS-232C non-
terminal device (usually a modem) is ready to receive data. Often used with CTS.

DTE Data Terminal Equipment. Typically the computer.

DTR Data Terminal Ready. A handshaking signal that indicates that an RS-232C serial
terminal device (the computer) is ready to receive data.

Handshaking A process whereby the receiver and transmitter match signals and correctly determine
each other's status. See CTS, DSR, and RTS.

Modem Modulator/Demodulator. A device used to convert digital signals to sounds that can be
carried over standard telephone lines, and to convert such sounds back to digital signals.

NAK Negative Acknowledgment. A signal sent from receiver to transmitter, indicating that an
error was detected in the last message.

Null Modem A way of connecting receive and transmit lines, so that one computer can send or receive
signals directly from another without having to go through a modem. This typically
requires a "null-modem" or "cross-over" cable to ensure the signals are correctly
interconnected between devices.

PowerBASIC Compiler for Windows Version 10

265 / 2126

Parity One bit (the high-order bit) per byte sent or received, used to detect some of the possible
transmission errors. Parity may be even, odd, none, mark (always on), or space (always
off).

Port A term used to refer to any one of the possibly several communications devices available
to the operating system. Usually COM1, COM2, etc.

Protocol A way of controlling transmissions or receptions. A protocol consists of a set of rules
describing the form of a valid transmission, the proper response when a transmission is
received, and ways of detecting and correcting errors.

RS-232 A standard for wiring on serial communications ports, that describes which wires should
carry which signals at what voltage. There are two basic standards: one for transmitting
equipment (DTE) and one for receiving equipment (DCE).

RTS Request To Send. A signal raised by the transmitter, to which the receiver should reply
with CTS and/or DSR.

Serial Refers to signals sent one bit after the other, as opposed to parallel. Parallel signals are
sent more than one bit at a time.

Stop Bits The number of bits added to each byte of data transmitted, to allow the receiver to get in
step with the transmitter.

Synch Synchronous. The receiver and transmitter match their clocks so that each will send and
receive only at specific times.

See Also

Communications Basics

Communication Buffers

Parity and general error checking

Start and Stop bits

Opening a communications port

Reading and writing data

A simple communications program

Communications Basics

Communications Basics
To communicate from one computer to another, you need a communications program on each machine, and
some way to connect them (telephone lines, for example). Sometimes, those programs are built into the
operating system. Even when that's the case, there will be times when you want to do something faster,
more reliably, or in a different manner than what has been provided.

To communicate, you will need a way for each program to inform the other that:

1. It is ready/not ready to transmit/receive data.

2. Data has been received and is correct.

3. Data has been received and is not correct.

4. Transmission is over.

If it is not important to check for, or correct errors, items 2 and 3 in the previous list can be ignored. Those
capabilities are often skipped when the programs are to be used for simple communications - short text or
brief typed messages. Even the other two parts can be dropped if the programs are closely monitored, or if
errors will not matter very much.

PowerBASIC Compiler for Windows Version 10

266 / 2126

However, it is important to realize that receiving and transmitting data is not always quite as simple as it
might appear, especially when you are coding under Windows. For example, suppose your program is
receiving data and saving material to a disk file. What should happen if more data is received while the
program is writing data to disk? Alternatively, suppose the user presses a key that means "clear the screen
and display a menu" while data is being received?

Situations like this are common. The standard way of handling them is to use a buffer.

See Also

Serial Communications

Communication Buffers

Parity and general error checking

Start and Stop bits

Opening a communications port

Reading and writing data

A simple communications program

Communication Buffers

Communication Buffers
Buffers can be useful in solving various types of communication or data transfer problems. For example, a
printer typically includes a buffer of at least a few thousand characters. Since the computer can send
material to the printer faster than it is capable of putting the material on paper, the buffer serves three
purposes:

1. To even the workload for the printer

2. To allow the computer to finish sending material sooner

3. To handle occasions when the printer cannot accept more material

If the printer did not have a buffer, the computer would be forced to send data one character at a time. Until
each character is received and printed, the computer should not send more. To prevent this, the printer
sends a busy signal back to the computer. When it gets this signal, the computer stops until the printer
sends a "ready" signal. This "ready/busy" signaling is called handshaking.

Visualize what is taking place. The printer sends a ready signal; the computer sends a character; the
printer sends a busy signal, forcing the computer to wait while it prints the character; and then the whole
process repeats. That is a lot of signaling for just one transmitted character!

Further, there is a possibility of error. If the computer is fast or the printer is slow (or both), it's possible for
the computer to send the next character before the printer is able to signal that it's busy - something called
buffer overflow. This can also happen if there is something wrong with the handshaking signals. When this
happens, the printer fails to print one or more characters. Those characters have been sent by the
computer, but cannot be received by the printer because there is no place to put them.

With a buffer, the printer sends a busy signal only when the buffer is full (or nearly so). That way, even if
additional characters have already been sent, there will be room to store them before they are printed. Most
of the time, the computer sends and the printer receives. As a result, far less signaling is necessary, and
more actual data is transmitted. Therefore, a buffer makes communications between computers and
printers more efficient. Since there is room to store characters transmitted, there is less chance that a
character will be missed; so a buffer makes transmissions more error free, too.

In general, all communications are affected by buffering in the same way. For that reason, PowerBASIC
allows you to set aside one communications buffer for received data and a separate buffer for transmitted

PowerBASIC Compiler for Windows Version 10

267 / 2126

data. In your programs, you have two responsibilities: to make sure that the buffer you use is large enough,
and to empty the buffer as often as needed to prevent a buffer overflow.

How large a buffer will you need? It depends on the sort of program you are writing, and is often a matter of
trial and error. At low baud rates (up to 300 baud), 256 bytes is probably adequate. Under some
circumstances, 256 bytes may well be adequate at 1200 baud or higher; it all depends on how often your
program checks the buffer and empties it. It's probably a good idea to use a buffer of 1024 bytes or more for
1200 baud, and it's not at all uncommon to use buffers of 4 Kilobytes or more. With the large amount of
data memory available to your applications with PowerBASIC, you could specify a receive buffer of 1 MB (or
even more) and have little impact on system memory.

See Also

Serial Communications

Communications Basics

Parity and general error checking

Start and Stop bits

Opening a communications port

Reading and writing data

A simple communications program

Parity and general error checking

Parity and general error checking
The ASCII character set contains 128 defined characters. It takes 7 bits to represent all 128 characters.
Since there are 8 bits per byte, the eighth bit can be used to detect errors. One sort of checking adds up all
the on (1) bits in each character transmitted. If the number of bits is even, the eighth bit is turned on when
the character is transmitted; that forces the total number of on bits to be odd and is called odd parity.
When the receiver gets the character, it performs the same procedure in reverse. If it gets the same answer
as was encoded in the eighth bit, the character is accepted. If it does not, the character is in error. A
related method (even parity), sums the bits and turns the parity bit on if the number of bits is odd, forcing the
total number of on bits to be even.

Either method of checking the correctness of received characters is called a parity check. Unfortunately,
the method can easily be thwarted if the errors are bad enough. If the transmission is relatively clean and
there are few errors, a simple parity check of this sort can be reasonably effective. If any even number of
data bits are reversed (on to off or vice versa), or if any odd number of bits are wrong and the parity bit is
also incorrect, the parity check will fail to detect an error.

Most communications programs do not rely on parity checks, however. That is especially true if you must
send a full 8 bits of data, as is the case when sending executable programs, spread sheets, some kinds of
word processing files, and any kind of binary data. You should set parity to none or off whenever you need
to send a full 8 bits of data.

See Also

Serial Communications

Communications Basics

Communication Buffers

Start and Stop bits

Opening a communications port

PowerBASIC Compiler for Windows Version 10

268 / 2126

Reading and writing data

A simple communications program

Start and stop bits

Start and Stop bits
Stop bits are a way for a computer to "catch its breath" while sending or receiving data, while still letting the
other end know that the connection is still there and is still valid; they're also used in error detection.

Stop bits are rather like parity bits. They are sent with the data, but they are not part of the data. Unlike
parity bits, they are not turned on and off by the number of bits in the data; instead, they are always on. If
one or more of the stop bits are missing, it constitutes a framing error.

Some computers also use start bits for a similar purpose; however, that is not as common a practice as it
used to be.

The number of stop bits generally increases with higher baud rates. At 300 baud, usually 0 or 1 stop bits
are used. At 1200 baud, 1 or 2 stop bits are most common.

If you connect with another computer and everything seems to be correct, but you cannot read the material
you're receiving, one of three possible problems is likely. Either the baud rates are set wrong, the parity is
wrong, or the number of stop (or start) bits is incorrect. If the baud rate is correct and the errors are framing
errors, it is probably the number of stop bits.

See Also

Serial Communications

Communications Basics

Communication Buffers

Parity and general error checking

Opening a communications port

Reading and writing data

A simple communications program

Opening a communications port

Opening a communications port
Before we can actually open a communications port, we must first obtain a PowerBASIC file number so we
may manage input and output to the communications port. The best method of obtaining a file number is to
use the FREEFILE function:

DIM hComm AS LONG
hComm = FREEFILE

The general way of opening a communications port in a PowerBASIC program is with a COMM OPEN
statement. The syntax is similar to a simple random-access file OPEN, where n is the communications
port number

COMM OPEN "COMn" AS #hComm

Note the trailing colon typical in DOS communications is not permitted with COMM OPEN.

If you are familiar with serial communications with DOS compilers (where all of the communications
parameters are configured within a single OPEN statement), you will realize that we must instead configure
these parameters individually. For this purpose, PowerBASIC offers the COMM SET statement:

PowerBASIC Compiler for Windows Version 10

269 / 2126

COMM SET #hComm, Comfunc = value

Although configuring a serial port for communications can mean using quite a few COMM SET statements,
PowerBASIC offers a greater control of the serial port than was possible before, plus a completely new
method of querying existing settings and status. Retrieving a setting is performed with the COMM function,
which returns a Long-integer value:

x& = COMM(#hComm, Comfunc)

Comfunc must be one of the following keywords:

Comfunc Return values (TRUE <> 0, FALSE = 0)
BAUD Port Baud Rate (9600, 14400, 19200, etc). See notes below.
BREAK TRUE/FALSE Break is asserted. Break is generally used to "get the attention" of

the connected modem, terminal or system.
BYTE Number of bits per byte (4, 5, 6, 7, or 8).
CD TRUE/FALSE Carrier Detect state. Synonym for RLSD (READ-ONLY). When CD

is TRUE, the DCE (modem) has a suitable connection on the communications
channel present. When CD is FALSE, there is no suitable connection.

CTS TRUE/FALSE Clear-To-Send state is returned (READ-ONLY).
CTSFLOW TRUE/FALSE Enable CTS output flow control (Input signal). When CTSFLOW is

enabled, it causes the DTE (computer) to stop sending data whenever the CTS
signal is set to logic low by the DCE (modem). Transmission continues when the
DCE (modem) sets the CTS signal back to logic high. The CTS signal is usually
used in response to an RTS signal.

DSR TRUE/FALSE Data-Set-Ready state is returned (READ-ONLY).
DSRFLOW TRUE/FALSE Enable DSR output flow control (Input signal). When DSRFLOW is

enabled, it causes the DTE (computer) to stop sending data whenever the DSR
signal is set to logic low by the DCE (modem). Transmission is enabled when the
DSR signal returns to logic high. The DSR signal is often used in conjunction with
CTS in response to a RTS signal.

DSRSENS TRUE/FALSE Enable DSR sensitivity. When DSRSENS is enabled, data received
by the DTE (computer) is placed into the receive buffer only if DSR is set to logic
high. If DSR is set low, received data is discarded. Enabling DSRSENS allows
DSR to enable or disable the DTE (the computer) to receive data from the DTE (the
modem). DSRSENS is rarely used in practical communications situations.

DTRFLOW TRUE/FALSE Enable DTR handshaking flow control (Output signal). When
DTRFLOW is enabled, it signals that the DCE (modem) should prepare to connect
to the communications channel. DTR is usually used for modem on-hook/off-hook
control, but can also be used in conjunction with DSR for handshaking.

DTRLINE TRUE/FALSE Enable DTR line. When enabled, DTRLINE leaves the DTR line active
when the port is closed by the DTE (computer). This ensures that the DCE
(modem) does not close the communications channel when the port is closed.

NULL TRUE/FALSE Null ($NUL) bytes are discarded when read.
PARITY TRUE/FALSE Enable parity checking. This mode must be enabled for the other

Parity options to be selected.
PARITYCHAR Character to use for parity error replacement. PARITY must be enabled.
PARITYREPL TRUE/FALSE Enable character replacement on parity error. PARITY must be

enabled.
PARITYTYPE 0 = None, 1 = Odd, 2 = Even, 3 = Mark, 4 = Space. PARITY must be enabled.

Default = 0.
RING TRUE/FALSE Ring indicator is on (READ-ONLY). When RING returns TRUE, a

ringing signal is being received on the communications channel (by the modem).
RING approximates the state of the ringing signal; however, it may not report
accurately in all Windows platforms.

RLSD Receive-line-signal-detect (READ-ONLY). See CD/Carrier Detect above.
RTSFLOW Ready To Send (Output signal). 0 = Disable, 1 = Enable, 2 = Handshake, 3 =

Toggle. Toggle is used for half-duplex (2-wire) operations to "reverse" the line.
While the DTE (computer) is busy sending data, it raises the RTS signal, and the
DCE (modem) blocks its data receive channel. When RTS signal reverts to logic
low, the DCE (modem) reverts to transmit mode and the DTE (computer) switches
to receive mode.

PowerBASIC Compiler for Windows Version 10

270 / 2126

 Handshake mode causes the DTE (computer) to check the receive buffer (RXQUE)
after each character is placed into the buffer. When the buffer is 5/6th full, the RTS
signal is dropped. When the receive buffer drops to below 1/6th full, RTS is raised
again.

RXBUFFER Size of the receive buffer in bytes.
RXQUE Bytes currently in the receive buffer (READ-ONLY).
STOP 0 = 1 stop bits, 1 = 1.5 stop bits, 2 = 2 stop bits.
TXBUFFER Size of the transmit buffer in bytes. In some cases, Windows may not be able to

report the transmit size.
TXQUE Bytes currently in the transmit buffer (READ-ONLY).
XINPFLOW TRUE/FALSE Enable XON/XOFF input flow control. When the DTE (computer)

receive buffer is full, an XOFF character is sent to the DCE (modem) to instruct it to
halt transmission. When the DCE is ready to resume transmission, an XON
character is sent to the DCE. Typically, XOFF is sent when the receive buffer has
less than 1/16th remaining, and XON is sent when the receive buffer drops to less
than 1/16th of its maximum size. Default = FALSE.

XOUTFLOW TRUE/FALSE Enable XON/XOFF out flow control. When enabled, the DCE
(modem) sends an XOFF to the DTE (computer) to halt data transmission to the
DCE. When the DCE is ready to receive more data, an XON character is sent.
XOUTFLOW typically uses the same 1/16th rules as XINPFLOW. Default =
FALSE.

Common baud rates range from 110 to 256000. There are equates defined in the WIN32API.INC file,
prefixed with %CBR_ to assist you with specifying a common baud rate, but you are not restricted to a
limited set of rates.

To open a communication port and initialize it for use, you will need to set the following parameters. The
values are for demonstration purposes, you may choose your own settings as necessary.

' Minimum recommended settings
COMM SET #hComm, BAUD = 9600 ' 9600 baud
COMM SET #hComm, BYTE = 8 ' 8 bits
COMM SET #hComm, PARITY = %FALSE ' No parity
COMM SET #hComm, STOP = 0 ' 1 stop bit
COMM SET #hComm, TXBUFFER = 2048 ' 2 Kb transmit buffer
COMM SET #hComm, RXBUFFER = 4096 ' 4 Kb receive buffer

' Optional settings for flow control
COMM SET #hComm, CTSFLOW = 1 ' Enable CTS flow control
COMM SET #hComm, RTSFLOW = 1 ' Enable RTS flow control
COMM SET #hComm, XINPFLOW = 0 ' Disable XON/OFF Input
 ' flow control
COMM SET #hComm, XOUTFLOW = 0 ' Disable XON/XOFF output
 ' flow

When we have finished using our communication channel, we can terminate it using the COMM CLOSE
function:

COMM CLOSE #hComm

If any errors occur when attempting to open the communications port, or as a result of an invalid Comfunc
value, PowerBASIC will set the ERR system variable.

See Also

Serial Communications

Communications Basics

Communication Buffers

Parity and general error checking

Start and Stop bits

WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

271 / 2126

Reading and writing data

A simple communications program

Reading and writing data

Reading and writing data
To complement the new COMM OPEN statement, PowerBASIC introduces four new

 statements to help you write serial communications programs:
COMM PRINT #hComm, expr [;]
COMM SEND #hComm, expr
COMM RECV #hComm, count, expr
COMM LINE [INPUT] #hComm, expr

COMM PRINT and COMM SEND are used to send data out of the communications port (via the transmit
buffer). COMM PRINT sends the data specified by expr followed by a CR/LF byte pair {$CRLF or
CHR$(13,10)}. By adding a trailing semicolon to the COMM PRINT statement, PowerBASIC suppresses
these CR/LF bytes. COMM SEND is identical to COMM PRINT with a trailing semicolon.

COMM RECV and COMM LINE [INPUT] are used to receive data from a communications port (via the
receive buffer). The COMM(#hComm, RXQUE) function can be used to identify the number of bytes that can
be retrieved with COMM RECV. COMM LINE is used to return a CR/LF delimited "line" of data from the
receive buffer.

If your communications application is primarily dealing with binary data transmission and reception, COMM
SEND and COMM RECV will suit this purpose exactly. COMM PRINT and COMM INPUT are very useful for
sending "AT" commands to a modem and receiving the modem response. For example:

COMM PRINT #hComm, "AT"
SLEEP 1000 ' Give modem time to respond
WHILE COMM(#hComm, RXQUE)
 COMM LINE #hComm, a$
 ' Display "AT" (the modem echo),
 ' followed by "OK" (the modem response)
 #IF %DEF(%PB_CC32)
 PRINT a$
 #ELSE
 MSGBOX a$
 #ENDIF
WEND

The COMM RESET statement allows you to switch off all flow control during a serial communications
session.

COMM RESET #hComm, FLOW

See Also

Serial Communications

Communications Basics

Communication Buffers

Parity and general error checking

Start and stop bits

Opening a communications port

A simple communications program

PowerBASIC Compiler for Windows Version 10

272 / 2126

A simple communications program

A simple communications program
Let's assume you want a simple communications program to use for accessing a local computer bulletin
board. You know the parameters for the board: it is 14400 baud, 8 data bits, one stop bit, and no parity.

You want to display data on your screen, be able to type data, and have it sent to the bulletin board. You
intend to use a modem connected to COM1. The following short program serves as a starting point, and
uses PowerBASIC's new DDT features to create the user interface:

'--
'
' Serial Communications Example for PowerBASIC for Windows
' Copyright (C) 2004-2009 PowerBASIC, Inc.
'
' Be sure to set the $ComPort constant to the appropriate
' COM port before compiling this example!
'
'--
#COMPILE EXE
#DIM ALL
#INCLUDE "WIN32API.INC"

$ComPort = "COM1"
$AppTitle = "PowerBASIC for Windows Comm Example"
%IDD_MAIN = 100
%IDC_LISTBOX1 = 101
%IDC_EDIT1 = 102
%IDC_SEND = 103
%IDC_QUIT = 106

PowerBASIC Compiler for Windows Version 10

273 / 2126

%IDC_ECHO = 107

GLOBAL hComm AS LONG
GLOBAL Updating AS LONG
GLOBAL hThread AS DWORD
GLOBAL ThreadClose AS LONG

DECLARE FUNCTION StartComms AS LONG
DECLARE FUNCTION SendLine(ASCIIZ) AS LONG
DECLARE FUNCTION ReceiveData(BYVAL LONG) AS LONG
DECLARE FUNCTION EndComms AS LONG
DECLARE FUNCTION AddLine(BYVAL LONG, BYVAL LONG, ASCIIZ) AS LONG

CALLBACK FUNCTION Dialog_Callback() AS LONG
 SELECT CASE CB.MSG
 CASE %WM_INITDIALOG
 ' Set focus to the edit control
 CONTROL SET FOCUS CB.HNDL, %IDC_EDIT1

 ' Set SELECTION range to highlight the initial entry
 CONTROL SEND CB.HNDL, %IDC_EDIT1, %EM_SETSEL, 0, -1

 ' Return 0 to stop dialog box engine setting focus
 FUNCTION = %FALSE
 END SELECT
END FUNCTION

CALLBACK FUNCTION Send_Callback() AS LONG
 DIM SendText AS ASCIIZ * 1024, ListCount AS LONG
 DIM lResult AS LONG, hListBox AS DWORD

 ' Obtain the text to send from the edit control
 CONTROL GET TEXT CB.HNDL, %IDC_EDIT1 TO SendText

 ' Set the update flag
 Updating = %TRUE

 ' Send the line to the comm port
 IF SendLine(SendText) THEN
 SendText = "Transmission Error!"
 ELSE
 ' Check the Echo mode state
 CONTROL GET CHECK CB.HNDL, %IDC_ECHO TO lResult
 IF ISTRUE lResult THEN SkipEcho
 END IF

 ' Add the echo to the listbox
 CALL AddLine(CB.HNDL, %IDC_LISTBOX1, "<== " + SendText)

SkipEcho:
 ' Set the SELECTION range for the edit control so the
 ' next keypress "clears" the existing text
 CONTROL SEND CB.HNDL, %IDC_EDIT1, %EM_SETSEL, 0, -1

 ' restore the keyboard focus to the edit control
 CONTROL SET FOCUS CB.HNDL, %IDC_EDIT1

 ' Release the update flag
 Updating = %FALSE
 FUNCTION = %TRUE

PowerBASIC Compiler for Windows Version 10

274 / 2126

END FUNCTION

CALLBACK FUNCTION Quit_Callback() AS LONG
 ' Kill the dialog and let PBMAIN() continue
 DIALOG END CB.HNDL, 0

 FUNCTION = 1
END FUNCTION

FUNCTION AddLine(BYVAL hWnd AS DWORD, BYVAL nID AS LONG, SendText AS ASCIIZ) AS LONG
 DIM ListCount AS LONG

 ' Find the current listbox count
 LISTBOX GET COUNT hWnd, nID TO ListCount

 ' Update the listbox
 LISTBOX ADD hWnd, nID, SendText

 ' Scroll the new item into view
 LISTBOX SELECT hWnd, nID, ListCount + 1
END FUNCTION

FUNCTION PBMAIN
 ' Build our GUI interface.
 DIM hDlg AS DWORD, Txt(1 TO 1) AS STRING, lResult AS LONG

 ' Initialize the port ready for the session
 IF ISFALSE StartComms THEN
 MSGBOX "Failure to start communications!",, $AppTitle
 EXIT FUNCTION
 END IF

 Txt(1) = "Listbox holds the transmission I/O stream..."

 ' Create a modal dialog box
 DIALOG NEW 0, $AppTitle,,, 330, 203, %WS_POPUP OR %WS_VISIBLE OR %WS_CLIPCHILDREN OR
_
 %WS_CAPTION OR %WS_SYSMENU OR %WS_MINIMIZEBOX, 0 TO hDlg

 ' Add our application controls
 CONTROL ADD LABEL, hDlg, -1, "Transmission &log for " & $ComPort, 9, 5, 100, 10, 0

 CONTROL ADD LISTBOX, hDlg, %IDC_LISTBOX1, Txt(), 9, 15, 313, 133, %WS_BORDER OR _
 %LBS_WANTKEYBOARDINPUT OR %LBS_DISABLENOSCROLL OR %WS_VSCROLL OR %WS_GROUP OR _
 %WS_TABSTOP OR %LBS_NOINTEGRALHEIGHT
 CONTROL ADD LABEL, hDlg, -1, "Te&xt to send", 9, 151, 100, 10, 0
 CONTROL ADD TEXTBOX, hDlg, %IDC_EDIT1, "ATZ", 9, 161, 257, 12, %ES_AUTOHSCROLL OR _
 %ES_NOHIDESEL OR %WS_BORDER OR %WS_GROUP OR %WS_TABSTOP
 CONTROL ADD BUTTON, hDlg, %IDC_SEND, "Send &Text", 273, 160, 50, 14, %WS_GROUP OR _
 %WS_TABSTOP OR %BS_DEFPUSHBUTTON CALL Send_Callback
 CONTROL ADD BUTTON, hDlg, %IDC_QUIT, "&Quit", 273, 182, 50, 14, %WS_GROUP OR %
WS_TABSTOP _
 CALL Quit_Callback
 CONTROL ADD CHECKBOX, hDlg, %IDC_ECHO, "Disable Local "+ "&Echo", 252, 5, 70, 10, _
 %WS_GROUP OR %WS_TABSTOP OR %BS_AUTOCHECKBOX OR %BS_LEFTTEXT

 ' Erase our array to free memory no longer required
 REDIM Txt()

 ' Create a "listen" Thread to monitor input from the modem

PowerBASIC Compiler for Windows Version 10

275 / 2126

 THREAD CREATE ReceiveData(hDlg) TO hThread

 ' Start the dialog box & run until DIALOG END executed.
 DIALOG SHOW MODAL hDlg, CALL Dialog_Callback TO lResult

 ' Close down our "listen" Thread
 ThreadClose = %TRUE

 DO
 THREAD CLOSE hThread TO lResult

 ' Release time-slice for improved multitasking
 SLEEP 0
 LOOP UNTIL ISTRUE lResult

 ' Flush & close the comm port
 CALL EndComms

 FUNCTION = %TRUE
END FUNCTION

FUNCTION StartComms AS LONG
 hComm = FREEFILE
 COMM OPEN $COMPORT AS #hComm
 IF ERRCLEAR THEN EXIT FUNCTION ' Port problem?

 COMM SET #hComm, BAUD = 14400 ' 14400 baud
 COMM SET #hComm, BYTE = 8 ' 8 bits
 COMM SET #hComm, PARITY = %FALSE ' No parity
 COMM SET #hComm, STOP = 0 ' 1 stop bit
 COMM SET #hComm, TXBUFFER = 4096 ' 4 Kb transmit buffer
 COMM SET #hComm, RXBUFFER = 4096 ' 4 Kb receive buffer

 FUNCTION = %TRUE
END FUNCTION

FUNCTION SendLine(SendText AS ASCIIZ) AS LONG
 COMM PRINT #hComm, SendText
END FUNCTION

FUNCTION ReceiveData(BYVAL hWnd AS DWORD) AS LONG
 DIM InboundData AS STRING
 DIM Stuf AS STRING, ListCount AS LONG
 DIM Qty AS LONG, x AS LONG, a AS STRING

 WHILE ISFALSE ThreadClose
 ' Test the RX buffer
 Qty = COMM(#hComm, RXQUE)

 ' Abort this iteration if sending
 IF ISFALSE Qty OR Updating THEN
 SLEEP 100
 ITERATE LOOP
 END IF

 ' Read incoming characters
 COMM RECV #hComm, Qty, Stuf

 InBoundData = InBoundData & Stuf

PowerBASIC Compiler for Windows Version 10

276 / 2126

 ' strip out LF characters
 REPLACE CHR$(10) WITH "" IN InBoundData

 ' process only complete lines of data terminated by CR
 WHILE INSTR(InboundData, CHR$(13))
 ' Display the data
 CALL AddLine(hWnd, %IDC_LISTBOX1, "==> " + EXTRACT$(InBoundData, CHR$(13)))

 ' reduce the buffer to remove the "displayed" line
 InBoundData = STRDELETE$(InBoundData, 1, LEN(EXTRACT$(InBoundData, CHR$(13))) +
1)
 WEND
 WEND

 FUNCTION = %TRUE
END FUNCTION

FUNCTION EndComms() AS LONG
 DIM dummy AS STRING

 ' Flush the RX buffer & close the port
 SLEEP 1000

 IF COMM(#hComm, RXQUE) THEN
 COMM RECV #hComm, COMM(#hComm, RXQUE), dummy
 END IF

 COMM CLOSE #hComm
END FUNCTION

This short program allows you to connect with the bulletin board, but it will not dial the number of the bulletin
board through the program itself. You can do that easily though, in one of two ways:

You can dial the bulletin board manually. When you're done dialing, connect the telephone line to the
modem (or press a button on your modem, switching the line from the telephone back to the modem). The
program should now be ready to receive whatever the bulletin board sends.

You can send the appropriate signals directly to the modem itself. Most modems recognize a common
command set originated by the Hayes Company. To initialize the modem and dial, you would enter the
following commands:

ATZ
ATDT18005551212

Note: some modems require capital letters for AT commands. Lowercase letters will not work.

After you have entered the ATZ command, the modem responds. You will see the message "OK" on your
screen. After you have entered ATDT and the telephone number, the modem's lights flicker for a moment. If
your modem is capable of making a sound, you should hear the sounds of the number being dialed, and the
telephone ringing at the other end.

If the number is busy, you may hear a busy signal through your modem speaker, or you may not hear
anything more. If the connection is made, you may see some garbage characters on your screen.

At this point, many users become concerned and think that something must be wrong. Why are there
illegible characters on screen? Relax: this happens often. The computer you called does not yet know
what baud rate and communications parameters you are using. In most cases, you should press ENTER a
few times; the computer at the other end will use that character to determine what your parameters are and
will adjust itself accordingly. Soon afterward, you should see a welcoming message. You may now type
whatever you like.

If you see double lines of characters, click on the Disable Local Echo button. This simply prevents the code
from adding your characters to the transmission log window.

PowerBASIC Compiler for Windows Version 10

277 / 2126

If you wish to send a stream of AT commands to a modem in quick succession, you may be required to add
a small delay between each AT command, in order to give the modem time to decode each command and
respond appropriately. A delay of 100 to 200 milliseconds (mSec) is usually sufficient.

Using disk files
The sample program does not let you save material to a disk file, or send data from a disk file to the bulletin
board. Nevertheless, those two options are very useful. How do you do it?

Let us suppose you wanted to send a disk file to the bulletin board. To do that, the routine that sends your
keystrokes to the bulletin board must be altered. The usual way to do this is to assign a special keystroke
a different meaning: instead of being sent, it is interpreted as a command to get the name of a disk file, read
that disk file, and send it to the bulletin board.

Let's add a new button to our dialog window to provide access to this feature - we will label this button Send
File. In addition, we must also add a Callback Function to handle the event from this button. Lets start by
adding the following equate definition to the block near the beginning of the file:

%IDC_SENDFILE = 104

Now we will insert the new Callback Function to the code. We'll add this immediately after the Send
Callback() function ends:

CALLBACK FUNCTION SendFile_Callback() AS LONG
 STATIC SendFileName AS STRING
 LOCAL hReadFile AS LONG, FileLen AS LONG, Chunk AS LONG
 LOCAL i AS LONG, Buff1 AS STRING

 Buff1 = INPUTBOX$("Name of disk file to transmit?", $AppTitle, SendFileName)
 IF ISFALSE LEN(Buff1) OR ISFALSE LEN(DIR$(Buff1)) THEN EXIT FUNCTION

 SendFileName = Buff1
 CALL AddLine(CB.HNDL, %IDC_LISTBOX1, "Wait... Sending " & SendFileName)
 DIALOG DOEVENTS

 ' send the file
 hReadFile = FREEFILE
 OPEN SendFileName FOR BINARY AS #hReadFile ' Binary mode
 FileLen = LOF(hReadFile) ' File length
 Chunk = MAX&(32, COMM(#hComm, TXBUFFER) \ 2) ' 1/2*Buf

 FOR ix = 1 TO FileLen \ Chunk
 GET$ #hReadFile, Chunk, Buff1 ' Read a chunk
 COMM SEND #hComm, Buff1 ' and send it
 SLEEP 0
 NEXT i

 IF FileLen MOD Chunk <> 0 THEN ' More to send?
 GET$ #hReadFile, FileLen MOD Chunk, Buff1
 COMM SEND #hComm, Buff1
 END IF

 CLOSE #hReadFile
 CALL AddLine(CB.HNDL, %IDC_LISTBOX1, "Transmission complete!")
END FUNCTION

Finally, we insert the code that adds a new control button on the dialog box. Add the following line to the
group of

 statements in the PBMAIN function.
CONTROL ADD BUTTON, hDlg, %IDC_SENDFILE, "&Send File", 9, 182, 50, 14, %WS_GROUP OR _
 %WS_TABSTOP CALL SendFile_Callback

PowerBASIC Compiler for Windows Version 10

278 / 2126

The routine works, but there's no error checking in it. If the disk file does not exist, nothing is sent, but a
zero-length file is created. If you enter an illegal file name, the program will set the ERR system variable to
indicate that [a potentially fatal] error has occurred. You'll probably want to add some kind of error checking
to the program for those reasons.

To receive a disk file, we will add yet another button to the dialog window titled Receive File. However,
things are not quite as simple as the code we added to send a file: you must be able to use the program at
the same time as the data is stored, as it comes in from the serial port. We also need a way to stop
receiving a disk file.

First, we will add another equate to the beginning of the file, exactly as before:

%IDC_RECEIVEFILE = 105

Add the following line at the end of the GLOBAL variable declarations, just below the equates:

GLOBAL hWriteFile AS LONG

Next, add the Callback Function code, immediately after the SendFile_Callback() function that we just
added.

CALLBACK FUNCTION ReceiveFile_Callback() AS LONG
 STATIC ReceiveFileName AS STRING
 LOCAL Buff2 AS STRING

 ' First check if file is already open
 IF hWriteFile THEN
 ' Close the file
 CLOSE #hWriteFile

 CALL AddLine(CB.HNDL, %IDC_LISTBOX1, "Finished writing file!")

 ' Update the button label
 CONTROL SET TEXT CB.HNDL, %IDC_RECEIVEFILE, "&Receive File"

 RESET hWriteFile

 EXIT FUNCTION
 END IF

 ' Create a new file
 Buff2 = INPUTBOX$("Output file name?", $AppTitle, ReceiveFileName)
 IF ISFALSE LEN(Buff2) THEN EXIT FUNCTION

 ReceiveFileName = Buff2
 hWriteFile = FREEFILE

 OPEN ReceiveFileName FOR APPEND AS #hWriteFile
 IF ERRCLEAR THEN
 ' Error opening the file
 RESET hWriteFile
 ELSE
 ' Update the dialog
 CALL AddLine(CB.HNDL, %IDC_LISTBOX1, "Receiving data stream to " &
ReceiveFileName)
 CONTROL SET TEXT CB.HNDL, %IDC_RECEIVEFILE, "Stop &Receive"
 END IF
END FUNCTION

Now add the CONTROL ADD statement into PBMAIN in the same manner as before.

 CONTROL ADD BUTTON, hDlg, %IDC_RECEIVEFILE, "&Receive File", 62, 182, 50, 14, %
WS_GROUP OR _
 %WS_TABSTOP CALL ReceiveFile_Callback

Finally, to ensure that the disk file is closed correctly, if the program is closed before the file is closed,

PowerBASIC Compiler for Windows Version 10

279 / 2126

insert the following lines just before the END FUNCTION within PBMAIN.

IF hWriteFile THEN CLOSE #hWriteFile

When we click on the new Receive File button, we enter the file name that will be used to save the data. At
this point, the output file is opened. The received data will be appended to the end of any existing file of that
name. However, we have not provided any way to actually save any of that information. To do that, add one
more small line of code to the ReceiveData() function, immediately after the line:

InBoundData = InBoundData & Stuf

The added line reads:

' If Receive mode is on, write raw data to the file
IF hWriteFile THEN PRINT #hWriteFile, Stuf;

Finishing touches
If we examine this example file, we find that we have overlooked one problem: if the program is terminated
while the output file is in use, the file is not closed.

While this is not a fatal condition, it is a poor approach to program design: we should always close the files
we have opened. Remembering to perform this chore will stand you in good steed when it comes to using
the Windows API functions. In many cases, failing to close a registry key or delete a GDI object can cause
both deceptive and difficult bugs to locate; or memory leaks that reduce system memory even after your
program has ended. The golden rule should always be before you leave, clean up after yourself.

So, faced with this problem, how do we know if the output file is open before we end the program? Simple...
we set the global variable that holds the file number when the file was open. If this number is non-zero
(logical TRUE), we can simply assume we need to close the file before finally exiting the program.

After the line that reads:

CALL EndComms

We add the following line to the file:

IF hWriteFile THEN CLOSE #hWriteFile

In this instance, we control three possible scenarios with only one line of code:

1. the output file feature was not used (hFile2 = 0)

2. the output file remained open when the program was about to end (hFile2 <> 0)

3. the output file had been used, but had been closed before program termination (hFile2 <> 0)

It is true that we could have just closed the file associated with hWriteFile regardless of the state of the file
or the value of the file number. However, in most programming circles, that is considered to be a poor
approach. It is always better to write code that is fail-safe in as many conditions as possible.

The final program can be found in the PB\SAMPLES\COMM folder of your PowerBASIC installation. It is
not very large, but it handles a surprising number of ordinary communications tasks. It lacks some error
checking, as has been noted. If you choose to modify this program, you might want to put some error
checking in. You might also want to test for such problems as the List box control filling up to the limits of
the operating system (i.e., 32767 entries in Windows 95/98/ME), and even add a few more buttons to send
certain preformatted strings to modem, for example "ATZ" or "ATDT555-1234".

Compared to DOS applications, this communications application may seem overly complex. This is
because we simply cannot afford to use 100% of the CPU just to monitor a serial port. If we did, your
multitasking operating system would suddenly take a huge drop in performance. If you examine the code a
little more deeply, you will see it takes advantage of a very handy feature of 32-bit Windows: multi-threading.

This communications program consists of two threads in total: (1) the main thread handles the user
commands and sending data to the modem; (2) the second thread simply monitors the serial port for
receive data. If we used only one single thread in this application, the code would need to share its time
between both data reception and transmission, but by using two, we ensure that the CPU is not heavily
loaded unnecessarily.

Using a second thread in this way effectively splits the application into two (almost) independent sections.

PowerBASIC Compiler for Windows Version 10

280 / 2126

 The only time these threads need to be aware of each other is when one is writing to the list box control.
 To handle this, we used a GLOBAL variable to signal when data was being displayed; temporarily "locking"
the other thread until the task was complete.

For further experimentation, you could split the main thread down even further and create a separate thread
just for writing data to the serial port. You could even try replacing the TEXTBOX control with a COMBOBOX
so users can scroll back through the most recent "send" strings, providing a simple "history" feature.

See Also

Communications Basics

Communication Buffers

Parity and general error checking

Start and Stop bits

Opening a communications port

Reading and writing data

TCP and UDP Communications

TCP and UDP Communications

TCP and UDP Communications
Network Communications is one of the hottest programming topics today. Whether you need to send an
email message to an SMTP server on your Intranet, or transfer a file from a remote Internet server halfway
around the world, PowerBASIC can handle your network communications requirements.

Networks typically consist of many computers, all with a number of different hardware architectures and
operating systems. Your local area network might have machines running Windows, Linux, DOS, OS/2, or
Mac OS. Your network may use IPX, ATM, or some other transmission protocol for sending data packets
from one computer to the next. The architects of the Internet needed a transmission protocol that could be
used on any platform.

See Also

The Internet Protocol (IP)

User Datagram Protocol (UDP)

Transmission Control Protocol (TCP)

Winsock

Request for Comments (RFC)

TCP clients and servers

Simple Mail Transfer Protocol (SMTP)

An ECHO client and server using TCP

The Internet Protocol (IP)

The Internet Protocol (IP)

PowerBASIC Compiler for Windows Version 10

281 / 2126

The Internet Protocol was designed for transmitting blocks of data called datagrams from a source location,
to one or more destinations. It is specifically limited to provide the functions necessary to deliver a
datagram from a source to a destination over an interconnected system of networks. There is no
functionality for data reliability, flow-control, or sequencing. It works by using one local network to connect
with another local network, until the datagram is delivered to its destination - although, a datagram does not
have to leave the local network at all if the destination does not reside outside of the network.

The source and the destination are specified as numeric addresses, also known as IP addresses. An IP
address consists of four bytes. The combined sequence of the four bytes is unique for each connection to
the network (a single computer can have more than one connection to the network, and therefore can have
more than one IP address).

Let's say that you want to send the message "Hello" from your computer to another computer on the
network. Your computer cannot simply transmit the 5 bytes of your message over the network cable. It first
has to create a datagram. In simple terms, the datagram would include the identity of your computer (the
sender), the identity of the computer you are sending the message to, and some kind of checksum that
allowed the receiving computer to verify that the datagram arrived intact. Your computer would deliver that
datagram to a host or gateway on your network.

The gateway will then determine where the datagram needs to go next. If the destination computer is on the
same local network, it may simply deliver it to the destination. If the destination is outside of the local
network, the datagram is delivered to another host or gateway "downstream" from your network. After that,
either that host or gateway would then send the datagram even further downstream toward the destination;
or if the destination resides on the local network of the current host or gateway, it will deliver the datagram to
the final destination itself.

During this journey, it is possible for the datagram to become corrupted, be misrouted (and lost), or simply
expire because the journey was too long. The Internet Protocol does not provide any notification capabilities
to inform the sender of a delivery problem. It is also possible for large datagrams to be chopped into
multiple smaller datagrams if any host or gateway along the path cannot handle the size of the datagram.
Each datagram is then broken into as many smaller datagrams as it needs to hold all of the data. Those
datagrams then have to be reassembled at the destination.

See Also

User Datagram Protocol (UDP)

Transmission Control Protocol (TCP)

Winsock

Request for Comments (RFC)

TCP clients and servers

Simple Mail Transfer Protocol (SMTP)

An ECHO client and server using TCP

User Datagram Protocol (UDP)

User Datagram Protocol (UDP)
Obviously, writing code to deal with reassembling fragmented datagrams would make you think twice about
how badly your application needs to communicate over a network. Fortunately, the Internet architects
provided a protocol layer that sits on top of the Internet Protocol.

UDP uses the Internet Protocol to send datagrams from a source to a destination. When the datagram
arrives at the destination, it hands the complete datagram packet to the client. If the datagram was
fragmented along the way, it reassembles the fragments into a complete datagram beforehand.

Like the Internet Protocol it uses, UDP does not guarantee delivery of a datagram. Its purpose is simply to

PowerBASIC Compiler for Windows Version 10

282 / 2126

format a datagram with your data, send it via the Internet Protocol to a destination, and at the destination,
deliver the complete datagram to a client.

One interesting aspect of the Internet Protocol is that datagrams can be delivered to a destination in a
different sequence than the one in which they were sent. For example: your application sends two
datagrams to another computer. The first datagram is routed along a longer path than the second datagram,
and therefore arrives at the destination after the second datagram has arrived.

See Also

The Internet Protocol (IP)

Transmission Control Protocol (TCP)

Winsock

Request for Comments (RFC)

TCP clients and servers

Simple Mail Transfer Protocol (SMTP)

An ECHO client and server using TCP

Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP)
TCP is a connection-based protocol layer that guarantees delivery of data to the destination. The reliability
and flow control of TCP requires that status information be sent with each datagram indicating sequence
numbers and checksums. So that TCP transmissions can recover from data that is damaged, lost,
duplicated, or delivered out of order, each datagram is checked for its sequence number, and the data is
verified against the checksum. An acknowledgment (ACK) is then required from the recipient for each
successful datagram received. If an ACK is not received within a timeout period, the datagram is resent.

Unlike UDP, TCP does not reassemble fragmented datagrams into the original data packet. It simply
extracts the data portion of the datagram and adds it to the incoming data stream. This can be problematic
if a source has sent 20 bytes of data that is fragmented into two datagrams with 10 bytes each. TCP will
give the first 10 bytes to the client without waiting for the next 10 bytes to arrive. UDP will give all 20 bytes
of the data, or nothing.

See Also

The Internet Protocol (IP)

User Datagram Protocol (UDP)

Winsock

Request for Comments (RFC)

TCP clients and servers

Simple Mail Transfer Protocol (SMTP)

An ECHO client and server using TCP

Winsock

Winsock
In Windows, Microsoft has encapsulated the Internet Protocol and the TCP and UDP protocol layers into

PowerBASIC Compiler for Windows Version 10

283 / 2126

the Windows Sockets Layer, or "Winsock". Winsock allows an application to send datagrams using either
TCP or UDP without having to do low-level programming to create IP datagram packets, deal with receipts
and acknowledgments, or reassemble fragmented datagrams.

PowerBASIC further encapsulates the process by handling DNS resolution of IP addresses, and presents
statements familiar to the programming model used by BASIC programmers. You are free to concentrate on
the data being sent and ignore the details of sending it.

PowerBASIC requires version 2.0 or later of Winsock.

See Also

The Internet Protocol (IP)

User Datagram Protocol (UDP)

Transmission Control Protocol (TCP)

Request for Comments (RFC)

TCP clients and servers

Simple Mail Transfer Protocol (SMTP)

An ECHO client and server using TCP

Request for Comments (RFC)

Request for Comments (RFC)
All of the technical specifications for the Internet are contained in white papers called "Request for
Comments". For example, the RFC document describing the UDP protocol is RFC768.TXT and can be
downloaded from http://www.rfc-editor.org.

See Also

The Internet Protocol (IP)

User Datagram Protocol (UDP)

Transmission Control Protocol (TCP)

Winsock

TCP clients and servers

Simple Mail Transfer Protocol (SMTP)

An ECHO client and server using TCP

TCP clients and servers

TCP clients and servers
The Internet Protocol driver in Winsock actually sends and receives the datagrams itself, and the UDP and
TCP layers take care of data integrity. However, to actually communicate with another computer over the
Internet your code will have to handle the data itself. That is typically done using a high-level protocol such
as SMTP, POP3, FTP, and others.

Think of IP as the telephone wire that carries a voice from a transmitter of one telephone to a receiver of
another telephone. UDP and TCP are simply different types of telephones that make sure each sound is
received exactly as it was sent. Therefore, SMTP, POP3, FTP, etc, should be considered the language that

http://www.rfc-editor.org/

PowerBASIC Compiler for Windows Version 10

284 / 2126

you use to speak. Both the caller and the person being called need to speak the same language if they
wish to understand the conversation. Obviously, you cannot speak Latin to a person who only understands
English or French.

See Also

The Internet Protocol (IP)

User Datagram Protocol (UDP)

Transmission Control Protocol (TCP)

Winsock

Request for Comments (RFC)

Simple Mail Transfer Protocol (SMTP)

An ECHO client and server using TCP

Simple Mail Transfer Protocol (SMTP)

Simple Mail Transfer Protocol (SMTP)
One of the easiest high-level TCP protocols to use is SMTP for sending an email message. This application
simply connects to an SMTP server via TCP, identifies itself, and identifies who the message is for, sends
the text of the message, and finally says goodbye. As each line of text is sent to the server, it returns a
status code and message to indicate progress. The following code demonstrates this:

' Be sure to change the following two string equates
' to the name of your SMTP mail server and your email
' address.
#COMPILE EXE

$mailhost = "mailserver.mydomain.com"
$mailfrom = "email@address.com"

FUNCTION PBMAIN() AS LONG
 ' Get the local computer's IP address and name
 HOST ADDR TO ip&
 HOST NAME ip& TO hostname$

 ' ** Connect to the mailhost
 hTCP& = FREEFILE
 TCP OPEN "smtp" AT $mailhost AS hTCP&
 IF ERR THEN
 MSGBOX "Error connecting to mailhost"
 EXIT FUNCTION
 ELSE
 TCP LINE hTCP&, buffer$
 IF LEFT$(buffer$, 3) <> "220" THEN
 MSGBOX "Mailhost Error: " & buffer$
 EXIT FUNCTION
 END IF
 END IF

 ' Get the local computer's IP address and name
 HOST NAME TO hostname$

PowerBASIC Compiler for Windows Version 10

285 / 2126

 ' ** Greet the mailhost
 TCP PRINT hTCP&, "HELO " + hostname$
 TCP LINE hTCP&, buffer$
 IF LEFT$(buffer$, 3) <> "250" THEN
 MSGBOX "HELO Error: " & buffer$
 TCP CLOSE hTCP&
 EXIT FUNCTION
 END IF

 ' ** Tell the mailhost who we are
 TCP PRINT hTCP&, "MAIL FROM:<" & $mailfrom & ">"
 TCP LINE hTCP&, buffer$
 IF LEFT$(buffer$, 3) <> "250" THEN
 MSGBOX "MAIL FROM Error: " & buffer$
 TCP CLOSE hTCP&
 EXIT FUNCTION
 END IF

 ' ** Tell the mailhost who we want to send the message to
 TCP PRINT hTCP&, "RCPT TO:<info@powerbasic.com>"
 TCP LINE hTCP&, buffer$
 IF LEFT$(buffer$, 3) <> "250" THEN
 MSGBOX "RCPT TO Error: " & buffer$
 TCP CLOSE hTCP&
 EXIT FUNCTION
 END IF

 ' ** Now we can send the message
 TCP PRINT hTCP&, "DATA"
 TCP LINE hTCP&, buffer$
 IF LEFT$(buffer$, 3) <> "354" THEN
 MSGBOX "DATA Error: " & buffer$
 TCP CLOSE hTCP&
 EXIT FUNCTION
 END IF

 TCP PRINT hTCP&, "From: " & $mailfrom
 TCP PRINT hTCP&, "To: info@powerbasic.com"
 TCP PRINT hTCP&, "Subject: Greetings!"
 TCP PRINT hTCP&, ""
 TCP PRINT hTCP&, "Just wanted to say hello."
 TCP PRINT hTCP&, "This TCP stuff is great!

 ' ** End of the message
 TCP PRINT hTCP&, "."
 TCP LINE hTCP&, buffer$
 IF LEFT$(buffer$, 3) <> "250" THEN
 MSGBOX "DATA Error: " & buffer$
 TCP CLOSE hTCP&
 EXIT FUNCTION
 END IF

 ' ** Say goodbye
 TCP PRINT hTCP&, "QUIT"
 TCP LINE hTCP&, buffer$
 IF LEFT$(buffer$, 3) <> "221" THEN
 MSGBOX "QUIT Error: " & buffer$
 TCP CLOSE hTCP&
 EXIT FUNCTION
 END IF

PowerBASIC Compiler for Windows Version 10

286 / 2126

 TCP CLOSE hTCP&
END FUNCTION

The SMTP protocol is fully described in RFC 821 http://www.rfc-editor.org

See Also

TCP and UDP Communications

TCP clients and servers

An ECHO client and server using TCP

An ECHO client and server using TCP

An ECHO client and server using TCP
The simplest TCP server application is an Echo Server (RFC 862). It simply listens to port 7, and when it
receives a data packet, it returns the data packet back to the client.

Writing a TCP server in PowerBASIC is quite straightforward, but your application must contain a (GUI)
window or dialog to receive notification requests from Winsock. It is therefore necessary to either: (1) create
a dialog with DDT, or (2) use the Windows API to create a GUI window for the application to receive these
notifications. The following function will register a window class, and create a hidden window that can be
used by your server.

FUNCTION MakeWindow() AS DWORD
 LOCAL wce AS WndClassEx
 LOCAL szClassName AS ASCIIZ * 80
 LOCAL hWnd AS DWORD
 STATIC registered AS LONG

 IF ISFALSE registered THEN
 szClassName = "PBTCPCOMM"
 wce.cbSize = SIZEOF(wce)
 wce.style = %NULL
 wce.lpfnWndProc = CODEPTR(TcpProc)
 wce.cbClsExtra = 0
 wce.cbWndExtra = 0
 wce.hInstance = GetModuleHandle(BYVAL %NULL)
 wce.hIcon = %NULL
 wce.hCursor = %NULL
 wce.hbrBackground = %NULL
 wce.lpszMenuName = %NULL
 wce.lpszClassName = VARPTR(szClassName)
 wce.hIconSm = %NULL
 RegisterClassEx wce
 registered = %TRUE
 END IF

 hWnd = CreateWindow("PBTCPCOMM", "", 0,0,0,0,0, %NULL, %NULL, _
 GetModuleHandle(BYVAL %NULL), BYVAL %NULL)
 ShowWindow hWnd, %SW_HIDE

 FUNCTION = hWnd
END FUNCTION

To create a TCP server, your program must first open a socket using the TCP OPEN SERVER statement.
 Then, when a client contacts your server, this socket will receive the notification. To specify which

http://www.rfc-editor.org/

PowerBASIC Compiler for Windows Version 10

287 / 2126

notifications your code will process, use the TCP NOTIFY statement:

%TCP_ACCEPT = %WM_USER + 4093 ' user-defined message value
...
hServer = FREEFILE
TCP OPEN SERVER PORT 7 AS hServer
TCP NOTIFY hServer, ACCEPT TO hWnd AS %TCP_ACCEPT

TCP NOTIFY tells Winsock that it should send the %TCP_ACCEPT message to the window specified by
hWnd. Your callback will then include a message handler for the %TCP_ACCEPT message. The lParam&
parameter to your callback will tell you what type of notification was sent:

%TCP_ECHO = %WM_USER + 4094 ' user-defined message value
...
CASE %TCP_ACCEPT
 SELECT CASE LO(WORD, lParam&)

 '* An ACCEPT notification was sent
 CASE %FD_ACCEPT
 hEcho = FREEFILE
 TCP ACCEPT hServer AS hEcho
 TCP NOTIFY hEcho, RECV CLOSE TO hWnd AS %TCP_ECHO

 .
 . 'other notification code goes here
 .
 END SELECT

Once your code receives the ACCEPT notification, it uses the TCP ACCEPT statement to "close" the
socket. A new socket is created for the actual communication with the client. The original socket (hServer)
is used strictly to process ACCEPT notifications only. TCP NOTIFY is then used with the new socket
handle to process RECV and CLOSE notifications.

When the Echo Client sends its message to your server, a RECV notification will be sent to your window.
 Your code can then log the incoming message, and send it right back to the client. When the CLOSE
notification is received, you can close the socket:

CASE %TCP_ECHO
 SELECT CASE LO(WORD, lParam&)

 CASE %FD_READ
 IF hEcho <> %INVALID_SOCKET THEN
 TCP RECV hEcho, 1024, buffer
 TCP SEND hEcho, buffer
 LogEvent $DQ + Buffer + $DQ
 END IF

 CASE %FD_CLOSE
 TCP CLOSE hEcho
 hEcho = %INVALID_SOCKET

 END SELECT

To connect with the Echo Server, our Client simply needs to open a socket at port 7, send a

, and display the string echoed back from the server.
FUNCTION PBMAIN() AS LONG
 LOCAL hSocket AS LONG

 hSocket = FREEFILE
 TCP OPEN PORT 7 AT "" AS hSocket
 IF ERR THEN
 MSGBOX "OPEN Error" + STR$(ERR)
 EXIT FUNCTION
 END IF

PowerBASIC Compiler for Windows Version 10

288 / 2126

 IF LEN(COMMAND$) = 0 THEN
 TCP SEND hSocket, "This is a test"
 ELSE
 TCP SEND hSocket, COMMAND$
 END IF

 TCP RECV hSocket, 1024, buffer$
 IF ERR THEN
 MSGBOX "RECV Error" + STR$(ERR)
 EXIT FUNCTION
 END IF

 MSGBOX buffer$

 TCP CLOSE hSocket
END FUNCTION

The complete Echo Server and Echo Client sample can be found in your PB\SAMPLES\INTERNET\TCP
folder.

Finally, it should be noted that there is no direct correlation between the number of TCP SEND statements
executed, compared to the number of %FD_READ messages received. This is because Winsock may
concatenate multiple data packets and issue a lesser number of %FD_READ messages in response.
 Therefore, it is usually necessary to construct your code so that it continues to read data from the incoming
data stream until either the returned string is empty, or an error is detected. For example:

DIM InBuffer AS STRING
...
 CASE %FD_READ
 InBuffer = ""
 IF hEcho = %INVALID_SOCKET THEN EXIT SELECT

 DO
 TCP RECV hEcho, 1024, buffer
 IF LEN(buffer) = 0 OR ISTRUE ERR THEN EXIT LOOP
 InBuffer = InBuffer + buffer
 TCP SEND hEcho, buffer
 LogEvent $DQ + Buffer + $DQ
 LOOP
...

See Also

TCP and UDP Communications

Simple Mail Transfer Protocol (SMTP)

Objects and COM Programming

What is an object, anyway?

What is an object, anyway?
An object is a pre-defined set of data (variables), neatly packaged with a group of

 (code) which manipulate the data and provide any other functionality you need.
For example, a string array containing names and addresses (data) might be packaged with a subroutine
(code) that displays a popup dialog to edit the data, another subroutine (code) to print mailing labels, and so

PowerBASIC Compiler for Windows Version 10

289 / 2126

forth. That's a great candidate for an object.

In short, an object is a complete little programming package, code and data, all in one tightly contained
place. It's safer and protected, easier to debug, maintain, and reuse. An object can be written to perform
most any task you might imagine.

In object terminology, a CLASS is used to define an object. A CLASS is much like an enhanced user-
defined type; it's a description of both the variables and the subroutines which make up the object. When
you instruct the compiler to create an object, it uses the definitions found in the CLASS to do so. It
allocates memory for the variables, establishes pointers to the subroutines, and makes this new object
available to your program.

Each time you create a new OBJECT, it is called an INSTANCE of its definition (an instance of the CLASS).
 That's why these variables are called INSTANCE variables. When you create multiple objects (from the
same CLASS definition), each instance gets its own individual copy of these INSTANCE variables, and each
instance gets individual access to the subroutines.

In PowerBASIC, objects are optional. Objects are a great programming tool, but your existing code remains
fully functional. Standard Subs and Functions will always be supported, so you can blend the techniques at
a comfortable pace.

PowerBASIC objects are practical. They're lightning fast with very little overhead. We've tried very hard to
give you the best ratio of straightforward design to performance and features. We think you'll find
PowerBASIC objects very hard to resist.

Thousands of books have been written to describe objects and object oriented programming. In most
cases, the buzz words and abstract definitions make it seem as though they're designed to confuse, not
enlighten. We'll try to limit the use of strange descriptors, but some of it just can't be avoided. In these
cases, we'll try to give you clear definitions as they're needed.

A key trait of PowerBASIC objects (and objects in general) is the concept of encapsulation. Data is
"hidden" within the object, so INSTANCE variables cannot be accessed from the outside.

INSTANCE variable data may only be set, altered, or retrieved by the subroutines in the object.
 These variables are hidden from the rest of the program.

Over the years, objects have gained a reputation for slow, bloated programming. In many cases, this
reputation was well deserved. But don't let that fool you. With PowerBASIC, you'll find you have a whole
new "Object World"! All the power, yet all the performance, too. PowerBASIC objects give you every ounce
of performance possible... the same breathtaking speed as procedural programming!

See Also

Where are objects located?

Why should I use objects?

What are the parts of an object?

Are there other important "Buzz-Words"?

Where are objects located?

Where are objects located?
Since an object is a complete programming package (sort of like the idea of a sub-program), it can be
located in many different places. However, regardless of where the object is found, PowerBASIC will still
handle all the messy details for you... automatically.

In many cases, objects will be located right within your main program. You can create a single, self-
contained program, with one object or a thousand objects. Get all the power of objects, but keep the details
private -- for your eyes only.

Objects can be located in a Dynamic Link Library (DLL). This is usually called a COM object, but is also

PowerBASIC Compiler for Windows Version 10

290 / 2126

known as an OCX or an ActiveX object. The actual file extension is largely irrelevant. The

 offered by these objects are generally available to any program which knows the subroutine definitions,
and wishes to access them. This type of object is known as an "in-process" object because it is loaded
into the address space of the calling application, just like a standard DLL.
Objects can also be located in an executable program (EXE). In this case, the calling application is
frequently called a "controller", as it can control how the executable operates by manipulating its objects. A
good example of this functionality is Microsoft Word -- by simply calling object subroutines, you can load a
DOC file, display it to the user, make changes, then save the new document. All under the control of your
calling application. Once again, the object subroutines are generally available to any program which knows
the subroutine definitions. This type of object is known as an "out-of-process" object because it does not
share address space with the calling application.

Whenever an object is accessed outside of your program, PowerBASIC uses the COM (Component Object
Model) services of Windows to make the "connection" for you. COM is an important tool which will open
many opportunities for you. But more about COM later...

See Also

What is an object, anyway?

Why should I use objects?

What are the parts of an object?

Are there other important "Buzz-Words"?

Why should I use objects?

Why should I use objects?
· Objects help you maintain your code. Objects break up your project into small, easily viewed parts.

 Usually, the input and output is clearly defined. You have all of the code and all of the data right at
your fingertips.

· Objects help you write bug-free code. When you keep an object small and well-defined, you greatly
enhance the stability of your programs. Consider the comparison to procedural programming: With
standard Subs and Functions, it's typical to create the data (variables) in the calling code, but
manipulate the data in the target procedures when they are executed. This separation of code and
data has caused some of the most insidious bugs known to programmers. When you need to
extend the range of data to a larger data type, it's easy to change the code. A piece of cake, so to
speak. But what about the data? Now you must search out every reference to every involved Sub
and Function. Find every data creation, every data change, and every other reference to these
variables. What are the chances of missing a critical one? Far too great to ignore.

· Objects help you re-use your code. Since the object contains all the

, and all the data, how could it be easier? Put one object source in one include file... Or put it in
one DLL... Just use it when you need it!

· Objects help with team programming. Objects are self-contained. All of the subroutines and all of the
data, all in one concise place. It's easy to create a precise definition for each object, and there's little
dependency between the implementation of various objects. Each team member builds an object,
one at a time, so it all comes together neatly in the end.

· Objects are an increasingly popular standard. Do you need to access the Windows API? Many of
the newer API functions (DirectX graphics, for example) use only an object interface, and nothing
else. If you don't use objects, you simply can't access them. Do you want to control an important
application, like an Internet browser, word processor, or spreadsheet? COM objects are the only way
to do it. As time goes by, objects will only become more embedded in day-to-day programming.

PowerBASIC Compiler for Windows Version 10

291 / 2126

 Don't be left behind!

See Also

What is an object, anyway?

Where are objects located?

What are the parts of an object?

Are there other important "Buzz-Words"?

What are the parts of an object?

What are the parts of an object?
· METHOD: A subroutine, very similar to a user-defined Sub/Function. A method has the special

attribute that it can access the variables stored in the object. A method can return a value like a
Function, or return nothing, like a Sub.

· PROPERTY: This is a METHOD, but in a specific form, for a specific purpose. A PROPERTY has
all the attributes of a standard METHOD. It has a special syntax, and is specifically used to read or
write private data to/from the internal variables in an object. This helps to maintain the principle of
"encapsulation". Properties are usually created in pairs, a GET PROPERTY to read a variable, and a
SET PROPERTY to write to a variable. Paired properties use the same name for both, since
PowerBASIC will choose the correct one based upon the usage in your source code. You should
note this important fact: Since a PROPERTY is a form of METHOD, all of the documentation about
METHODS also applies to PROPERTIES, unless we specifically state otherwise.

: A definition of a set of methods and properties which are implemented on an object. You might
think of it as a list of DECLARE statements where the sequence of the Declares must be
preserved. Remember, the interface is just the definition, not the actual code. Every interface is
associated with a GUID (a 128-bit number or string) which uniquely identifies this particular
interface from all other interfaces, anywhere in the world. This identifier is called the Interface ID,
or IID for short.
An interesting note is that one particular interface definition may become a part of several
different classes and objects. In fact, the internal code for an interface in CLASS A may be
entirely different from the internal code for the same interface in CLASS B. Method names,
parameters, and return values must be identical, but the internal code could vary significantly.
An important point: interfaces are immutable. Once an interface has been defined and published,
the Method and Property definitions (sequence, names, parameters, return values, etc.) may
never be altered. If you find you must change or extend an interface, you would usually define a
new interface instead.

· CLASS: A definition of a complete object, which may include one or more interfaces. This is the
place where you declare INSTANCE variables, and write your code for the enclosed METHOD and
PROPERTY procedures. While some object implementations allow only a single interface per class,
PowerBASIC objects (and COM objects in general) support the idea of optional multiple interfaces.
 Still, remember that a CLASS is the complete definition of an object. It defines all of the code and
all of the data which will be found in a particular object. For this reason, there is only one copy of a
CLASS. Every class is associated with a GUID (a 128-bit number or string) which uniquely identifies
this particular class from all others, anywhere in the world. This identifier is called the Class ID, or
CLSID. A friendlier version of the CLSID is a shorter text name, which also identifies the Class. This
text name is known as the Program ID (PROGID), though it's possible this PROGID may not be
totally unique. As it's a simpler construct, it might be duplicated in another program.

· CLASS METHOD: This is a private method, which may only be called from within the same CLASS.

PowerBASIC Compiler for Windows Version 10

292 / 2126

 It is not a part of any interface, so it is never listed there. It is called a CLASS METHOD because it
is a member of the class, not an interface. It is not visible to any code outside the class where it is
defined. Code in a CLASS METHOD may call other CLASS METHODS in the same CLASS. Class
Properties do not exist because there is no need for them. Within the object, variables can be
accessed directly, so there is no need to use a PROPERTY procedure as an intermediary.

· CONSTRUCTOR: This is a special form of CLASS METHOD, which is executed automatically
whenever an object is created. It is optional, but if present, it must be named CREATE.

· DESTRUCTOR: This is a special form of CLASS METHOD, which is executed automatically
whenever an object is destroyed. It is optional, but if present, it must be named DESTROY.

· OBJECT: An instance of a class. When you create an object in your running program, using the
LET (with objects) statement, or its implied form, PowerBASIC allocates a block of memory for the
set of instance variables you defined, and establishes a virtual function table (a set of function code
pointers) for each of the interfaces. You can create any number of OBJECTS based upon one
CLASS definition.
It might be useful to think of an OBJECT in terms of an electrical appliance, like a television set. The
TV is the equivalent of an OBJECT, because it's an instance of the plans which define all the things
which make it a television. Of course, those plans are the equivalent of a CLASS. You can make
many instances of a television from one set of plans, just as you can make many OBJECTS from
one CLASS. The individual buttons and controls on the television are the equivalent of METHODS,
while all of the controls, taken as a whole, are equivalent to the INTERFACE.
We don't need to know how a television works internally to use it and benefit from it. Likewise, we
don't need to know how an object works internally to use it and benefit from it. We only need to
know the intended job of the object, and how to communicate with it from the outside. The internal
workings are well "hidden", which is called encapsulation. Since we can't "look inside" an Object, it's
not possible to directly manipulate internal variables or memory. This provides an increased level of
security for the internal code and data.

· INSTANCE DATA: Each CLASS defines some INSTANCE variables which are present in every
object. When you create multiple objects (of the same class), each object gets its own unique copy
of them. These variables are called INSTANCE variables because a new set of them is created for
each instance of the object. For example, if you created a CUSTOMER object for each customer of
your business, you might have INSTANCE variables for the Name, Address, Balance owed, etc.
 Each object would have its own set of INSTANCE variables to describe the attributes of that
particular customer. INSTANCE variables are always private to the object. They can be accessed
directly from any METHOD on the object, but they are invisible to any code outside of the object.

· VIRTUAL FUNCTION TABLE: Commonly called a VFT or VTBL, this is a set of function code
pointers, one for each METHOD or PROPERTY in an interface. This is a tool used internally to direct
program execution to the correct method or property you wish to execute. While it is a vital and
integral part of every object, you need give it no concern other than to be aware of its existence.
 PowerBASIC manages these items for you, with no programmer intervention required.

See Also

What is an object, anyway?

Where are objects located?

Why should I use objects?

Are there other important "Buzz-Words"?

Are there other important "Buzz-Words"?

Are there other important "Buzz-Words"?

PowerBASIC Compiler for Windows Version 10

293 / 2126

· GUID: This is a "Globally Unique Identifier", a very large number which is used to uniquely identify
every interface, every class, and every COM application or library which exists anywhere in the world.
GUID's identify the specific components, wherever and whenever they may be used. A GUID is a 16-
byte (128-bit) value, which could be represented as an integral value or a string. This 128-bit item is
large enough to represent all the possible values, anywhere in the world. The PowerBASIC GUID$()
function (or a hot-key in the PowerBASIC IDE) can generate a random GUID which is statistically
guaranteed to be unique from any other generated GUID. Each of these identifying GUID's may be
assigned by the programmer, or they will be randomly assigned by the PowerBASIC compiler. When
a GUID is written in text, it takes the form: {00CC0098-0000-0000-0000-0000000000FF}.

· DIRECT INTERFACE: This is the most efficient form of interface. When you call a particular
METHOD or PROPERTY, the compiler simply performs an indirect jump to the correct entry point
listed in the virtual function table (VFT or VTBL). This is just as fast as calling a standard Sub or
Function, and is the default access method used by PowerBASIC.

· DISPATCH INTERFACE: This is a slow form of interface, originally introduced as a part of Microsoft
Visual Basic. When you use DISPATCH, the compiler actually passes the name of the METHOD
you wish to execute as a text string. The parameters can also be passed in the same way. The
object must then look up the names, and decide which METHOD to execute, and which parameters
to use, based upon the text

 provided. This is a very slow process. Many scripting languages still use DISPATCH as their
sole method of operation, so continued support is necessary.

· DUAL INTERFACE: This is a combination of a Direct Interface and a Dispatch Interface. This most
flexible form allows either option to be used, depending upon how the calling application is
implemented.

· AUTOMATION: This is a special calling convention, defined by MS later in the evolution of COM and
objects. An Automation object is simply one which adheres to the rules for Automation COM
Objects. It may offer just a direct interface, just a Dispatch interface, or both of them (DUAL). It
should be noted that some programmers use the word AUTOMATION to mean DISPATCH. Even
though that's not correct, you should keep the possibility in mind whenever you encounter the term.
 Automation Methods must use parameters, return values, and assignment variables which are
AUTOMATION compatible: BYTE, WORD, DWORD, INTEGER, LONG, QUAD, SINGLE, DOUBLE,
CURRENCY, OBJECT, STRING, WSTRING, and VARIANT. A User Defined Type used as a return
value or parameter will be converted to a BYVAL DWORD. All Automation Methods return a hidden
result code which is called the hResult. This is not really a handle, as the name suggests, but a
result code to report the success or failure of a call to a METHOD or PROPERTY.

· IUNKNOWN: This is the name of a special interface which is the basis for every object. It has three
methods, which are always defined as the first three methods in every interface. These 3 methods
are used by compilers (PowerBASIC or others) to look up other interfaces on the object, and to keep
track of usage of this object. While IUNKNOWN is mandatory for every object, you won't ever need
to reference it directly. PowerBASIC handles all those messy details automatically.

· OBJECT REFERENCE: This is a reference (a pointer) to an object, which is the only way objects
are used. In PowerBASIC, an object variable initially contains NOTHING. When you create an
object, or duplicate one, a reference to that object is placed in an object variable by the compiler.
 That is, a pointer to the object is automatically inserted in the object variable. It is now considered
to contain an OBJECT REFERENCE until such time as the reference is deleted or set to NOTHING.

· COMPONENT: An object that encapsulates code and data, providing a set of publicly available
services.

· MONIKER: An object that implements the IMoniker interface. A moniker acts as a name that
uniquely identifies a COM object. In the same way that a path identifies a file in the file system, a
moniker identifies a COM object in the directory namespace.

See Also

PowerBASIC Compiler for Windows Version 10

294 / 2126

What is an object, anyway?

What are the parts of an object?

What does a Class look like?

What is a Base Class?

What does a Class look like?

What does a Class look like?
Here is the PowerBASIC source code for a very simple class. It has just one interface and one instance
variable.

CLASS MyClass
 INSTANCE Counter AS LONG
 INTERFACE MyInterface
 INHERIT IUNKNOWN ' inherit the base class
 METHOD BumpIt(Inc AS LONG) AS LONG
 Temp& = Counter + Inc
 INCR Counter
 METHOD = Temp&
 END METHOD
 END INTERFACE
 ' more interfaces could be implemented here
END CLASS

Just like other blocks of code in PowerBASIC, a class is enclosed in the CLASS statement and the END
CLASS statement. Every class is given a text name (in this case "MyClass") so it can be referenced easily
in the program.

The INSTANCE statement describes INSTANCE variables for this class. Each object you create from this
class definition contains its own private set of any INSTANCE variables. So, if you had a SHIRT class, you
might have an instance variable named COLOR, among others. Then, if you create two objects from the
class, the COLOR instance variable in the first object might contain WHITE, while the second might be
BLUE.

Next comes the INTERFACE and END INTERFACE statements. They define the one interface in this class,
and they enclose the methods and properties in this interface. Every interface is given a text name (in this
case "MyInterface") so it can be referenced easily in the program. You could add any number of additional
interfaces to this class if it suited the needs of your program.

The first statement in every Interface Block is the INHERIT statement. As you learned earlier, every interface
must contain the three methods of IUNKNOWN as its first three methods. In this case, INHERIT is a
shortcut, so you don't have to type the complete definitions of those methods in every interface. There are
more complex (and powerful) ways to use INHERIT as well, but more about that later.

Finally, we have the METHOD and END METHOD statements. They are just about identical to a
FUNCTION block, but they may only appear in an interface. In this case, the METHOD is named "BumpIt".
 It takes one ByRef parameter, and returns a long integer result.

How do you reference this object?

FUNCTION PBMAIN()
 DIM Stuff AS MyInterface
 LET Stuff = CLASS "MyClass"
 x& = Stuff.BumpIt(77)
END FUNCTION

The first line of PBMain (DIM...) defines an object variable for an interface of the type "MyInterface". The
LET statement creates an object of the CLASS "MyClass", and assigns an object reference to the object
variable named "Stuff". The next line tells PowerBASIC that you want to execute the method "BumpIt", and
assign the result to the variable "x&". It's just that simple!

PowerBASIC Compiler for Windows Version 10

295 / 2126

See Also

What is an object, anyway?

What is a Base Class?

What does an Interface look like?

Just what is COM?

What is a Base Class?

What is a Base Class?
The term "Base Class" is truly a misnomer, since it's actually an interface. The truth is, this term probably
originated from those who use a programming language which supports only one interface per class. (Note:
PowerBASIC allows an unlimited number of interfaces.) On those limited platforms, the distinction between
a class and an interface tends to blur. However, since the term "Base Class" enjoys fairly wide usage
already, it's probably best if we just learn to live with it and love it.

Every PowerBASIC interface must ultimately derive from the IUnknown interface, since it provides
information about an object that the compiler must have to manage these affairs accurately. Previously, we
discussed the concept of adding INHERIT IUNKNOWN as the first line of every Interface Block. In that way,
PowerBASIC just inserts the necessary source code for you, so that the new interface you are creating will
derive all the functionality of IUNKNOWN, but still save you from all of that typing. What we didn't tell you at
first was that there are really 3 System Base Classes in PowerBASIC. The other two can be used, because
they, too, are derived from IUNKNOWN.

So, the real definition of a Base Class is "The interface from which a newly created interface is derived". To
implement any of the system interfaces, you would just use INHERIT followed by the Base Class name as
the first line of the interface block. They are:

INHERIT IUNKNOWN

If this option is chosen, your methods may only be accessed using a Direct Interface, the most efficient
form of access. It uses the STDCALL calling conventions, and uses return value conventions normally
associated with C++. This style of Base Class is also known as a CUSTOM INTERFACE, so you can use
"INHERIT CUSTOM" in place of "INHERIT IUNKNOWN" if that's more comfortable for you.

INHERIT IAUTOMATION

If this option is chosen, your methods may only be accessed using a Direct Interface, the most efficient
form of access. It uses the STDCALL calling conventions, and uses return value conventions involving a
hidden parameter on the stack. Automation Methods must use parameters, return values, and assignment
variables which are AUTOMATION compatible: BYTE, WORD, DWORD, INTEGER, LONG, QUAD, SINGLE,
DOUBLE, CURRENCY, OBJECT, STRING, WSTRING, and VARIANT. A User Defined Type used as a
return value or parameter will be converted to a BYVAL DWORD. All Automation Methods return a hidden
result code which is called the hResult. This is not really a handle, as the name suggests, but a result code
to report the success or failure of a call to a METHOD or PROPERTY. "AUTOMATION" is a synonym for
"IAUTOMATION", so you can substitute "INHERIT AUTOMATION" in your code if that's more comfortable for
you. Automation Interfaces have become more popular than Custom Interfaces in recent times, likely due to
availability of the hResult hidden result code.

INHERIT IDISPATCH

If this option is chosen, PowerBASIC will automatically create a DUAL Interface for you. That means your
methods can be accessed using a Direct Interface (using Automation conventions described above), or the
slower DISPATCH Interface, if that's what is needed. This is certainly the most flexible Base Class, and the
only one which should be used if your methods will be accessed by code from a programming language
other than PowerBASIC. In a DUAL interface, both forms return the hResult hidden result to report the

PowerBASIC Compiler for Windows Version 10

296 / 2126

success or failure of the operation. You may use the term "INHERIT DUAL" in place of "INHERIT
IDISPATCH", if that's more comfortable for you. While a class may have any number of direct interfaces,
only one DUAL or IDISPATCH interface is allowed.

See Also

What is an object, anyway?

What does a Class look like?

What does an Interface look like?

Just what is COM?

What does an Interface look like?

What does an Interface look like?
An INTERFACE is a definition of a set of methods and properties which may be implemented on an object.
 Think of it as much like a TYPE declaration, except that it contains Method and Property declarations
instead of member variables. One interface definition may be used in many different classes and objects.

An Interface may appear in two general forms: the declaration form and the implementation form.

In the declaration form, the Interface just provides the "signature" of the member methods, without any other
source code:

INTERFACE MyInterface
 INHERIT IAutomation
 METHOD Method1(parm AS LONG)
 PROPERTY GET Prop1() AS WSTRING
 PROPERTY SET Prop1(BYVAL TEXT AS WSTRING)
END INTERFACE

This type of declaration interface can be used to provide a description of external interfaces, which you plan
to access through COM services, or just as additional self-documentation of internal code.

In the implementation form, it is part of a CLASS definition, so it contains the complete source code to
implement each of the member Methods and Properties.

CLASS AnyClass
 INTERFACE AnyInterface
 INHERIT IAutomation
 METHOD Method1(parm AS LONG)
 CALL abc(parm)
 END METHOD

 METHOD Method2(parm AS LONG)
 CALL abc(Parm*1)
 END METHOD
 END INTERFACE
END CLASS

In this case, you have the complete definition of an object, with code implemented so the methods can be
called and executed.

The first entry in every INTERFACE block must be the base class upon which it is built. In PowerBASIC,
you choose one of the System Base Classes (IUnknown, IAutomation, or IDispatch), or you might decide to
inherit a User Base Class instead.

INTERFACE CustomIface
 INHERIT IUNKNOWN
 METHOD MethodDef()...
END INTERFACE

PowerBASIC Compiler for Windows Version 10

297 / 2126

The above code defines a custom interface whose methods are available for direct access only. It uses
custom calling conventions and does not support an hResult (OBJRESULT) return value.

INTERFACE AutoIface
 INHERIT IAutomation
 METHOD MethodDef()...
END INTERFACE

The above code defines an automation interface whose methods are available for direct access only. It uses
automation calling conventions and always supports an hResult (OBJRESULT) return value. The above two
forms will typically be used for internal objects, since they offer the best performance. Every PowerBASIC
interface and every COM interface must ultimately inherit from IUnknown. As required base classes, the
IUnknown and IAutomation declarations are built into the PowerBASIC Compiler.

INTERFACE DispatchIface
 INHERIT IDISPATCH
 METHOD MethodDef()...
END INTERFACE

The above code defines a dual interface whose methods are available for both direct access and Dispatch
access. This is the form you will typically use for COM objects, since it offers the best compatibility with
varied client modules.

Every method and property in a dual interface needs a positive, long integer value to identify it. That integer
value is known as a DispID (Dispatch ID), and it's used internally by COM services to call the correct
function on a Dispatch interface. You can specify a particular DispID by enclosing it in angle brackets
immediately following the Method/Property name in an Interface definition block.

INTERFACE DualIface
 INHERIT IDISPATCH
 METHOD MethodOne <76> ()
 METHOD MethodTwo <77> ()
END INTERFACE

If you don't specify a DispID, PowerBASIC will assign a random value for you. This is fine for internal
objects, but may cause a failure for published COM objects, as the DispID could change each time you
compile your program.

See Also

What is an object, anyway?

What does a Class look like?

What is a Base Class?

Just what is COM?

Just what is COM?

Just what is COM?
COM is an acronym. It represents the words "Component Object Model".

The short answer is that COM defines a way to communicate between modules of code. The slightly longer
answer follows.

You should know that every object created or defined in PowerBASIC is fully compatible with the COM
specification. Many popular compilers are not able to make that claim accurately. The COM specification
defines a standardized method of communication between modules of code (frequently called components),
regardless of the platform or the tool used to create them. COM components are reusable chunks of code
and associated data, which may be accessed by other "COM-Aware" components and applications.

One of the most frustrating things about this technology has been the ever-changing list of buzz-words used
to describe it. We've evolved through OLE, VBX, and OCX, to COM, ActiveX, and more. Though nuances of

PowerBASIC Compiler for Windows Version 10

298 / 2126

difference abound, the important thing to remember is that COM and ActiveX describe a means of accessing
code and data located outside of the current module. COM+ refers to some extensions which are specific
to Win2000, WinXP, and WinVista. Throughout this discussion, we'll use the terms COM Object and
ActiveX Object to describe components: reusable chunks of code and associated data.

Prior versions of PowerBASIC introduced client COM services, which were accessible through the COM
DISPATCH interface. While the DISPATCH interface is very flexible and easy-to-use, that very flexibility
adds a level of overhead which is unacceptable for many applications. This version of PowerBASIC adds the
capability to create and access COM objects through a DIRECT INTERFACE or a DISPATCH INTERFACE.

All objects in PowerBASIC, COM or not, follow all the guidelines and implementation rules established for
COM Objects. This simplifies usage by the programmer, yet adds no measurable overhead at run-time.
PowerBASIC encapsulates all the low-level details of the actual COM communication process. This
provides a straightforward way to load and communicate with a COM component using BASIC syntax.
 You'll find that the PowerBASIC object implementation is very efficient, with virtually no degradation of
execution speed as compared to standard Subs and Functions.

See Also

What is an object, anyway?

What is a COM component?

How do you publish an object?

How are GUID's used with objects?

What is a COM component?

What is a COM component?
A COM component is commonly referred to as a COM Object. We can visualize a COM component or
Object as simply a "black box" that comprises a set of methods and associated data. Internally, these
Objects contain reusable code (Methods), and provide ways for an application to call the object's Methods
and read/write its associated data through its Interfaces. Notice that this is the same definition as an object
internal to your program. The difference is that COM offers a way to perform this functionality on an object
external to your program.

A COM Component is generally known as a COM SERVER, because it serves up information or actions
requested by a COM CLIENT. A COM SERVER makes its Methods and Properties public, so that a COM
CLIENT can call them as needed.

COM Components usually take the form of an EXE, or DLL/OCX file, but the actual file extension is largely
irrelevant. However, DLL/OCX versions of a component are generally referred to as "in-process", since they
are loaded into the address space of the calling application. EXE-versions are typically "out-of-process"
because they will not share the address space of the calling application.

To summarize, a COM Object (COM Server) is a special form of code library (similar to a standard DLL) that
conforms to the COM specification. It provides at least one public interface, and is identified by a globally
unique PROGID and CLSID.

Every class is associated with a GUID (a 128-bit number or string) which uniquely identifies this particular
class from all others, anywhere in the world. This identifier is called the Class ID, or CLSID. A friendlier
version of the CLSID is a shorter text name, which also identifies the Class. This text name is known as the
PROGID, though it's possible this PROGID may not be totally unique. As it's a simpler construct, it might
be duplicated in another program. These identifiers are stored in the Windows Registry when the COM
component is installed and registered. PowerBASIC programmers reference COM components by their
PROGID string, and rarely by their CLSID. However, since these two items are stored in pairs, it is
straightforward to retrieve the matching PROGID for a known CLSID, and vice versa.

As mentioned earlier, you don't need to know how a television works internally to use it and benefit from it.
 Likewise, you don't need to know how a COM Object works internally to use it and benefit from it. You only

PowerBASIC Compiler for Windows Version 10

299 / 2126

need to know the intended job of the object, and how to communicate with it from the outside. The internal
workings are well "hidden", which is called encapsulation. Since we aren't able to "look inside" a COM
Object, it's not possible to directly manipulate internal variables or memory. This provides a increased level
of security for the internal code and data.

See Also

What is an object, anyway?

Just what is COM?

How do you publish an object?

How are GUID's used with objects?

How do you publish an object?

How do you publish an object?
Publishing an object means making it available for access and use by other applications through the
facilities of the COM Services of Windows. With some compilers, this requires pages upon pages of code.
 With PowerBASIC, you'll find it's fairly straightforward. Just add a Class Id (CLSID) GUID and the words
"AS COM" to the end of the CLASS statement. Then, add an Interface ID (IID) to the end of the
INTERFACE statement. Believe it or not, that's just about it!

$MyClassGuid = GUID$("{00000099-0000-0000-0000-000000000008}")
$MyIfaceGuid = GUID$("{00000099-0000-0000-0000-000000000009}")

CLASS MyClass $MyClassGuid AS COM
 INTERFACE MyInterface $MyIfaceGuid
 INHERIT IAutomation
 METHOD Method1(parm AS LONG)
 CALL abc(parm)
 END METHOD
 END INTERFACE
END CLASS

PowerBASIC handles all the messy details of COM for you. The name of the CLASS (in this case
MyClass) will be used as the ProgID for COM registration of the DLL. The GUID's you selected will be used
for the CLSID and IID, so you're ready to go...

See Also

What is an object, anyway?

Just what is COM?

What is a COM component?

How are GUID's used with objects?

What is inheritance?

What is inheritance?
Inheritance is all about code reuse. You can reuse the definitions of an interface, or you can reuse complete
sections of code.

INTERFACE INHERITANCE is defined by COM standards, and available for use by any COM object. This
form of inheritance applies only to the definition of each item in an interface, rather than the underlying code.

PowerBASIC Compiler for Windows Version 10

300 / 2126

 Interface inheritance gives you the option to use one interface in multiple classes (objects). Because the
interface definition remains identical in each instance, you can often use the identical (or similar) code to
manipulate different objects. With this form of inheritance, the programmer must provide appropriate code
for each of the Methods and Properties in every implementation of the interface.

IMPLEMENTATION INHERITANCE is the process whereby a CLASS derives all of the functionality of an
interface implemented elsewhere. That is, the derived class now has all the methods and properties of this
new, extended version of a Base Class! This form of inheritance is offered by PowerBASIC, even though it is
not required by the COM Specification.

You can extend the functionality of an interface you created earlier by adding new methods and properties to
the derived interface/class. The syntax for adding extra methods (not in the Base Class) is the same as
adding methods to a standard class -- just add methods and properties, as always.

You can add to, or replace, the functionality of a particular method or property by coding a replacement
which is preceded by the word OVERRIDE. The overriding method must have the same name and signature
(parameters, return value, etc.) as the one it replaces. When you implement a new method in a derived
class, you may call a method in the Base Class by using the pseudo-object MYBASE. This allows you to
extend the original functionality, or replace it entirely.

Inheritance is implemented by use of the INHERIT statement within an INTERFACE / END INTERFACE
block. The word INHERIT is followed by the class name and interface name of the code to be inherited.
 Both are necessary, because COM allows you to have multiple implementations of any particular interface.

CLASS MyClass
 INTERFACE MyFace
 INHERIT IDISPATCH
 METHOD aaa()
 ' code...
 END METHOD
 METHOD bbb()
 ' code...
 END METHOD
 METHOD ccc()
 ' code...
 END METHOD
 METHOD ddd()
 ' code...
 END METHOD
 END INTERFACE
END CLASS

CLASS TheClass
 INTERFACE TheFace
 INHERIT MyClass, MyFace
 OVERRIDE METHOD bbb()
 ' new code
 END METHOD
 OVERRIDE METHOD ddd()
 ' new code
 END METHOD
 METHOD xxx()
 END METHOD
 END INTERFACE
END CLASS

Note that the derived interface "TheFace" first inherits IDISPATCH, and then, all four methods from "MyFace"
(aaa,bbb,ccc,ddd). However, because of the OVERRIDE statements, both bbb() and ddd() are replaced by
newer versions of these methods. Note that a derived class may be inherited by yet another class,
repetitively. The depth of this inheritance is limited only by available memory.

The pseudo-object MYBASE may be used within a derived class to access a method in the original base
class. For example, if you placed:

PowerBASIC Compiler for Windows Version 10

301 / 2126

MyBase.bbb()

in the above derived code, it would execute the method bbb() in the parent interface/class. You could then
use the results to extend or modify actions in your newer code.

When you inherit an interface, the inherited constructor and destructor methods (CREATE and DESTROY)
are disabled, in case you wish to change their functionality in the derived interface. If you wish to execute
them as-is, you can simply add MYBASE.CREATE and/or MYBASE.DESTROY in the derived
CREATE/DESTROY methods.

See Also

What is an object, anyway?

What does an Interface look like?

Just what is COM?

How do you create an object?

How do you create an object?

How do you create an object?
This operation is frequently known as "Creating an INSTANCE of an OBJECT." Yes, this is just one more
buzz-word -- but you'll hear it frequently.

In order to create an object, you first need an OBJECT VARIABLE. This object variable can be located most
anywhere in your program, and have any scope: LOCAL, GLOBAL, THREADED, etc. This object variable is
declared by using the name of the interface you wish to access on the object. This is done so that
PowerBASIC knows which Methods can be called via this variable. This variable is expected to be a
"container" for an OBJECT REFERENCE (that is, a pointer to the actual object). Initially, this variable is
automatically set to "NOTHING". If you wish to use the generic DISPATCH interface to access the object,
you would use the name IDISPATCH instead.

LOCAL object1 AS MyInterface
LOCAL object2 AS IDISPATCH

There is actually one more special case, that of an IDBIND DISPATCH interface. Since object creation
works the same on those interfaces, as well, we'll have more on that special topic in a later section. So,
now that you have two empty object variables, what do you do with them? Use the assignment statement
(LET) to create an object!

To create an object, you need to specify a CLASS and an INTERFACE. The interface is implied by the
object variable you use, so it only remains that you specify the CLASS name. If the requested CLASS is
internal to your program, use the word CLASS:

LET object1 = CLASS "MyClass"

The class name ("MyClass") must be specified as a quoted string literal, which is the name of a class
implemented within the program. Since the class is internal (the name is known at compile-time), you may
not use a string variable or expression. Upon execution, a new object is created, and a reference to that
object is assigned to the object variable object1. The interface requested is determined by the original
declaration of object1. If the interface name is DISPATCH, you can call the methods with the OBJECT
statement -- otherwise, regular Method and Property references are used for direct interfaces.

LET objvar = NEWCOM PROGID$
LET objvar = GETCOM PROGID$
LET objvar = ANYCOM PROGID$

This form of the LET statement is used to obtain an object reference external to the program using the COM
facilities of Windows. If the requested object is in a DLL (an in-process server), you will always use the
NEWCOM option, as you're asking Windows to supply a new object. If the request is successful, an
OBJECT REFERENCE (a pointer to the object) is assigned to the objvar.

If the requested object is in an EXE (out-of-process server), you may use any of the three options. If the

PowerBASIC Compiler for Windows Version 10

302 / 2126

director word NEWCOM is specified, a new instance of a COM application is created. With GETCOM, an
interface will be opened on an existing, running application, which has been registered as the active
automation object for its class. With ANYCOM, the compiler will first try to use an existing, running
application if available, or a new instance if not.

Of course, as with any other LET (assignment) statement, you are free to simply omit the word LET entirely.

If an object creation or assignment fails for any reason, the object variable is set to NOTHING. If this
statement fails, no errors are generated, nor is an OBJRESULT set. You should test for success of the
operation with ISOBJECT(objvar) before trying to use the object or execute its methods.

But what about the rare case when there's no ProgID$ available? There's an answer for that, too.

LET objvar = NEWCOM CLSID ClassID$
LET objvar = GETCOM CLSID ClassID$
LET objvar = ANYCOM CLSID ClassID$

This new form also obtains a COM object reference, just as in the previous example. However, it is only
used in the unusual case of a COM Object which has no ProgID. It works exactly as the original form
above, except that it describes the requested object by its 16-byte GUID which is the ClassID of the object.

LET objvar = NEWCOM CLSID ClassID$ LIB DLLPath$

PowerBASIC offers the unique ability to create and reference COM objects without any reference to the
registry at all. As long as you know the CLSID (Class ID) and the file path/name of the DLL to be accessed,
you can do so with no registry access at all. You don't need a special type of COM server. This technique
can be used with any server, whether created by PowerBASIC or another compiler. By using this method of
object creation, there is simply no need for the server to be registered at all. That allows you to keep local
copies of the COM servers you use, with no chance they will be altered or replaced by another application.
You use the above form, where the clause "CLSID ClassID$" identifies the 16-byte Class ID, and the clause
"LIB DllPath$" identifies the file path and file name of the COM Server. Once you've obtained the COM
object reference in objvar, it is used exactly as you would with a traditional object.

See Also

What is an object, anyway?

Just what is COM?

How do you duplicate an object variable?

How do you call a Direct Method?

How do you duplicate an object variable?

How do you duplicate an object variable?
In the previous section, you learned to create an object, which assigns an OBJECT REFERENCE to the
object variable:

LOCAL object1 AS MyInterface
LET object1 = CLASS "MyClass"

What if you need to duplicate it? Well, you first must decide whether you want to create a completely new
object, or if you just want a second object variable which points the same object. This is a very important
distinction. With two objects, they each have their own set of INSTANCE variables. The variables in each
set remain independent of the other set until they are destroyed. You would create two objects by writing:

LOCAL object1, object2 AS MyInterface
LET object1 = CLASS "MyClass"
LET object2 = CLASS "MyClass"

If you have two object variables pointing to the same object, they would share the same set of INSTANCE
variables. You would create two OBJECT REFERENCES to one OBJECT by writing:

LOCAL object1, object2 AS MyInterface
LET object1 = CLASS "MyClass"

PowerBASIC Compiler for Windows Version 10

303 / 2126

LET object2 = object1

Of course, now we can take this one step further. You already know that an OBJECT may have two (or even
more) interfaces defined in a CLASS. How would you actually use two interfaces on the same object? Just
declare an object variable for each interface, much like:

LOCAL object1 AS MyInterface
LOCAL object2 AS HisInterface
LET object1 = CLASS "MYClass"
LET object2 = object1

The code is very much like the preceding example, except that the two object variables are declared as two
different interfaces. When the last line is executed, PowerBASIC looks at the object variables to determine if
they represent the same interface or not. If they do, it simply creates an extra variable, pointing to the same
object. If they differ, PowerBASIC checks object to ensure the new interface is supported. If so, it creates
a new OBJECT REFERENCE via the new interface, and assigns it to object2. It's just that simple!

The final issue in this topic is how to destroy an object variable. Generally speaking, you do nothing at all.
 When an object variable goes out of scope, PowerBASIC will handle all the messy details for you. For the
most part, just forget about it. However, in the rare case that you need to destroy an object variable at a
specific time and place, you can do so with the following statement:

object1 = NOTHING

Setting an object variable to NOTHING handles it all for you.

See Also

What is an object, anyway?

Just what is COM?

How do you create an object?

How do you call a Direct Method?

How do you call a Direct Method?

How do you call a Direct Method?
First, you should remember that INSTANCE variables may only be accessed from within the object. The
only way to access them from the "outside", is by a parameter or return value of a METHOD or PROPERTY
function. Of course, Methods and Properties may also utilize the other data scopes: Global, Local, Static,
and Threaded.

In PowerBASIC, the basic unit of code in an object is the METHOD. A METHOD is a block of code, very
similar to a user-defined function. Optionally, it can return a value, like a FUNCTION, or merely act as a
subroutine, like a SUB. Methods are implemented when you write:

METHOD NAME [ALIAS "altname"] (var AS type...) [AS TYPE]
 [statements]
 METHOD = expression
END METHOD

Methods can only be called through an object variable, which is an integral part of the calling syntax. The
object variable must be valid, that is, it must contain a valid object reference which was assigned to it with
the LET statement. If you attempt to call a method on a null object, you'll likely experience a GPF and a
total failure of your program. Methods may be called by writing:

DIM ObjVar AS MyInterface
LET ObjVar = CLASS "MyClass"

[CALL] objvar.Method1(param)

Note the word CALL is optional. This example shows how to call "Method1" when "Method1" does not
return a value. If it did have a return value, use this form instead:

PowerBASIC Compiler for Windows Version 10

304 / 2126

var = ObjVar.Method1(param)

A PROPERTY is a special type of METHOD, which is only designed to GET or SET INSTANCE data in an
object. While the work of a PROPERTY could readily be accomplished with a standard METHOD, this
distinction is convenient to emphasize the concept of encapsulation of INSTANCE data within an object.
 There are two forms of PROPERTY procedures, PROPERTY GET and PROPERTY SET. As implied by
the names, the first form is used to retrieve a data value from the object, while the second form is used to
assign a value. Properties are implemented:

PROPERTY GET NAME [ALIAS "altname"] (BYVAL var AS type...) [AS TYPE]
 [statements]
 PROPERTY = expression
END PROPERTY

PROPERTY SET NAME [ALIAS "altname"] (BYVAL var AS type...)
 [statements]
 variable = value
END PROPERTY

When you use PROPERTY SET, the last (or only) parameter is used to pass the value to be assigned. A
PROPERTY may be considered "Read-Only" or "Write-Only" by simply omitting one of the definitions.
However, if both GET and SET forms are defined for a particular Property, parameters and the property must
be identical in both forms, and they must be paired. That is, the PROPERTY SET must immediately follow
the PROPERTY GET. It's important to note that all PROPERTY parameters must be declared as BYVAL.

Properties can only be called through an object variable, which is an integral part of the calling syntax. The
object variable must be valid, that is, it must contain a valid object reference which was assigned to it with
the LET statement.

You can access a PROPERTY GET with:

DIM ObjVar AS MyInterface
LET ObjVar = CLASS "MyClass"

var = ObjVar.Prop1(param)

You can access a PROPERTY SET with:

DIM ObjVar AS MyInterface
LET ObjVar = CLASS "MyClass"

[CALL] ObjVar.Prop1(param) = expr

Note that the choice of Property procedure is syntax directed. In other words, depending upon the way you
use the name, PowerBASIC will automatically decide whether the GET or SET PROPERTY should be
called.

In every Method and Property, PowerBASIC automatically defines a pseudo-variable named ME, which is
treated as a reference to the current object. Using ME, it's possible to call any other Method or Property
which is a member of the class:

var = ME.Method1(param)

Methods and Properties may be declared (using AS type...) to return a string, any of the numeric types, a
specific class of object variable (AS MyInterface), a Variant, or a user defined Type.

See Also

What is an object, anyway?

Just what is COM?

How do you create an object?

What is a Compound Object Reference?

What is a Compound Object Reference?

PowerBASIC Compiler for Windows Version 10

305 / 2126

What is a Compound Object Reference?
There is an interesting "shortcut" available to you by using "Compound Object References". In some cases,
you'll find that you can combine two, three, or more method calls into a single line of PowerBASIC source
code.

The notion here is that you may need to execute a METHOD which returns an object variable, just so you
can use that temporary object variable to call another method. In fact, you may even find you need to nest
this type of operation several levels deep! While this is certainly workable, you may find yourself with a
maze of temporary objects and object variables, all of which need to be destroyed at some point.

For example, assuming you have an object variable named MyDBase, which is an instance of the interface
named DataBase. The interface DataBase offers a method named ErrorObject which returns an Errors
object. Errors is a second interface, which has a method named Count. Count returns a long integer, to tell
the number of errors which have occurred. In order to retrieve Count, you would normally have to write:

LOCAL MyErrors AS Errors
LET MyErrors = MyDBase.ErrorObject
ErrorCount& = MyErrors.Count
MyErrors = NOTHING

However, with Compound Object References, this can be combined into a single line of code:

ErrorCount& = MyDBase.ErrorObject.Count

In particular, note that the temporary object called MyErrors is gone completely, since PowerBASIC
automatically handles the lifetime of temporary objects. You can even declare the methods and properties
with parameters, if it's appropriate to allow:

ErrorCount& = MyDBase.ErrorObject(item&).Count

See Also

What is an object, anyway?

Just what is COM?

How do you create an object?

What is an hResult?

What is an hResult?

What is an hResult?
Methods may optionally have an explicit return value which you specifically declare. However, in addition to
this, all Automation or Dispatch Methods and Properties have another "Hidden Return Value", which is
cryptically named hResult. While the name would imply a handle for a result, it's really not a handle at all,
but just a long integer value, used to indicate the success or failure of the Method. After calling a Method or
Property, you can retrieve the hResult value with the PowerBASIC function OBJRESULT. The most
significant bit of the value is known as the severity bit. That bit is 0 (value is positive) for success, or 1
(value is negative) for failure. The remaining bits are used to convey error codes and additional status
information. If you call any object Method/Property (either Dispatch or Direct), and the severity bit in the
returned hResult is set, PowerBASIC generates Run-Time error 99: Object error. When you create a
Method or Property, PowerBASIC automatically returns an hResult of zero, which implies success. You
can return a non-zero hResult value by executing a METHOD OBJRESULT = expr within a Method, or
PROPERTY OBJRESULT = expr within a Property.

See Also

What is an object, anyway?

Just what is COM?

PowerBASIC Compiler for Windows Version 10

306 / 2126

How do you create an object?

How do you register a COM Component?

How do you register a COM Component?

How do you register a COM Component?
All COM Components (COM Servers) must be listed in the system registry. A variety of information is kept
there, but the most important is the definition of the PROGID and the CLSID. These are the terms used to
uniquely identify the component, so that the operating system can locate them for a client program that
wants to use their services. PowerBASIC COM DLL's provide self-registration and unregistration services by
automatically exporting two Subs:

Declare Function DllRegisterServer alias "DllRegisterServer" as long
Declare Function DllUnregisterServer alias "DllUnregisterServer" as long

You could write a small executable program to call these registration functions, or use the Microsoft
registration utility (REGSVR32.EXE) for that purpose. REGSVR32.EXE is included with Windows.

See Also

What is an object, anyway?

Just what is COM?

What is a COM component?

How do you publish an object?

What is a Class Method?

What is a Class Method?

What is a Class Method?
A CLASS METHOD is one which is private to the class in which it is located. That is, it may only be called
from a METHOD or PROPERTY in the same class. It is invisible elsewhere. The CLASS METHOD must
be located within a CLASS block, but outside of any INTERFACE blocks. This shows it is a direct member
of the class, rather than a member of an interface.

CLASS MyClass
 INSTANCE MyVar AS LONG

 CLASS METHOD MyClassMethod(BYVAL param AS LONG) AS WSTRING
 METHOD = "My" + STR$(param + MyVar)
 END METHOD

 INTERFACE MyInterface
 INHERIT IUNKNOWN
 METHOD MyMethod()
 Result$$ = ME.MyClassMethod(66)
 END METHOD
 END INTERFACE
END CLASS

In the above example, MyClassMethod() is a CLASS METHOD, and is always accessed using the pseudo-
object ME (in this case ME.MyClassMethod). Class methods are never accessible from outside a class, nor
are they ever described or published in a type library. By definition, there is no reason to have a private
PROPERTY, so PowerBASIC does not offer a CLASS PROPERTY structure.

PowerBASIC Compiler for Windows Version 10

307 / 2126

See Also

What is an object, anyway?

What does a Class look like?

Just what is COM?

What are Constructors and Destructors?

What are Constructors and Destructors?

What are Constructors and Destructors?
There are two special class methods which you may optionally add to a class. They meet a very specific
need: automatic initialization when an object is created, and cleanup when an object is destroyed.
 Technically, they are known as constructor and destructor methods, and can perform almost any
functionality needed by your object: initialization of variables, reading/writing data to/from disk, etc. You do
not call these methods directly from your code. If they are present in your class, PowerBASIC
automatically calls them each time an object of that class is created or destroyed. If you choose to use
them, these special class methods must be named CREATE and DESTROY. They may take no
parameters, and may not return a result. They are defined at the class level, so they may never appear
within an INTERFACE definition.

CLASS MyClass
 INSTANCE MyVar AS LONG

 CLASS METHOD CREATE()
 ' Do initialization
 END METHOD

 CLASS METHOD Destroy()
 ' Do cleanup
 END METHOD

 INTERFACE MyInterface
 INHERIT IUNKNOWN
 METHOD MyMethod()
 ' Do things
 END METHOD
 END INTERFACE
END CLASS

As displayed above, CREATE and DESTROY must be placed at the class level, before any INTERFACE
definitions. You should note that it's not possible to name any standard method (one that's accessible
through an interface) as CREATE or DESTROY. That's just to help you remember the rules for a
constructor or destructor. However, you may use these names as needed to describe a method external to
your program.

A very important caution: You must never create an object of the current class in a CREATE method. To
do so will cause CREATE to be executed again and again until all available memory is consumed. This is a
fatal error, from which recovery is impossible.

See Also

What is an object, anyway?

Just what is COM?

What is a Class Method?

PowerBASIC Compiler for Windows Version 10

308 / 2126

What is DISPATCH?

What is DISPATCH?

What is DISPATCH?
The DISPATCH INTERFACE is a slower form of interface, originally introduced as a part of Microsoft Visual
Basic. An implementation of COM DISPATCH support was introduced in a prior version of PowerBASIC. It
has now been substantially improved to offer COM SERVER as well as client support, Dual Interfaces,
relaxed typing, exception information, and much more.

When you use DISPATCH, the compiler actually passes the name of the METHOD you wish to execute as
a text string. The parameters can also be passed in the same way. The object must then look up the
names, and decide which METHOD to execute, and which parameters to use, based upon the text strings
provided. As if that weren't enough, DISPATCH requires that all parameters and return values be passed as
VARIANT variables, with all those conversions the responsibility of the programmer. That's right, you. This
is a slow process. However, DISPATCH is flexible, convenient, and forgiving. Further, you'll find that many
scripting languages and application use DISPATCH as their sole method of operation, so continued support
is absolutely necessary.

See Also

What is an object, anyway?

Just what is COM?

Late Binding

ID Binding

Late Binding

Late Binding
The standard methodology of DISPATCH is called "Late Binding", because nothing is done in advance. No
method definitions. No Interface signatures. You can pretty much just start writing code:

LOCAL DispVar AS IDISPATCH
LET DispVar = NEWCOM "DispProgID"
OBJECT CALL DispVar.Method1(x&, y$)

It's just that easy. The first line declares an object variable which assumes the DISPATCH interface, while
the second line creates an object and assigns a reference to DispVar. The third line just executes a method
on the new object.

The OBJECT statement is always used to execute methods on a DISPATCH interface. This differentiates it
from direct access, so PowerBASIC can handle your request in the appropriate manner.

It's important to note that this version of PowerBASIC relaxes the strict type checking of Dispatch
parameters. While DISPATCH interfaces require that all parameters and return values be passed as a
VARIANT variable, this version of PowerBASIC relaxes that requirement for you. You may substitute any
COM-compatible variable, and PowerBASIC will convert them automatically to and from Variant variables as
an integral part of the OBJECT statement. How could it get easier?

So, how does this work internally?

Well, each method name is assigned a positive integer number as its Dispatch ID (or DispID), to differentiate
it from the other methods. In a similar fashion, each parameter is numbered from 0 - n to identify each of
them uniquely. When you execute a statement like:

OBJECT CALL DispVar.Method1(x&, y$)

PowerBASIC Compiler for Windows Version 10

309 / 2126

PowerBASIC packages up the Method Name (Method1) and the names of any named parameters (none in
this example - more about that later), and passes them to a special DISPATCH function. After a bit of time
for lookup, the Dispatch ID (let's say the number 77) is returned. PowerBASIC then converts the two
parameters to Variants and packages the whole thing up to call another special Dispatch function. This tells
the server to execute Method number 77 using the two enclosed parameters. Finally, it returns with an
hResult code to indicate success or failure. That's classic "Late Binding" Dispatch.

"Late Binding" is flexible and easy to use because everything is resolved at run-time. That
flexibility comes at a price -- it's the slowest form of COM.

See Also

What is an object, anyway?

Just what is COM?

What is DISPATCH?

ID Binding

ID Binding

ID Binding
So, how can we speed things up?

Well, the worst bottleneck is the name lookup, and that's something we can deal with! We usually know all
the METHOD definitions at compile-time. If we can tell the compiler the DispID's and the parameter info at
compile-time, one whole step can be eliminated! That's called ID-BINDING of the Dispatch Interface. We
create a simple IDBIND Interface, which is written like this:

INTERFACE IDBIND MyDispIfaceName
 MEMBER CALL Method1<77> (WideVal AS LONG, WideText AS WSTRING)
 MEMBER CALL Method2<78> ()
 MEMBER CALL MethodX<79> ()
END INTERFACE

PowerBASIC can use this IDBIND Interface to create faster Dispatch execution. Just create this structure,
and place it in your source code prior to any references. Then, when you create an object variable, just use
the IDBIND Interface Name instead of DISPATCH:

LOCAL DispVar AS MyDispIfaceName
LET DispVar = NEWCOM "DispProgID"
OBJECT CALL DispVar.Method1(abc&, xyz$$)

"ID Binding" is faster than "Late Binding", but you must supply interface definitions in your
source code.

How do you get this information? Most likely from the PowerBASIC COM Browser! At your convenience, it
will scan your system registry, and find any COM objects available. It will create all of the Interface
definitions for you with just a click.

See Also

What is an object, anyway?

Just what is COM?

What is DISPATCH?

Late Binding

Creating a DISPATCH Object

PowerBASIC Compiler for Windows Version 10

310 / 2126

Creating a DISPATCH Object

Creating a DISPATCH Object
DISPATCH objects are easy to create. The technique is virtually identical to that for direct interfaces. You
must first declare the object variable -- if you wish to use "Late Binding", you'll use the generic name
IDISPATCH.

LOCAL DispVar AS IDISPATCH
LET DispVar = NEWCOM "DispProgID"

If you wish to use "ID Binding", you'll use the interface name from your Interface IDBIND structure.

LOCAL DispVar AS MyDispIfaceName
LET DispVar = NEWCOM "DispProgID"

If all went well, you now have an object! (And an object reference in your object variable). Of course, it's
 always a good idea to use the ISOBJECT(DispVar) function to be certain that the operation was a success.
 If it failed, an attempt to use the object variable could cause a fatal exception.

See Also

What is an object, anyway?

What is DISPATCH?

Late Binding

ID Binding

How do you call a DISPATCH METHOD?

How do you call a DISPATCH METHOD?

How do you call a DISPATCH METHOD?
To call a Method through the DISPATCH interface, you will use the OBJECT statement. This differentiates it
from direct access, so PowerBASIC can handle your request in the appropriate manner.

There are five general forms of the OBJECT statement:

OBJECT GET Retrieve the value of a PROPERTY. This is similar to retrieving the value of a
variable.

OBJECT LET Write a value to a PROPERTY. This is similar to assigning a value to a
variable.

OBJECT SET Write an object reference to a PROPERTY. This is similar to assigning to an
object variable.

OBJECT CALL Call a DISPATCH METHOD. This is equivalent to calling a standard Sub or
Function.

OBJECT
RAISEEVENT

Call an EVENT METHOD. (Event Methods are fully covered in a later section).

OBJECT GET DispVar.Prop1 TO ResultVar
OBJECT LET DispVar.Prop1 = NewValue
OBJECT SET DispVar.Prop1 = NewReference
OBJECT CALL DispVar.Meth1(param1, TEXT=MyStr$$)
OBJECT RAISEEVENT EventMeth1

All parameters, return values, and assignment values must be in the form of COM-compatible variables.
 Literals and expressions are not allowed. COM-compatible variables include BYTE, WORD, DWORD,

PowerBASIC Compiler for Windows Version 10

311 / 2126

INTEGER, LONG, QUAD, SINGLE, DOUBLE, CURRENCY, OBJECT, STRING, WSTRING, and VARIANT.
 You should use caution passing

 data since COM Objects assume that Unicode format is used. When string data is contained in a
VARIANT variable, conversion to/from Unicode is automatic, and no intervention is needed from the
programmer. However, if you pass data in a dynamic string variable, you must use the ACODE$() and
UCODE$() functions to convert the data to an appropriate format.
The OBJECT statement can use both positional and named parameters, but you should keep in mind that
not all COM Dispatch Servers support named parameters. Positional parameters are universally supported.

A positional parameter is a variable containing an appropriate value. It is identified by its position in the
parameter list, just as in a traditional SUB or FUNCTION. A named parameter consists of a parameter
identifier (a name), an equal (=) sign, and a variable containing an appropriate value. Positional parameters
must precede any and all named parameters, but named parameters may be specified in any sequence.

Each time you call a Method or Property using the OBJECT statement, a status code is returned in a
hidden parameter to indicate the success or failure of the operation. You can retrieve information about this
status code with the OBJRESULT function, and also by using the IDISPINFO Dispatch Information Object.
 If the failure was severe, then a PowerBASIC error 99 (Object Error) is also generated and the ERR system
variable is set. You can find more information about these items by referring to OBJRESULT, IDISPINFO,
and ERR.

See Also

What is an object, anyway?

What is DISPATCH?

Late Binding

ID Binding

What are Connection Points?

What are Connection Points?

What are Connection Points?
Generally speaking, a client module calls a server module to perform specific operations as they are
needed. However, in many situations, it's convenient and efficient for a server to notify its client of a
condition or event immediately, without forcing the client to inquire about the status. At the appropriate
time, the server calls back to a client method, passing information via the method parameters. This is the
exact opposite of normal communication, because the server module is now calling the client module. In
effect, the client is acting as a server for the purpose of handling these events. In the world of objects, a
server which can call such "Event Methods" is said to offer a "Connection Point". A Connection Point can
be used with COM objects or internal objects. Further, it may use either a direct interface or the DISPATCH
interface. Event methods may take parameters, but may not return a result.

In COM terminology, a server which offers a Connection Point is known as an "Event Source". A client
which can attach to a Connection Point and handle events is known as an "Event Sink" or "Event Handler".
 The terms source and sink are analogous to the electrical engineering terms source and sink.

Perhaps you have a server object which performs complex arithmetic, and may take quite some time to
finish. You'd like to notify the client of your progress towards completion at regular intervals. In that way,
the client can continue other work, or just notify the user of the status. If a server object offers a Connection
Point, it must declare the event interface:

INTERFACE STATUS $StatusGuid AS EVENT
 INHERIT IUNKNOWN
 METHOD Progress(Percent AS LONG)
END INTERFACE

PowerBASIC Compiler for Windows Version 10

312 / 2126

Finally, the server class must include a declaration of the event interfaces it supports via a Connection Point
by adding one or more EVENT SOURCE statements within the class definition:

EVENT SOURCE STATUS
EVENT SOURCE DISPATCH

Each server class created by PowerBASIC may offer up to four event interfaces. A client module may
subscribe to any or all of these event interfaces. When it's time for the server object to notify the client of an
event, the RAISEEVENT statement is used. For the Dispatch interface, OBJECT RAISEEVENT is used
instead. RAISEEVENT may only appear within a class which declares the Event Source interface. The
concept of RAISEEVENT is very similar to the CALL statement, but it may only be used to execute event
methods:

RaiseEvent Status.Progress(10) ' advise the code is 10% done

It should be noted that RaiseEvent does not reference an object variable at all, because it calls any and all
Event Methods which are currently attached to the Connection Point. Instead, it references the interface
name (in this case "Status"), followed by the name of the Event Method to be executed (in this case
"Progress").

The client may choose to support the event by creating the appropriate event code (it must precisely match
the declaration in the server), or the client could just ignore the event completely. If supported, the client
must have an event method to handle the event, and create an event object to do so. In effect, the client
actually becomes an object server for this one purpose. The client code might be something like:

CLASS EventClass AS EVENT
 INTERFACE STATUS AS EVENT
 INHERIT IUNKNOWN
 METHOD Progress(Percent AS LONG)
 CALL DisplayIt(Percent)
 END METHOD
 END INTERFACE
END CLASS

In addition, the client must initiate a connection to the server with EVENTS FROM, and disconnect when
done with EVENTS END:

DIM oEvent AS STATUS
oEvent = CLASS "EventClass"
EVENTS FROM MyObject CALL oEvent

' execute some code here...

EVENTS END oEvent

A Connection Point may be attached to one Event Method, multiple Event Methods, or no Event Method at
all. Whenever a RAISEEVENT statement is executed, all Event Methods attached to the source object are
called, one after another. There is no guarantee of the sequence of the calls, and you must consider the
possibility that RAISEEVENT with a ByRef parameter could change the value of a parameter variable before
any particular Event Method is executed.

Here is a complete program which demonstrates the execution of a Connection Point in a single, self-
contained application. It uses only internal objects. Since the objects are all internal, it is not necessary to
assign a GUID to each class and interface.

#COMPILE EXE

CLASS EvClass AS EVENT
 INTERFACE Status AS EVENT
 INHERIT IUNKNOWN
 METHOD Done
 MSGBOX "Done!"
 END METHOD
 END INTERFACE
END CLASS

CLASS MyClass

PowerBASIC Compiler for Windows Version 10

313 / 2126

 INTERFACE MyMath
 INHERIT IUNKNOWN
 METHOD DoMath
 MSGBOX "Calculating..." ' Do some math calculations here
 RAISEEVENT Status.Done()
 END METHOD
 END INTERFACE

 EVENT SOURCE Status

END CLASS

FUNCTION PBMAIN()
 DIM oMath AS MyMath, oStatus AS Status
 LET oMath = CLASS "MyClass"
 LET oStatus = CLASS "EvClass"

 EVENTS FROM oMath CALL oStatus
 oMath.DoMath
 EVENTS END oStatus
END FUNCTION

Here is a set of programs which demonstrate the execution of a Connection Point using a COM SERVER
and a COM CLIENT. It uses an in-process COM server (DLL created with PB/Win), and a COM CLIENT as
an executable program. First the COM SERVER:

#COMPILE DLL "EvServer.dll"

$EvIFaceGuid = GUID$("{00000098-0000-0000-0000-000000000002}")
$MyClassGuid = GUID$("{00000098-0000-0000-0000-000000000003}")
$MyIFaceGuid = GUID$("{00000098-0000-0000-0000-000000000004}")

INTERFACE Status $EvIFaceGuid AS EVENT
 INHERIT IUNKNOWN
 METHOD Done
END INTERFACE

CLASS MyClass $MyClassGuid AS COM
 INTERFACE MyMath $MyIFaceGuid
 INHERIT IUNKNOWN
 METHOD DoMath
 MSGBOX "Calculating..." ' Do some math calculations here
 RAISEEVENT Status.Done()
 END METHOD
 END INTERFACE

 EVENT SOURCE Status

END CLASS

Next the COM CLIENT:

#COMPILE EXE "EvClient.exe"

$EvClassGuid = GUID$("{00000098-0000-0000-0000-000000000001}")
$EvIFaceGuid = GUID$("{00000098-0000-0000-0000-000000000002}")
$MyIFaceGuid = GUID$("{00000098-0000-0000-0000-000000000004}")

CLASS EvClass $EvClassGuid AS EVENT
 INTERFACE STATUS $EvIFaceGuid AS EVENT
 INHERIT IUNKNOWN
 METHOD Done
 MSGBOX "Done!"

PowerBASIC Compiler for Windows Version 10

314 / 2126

 END METHOD
 END INTERFACE
END CLASS

INTERFACE MyMath $MyIFaceGuid
 INHERIT IUNKNOWN
 METHOD DoMath
END INTERFACE

FUNCTION PBMAIN()
 DIM oMath AS MyMath
 DIM oStatus AS STATUS

 LET oMath = NEWCOM "MyClass"
 LET oStatus = CLASS "EvClass"

 EVENTS FROM oMath CALL oStatus
 oMath.DoMath
 EVENTS END oStatus
END FUNCTION

See Also

What is an object, anyway?

Just what is COM?

Enumerating Collections

What are Type Libraries?

Enumerating Collections

Enumerating Collections
A collection is simply a set or group of items, where each can be accessed through its own Interface. For
example, Microsoft Word™ can have multiple documents open at the same time, and it can provide an
Interface reference for each open document.

Therefore, enumerating a collection is simply a matter of determining the number of items in the collection,
looping through and retrieving the appropriate information for one or more Interface members of the
collection.

We'll start off with the Visual Basic syntax and show how to perform the same kind of task with
PowerBASIC.

Visual Basic syntax for enumerating a collection looks something like this:

Dim Item As InterfaceItem
Dim Items As InterfaceItemsCollection
[statements]
For Each Item In Items
 'do something with the Item.member Method/Property, e.g.,
 var$ = Item.StringProp
Next

In PowerBASIC, we can perform the same enumeration. For example:

DIM oItem AS InterfaceItem
DIM oItems AS InterfaceItemsCollection
[statements]
OBJECT GET oItems.Count TO c&
FOR Index& = 1 TO c&

PowerBASIC Compiler for Windows Version 10

315 / 2126

 OBJECT GET oItems.Item(Index&) TO oItem
 'do something with the Item.member Method/Property, e.g.,
 OBJECT GET oItem.StringProp TO var$$
NEXT

See Also

COLLECTION Object Group

What is an object, anyway?

Just what is COM?

What are Type Libraries?

What are Type Libraries?

What are Type Libraries?
A Type Library is a block of data which describes one or more COM Object Classes. The internal format of
the data is not important, because it is seldom accessed by application programs. Typically, it is only
accessed by COM Browsers such as PBROW.EXE (supplied with PowerBASIC), TypeLib Browser from
Jose Roca, or OLEVIEW.EXE from Microsoft. In the unusual circumstance that you must access this data
directly, the Windows API provides numerous functions for just that purpose.

A Type Library is usually supplied by the author of the COM server. It's frequently supplied as a standalone
data file with a file name extension of TLB. The data can also be embedded as a resource in the associated
DLL or EXE. In practice, you would generally use a COM Browser to extract enough information about a
COM Object to allow you to use these classes in your program. Generally speaking, a Type Library usually
supplies specific details about every METHOD and PROPERTY (function), and the parameters of each of
them. This would include the names, data types, return values, and more. The Type Library may also offer
information about related equates, User-Defined-Types, and more. To include a numeric equate in your type
library, just append the words AS COM to the equate definition:

%ABCD = 99 AS COM

Traditionally, it was common to use Interface Definition Language (IDL) to create the source code for the
definitions you wish to describe in a Type Library. IDL was created specifically for this purpose and
resembles C++ syntax. Once the source code was written, you would use Microsoft's MIDL Compiler to
create the final Type Library. That's a fairly cumbersome process.

With PowerBASIC, it's a bit simpler than that. Whenever you create a COM server, simply add the #COM
TLIB ON metastatement to your source and your Type Library will be created automatically. You can prevent
a Type Library from being created by using the #COM TLIB OFF metastatement. A Type Library is created
with the same primary name as your COM server, and a file extension of TLB. That is, if you create a COM
server named XX.DLL, PowerBASIC will name the Type Library as XX.TLB. The Type Library offers a
description of every published class on the server. You can then use any COM Browser to display the type
information in a format that meets your needs. The PowerBASIC COM Browser converts it directly to
PowerBASIC source code declarations which can then be dropped into your COM client program. If any of
your Methods or Properties use data types not supported by Type Libraries, you will receive a Error 581 -
Type Library creation error. If you wish to create a Type Library for you COM server, then only use data
types that are compatible with Type Libraries, which are BYTE, WORD, DWORD, INTEGER, LONG,
QUAD, SINGLE, DOUBLE, CURRENCY, OBJECT, STRING, WSTRING, and VARIANT.

As mentioned earlier, you can consolidate your distribution files by embedding your Type Library right into
your DLL or EXE as a resource. A utility program named PBTYP.EXE is provided for just that purpose.
 PBTYP.EXE is executed with one or two command line parameters used to specify the files to be used in
the embedding process. The syntax is:

PBTYP.EXE TargetFile [ResourceFile]

The PBTYP.EXE utility requires that you supply two or three files: the Target File (the DLL or EXE which
receives the resource), the TypeLib File (the Type Library to be embedded), and optionally a resource file to

PowerBASIC Compiler for Windows Version 10

316 / 2126

be used. Since it's assumed that the Target File and the TypeLib file share the same primary name, only
the Target file name is needed. If an extension is not supplied, the default of ".DLL" is used. When
executed, PBTYP.EXE scans the original resource file (such as ABC.RC), and replaces any references to a
Type Library with a reference to the new Type Library. It then compiles it to a resource object file (such as
ABC.RES), and then creates a final PowerBASIC version (such as ABC.PBR). Finally, it removes any prior
resource from the target file, and replaces it with the newly created resource. It should be noted that
RC.EXE and PBRES.EXE must be present in your path for the process to complete.

See Also

What is an object, anyway?

Where are objects located?

Why should I use objects?

How do you publish an object?

How are GUID's used with objects?

How are GUID's used with objects?
A GUID is a "Globally Unique Identifier", a very large number which is used to uniquely identify every
interface, every class, and every COM application or library which exists anywhere in the world. GUID's
identify the specific components, wherever and whenever they may be used. A GUID is a 16-byte (128-bit)
value, which could be represented as an integral value or a string. This item is large enough to represent all
the possible values needed.

The PowerBASIC GUID$() function (or a hot-key in the PowerBASIC IDE) can generate a random GUID
which is statistically guaranteed to be unique from any other generated GUID.

When a GUID is written in text, it takes the form:

{00CC0098-0000-0000-0000-0000000000FF}

When a GUID is used in a PowerBASIC program, it is typically assigned to a string equate, as that makes
it easier to reference.

$MyLibGuid = GUID$("{00000099-0000-0000-0000-000000000007}")
$MyClassGuid = GUID$("{00000099-0000-0000-0000-000000000008}")
$MyIfaceGuid = GUID$("{00000099-0000-0000-0000-000000000009}")

Every COM COMPONENT, every CLASS, and every INTERFACE is assigned a GUID to uniquely identify it,
and set it apart from another similar item. As the programmer, you can assign each of these identifiers, or
they will be randomly assigned by the PowerBASIC compiler.

When you create objects just for internal use within your programs, it's common to ignore the GUID's
completely. PowerBASIC will assign them for you automatically, so you don't need to give it a thought.
 However, if you plan to publish an object for any external use through COM services, it's very important that
you assign an explicit identifier to each item in your code. Otherwise, the compiler will assign new
identifiers randomly, every time you compile the source. No other application could possibly keep track of
the changes.

The APPID or LIBID identifies the entire application or library. You specify this item with the #COM GUID
metastatement:

#COM GUID $MyLibGuid

The CLSID identifies each CLASS. You specify this item in the CLASS statement:

CLASS MyClass $MyClassGuid AS COM
 [statements]
END CLASS

The IID identifies each INTERFACE. You specify this item in the INTERFACE statement:

INTERFACE MyInterface $MyIfaceGuid

PowerBASIC Compiler for Windows Version 10

317 / 2126

 [statements]
END INTERFACE

See Also

What is an object, anyway?

Just what is COM?

What is inheritance?

How do you create an object?

Built-in Interfaces

Built-in Interfaces
The compiler provides a set of built-in Interfaces, including:

ICLASSFACTORY
ICONNECTIONPOINTCONTAINER
ICONNECTIONPOINT
IDISPATCH
IUNKNOWN

See Also

What are the parts of an object?

Are there other important "Buzz-Words"?

What does an Interface look like?

Built-in numeric equates

Built-in string equates

Built-in User Defined Types

Built-in RGB Color Equates

The PowerBASIC COM Browser

The PowerBASIC COM Browser

What is the PowerBASIC COM Browser
The PowerBASIC COM Browser is an application that exposes the data stored in a type library and
generates PowerBASIC Compatible source code for this data. A Type Library is a block of data which
describes one or more COM Object Classes.

If you are unfamiliar with COM programming, you may wish to review the COM Programming
section in the PowerBASIC For Windows Help file to gain an insight into COM programming
concepts before reading this topic.

A Type Library is usually supplied by the author of the COM server. It's frequently supplied as a standalone
data file with a file name extension of TLB. The data can also be embedded as a resource in the associated
DLL, EXE, OCX, etc. The PowerBASIC COM Browser is used to extract information about a COM Object to

PowerBASIC Compiler for Windows Version 10

318 / 2126

allow you to use these classes in your program. Generally speaking, a Type Library usually supplies
specific details about every Method and Property, and the parameters of each of them. This would include
the names, data types, return values, and more. The Type Library may also offer information about related
equates, User-Defined-Types, and more.

The PowerBASIC COM Browser can be launched from the Tools menu in the PowerBASIC IDE, launched as
a stand-alone application by double-clicking PBROW.EXE in the \PB\BIN\ folder, or run from the command-
line by typing PBROW.EXE (and then press ENTER).

When launched, the PowerBASIC COM Browser offers a straightforward user interface, with which you open
specific type-library files or choose from a list of registered libraries.

Before we start, we should first clarify a few terms so avoid confusion:

COM Object An instance of an initialized COM library or application. COM Objects usually come
in EXE (out-of-process), and DLL, or OCX formats (in-process). These discussions
pertain to COM libraries that act as COM Servers, regardless of whether they are in-
process or out-of-process Servers.

Type-Library A type-library is a file that contains a database or data dictionary describing the
Interfaces and Interface members exposed by a COM Object.

See Also

The PowerBASIC COM Browser user interface

The PowerBASIC COM Browser Tutorial

What is an object, anyway?

Just what is COM?

What are Type Libraries?

The PowerBASIC COM Browser user interface

The PowerBASIC COM Browser User Interface
The PowerBASIC COM Browser has two views, a list of all registered type libraries installed on the system
and a source code view which displays the PowerBASIC declarations for this type library. The PowerBASIC
COM Browser opens up with a list of all the registered type libraries installed on the users system.

PowerBASIC Compiler for Windows Version 10

319 / 2126

See Also

The PowerBASIC COM Browser

The PowerBASIC COM Browser Menu

What is an object, anyway?

Just what is COM?

What are Type Libraries?

The PowerBASIC COM Browser Menu

The PowerBASIC COM Browser Menu
This topic briefly describes each menu option available from the PowerBASIC COM Browser's menu.

File menu

Open File Open a type library file.

Save File As Save the currently loaded source code to disk.

[recent files list] A list of the most recently loaded type libraries.

Exit Exits the PowerBASIC COM Browser.

Edit menu

Select All Select all the text in the current source code window.

Copy Copy the selected text in the source code window and place it in the Clipboard.

View menu

Registered
Libraries

Show a list of all the Registered Libraries view.

Source Code Show the Source Code window view.

Reload If in Registered Library view, this options reloads the list of all Registered
Libraries installed on the system. If in Source Code view, this option reloads the
source code generated from the selected type library.

PowerBASIC Compiler for Windows Version 10

320 / 2126

Tools menu

Options Display the Options dialog, for configuring the PowerBASIC COM Browser.

Help menu

Help For PBRow Displays the PowerBASIC COM Browser help file.

Help For Library Displays the help file for the currently loaded type library if one exists.

About Display version information for the PowerBASIC COM Browser.

See Also

The PowerBASIC COM Browser

The PowerBASIC COM Browser User Interface

What is an object, anyway?

Just what is COM?

What are Type Libraries?

The PowerBASIC COM Browser Toolbar

The PowerBASIC COM Browser Toolbar
This topic briefly describes each menu option available from the PowerBASIC COM Browser's toolbar.

Open a type library file

Save the currently loaded source code to disk.

Show a list of all the Registered Libraries view.

Show the PowerBASIC compatible source code for the loaded type library.

If in Registered Library view, this options reloads the list of all Registered Libraries
installed on the system. If in Source Code view, this option reloads the source
code generated from the selected type library.

See Also

The PowerBASIC COM Browser User Interface

Menu Items

Shortcut Keys

Registered Type Library View

PowerBASIC Compiler for Windows Version 10

321 / 2126

What is an object, anyway?

Just what is COM?

What are Type Libraries?

Shortcut Keys

Shortcut Keys
The following table summarizes the shortcut-keys available in the PowerBASIC COM Browser.

Keystroke Description

F1 Display the help file for the type library if available, otherwise display the PowerBASIC
COM Browser help file

CTRL+A Select all the text in the Source Code View

CTRL+C Copy the selected text in the Source Code window to the clipboard

CTRL+D Display the Source Code View.

CTRL+L Reload the Type library View or the Source Code View

CTRL+O Open a Type Library file

CTRL+R Display the Registered Type Library View.

CTRL+S Save the current source code

See Also

The PowerBASIC COM Browser User Interface

Registered Type Library View

Source Code View

What is an object, anyway?

Just what is COM?

What are Type Libraries?

Registered Type Library View

Registered Type Library View
The Registered Library view displays a list of all the registered type libraries installed on the system. This
Registered Library view is initially displayed when the PowerBASIC COM Browser is started. When in the
Source Code view, you can switch to the Registered Library View by clicking the Registered Button or by
selecting View | Registered Libraries from the menu.

PowerBASIC Compiler for Windows Version 10

322 / 2126

The Registered Libraries column, displays the descriptive name for the registered library. The Filename
column displays the filename of the registered type library. The Path column displays the path to the
registered type library. Each column header can be clicked to sort the column in ascending order, if you
click the same column header again the column will be sorted in descending order. The PowerBASIC COM
Browser remembers the column and the sort order you last used and will display the list of registered type
libraries using this information the next time you open the PowerBASIC COM Browser.

To generate PowerBASIC compatible declarations, double-click on the library name. The PowerBASIC COM
Browser will display the declarations in the Source Code view.

See Also

The PowerBASIC COM Browser User Interface

Source Code View

Getting Help

What is an object, anyway?

Just what is COM?

What are Type Libraries?

Source Code View

Source Code View
The Source Code view displays a list of all the data included in the selected type library and the
PowerBASIC compatible declarations for this data.

PowerBASIC Compiler for Windows Version 10

323 / 2126

Clicking on a type library data item on the left hand side will display only the PowerBASIC compatible code
for the item on the right hand side, clicking on the top level library name will display all the PowerBASIC
compatible code for the selected type library.

See Also

The PowerBASIC COM Browser User Interface

Registered Type Library View

Getting Help

Saving the Source Code

What is an object, anyway?

Just what is COM?

What are Type Libraries?

Getting Help

Getting Help
If the type library has a help file installed on the system, you can press the F1 key while in the Source Code
view to display the help file. If you have selected an item from the list of items available and press the F1
key the help topic for the selected item is displays. If no help topic is available for the selected item the
default topic for the type libraries help file is displayed. If there is no help file for the selected type library,
then the PowerBASIC COM Browsers help file (this file) is displayed.

See Also

The PowerBASIC COM Browser User Interface

Opening a type-library

PowerBASIC Compiler for Windows Version 10

324 / 2126

What is an object, anyway?

Just what is COM?

What are Type Libraries?

Opening a type-library

Opening a Type Library
The PowerBASIC COM Browser supports opening both registered an unregistered Type Libraries. A
registered type library can be opened from the Registered Type Library view or by clicking the Open button
and browsing to and selecting the type library file. A unregistered type library can only be opened by using
the Open button and browsing to and selecting the type library file.

See Also

The PowerBASIC COM Browser User Interface

Saving the Source Code

What is an object, anyway?

Just what is COM?

What are Type Libraries?

Saving the Source Code

Saving the Source Code
To save the PowerBASIC compatible source code, simply click the Save As button or select File -> Save As
from the menu and the source code displayed in the Source Code view will be saved to disk. You may wish
to save the entire Source Code for the type library, in which case make sure you have selected the top level
item on the right hand side, which is the type libraries name. If a type library item is selected on the left
hand side of the Window, then only that portion of the displayed code will be saved to disk.

The selected text in the Source Code window can also be save to the Windows clipboard, by selecting Edit
-> Copy.

See Also

The PowerBASIC COM Browser User Interface

Source Code View

Options Dialog

What is an object, anyway?

Just what is COM?

What are Type Libraries?

Options Dialog

Options
This topic describes the options available to customize the output of the source code generated by the

PowerBASIC Compiler for Windows Version 10

325 / 2126

PowerBASIC COM Browser.

Always use an Interface Prefix

This option prefixes all Interface names with the text specified in the Interface Prefix textbox. This is
useful when using multiple type libraries in a project and there are conflicts with duplicate Interface
names.

Only When the Interface contains an illegal name

This option prefixes Interface names, only when they contain illegal characters or conflict with a
reserved keyword.

Interface Prefix

This is the prefix used for Interface names.

Prefix ProgIDs,ClassIds, and IIds with Library Name

This option will prefix ClassIDs, ProgIDs, and IIDs with the library name. This option is used when
you have multiple type libraries with conflicting names in one application.

Use ANSI strings

This option will generate string parameters and return values using ANSI strings instead of the
preferred Unicode strings. This option should be used when the COM server was written using only
ANSI strings, such as COM servers created with PowerBASIC 9 For Windows.

Use Singular Enumerations

Allows enumeration member names to be referenced by just the member name with a percent (%)
prepended. Without this option enumeration members would be referenced with a percent (%) , the
ENUM name, and a period prepended.

Generate Dispatch Interfaces only

This option generates Dispatch Interface's only for the purposes of IDBinding to a Dispatch COM
Interface. Custom only Interfaces will be skipped when this option is used.

Include Parameter Names

PowerBASIC Compiler for Windows Version 10

326 / 2126

This option generates Method and Property statements without any parameters names. This is useful
when the type libraries Method and Property parameter names conflict with code used in your
program.

Use Property Get/Set statements

This option will generate Property Get/Set statements in the generated source code. A Property is a
special type of Method, which is only used to set or retrieve data in an object. The use of Property
Get/Set statements is the preferred syntax as it improved readability of the source code.

Use Method statements

This option will convert Property Get/Set statements to Method statements in the generated source
code. This option is useful when the type library Property Get or Set definition contains an error and
the use of a Method statement can usually resolve the type library error. This option is not available
when you have the Generate Dispatch Interfaces only.

Wrap Line Position

When generating source code, The PowerBASIC COM Browser wraps long lines of code (using
standard PowerBASIC line continuation characters) when they reach the wrap column indicated in
this field.

Tab Size

The number of spaces that Tab characters are expanded to in the generated source code.

See Also

The PowerBASIC COM Browser

The PowerBASIC COM Browser Tutorial

What is an object, anyway?

Just what is COM?

What is DISPATCH?

What are Type Libraries?

The PowerBASIC COM Browser Tutorial

The PowerBASIC COM Browser Tutorial
As described in the What is the PowerBASIC COM Browser topic, the PowerBASIC COM Browser is a
browser utility application that exposes the Interfaces, Methods, and Properties in a type-library. It is also
used to generate PowerBASIC compatible source code to be used in your application.

We will walk through an example of using the PowerBASIC COM Browser to locate a registered type library,
generate the PowerBASIC compatible source code, and then use this source code in a PowerBASIC For
Windows application.

1. Start the PowerBASIC COM Browser

2. Open the Options dialog by selecting Tools | Options and select the following options:

o Always use an Interface Prefix : Off

o Interface Prefix : Agent

o Prefix ProgIDs, ClassIDs... : Off

o Use ANSI Strings : Off

o Use Singular Enumerations : Off

PowerBASIC Compiler for Windows Version 10

327 / 2126

o Generate Dispatch Interfaces : Off

o Include Parameter Names : On

o Use Property Get/Set statements : On

3. Click the OK button to save and close the Options dialog.

4. Locate the Microsoft Agent Control 2.0 type library. This will be listed under the "Registered Library"
heading with the text of "Microsoft Agent Control 2.0" or under the "Filename" heading of
"agentctl.dll". If you do not have this type library installed it can be downloaded for free from
http://www.microsoft.com/DOWNLOADS/en/default.aspx. After installing the Microsoft Agent Control
2.0 type library click the Reload button to update the list of registered type libraries.

5. Double-click on the Microsoft Agent Control 2.0 type library listed in the list of Registered type
libraries, to generate the PowerBASIC compatible source code for this object.

6. Click the "Save As..." button and save it with the name of "agent.inc"

7. Close the PowerBASIC COM Browser

8. Start the PowerBASIC For Windows IDE

9. Click the Create New File button in the IDE

10. Paste the following code into the new file created in the IDE

#COMPILER PBWIN 10
#COMPILE EXE
#DIM ALL
%ID_START = 1000
%ID_STOP = 1001
%ID_EVENTLIST = 1003
GLOBAL hDlg AS LONG
' MS Agent Control include file generated by PBrow.exe
#INCLUDE "agent.inc"
' Display an error message
MACRO DisplayError(TXT)
 IF ISTRUE(ISOBJECT(AgentEvents)) THEN
 ' Detach the events handler
 EVENTS END AgentEvents
 END IF
 ' Print the error and then exit the callback routine
 MSGBOX TXT, %MB_OK OR %MB_ICONERROR, "MS Agent Error"
 EXIT FUNCTION
END MACRO
CALLBACK FUNCTION DlgProc
 STATIC AgentCtrlEx AS IAgentCtlEx
 STATIC AgentChars AS IAgentCtlCharacters
 STATIC AgentCharsEx AS IAgentCtlCharacterEx
 STATIC AgentEvents AS Agent_AgentEvents
 LOCAL StartX AS LONG
 LOCAL StartY AS LONG
 LOCAL CharW AS LONG
 LOCAL CharH AS LONG
 LOCAL SpeakTxt AS WSTRING
 SELECT CASE AS LONG CB.MSG
 CASE %WM_INITDIALOG
 ' Create the Agent Control Object
 AgentCtrlEx = NEWCOM $PROGID_Agent
 IF ISFALSE(ISOBJECT(AgentCtrlEx)) THEN
 DisplayError("The Microsoft Agent Control 2.0 is not installed. This
control can be " + _

http://www.microsoft.com/DOWNLOADS/en/default.aspx

PowerBASIC Compiler for Windows Version 10

328 / 2126

 "downloaded from
http://www.microsoft.com/DOWNLOADS/en/default.aspx")
 END IF
 ' Create the Events handler interface
 AgentEvents = CLASS "Class_Agent_AgentEvents"
 IF ISFALSE(ISOBJECT(AgentEvents)) THEN
 DisplayError("Error creating the event interface.")
 END IF
 ' Attach the Events handler interface to the Agent Control
 EVENTS FROM AgentCtrlEx CALL AgentEvents
 ' Create the Characters interface
 AgentChars = AgentCtrlEx.Characters
 IF ISFALSE(ISOBJECT(AgentChars)) OR OBJRESULT <> %S_OK THEN
 DisplayError("Error creating the Microsoft Agent Control 2.0
Characters interface.")
 END IF
 'Enable the Start button
 CONTROL ENABLE CBHNDL, %ID_START
 CASE %WM_COMMAND
 SELECT CASE AS LONG CB.CTL
 CASE %ID_START
 IF CB.CTLMSG = %BN_CLICKED OR CB.CTLMSG = 1 THEN
 ' Load the Merlin agent into the Characters interface
 AgentChars.Load("Merlin"$$, "Merlin.acs"$$)
 IF OBJRESULT <> %S_OK THEN
 DisplayError("The Microsoft Agent Control 2.0 Merlin Character
is not installed. This character " + _
 "can be downloaded from
http://www.microsoft.com/DOWNLOADS/en/default.aspx")
 END IF
 ' Load the Merlin character into the CharactersEx Interface
 AgentCharsEx = AgentChars.Character("Merlin"$$)
 IF ISTRUE(ISOBJECT(AgentCharsEx)) THEN
 ' Show the Merlin agent on the screen
 AgentCharsEx.Show(0)
 ' Get the Width and Height of the Merlin agent
 CharW = AgentCharsEx.Width
 CharH = AgentCharsEx.Height
 ' Get the Width and Height of the Desktop
 DESKTOP GET CLIENT TO StartX, StartY
 ' Find the center of the desktop for Merlin agent
 StartX = (StartX - CharW)\2
 StartY = (StartY - CharH)\2
 ' Move the Merlin agent to the center of the desktop
 AgentCharsEx.MoveTo(StartX, StartY)
 ' Have the Merlin agent play the trumpet
 AgentCharsEx.Play("Announce"$$)
 ' Make the Merlin agent speak
 SpeakTxt = "With \map="+$DQ+"Powur bay
sick!"+$DQ+"="+$DQ+"PowerBASIC"+$DQ+ _
 "\ \Pau=300\you can be a \map="+$DQ+ "wizurd
too!"+$DQ+"="+$DQ+"wizard too!"+$DQ
 AgentcharsEx.Speak(SpeakTxt)
 ' Disable the Start button and enable the Stop button
 CONTROL DISABLE CBHNDL, %ID_START
 CONTROL ENABLE CBHNDL, %ID_STOP
 END IF
 END IF
 CASE %ID_STOP

PowerBASIC Compiler for Windows Version 10

329 / 2126

 IF CB.CTLMSG = %BN_CLICKED OR CB.CTLMSG = 1 THEN
 ' Stop all actions by the Merlin agent and unload it
 AgentCharsEx.Stop
 AgentChars.Unload("Merlin"$$)
 ' Enable the Start button and disable the Stop button
 CONTROL ENABLE CBHNDL, %ID_START
 CONTROL DISABLE CBHNDL, %ID_STOP
 END IF
 END SELECT
 CASE %WM_DESTROY
 IF ISTRUE(ISOBJECT(AgentEvents)) THEN
 ' Detach the event handler interface
 EVENTS END AgentEvents
 END IF
 END SELECT
END FUNCTION
FUNCTION PBMAIN () AS LONG
 DIALOG NEW 0, "COM Browser Tutorial", 201, 122, 198, 115, %WS_POPUP OR %
WS_BORDER OR %WS_DLGFRAME OR %WS_CAPTION OR _
 %WS_SYSMENU OR %WS_MINIMIZEBOX OR %WS_CLIPSIBLINGS OR %WS_VISIBLE OR %
DS_MODALFRAME OR %DS_3DLOOK OR _
 %DS_NOFAILCREATE OR %DS_SETFONT, %WS_EX_CONTROLPARENT OR %WS_EX_LEFT OR
%WS_EX_LTRREADING OR _
 %WS_EX_RIGHTSCROLLBAR, TO hDlg
 CONTROL ADD BUTTON, hDlg, %ID_START, "Start Agent", 5, 5, 50, 15, %
WS_CHILD OR %WS_VISIBLE OR %WS_DISABLED OR _
 %WS_TABSTOP OR %BS_TEXT OR %BS_PUSHBUTTON OR %BS_CENTER OR %BS_VCENTER,
%WS_EX_LEFT OR %WS_EX_LTRREADING
 CONTROL ADD BUTTON, hDlg, %ID_STOP, "Stop Agent", 5, 25, 50, 15, %
WS_CHILD OR %WS_VISIBLE OR %WS_DISABLED OR _
 %WS_TABSTOP OR %BS_TEXT OR %BS_PUSHBUTTON OR %BS_CENTER OR %BS_VCENTER,
%WS_EX_LEFT OR %WS_EX_LTRREADING
 CONTROL ADD LISTBOX, hDlg, %ID_EVENTLIST, , 70, 0, 125, 110, %WS_CHILD OR
%WS_VISIBLE OR %WS_TABSTOP OR %WS_VSCROLL, _
 %WS_EX_CLIENTEDGE OR %WS_EX_LEFT OR %WS_EX_LTRREADING OR %
WS_EX_RIGHTSCROLLBAR
 DIALOG SHOW MODAL hDlg, CALL DlgProc
END FUNCTION

11. Click the Save All button and save this file as "agent.bas" in the same directory that you save
"agent.inc" to in step #4

12. Open the "agent.inc" file in the IDE

13. Search (CTRL+F) in the IDE for the text of "IAgentCtl event interface" (without the quotes). The
methods of this interface are called when an event occurs in the Microsoft Agent Control. We will add
code to these methods that will display the event that occurred in the dialogs listbox. Make the
Class_Agent_AgentEvents, look like the following:

CLASS Class_Agent_AgentEvents $CLSID_Event__AgentEvents AS EVENT
 INTERFACE Agent_AgentEvents $IID_Agent_AgentEvents
 INHERIT IDISPATCH
 METHOD ActivateInput <1> (BYREF CharacterID AS WSTRING)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Input Activated"
 END METHOD
 METHOD DeactivateInput <3> (BYREF CharacterID AS WSTRING)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Input Deactivated"
 END METHOD
 METHOD CLICK <2> (BYVAL CharacterID AS WSTRING, BYVAL BUTTON AS INTEGER,
BYVAL Param_Shift AS INTEGER, BYVAL x AS INTEGER, _

PowerBASIC Compiler for Windows Version 10

330 / 2126

 BYVAL y AS INTEGER)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Click at ("+FORMAT$(x)
+","+FORMAT$(y)+")"
 END METHOD
 METHOD DblClick <4> (BYVAL CharacterID AS WSTRING, BYVAL BUTTON AS
INTEGER, BYVAL Param_Shift AS INTEGER, BYVAL x AS INTEGER, _
 BYVAL y AS INTEGER)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Double Click at ("+FORMAT$(x)
+","+FORMAT$(y)+")"
 END METHOD
 METHOD DragStart <5> (BYVAL CharacterID AS WSTRING, BYVAL BUTTON AS
INTEGER, BYVAL Param_Shift AS INTEGER, BYVAL x AS INTEGER, _
 BYVAL y AS INTEGER)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Drag Start at ("+FORMAT$(x)
+","+FORMAT$(y)+")"
 END METHOD
 METHOD DragComplete <6> (BYVAL CharacterID AS WSTRING, BYVAL BUTTON AS
INTEGER, BYVAL Param_Shift AS INTEGER, BYVAL x AS INTEGER, _
 BYVAL y AS INTEGER)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Drag Complete to ("+FORMAT$(x)
+","+FORMAT$(y)+")"
 END METHOD
 METHOD SHOW <15> (BYVAL CharacterID AS WSTRING, BYVAL Cause AS INTEGER)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Character is showing"
 END METHOD
 METHOD HIDE <7> (BYVAL CharacterID AS WSTRING, BYVAL Cause AS INTEGER)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Character is hidden"
 END METHOD
 METHOD RequestStart <9> (BYVAL Request AS IDISPATCH)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Request Start"
 END METHOD
 METHOD RequestComplete <11> (BYVAL Request AS IDISPATCH)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Request Complete"
 END METHOD
 METHOD Restart <21> ()
 ' Insert your code here
 END METHOD
 METHOD Shutdown <12> ()
 ' Insert your code here
 END METHOD
 METHOD Bookmark <16> (BYVAL BookmarkID AS LONG)
 ' Insert your code here
 END METHOD
 METHOD COMMAND <17> (BYVAL UserInput AS IDISPATCH)
 ' Insert your code here
 END METHOD
 METHOD IdleStart <19> (BYVAL CharacterID AS WSTRING)
 ' Insert your code here
 END METHOD
 METHOD IdleComplete <20> (BYVAL CharacterID AS WSTRING)
 ' Insert your code here
 END METHOD
 METHOD MOVE <22> (BYVAL CharacterID AS WSTRING, BYVAL x AS INTEGER,
BYVAL y AS INTEGER, BYVAL Cause AS INTEGER)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Move to ("+FORMAT$(x)
+","+FORMAT$(y)+")"
 END METHOD
 METHOD SIZE <23> (BYVAL CharacterID AS WSTRING, BYVAL Param_Width AS
INTEGER, BYVAL Height AS INTEGER)

PowerBASIC Compiler for Windows Version 10

331 / 2126

 ' Insert your code here
 END METHOD
 METHOD BalloonShow <24> (BYVAL CharacterID AS WSTRING)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Showing balloon text"
 END METHOD
 METHOD BalloonHide <25> (BYVAL CharacterID AS WSTRING)
 LISTBOX INSERT hDlg, %ID_EVENTLIST, 1, "Hiding balloon text"
 END METHOD
 METHOD HelpComplete <26> (BYVAL CharacterID AS WSTRING, BYVAL Param_Name
AS WSTRING, BYVAL Cause AS INTEGER)
 ' Insert your code here
 END METHOD
 METHOD ListenStart <27> (BYVAL CharacterID AS WSTRING)
 ' Insert your code here
 END METHOD
 METHOD ListenComplete <28> (BYVAL CharacterID AS WSTRING, BYVAL Cause AS
INTEGER)
 ' Insert your code here
 END METHOD
 METHOD DefaultCharacterChange <30> (BYREF Param_GUID AS WSTRING)
 ' Insert your code here
 END METHOD
 METHOD AgentPropertyChange <31> ()
 ' Insert your code here
 END METHOD
 METHOD ActiveClientChange <32> (BYVAL CharacterID AS WSTRING, BYVAL
Active AS INTEGER)
 ' Insert your code here
 END METHOD
 END INTERFACE
END CLASS

14. In the IDE, click the compile and run button. The application will be displayed as

15. Click the "Start Agent" button and the Merlin character will display in the top left corner of the screen
then move to the center of the desktop and play a trumpet then speak. If you wish to hear the text
shown in the balloon when Merlin is speaking, you will need to download and install the free SAPI 4.0
and a Text to Speech Engine from http://www.microsoft.com/DOWNLOADS/en/default.aspx.

http://www.microsoft.com/DOWNLOADS/en/default.aspx

PowerBASIC Compiler for Windows Version 10

332 / 2126

16. You can click, double-click, drag and drop, hide (right-click on Merlin and select Hide), or show (right-
click on Merlin in the systems tray and select Show) and see these events listed in the listview
control on the dialog box.

17. Click the Stop Agent button to stop and unload the Merlin character.

See Also

What is the PowerBASIC COM Browser

The PowerBASIC COM Browser User Interface

The Inline Assembler

The Inline Assembler

The Inline Assembler
Occasionally, you may run into a situation where the syntax and structure of the BASIC language is not the
most suitable for a task at hand. PowerBASIC addresses the need for optimal speed and flexibility with its
built-in assembler. Inline assembly is the process of embedding assembly-language statements (opcodes)
within the overall structure of your BASIC code. Those statements are compiled along with your BASIC
code without the need for an external assembler.

This chapter discusses the different ways that PowerBASIC lets you use assembly-language code in your
BASIC programs. It also discusses some design philosophies and considerations, which you should keep
in mind if you decide to write your own assembly-language procedures or functions.

The technique of interfacing with assembly-language is, by its very nature, somewhat complex.
You should be reasonably familiar with assembly-language concepts before tackling the
information in this chapter.

See Also

Using assembly-language in your code

PowerBASIC Compiler for Windows Version 10

333 / 2126

Flat memory model

Inline Assembler code syntax

Protected mode programming

Mnemonics and Operands

Opcodes and Mnemonics

Registers

Data types in registers

MMX registers

The stack

Balancing the stack

Tricks of the stack

Stack Overhead Reduction

Saving registers

Saving Registers at the Procedure level

Intermixing ASM and BASIC code

Using ESP and EBP

Saving the FPU registers

Tricks in preserving registers

Addressing and pointers

Effective addressing

Passing parameters

Parameters passed by reference or by copy

Parameters passed by value

Passing dynamic strings

Passing arrays

Accessing PowerBASIC variables by name

Commenting Assembly code

Using assembly-language in your code

Using assembly-language in your code
PowerBASIC provides a number of ways in which you can use assembly-language. You can write the whole
program using the Inline Assembler. You can write entire Subs, Functions, Methods, and Properties in
assembly-language, or, you can write individual lines of code in assembler, surrounded by BASIC
statements. This ability to intermix BASIC and assembly-language, line by line, makes PowerBASIC's
Inline Assembler a very powerful tool when optimal performance is an essential issue.

To write good assembler code, you must be aware of certain items:

· The types of variables supported by PowerBASIC

· How those variables are stored in memory

· How to use variable names in your Inline Assembler routines

PowerBASIC Compiler for Windows Version 10

334 / 2126

· Which registers to save (and restore)

· How to pass arguments (to and from Inline Assembler routines)

· The need to pop everything you push

· The differences between near and far calls

· The rules to follow when writing assembly-language routines

See Also

The Inline Assembler

Inline Assembler code syntax

Inline Assembler code syntax

Inline Assembler code syntax
The ASM statement or, for a "shortcut", the exclamation point (!), is used to insert assembler instructions
(or opcodes) into your BASIC program. They must appear at the beginning of each line that contains an
assembler instruction. The Inline Assembler supports standard instructions and registers, including
8086/8088, 80286, 80386, 80486, Pentium/MMX and 32-bit floating-point opcodes as defined in the Intel
Reference Manuals, and can be downloaded from http://developer.intel.com/.

The machine code generated by ASM statements is placed directly in line with the code from your BASIC
statements, so execution of your program will flow just as it appears in your source code. You should
never, under any circumstances, attempt to exit a Sub/Function/Method/Property early by the use of a RET
instruction, as that guarantees failure. If you need to terminate a routine at some point before the End
Sub/Function/Method/Property statement, jump to a label at the end of the procedure instead.

See Also

The Inline Assembler

Using assembly-language in your code

Flat memory model

Flat memory model

Flat memory model
A program written in native 32 bit Windows format is created in what is called FLAT memory model that has
a single segment, which contains both code and data. Such programs must be run on a 80386 or higher
processor.

Differing from earlier 16-bit code that used combined segment and offset addressing with a 64 Kb segment
limit, FLAT memory model works only in offsets and has a range of 4 Gigabytes. This makes assembly
code easier to write and the compiled (assembled) code is generally a lot faster than the equivalent 16-bit
code.

All segment registers are automatically set to the same value with the flat memory model. This means that
segment / offset addressing must NOT be used in 32-bit programs that run in 32-bit Windows operating

http://developer.intel.com/

PowerBASIC Compiler for Windows Version 10

335 / 2126

systems.

For programmers who have written code in DOS, a 32-bit Windows PE (executable) file is similar in some
respects to a DOS COM file - they have a single segment that can contain both code and data and they
both work directly in offsets. That is, neither uses segment / offset addressing.

Flat-model assembler code defaults to NEAR code addressing and NEAR data addressing within the range
of 4 gigabytes.

The FS and GS segment registers are rarely (if ever) used in application programs but may be used in some
instances by the operating system itself.

See Also

The Inline Assembler

Protected mode programming

Mnemonics and Operands

Protected mode programming

Protected mode programming
DLLs and EXEs generated by the PowerBASIC 32-bit compilers require Microsoft Windows 95 or later, or
Windows NT 3.10 or later. This includes Windows 98, Windows ME, Windows NT 4.0, Windows 2000,
Windows XP, Windows Vista, Windows 7, and so on. All of these operating systems run your program in
protected mode, using a 32-bit flat memory model.

In real-mode operating systems such as DOS, it was possible to overwrite sections of the operating system
code if a program was not correctly written. This would crash the operating system and the computer would
require a reboot before it would run again.

Protected-mode memory is designed to prevent this from happening. It uses a protected mode memory
manager to control the address range that all applications can read and write to, and the memory manager
terminates any application that tries to read or write to a memory address range that is outside of the
allocated application memory space. The memory region assigned to an application is known as the
process address space.

This style of memory management was available in 16-bit Windows but because of the method that 16-bit
Windows used to simulate multitasking, it was possible to overwrite sections of memory that were owned by
other applications or the operating system before the errant program crashed.

Depending on what portions of the operating system were overwritten, another (completely unrelated)
program that had no errors in it could try to use a damaged operating system function, resulting in both a
program and operating system crash.

The common symptom of this behavior was the infamous "blue screen of death" which told you something
was wrong, but often reported misleading causes of the problem. If an application destroyed critical
sections of the operating system, the result was often a "black screen of death" - an instant black screen
accompanied by a solidly locked or frozen machine. This obviously gave no feedback as to the cause of the
problem.

As improvements in hardware design occurred, the use of hardware based multitasking in 32-bit Windows
made protected-mode memory managers increasingly reliable and resulted in new operating systems with
ever increasing stability - more able to cope with preventing operating system crashes when an application
crashes.

From this we can see that one of the fundamental "rules" of writing code for a protected mode operating
system is to ensure the application code can read and write only within the process address space.

However, because Inline Assembler allows you to read and write to almost any memory address, this clearly
places the onus on the programmer to take suitable precautions with all referenced memory addresses.

PowerBASIC Compiler for Windows Version 10

336 / 2126

For example, if you allocate a 10 Kb buffer and subsequently try to read 20 Kb, the protected mode memory
manager will trigger a Page Read fault (GPF) the instant the address goes outside the process address
space - typically this would occur when the memory address advances beyond the original 10 Kb buffer.

An application can also get into similar trouble if it incorrectly dereferences a register (i.e., if it incorrectly
treats the register content as a pointer or address, rather than a value). If the address points outside of the
allocated process address space, a GPF is virtually guaranteed.

Page read and write faults are exceptions (GPFs) that are passed from the operating system to the
application that makes the error. If the exception is not handled by the application, the operating system
closes the application. Current versions of PowerBASIC do not support native exception handling, but it is
possible to configure an exception "trap" function using the Windows API.

Therefore, to create effective and stable assembler code, you should become familiar with protected mode
programming concepts. As outlined above, you must never access memory not specifically assigned to
your process, nor should you ever change the selector value in a segment register.

Likewise, all Calls, Jumps, and Returns should use "Near" addressing, as a full 32-bit offset is utilized.
Should you violate any of the rules of protected mode programming, your code will likely fail catastrophically
with a General Protection Fault (GPF).

See Also

The Inline Assembler

Flat memory model

Mnemonics and Operands

Mnemonics and Operands
An assembly code instruction (statement) consists of a mnemonic (pronounced "nih-MON-ick"), and
between zero and three operands. For a logical or arithmetic mnemonic with two operands, the right
operand is the source and the left operand is the destination. In general, 80x86 assembly code instructions
takes the following form:

[ASM|!] mnemonic destination, source

For example:

! MOV EAX, 1
ASM ADD EAX, EBX

In the examples above, the keywords MOV and ADD are the mnemonics, EAX is the destination operand,
and 1 and EBX are the source operands.

In the first line, the value 1 is "moved" into the EAX operand (register). In BASIC code, this works similarly
to the statement A = 1. The second example adds the value in EBX to the value in EAX and stores the
result in EAX. In BASIC code, this works similarly to A = A + B.

See Also

The Inline Assembler

Using assembly-language in your code

Opcodes and Mnemonics

Registers

Opcodes and Mnemonics

PowerBASIC Compiler for Windows Version 10

337 / 2126

Opcodes and Mnemonics
At the hardware level in an Intel or compatible processor, instructions are built directly into the CPU circuitry
and these are represented by opcodes.

While assembly code can be written at the Byte level, it is a particularly complex method of writing code
since it involves memorizing a very large number of opcodes. Additionally, such program code must use the
Intel numeric (little-endian) data format. With little-endian, multi-byte numeric values are stored in reverse
order to usual human representation.

For example, to copy the 32-bit value &H56A700FE into the EAX register (MOV EAX, &H56A700FE), you
must first find the opcode for the MOV EAX mnemonic (&HA1) followed by the data in reverse order (&HFE,
&H00, &HA7, and &H56).

In hex format, the whole instruction would look like this:

A1 FE 00 A7 56

Obviously this becomes a very tedious and error prone way to write assembly code. As a result, a system
was developed (many years ago) where groups of similar opcodes were given verbose names that made
them a lot more convenient to use than raw numeric opcodes. These names are referred to as mnemonics,
and this is the system used in PowerBASIC's 32-bit Inline Assembler.

Each mnemonic represents a reserved name that represents a family of opcodes that perform similar tasks
in the processor. The actual numeric opcodes are different depending on the size and type of operands
being used. For example, with the MOV mnemonic:

! MOV EAX, VAR1 ' opcode = &HA1
! MOV VAR1, EAX ' opcode = &HA3

The use of mnemonics provides a far more intuitive way of representing opcodes; however, there is no exact
correlation between what you write using mnemonics and what you get as finished opcodes. This is
because the opcode you actually get for a given mnemonic can depend on whether it is using near or far
addressing, the operand data types (registers or pointers or constants), etc. However, PowerBASIC takes
care of these details automatically and transparently for you, leaving you to get on with writing your actual
program.

See Also

The Inline Assembler

Using assembly-language in your code

Mnemonics and Operands

Registers

Registers

Registers
Registers are a special working area within the processor. Registers are faster than memory operands, and
are designed to work with the processor's opcodes.

Registers in an Intel or compatible processor are a very limited resource when writing assembler. In
essence, there are eight general-purpose registers, EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP. In
most instances, ESP and EBP should remain unused as PowerBASIC uses them for entry and exit of
procedures.

This means that you have six 32-bit registers to use in your assembly code, plus any other memory
locations that are useful in the procedure. ESI and EDI can be used in the normal manner in most
instances but neither can be accessed at a Byte level. You can read the low WORD of ESI as SI and the
low WORD of EDI as DI.

PowerBASIC Compiler for Windows Version 10

338 / 2126

Understanding the size of registers and the data that you can place in them is very important when using
assembler. A 32-bit Intel or compatible processor has three native data sizes that can be used by the
normal integral instructions, BYTE, WORD, and DWORD corresponding to 8-bit, 16-bit and 32-bit.

This can be shown in HEX notation.

BYTE 00
WORD 00 00
DWORD 00 00 00 00

In terms of registers, this corresponds to the three sizes that can be addressed with the normal integral
registers. Intel and compatible processors are backwards compatible with older code that uses 8 and 16-bit
registers, and it is done by accessing any of the general purpose registers in three different ways. Using
the EAX register as an example:

AL or AH = 8 bit
AX = 16 bit
EAX = 32 bit

This is the schematic of a general purpose 32-bit register:

This schematic is easier to understand at a bit level. Reading from the right side, you have 32 bits in the
register, bits 0 to 31. Because of the bit positions for each piece of data that can be accessed in a 32-bit
register, AL is called the Low (low-order) byte, AH is called the High (high-order) byte and AX is called the
Low word.

To read the first BYTE in the register (bits 0 to 7) you use:

! MOV byteval, AL ; Copy the low-order byte into variable

Likewise, to read the second byte in the register (bits 8 to 15) you use:

! MOV byteval, AH ; Copy the high-order byte into bytevar

If you want to read the first WORD in the register (bits 0 to 15) you use:

! MOV wordval, AX ; Copy the low-order Word into a variable.

To get at bits 16 to 31, you must rotate the bits in the register so they can be accessed by the previous
instructions. Rotating a 32-bit register in either direction by 16 bits move the low-order 16-bits into the high-
order 16-bit positions, and the high-order 16 bits into the low-order 16-bit positions of the register.

! ROL EAX, 16 ; Rotate EAX left by 16-bits

…or:

! ROR EAX, 16 ; Rotate EAX right by 16-bits

You cannot put a different size piece of data into a register than its correct size and you cannot mix different
register sizes:

! MOV EAX, CL ; This fails as EAX is 32-bit, CL 8-bit

If you need to put the value in CL into a 32-bit register, you must first convert it using one of a number of
different techniques:

! MOVZX EAX, CL ; Zero extend unsigned Integer

! MOVSX EAX, CL ; Sign extend signed Integer

In some instances you can use:

! XOR EAX, EAX ; Clear EAX
! MOV AL, CL ; Copy CL into AL

In addition, there are also some "older" mnemonics that will do the conversions too:.

! MOV AL, CL ; Copy CL into AL
! CBW ; Convert Byte in AL to Word in AX
! CWDE ; Convert Word in AX to DWORD in EAX

See Also

PowerBASIC Compiler for Windows Version 10

339 / 2126

The Inline Assembler

Data types in registers

MMX registers

Saving registers

Saving Registers at the Procedure level

Tricks in preserving registers

Saving the FPU registers

Using ESP and EBP

Data types in Registers

Data types in registers
There are three basic types of operands that can be placed in a register: immediate, memory or another
register.

An immediate operand is usually a numeric literal (number) but it can also be a string literal in the form "a"
which is converted by PowerBASIC to its ASCII equivalent code.

! MOV AL, "a" ; String literal
! MOV EDX, 0 ; Numeric immediate/literal

A memory operand is an address in memory of some form of data:

! MOV AL, [ESI] ; Copy byte at address in ESI into AL
! MOV EDX, lpMemvar ; Copy variable address into EDX

A register operand is a register with a value in it:

! MOV ECX, EDX ; Copy EDX into ECX

The actions that can be performed are determined by the available opcodes. For example, trying to move
one memory operand directly into another does not work because there is no opcode in the 80x86
processor to do it.

! MOV mVar, lpMem ; This fails as there is no opcode

However, if you have a "spare" register, you make an indirect copy through that register:

! MOV EAX, lpMem ; Copy memory value into register
! MOV mVar, EAX ; Copy register into memory variable

If you don't have a "spare" register, it can be done another way but it is slightly slower:

! PUSH lpMem ; Push memory value onto the stack
! POP mVar ; Pop it off as another memory value

See Also

The Inline Assembler

Registers

MMX registers

Saving registers

Saving Registers at the Procedure level

Using ESP and EBP

Saving the FPU registers

MMX registers

PowerBASIC Compiler for Windows Version 10

340 / 2126

MMX registers
According to the Intel documentation, all MMX registers require parentheses around the register number.
These were compulsory in early versions of PowerBASIC, but the parentheses are now optional.

! PXOR mm(7), mm(7) ' PB/DLL 5.0, PB/CC 1.0 format
! PXOR mm7, mm7 ' PB/DLL/WIN 6.0+, PB/CC 2.0+ format

See Also

The Inline Assembler

Registers

Data types in registers

Saving registers

Saving Registers at the Procedure level

Tricks in preserving registers

The Stack

The stack
The stack is a range of memory addresses that can be used for temporary storage of data from either within
a procedure or as the normal method of passing parameters to a procedure.

The stack is normally accessed in code by the mnemonics PUSH and POP. The stack is accessed on a
last on, first off basis which means that the last value pushed onto the stack is the first one to be popped
back off the stack.

The next position that can be written on the stack is called the top of the stack. When a piece of data is
pushed onto the stack, the processor decrements the stack pointer ESP then writes the data to the top of
the stack. When a piece of data is popped back off the stack, the processor reads the data from the top of
the stack then increments the stack pointer. Therefore, the stack address decreases as more data is
pushed onto it, and the address increases as data is popped back off the stack.

In the following images, each square represents 1 byte on the stack, and the different colors are intended to
demonstrate the different data sizes being pushed and popped. The top of the stack is the left side of each
image.

The following sequence demonstrates the stack layout as one 32-bit and two 16-bit values are pushed and
popped from the stack.

Existing stack layout:

Pushes
Push a 32 bit value (PUSH EAX)

Push a 16 bit value (PUSH CX)

Push another 16 bit value (PUSH DX)

Pops
Pop a 16 bit value (POP DX)

Pop second 16 bit value (POP CX)

PowerBASIC Compiler for Windows Version 10

341 / 2126

Pop the 32-bit value (POP EAX)

If you wrote the following code:

! MOV EDX, 100
! MOV ECX, 500

' push the 2 values onto the stack
! PUSH EDX ; EDX has the value 100
! PUSH ECX ; ECX has the value 500

' pop the 2 values off the stack
! POP EAX ; EAX has the value 500
! POP ECX ; ECX has the value 100

PowerBASIC conforms to the 32-bit Windows convention that specifies that certain registers must be
preserved around blocks of assembly code, namely EBX, ESI, and EDI. While EAX, ECX, and EDX can be
modified freely within a procedure, some conditions apply to their use too. See Saving registers for more
detailed information.

See Also

The Inline Assembler

Balancing the stack

Tricks of the stack

Stack Overhead Reduction

Saving registers

Saving Registers at the Procedure level

Balancing the stack

Balancing the stack
An important consideration when using the stack is to be symmetrical in the byte count of what is pushed
and what is popped.

If the stack is not balanced on exit from an assembly code block (i.e., you POP too few or too many
registers), your routine will return to the wrong location in your code. This is because PowerBASIC must
assume that the last item on the stack is the address to which it should return.

In other words, if the stack is not balanced on exit from an assembly code block, program execution is
likely to resume at the wrong address and instantly crash the program. In most instances, if you PUSH a
given data size onto the stack, you must POP the same data size.

See Also

The Inline Assembler

The stack

Tricks of the stack

Tricks of the stack

PowerBASIC Compiler for Windows Version 10

342 / 2126

Tricks of the stack
The stack is very flexible in what can be pushed and popped. There are a few tricks that are very useful
when using the stack, you can push a 32-bit value and then pop two 16-bit values.

' Push a 32 bit value onto the stack
! PUSH EDX

' Now pop two 16 bit values off the stack
! POP AX
! POP CX

Even though the pushed data size is different to the popped data size, four bytes have been pushed onto the
stack and four bytes have been popped back off the stack so the stack is balanced.

The stack can be used for many different things, you can push a register and pop it later when you need it
so that you do not need to allocate a memory variable to put it in. You can use the stack to move a piece of
data between memory operands and registers.

! PUSH ECX
! POP memVar

…or:

! PUSH memVar
! POP EDX

…or between two memory variables:

! PUSH memVar1
! POP memVar2

…instead of using a register:

! MOV EDX, memvar1
! MOV memvar2, EDX

A collection of small tricks of this type free up the number of registers that you can use in your

, provided the stack is managed carefully.
Before the end of your routine, you should make sure that all the registers you have pushed onto the stack
have also been popped from the stack. It is easy to make a mistake in this area, especially if the routine
conditionally PUSHes and POPs any registers.

See Also

The Inline Assembler

The stack

Balancing the stack

Stack Overhead Reduction

Stack Overhead Reduction

Stack Overhead Reduction
There may be some instances where you wish to repeatedly call a very small SUB and this may produce a
situation where the normally modest stack overhead may actually become a factor in the speed of the entire
algorithm.

To help boost performance in such cases, PowerBASIC offers the often-overlooked GOSUB/RETURN
statements, which can be used in place of a call to a SUB/END SUB block. Where stack overhead
reduction is critical, you can create a Label in the code below the end of your normal code (but still within
the current Sub/Function/Method/Property block).

PowerBASIC Compiler for Windows Version 10

343 / 2126

You may then take the Inline Assembler code from the target SUB, and place it right after the Label.
Finally, a RETURN statement is added so that execution resumes at the next instruction after the GOSUB.
Such code would look something like this:

FUNCTION MyFunc() AS LONG
 ' Inline Assembler code
 GOSUB LABEL
 ' More Inline Assembler code
 EXIT FUNCTION ' or EXIT SUB

LABEL:
 ' Your Inline Assembler code
 RETURN
END FUNCTION ' or END SUB

This technique is very efficient because the variables used in the Inline Assembler
Sub/Function/Method/Property (that have been moved from a SUB, back into the calling code) are
maintained within the same scope as the calling code, and can therefore be used without having to pass
them on the stack. The result is that we have eliminated virtually all the stack overhead involved in
repeatedly calling a SUB.

Finally, you can even use the standard Intel assembler notation !CALL and !RET within the
Sub/Function/Method/Property, to jump to the Label and return from it to the next instruction. For example:

FUNCTION MyFunc() AS LONG
 ' Inline Assembler code
 ! CALL LABEL
 ' More Inline Assembler code
 EXIT FUNCTION ' or EXIT SUB

LABEL:
 ' Your Inline Assembler code
 ! RET
END FUNCTION ' or END SUB

Finally, it is very important to note that you must NEVER exit a PowerBASIC procedure with the RET
instruction. PowerBASIC procedures automatically perform their own stack cleanup (of local variables, etc)
when an END SUB/FUNCTION/METHOD/PROPERTY or EXIT SUB/FUNCTION/METHOD/PROPERTY
statement is executed, whereas an RET instruction would try to force a procedure exit without the internal
stack cleanup being performed. A RET instruction cannot ever be used as a substitute for these BASIC
statements.

In summary, your program will fail with a spectacular Stack Fault (GPF) if you attempt to terminate a
PowerBASIC procedure with RET mnemonic.

See Also

The Inline Assembler

The stack

Balancing the stack

Tricks of the stack

Saving registers

Saving registers

Saving registers
When writing assembler code in 32-bit Windows, there is a convention that governs the use of registers so
programmers can interact with the Windows API functions in a predictable and completely reliable way.

PowerBASIC Compiler for Windows Version 10

344 / 2126

However, the registers available with an 80x86 processor are a very limited resource, and they are used by
every application (process) running and also by the operating system itself. Therefore, a reliable method of
using registers is very important to the process of writing reliable assembler code.

An 80x86 processor has eight general-purpose integral registers, EAX, EBX, ECX, EDX, ESI, EDI, ESP, and
EBP. Of these, ESP and EBP are almost exclusively used to manage the entry and exit to a procedure, so
there are effectively just six general-purpose registers available for application level programming.

Following on, the Windows convention splits the remaining registers so that 3 can be freely modified (EAX,
ECX, and EDX) within the Sub/Function/Method/Property that uses them, while the other 3 must be
preserved (EBX, ESI, and EDI) by the procedure. For the sake of this discussion, we'll refer to these two
sets as scratch and volatile registers respectively.

In summary, PowerBASIC automatically preserves EBX, ESI, and EDI at the procedure level, but the
programmer is responsible for preserving both the scratch and volatile registers within the procedure.

"Preserving the registers" does not necessarily mean that you must push all the registers on the
stack, though that is the usual way of ensuring their safety. Simple routines might not modify
any of the registers; in which case, you may not need to take any precautions. We use may
because it's best to avoid making assumptions, especially with assembler programming. It is
better to be safe than sorry. When in doubt, preserve (save and restore) all of the registers.

See Also

The Inline Assembler

Registers

Saving Registers at the procedure level

Saving the FPU registers

Tricks in preserving registers

Saving Registers at the Procedure level

Saving Registers at the Procedure level
To conform to the Windows programming conventions, PowerBASIC must provide a "safe" environment for
the range of functions that are available. This is achieved by transparently preserving the three volatile
registers at the start of each Sub/Function/Method/Property, and restoring these same registers before exit
from the procedure. The following example shows approximately how PowerBASIC constructs the entry and
exit of a procedure to preserve these registers:

SUB MySub(Params)
 ! PUSH EBX ' Automatically added by PowerBASIC
 ! PUSH ESI ' --"---
 ! PUSH EDI ' --"---

 ' the actual SUB code is placed here

 ! POP EDI ' Automatically added by PowerBASIC
 ! POP ESI ' --"---
 ! POP EBX ' --"---
END SUB

When writing a procedure in PowerBASIC, we can safely predict that the EBX, ESI, and EDI
registers will be automatically saved upon entry and restored upon exit from a procedure.

The virtue of code that observes these conventions is that it allows the programmer to safely assume that a
call to any other procedure or API function is certain to follow the same register preservation rules for the
EBX, ESI, and EDI registers. This helps ensure that writing Inline Assembler code in PowerBASIC will

PowerBASIC Compiler for Windows Version 10

345 / 2126

result in reliable and completely predictable code execution in terms of register use when calling
PowerBASIC and API procedures.

The PowerBASIC compiler is also very efficient in the way it calls API system functions. For example, the
following BASIC statement which calls the SendMessage API:

CALL SendMessage(hWnd&, %WM_COMMAND, 50, 100)

…is translated into assembly code in the compiled program, to resemble something like this:

PUSH 100
PUSH 50
PUSH %WM_COMMAND
PUSH hWnd&
CALL SendMessage

This direct low level translation is one of the main reasons why PowerBASIC programmers can easily mix
API code and assembler code. However, when it comes to intermixing assembler and BASIC code within a
procedure, the programmer must take additional care.

See Also

The Inline Assembler

Saving registers

Using ESP and EBP

Saving the FPU registers

Tricks in preserving registers

Intermixing ASM and BASIC code

Intermixing ASM and BASIC code
There are special conditions with register preservation that apply when writing mixed assembler and BASIC
code. PowerBASIC is a highly optimized compiler and among its optimizations are reductions in the stack
overhead between BASIC code statements. Therefore, compiled PowerBASIC code is designed to expect
that the EBX, ESI, and EDI registers will remain unchanged between lines of BASIC code.

This means that if your assembler algorithm uses any of the EBX, ESI, or EDI registers, you must preserve
their original state from the last line of BASIC code that precedes the Inline Assembler code. This is, you
must PUSH them before your ASM code, and POP them again right before the BASIC code commences.

This may appear to be more code than is necessary but it must be remembered that the internal structure of
PowerBASIC does not duplicate the stack preservation that the application programmer must apply, so in
terms of the stack overhead, the code is actually very efficient.

It should be noted that if your ASM code uses the EAX, ECX, or EDX registers, you should also preserve
these as the internal execution of BASIC statements can also freely modify any of these three registers too.

The overall approach to preserving the registers around intermixed ASM and BASIC code is demonstrated in
the following listing:

SUB TestProc(var1&, var2&)
 #REGISTER NONE ' Ensure there is no conflict with
 ' PowerBASIC Register variables

 ' Code that uses EAX ECX and EDX goes here
 [statements]
 ! PUSH EAX ' Save the scratch registers
 ! PUSH ECX
 ! PUSH EDX
 [statements]

PowerBASIC Compiler for Windows Version 10

346 / 2126

 ' Call an API function here
 [statements]
 ! POP EDX ' Restore the scratch registers
 ! POP ECX
 ! POP EAX
 [statements]
 ' Other ASM code that uses EAX ECX and EDX goes here
 [statements]
 ! PUSH EBX ' Save the volatile registers
 ! PUSH ESI
 ! PUSH EDI
 [statements]
 ' Other BASIC statements here, for example:
 var1 = var2 + 2^8 - COS(var2)
 [statements]
 ! POP EDI ' Restore from the stack
 ! POP ESI
 ! POP EBX
 [statements]
 ' More ASM code that relies on EBX, etc

END SUB

Using this format ensures that you are writing "safe" code and that all of the utilized registers are preserved,
because:

· The EBX, ESI, and EDI registers are preserved by the PowerBASIC compiler at the
Sub/Function/Method/Property level.

· The EAX, ECX, and EDX registers are preserved by the application programmer around the API
function call and the BASIC statements. This strategy ensures that EAX, ECX, and EDX registers
are not overwritten (destroyed) by the function that is called.

With those points in mind, if there are no BASIC statements or API calls after the assembler code,
preserving these registers is of no consequence. In this case, the automatic preservation code will take
care of EBX, ESI, and EDI registers before the procedure terminates, and we can be sure that the calling
code will also preserve the EAX, ECX, and EDX registers using the same conventions.

PROGRAMMING TIP: As described above, the EBX, ESI, and EDI registers are automatically
preserved at the start and exit of a procedure. Therefore, if you need to use registers for
counters or to store other values in your Inline Assembler code, you may use any of the EBX,
ESI, or EDI registers for this purpose as they are restored when the procedure terminates. This
helps ensure efficiency and can result in even slightly faster code since we do not have to
preserve extra registers each time the procedure is executed.

See Also

The Inline Assembler

Registers

Data types in registers

MMX registers

Using ESP and EBP

Saving registers

Saving Registers at the Procedure level

Saving the FPU registers

Tricks in preserving registers

PowerBASIC Compiler for Windows Version 10

347 / 2126

Using ESP and EBP

Using ESP and EBP
It is possible in PowerBASIC to write your own procedure within an existing Sub, Function, Method, or
Property by manually coding the stack entry and exit. This is a complicated area of assembler coding
where it is very easy to crash the entire operating system if the code is not written correctly. For example:

! CALL procname
' Other PowerBASIC code here
! JMP label ; Jump over the procedure

procname:

! PUSH EBP ; Preserve base pointer
! MOV EBP, ESP ; Stack pointer into EBP

' Write your assembler code here

! MOV ESP, EBP ; Restore stack pointer
! POP EBP ; Restore base pointer
! RET

label:
' Other PowerBASIC code here

There are other methods of preserving both ESP and EBP depending on personal taste and calling
conventions, but you must save and restore the states of both registers if you choose to use a procedure of
this type. It is very important to note that ESP and EBP must always be preserved if they are to be altered,
regardless of relative position of Inline Assembler code to BASIC statements.

See Also

Registers

MMX registers

Saving registers

Saving Registers at the Procedure level

Data types in registers

Saving the FPU registers

Saving the FPU registers
Whereas the CPU has registers with fixed names (EAX, etc), the FPU (Floating-Point Unit or co-processor)
has stack-like registers which are numbered according to their position in the stack: ST(0) {top}, ST(1),
ST(2), …, ST(7) {bottom}. You deal with the FPU by loading a value onto the top of the FPU stack, or by
storing the value held at the top of the stack. The latter operation may or may not involve removing the value
from the stack.

Note the term loading is used to describe placing a value on the FPU stack, yet it operates more like a
PUSH operation. In PowerBASIC, it is not a question of which FPU registers are available, but that four
registers (or stack slots) are usually available for use by the programmer. If more are required, the stack
should be saved and restored accordingly.

PowerBASIC Compiler for Windows Version 10

348 / 2126

FSAVE/FRSTOR

To preserve the entire FPU stack, the mnemonics FSAVE and FRSTOR take care of preserving, and
restoring, the FPU stack (respectively). These work in a similar way to the PUSHFD and POPFD CPU, but
are notoriously slow to execute and FPU programmers often avoid their use unless necessary. However,
they can be useful when starting to write FPU code since they guarantee the preservation and restoration of
the FPU stack.

See Also

The Inline Assembler

Saving registers

Saving Registers at the Procedure level

Using ESP and EBP

Tricks in preserving registers

Tricks in preserving registers

Tricks in preserving registers
When you are developing mixed assembler/API code, and you do not know what registers are used in the
API functions, you can draw upon two pairs of assembler instructions that preserve all of the usual registers
and the CPU flags as well: PUSHAD, POPAD, PUSHFD, and POPFD.

PUSHAD/POPAD

The first pair of mnemonics, PUSHAD and POPAD, save and restore the registers in a block. These
mnemonics allow you to do things like display the value of a register in the middle of assembler code with a
MessageBox API call.

' ...Assembler code
! PUSHAD
var& = 0
! MOV var&, EAX
MessageBox hWnd&,BYCOPY STR$(var&),"Test Value",%MB_OK
! POPAD
' ...More assembler code

It should be noted that the use of PUSHAD and POPAD in release code is less-than-optimal code design.
That is, it does more work than is usually needed, but in the development stage, these two instructions can
be very convenient.

PUSHFD/POPFD

If the code being tested has certain instructions, such as conditional jumps that depend on flag states
within the processor, the other pair of block instructions to utilize is likely to be PUSHFD and POPFD.
These preserve the state of the processor flags while code that may modify the flags is executed.

PROGRAMMING TIP: If the STD instruction is used to set the CPU direction flag, a CLD
instruction must be executed before releasing control to a Windows API function or a BASIC
statement.

See Also

ASM statement

The stack

PowerBASIC Compiler for Windows Version 10

349 / 2126

Addressing and pointers

Addressing and pointers
An important distinction in assembler is the difference between the address of a variable and the value of a
variable. The address of a variable is where it is located in memory; the value of a variable is what is stored
at that address.

This is the ADDRESS of the variable in memory:

This is the VALUE at that address:

The method used in assembler to get the value at an address is a technique called dereferencing.

! MOV EAX, lpvar ; Copy address into EAX
! MOV EAX, [EAX] ; Dereference it
! MOV nuvar, EAX ; Copy EAX into new variable

Using square brackets around EAX gives access to the information at the address in EAX. This is the case
with any 32-bit register. A register enclosed in square brackets is effectively a memory operand. The size
of the data accessed at the address is determined by the size of the register used to receive it. In the above
example, it would be a 32-bit value since it uses a 32 bit register for the destination operand. Naturally, it
can be done with 8 and 16-bit values as well using the correct size register.

Pointers

Pointers are a useful high-level language abstraction for passing addresses between procedures and
performing other types of complex data manipulation.

In assembler, when you use an instruction like:

! LEA EAX, MyVar

…you have put the address of a variable into the EAX register. When you take the next step and put that
address into a variable of its own, you will have a POINTER to the address:

! LEA EAX, MyVar
! MOV lpMyVar, EAX

The mechanics of this process are worth understanding as it can generate errors that are hard to track down
when the technique is used incorrectly.

You can pass a pointer to another procedure either by its value:

! MOV EAX, lpMyVar ; Copy the value into EAX
! PUSH EAX ; Push it as a parameter
! CALL MyProcedure ; Call the procedure

…or you can pass it by reference:

! LEA EAX, lpMyVar ; Load the address into EAX
! PUSH EAX ; Push it as a parameter
! CALL MyProcedure ; Call the procedure

When you pass an address in this manner, you have added an extra level of indirection so at the procedure
end, you have a reference to a reference to an address. To get the address in the procedure, you need to
dereference the variable to get back the original address:

! MOV EAX, lpMyVar

PowerBASIC Compiler for Windows Version 10

350 / 2126

! MOV EAX, [EAX]

The original address is now stored in EAX.

See Also

The Inline Assembler

Effective addressing

Effective Addressing

Effective addressing
The notation to calculate the effective address of data in memory can look complicated but it is in fact very
clear and precise notation. In the range of allowable notation for Intel 80x86 assembler, an address in
memory can be placed in a register and treated directly as a memory operand by enclosing it in square
brackets.

! MOV EAX, lpArray ; Copy address into EAX
! MOV ECX, [EAX] ; Copy 1st item in array into ECX
! ADD EAX, 4 ; Increment the array location by 4 bytes
! MOV ECX, [EAX] ; Copy 2nd item in array into ECX

This works fine in simple situations where the register that has the address is manually incremented or
decremented by the data size each time it is accessed, but there is a much more powerful and flexible
technique available by using the standard Intel notation that is available.

The Intel 80x86 allows the following format to calculate the effective address of a value in memory:

[Base Address + Index * Scale + Displacement]

Base Address The register that has the starting address or base address of the array (or buffer) in
memory.

Index The register used to determine the offset from the base address.

Scale The data size based multiplier for the index.

Displacement The additional offset adjustment from the base address.

For example:

[EBX + ECX * 4 + 8]

EBX is the Base Address
ECX is the Index
4 is the Scale based on the data size
8 is the Displacement in BYTES

Not all of the additional notation has to be used. For example, in a Byte array, you can just use the base
address and the index:

! MOV AL, [EBX + ECX]

The advantage of this technique is that you set the base address once and vary the index. In the case
above, ECX is the index. In terms of flexibility, you have the choice of varying the base address, the index,
and the displacement so that you can access data in memory by a number of different methods that best
suit your code.

The only difference when using data sizes larger than Byte is that you multiply the "index" by the "scale" of
the data size:

! MOV EAX, [EBX + ECX * 4]

To make a practical example let us assume we have an array of 64 items that were each 32-bits in size, and
we wanted to read the 16th member of that 32-bit array. In this case, we would copy the 16th member of
the zero-based index into the register that we are using as the index. Next, copy the address of the array
into the register that you are using as the base address, and finally read the value of the array member into

PowerBASIC Compiler for Windows Version 10

351 / 2126

another register.

! MOV ESI, lpArray ; Base address register
! MOV ECX, 15 ; Zero-based index register
! MOV EAX, [ESI + ECX * 4] ; Copy the value into EAX

These three lines of code read the target value from the array into the EAX register.

If we wanted to compare the 16th and 17th members of the array and not have to use an additional register,
we can add the required displacement so that we only have an extra line of code:

! MOV EAX, [ESI + ECX * 4]
! CMP EAX, [ESI + ECX * 4 + 4]

To compare the 17th and 18th members of the array, all we need to do is increment the index:

! INC ECX

Writing to the array is simply the reverse of reading it. With the same code as above:

! MOV ESI, lpArray ; Base address register
! MOV ECX, 15 ; Zero-based index register
! MOV EAX, 1234
! MOV [ESI + ECX * 4], EAX

We can also write an immediate (literal) number to the array but it takes a slightly different notation:

! MOV DWORD PTR [ESI + ECX * 4], 1234

The extra notation "DWORD PTR" is because there is no way for the assembler to determine the data size
from either the memory operand for the array or the immediate number. Specifying the size tells
PowerBASIC what data size should be written to the address contained in the memory operand.

A very similar notation is used when an array is placed on the stack by creating a LOCAL variable. With a
stack variable MyArray, PowerBASIC resolves this variable to an address on the stack, which will be
something like this:

x& = VARPTR(Myarray(0)) ' first element
! mov edx, x&
! mov ecx, 3
! mov eax, [edx][ecx*4] ' assuming 32-bit integer

' eax = MyArray(3) ' 4th element of MyArray

See Also

The Inline Assembler

Addressing and pointers

Registers

Passing parameters

Passing parameters

Passing parameters
PowerBASIC 32-bit compilers pass all parameters to

 by pushing them in sequence from right to left. This is always the case when a procedure uses the
default calling conventions of (and its synonym STDCALL), or the C calling conventions of .
However, if the optional calling conventions are specified, parameters are pushed from left to right, and
the called code is responsible for cleaning up the stack frame before returning. PowerBASIC Subs
ands Functions that use the BDECL convention automatically clean up the stack before returning
execution to the calling code.
By default, PowerBASIC passes parameters by reference: a 32-bit

 to the data. You can also pass most parameters by value, by declaring with the optional keyword.

PowerBASIC Compiler for Windows Version 10

352 / 2126

When a parameter is passed by value, the actual value of the parameter is pushed on the stack.

Fixed-length strings, nul-terminated strings, and User-Defined Types/Unions may also be passed
as BYVAL or OPTIONAL parameters, now. Try to avoid passing large items BYVAL, as itʼs
terribly inefficient, and there is a maximum size limit of 64 Kb for a given parameter list.
Arrays cannot be passed BYVAL.

PowerBASIC automatically sets up a local "stack frame" at the beginning of each procedure in your
program. As per standard conventions, the EBP register is used to address the parameters. The lowest
parameter can be found at EBP+8, and subsequent parameters will be found in adjacent locations on the
stack.

In assembler routines, it is easier and safer to access parameters by name rather than calculating their
locations on the stack. However, it is important to remember the difference in accessing parameters
passed by value and parameters passed by reference.

See Also

The Inline Assembler

Parameters passed by reference or by copy

Parameters passed by value

Passing arrays

Passing dynamic strings

Accessing PowerBASIC variables by name

Parameters passed by reference or by copy

Parameters passed by reference or by copy
When a parameter is passed by reference (the default method), PowerBASIC passes a 32-bit pointer on the
stack. That pointer is the actual 32-bit offset, or memory location, of the variable to be utilized as a
parameter. A 32-bit pointer occupies exactly four bytes of stack space. A parameter passed by reference
is typically accessed in this way:

SUB MyProc(xyz&) ' This will increment the
 ' parameter variable by one
 ! PUSH EBX
 ! MOV EBX, xyz&
 ! INC DWORD PTR [EBX]
 ! POP EBX
END SUB

Parameters passed by copy (such as expressions or constants) also take precisely 4 bytes on the stack.
In this case, just as in parameters by reference, the item on the stack is not the value of the parameter.
Rather, it is the address of a temporary location in memory where the value is stored. This may seem
roundabout, but it has two distinct advantages. First, assembler routines can handle parameters

 and in precisely the same way. Second, routines can modify the value of a parameter without altering
the original variable in the main program.
Suppose the first and only parameter is a Long-integer. In that case, you can put the integral value into the
ECX register by writing:

SUB MySub(xyz&)
 ! PUSH EBX
 ! MOV EBX, xyz& ; EBX is a pointer to xyz&
 ! MOV ECX, [EBX] ; ECX now contains xyz&
 ' ...more code would go in here
 ! POP EBX
END SUB

PowerBASIC Compiler for Windows Version 10

353 / 2126

In these cases, you must use the correct and complete address to access the value. But regardless of
whether the parameter represents a variable, an expression, or a literal constant, or whether it was passed
by reference or by copy, the routine will always work correctly.

See Also

The Inline Assembler

Passing parameters

Parameters passed by value

Passing arrays

Passing dynamic strings

Parameters passed by value

Passing arrays

Passing arrays
Each array in your program has an associated array descriptor. This descriptor is saved in a proprietary
format, which may change from version to version of PowerBASIC. Since most of the information in the
descriptor in not relevant to assembler code, it is usually best to simply pass a pointer to the first element of
the array instead. You can use the VARPTR function to retrieve that address. Subsequent elements of the
array will immediately follow the first in memory, while multi-dimensional arrays are stored in column-major
order.

In addition to the LBOUND and UBOUND functions, the ARRAYATTR function can be used to obtain array
attributes and information on a given array.

See Also

The Inline Assembler

Passing parameters

Parameters passed by reference or by copy

Parameters passed by value

Passing dynamic strings

Accessing PowerBASIC variables by name

Passing dynamic strings

Passing dynamic strings
A dynamic string variable is defined as a 32-bit data item, which contains a pointer (or offset) to the string
characters. When passed by value, the parameter is actually a 32-bit offset of the data. When passed by
reference or by copy, the parameter is a pointer to another pointer that contains the offset of the actual
string data. A dynamic string passed by reference is usually accessed in this way:

SUB MyProc(abc$)
! PUSH EBX
! MOV EBX, abc$; EBX is a pointer to the string handle
! MOV EBX, [EBX] ; EBX is now a pointer to string data
! MOV AL, [EBX] ; AL contains the 1st char of the string

PowerBASIC Compiler for Windows Version 10

354 / 2126

' more code could go here
! POP EBX
END SUB

If you need to determine the current length of a dynamic string, there are two ways to do so. The end of
string is always followed by a nul, CHR$(0), so it is possible to scan the string for the first occurrence. Of
course, this will only work if there are no embedded nul bytes in the string data. An alternative method is to
read the 32-bit Long-integer that immediately precedes the start of the string data, as the current length is
always stored there.

PowerBASIC also calculates string literals in reverse order, in keeping with standard assembler operation.
For example:

FUNCTION ab(x???) AS DWORD
 ! PUSH EBX
 ! MOV EBX, x???
 ! MOV DWORD PTR [EBX], "ABCD"
 ! POP EBX
END FUNCTION

The above code stores the value &H41424344 in the DWORD variable x, passed

 from the calling code. However, since the Intel platform uses little-endian numeric data format, the
actual bytes are written to memory in the reverse order. For example, if we were to call the code
above, and examine the actual memory locations of the passed parameter after the function call, we can
see the effect of the reverse memory storage:

DIM a AS STRING, x AS DWORD
CALL ab(x)
a = HEX$(x,8) ' a = "41424344"
a = PEEK$(VARPTR(x),4) ' a = "DCBA"

See Also

The Inline Assembler

Passing parameters

Parameters passed by reference or by copy

Parameters passed by value

Passing dynamic strings

Accessing PowerBASIC variables by name

Accessing PowerBASIC variables by name

Accessing PowerBASIC variables by name
Most variables in a PowerBASIC module are visible to Inline Assembler code created with the ASM
statement. You can reference LOCAL, STATIC, and GLOBAL variables by name by simply using the name
as an operand of the assembler opcode. That isn't possible with INSTANCE, THREADED, array, and pointer
variables, as their access requires multiple operations best handled by higher level PowerBASIC code. You
can also reference procedure parameters by name, though you must differentiate between parameters
passed by reference (

), and those passed by value (). Any variable referenced in an assembly-language statement must be
defined prior to use.

SUB DoStuff (BYVAL c&)
 LOCAL a%, b$
 a% = 7 ' Local variable a%
 ! PUSH EBX
 ! MOV AX, a% ; Move value to AX

PowerBASIC Compiler for Windows Version 10

355 / 2126

 ! ADD a%, AX ; Add value back to a%
 b$ = "LINDA" ' Local variable b$
 ! MOV EBX, b$; Address of b$
 ! MOV [EBX], "l" ; Put lowercase "l" in first position
 ! MOV EAX, c& ; Put c& into EAX
 ! INC EAX ; Increment its value
 ! MOV c&, EAX ; Put it back
 ! POP EBX
END SUB

See Also

The Inline Assembler

Commenting Assembly code

Commenting Assembly code
On assembly code lines, a semi-colon (;) is typically used for comments, although an apostrophe (') is
still valid. For example:

SUB KerPlunk
 ASM PUSH EBX ; Save EBX
 ASM MOV EAX, 5 ; Put 5 into EAX
 ! MOV EBX, &HFF ; Put FFh into EBX
 ! ADD EAX, EBX ' EAX = EAX + EBX
 ! POP EBX ' Restore EBX
END SUB

See Also

The Inline Assembler

Resource Files

What is a Resource File?

What is a Resource File?
A resource file may contain a collection of icons, menus, dialog boxes, strings tables, user-defined binary
data and other types of items.

Once compiled into a suitable format, a resource file can be embedded directly into an executable or DLL
file, producing a single EXE or DLL containing both code and resources. At run-time, the application
can use the resource items in the embedded file. The process of creating a resource is straightforward, and
is similar to compiling a PowerBASIC program.

While resource files are still supported, usage of the #RESOURCE metastatement simplifies adding
resources to your program or DLL. With the #RESOURCE metastatement you can add resource data inline,
right in your basic source code. There is no need to create a resource file, compile it, and then link it into
your source. All this done automatically when you use the #RESOURCE metastatement.

The following sections describe the (manual) techniques involved in compiling resource scripts into a usable
format, and describe the Resource Script.

See Also

PowerBASIC Compiler for Windows Version 10

356 / 2126

Resource Editors

Resource Compiling

Resource Scripts

Converting a .RC to a .RES

#RESOURCE metastatement

RESOURCE$ function

Resource Editors

Resource Editors
The most popular technique is to use a Resource Editor. A Resource Editor is a tool that lets you design
and test dialog boxes visually, instead of defining individual dialog statements in a resource script by hand.
Using a Resource Editor, you can add, modify, rearrange, and delete controls and resources in a resource
script file.

Resource Editors such as Microsoft's "Visual Studio" and Borland's "Resource Workshop" also make it
easy to place string tables, version info tables, bitmaps, icons, and other types of resources into a resource
script.

See Also

What is a Resource File?

Resource Compiling

Resource Scripts

#RESOURCE metastatement

Resource File Compiling

Resource File Compiling
We begin with a plain text file and compile it into a binary format that can be utilized by PowerBASIC. The
plain text file is termed a Resource Script and these are stored with a .RC file extension. A Resource
Compiler is then used to create a binary (.RES) file.

The PowerBASIC IDE can be loaded with a Resource Script (.RC file) and compile the script into
PowerBASIC resource file format. This is performed using the regular Compile Current File
button or the RUN | Compile File menu item.

Once a .RES file has been created, it can be embedded into an application EXE or DLL simply by using a
#RESOURCE metastatement. During compilation, PowerBASIC automatically embeds the resource file to
create a single file that contains compiled code and resources.

#RESOURCE RES, "DIALOGS.RES"

Previous version of PowerBASIC also generated a .PBR (PowerBASIC resource file) when compiling an .RC
file. The #RESOURCE metastatement still supports this format. You can enable .PBR generation for
backward compatibility when compilng an .RC file by selecting the "Create a .PBR when compiling .RC
files" option on the compiler options tab.

See Also

What is a Resource File?

PowerBASIC Compiler for Windows Version 10

357 / 2126

Resource Editors

Resource Scripts

#RESOURCE metastatement

Resource Scripts

Resource Scripts
A resource script (.RC) file contains statements that define all of the items that will be included in the
compiled binary resource file. Each statement describes a resource item, along with an identifier (ID) and
any additional parameters (which vary according to the type of resource). A resource script can even
reference a resource item that is stored in a separate file, such as a bitmap or icon.

A resource identifier can be numeric in the range 0 to 65535, or alphanumeric. When a PowerBASIC
application needs to use a resource from the embedded resource file, it uses the resource's ID to identify it.

Hand-written scripts

There are several ways to create a resource script (.RC) file. The first technique is to write the file by hand,
using a text editor like Notepad. This method is quite suitable for creating small resource scripts containing
only a handful of statements.

Here is an example of a small handwritten resource script containing an icon and a version information
block:

#include "resource.h"
ICON1 ICON "MYICON.ICO"
VS_VERSION_INFO VERSIONINFO
FILEVERSION 1, 5, 0, 0
PRODUCTVERSION 1, 5, 0, 0
FILEOS VOS_WINDOWS32
FILETYPE VFT_APP
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904E4"
 BEGIN
 VALUE "CompanyName", "PowerBASIC, Inc.\000"
 VALUE "FileDescription", "Program description\000"
 VALUE "FileVersion", "01.50.0000\000"
 VALUE "InternalName", "MYPROG\000"
 VALUE "OriginalFilename", "MYPROG.EXE\000"
 VALUE "LegalCopyright", "Copyright (c) 2008 PowerBASIC, Inc.\000"
 VALUE "LegalTrademarks", "PowerBASIC is a trademark of PowerBASIC,_
 Inc.\000"
 VALUE "ProductName", "MYPROG\000"
 VALUE "ProductVersion", "01.50.0000\000"
 VALUE "Comments", "Example for Windows 95/98/NT/XP/Vista.\000"
 END
 END
END

This script defines two resource items, whose alphanumeric IDs are ICON1 and VS_VERSION_INFO
respectively. In this case, the actual icon binary data is stored in a separate file (MYICON.ICO). During
compilation, the resource compiler takes the necessary information from the ICO file and includes it in the
binary resource file it creates.

Complete details of the resource script language syntax and features can be found at
http://msdn.microsoft.com/en-us/library/aa381042.aspx

http://msdn.microsoft.com/en-us/library/aa381042.aspx

PowerBASIC Compiler for Windows Version 10

358 / 2126

See Also

What is a Resource File?

Resource Editors

Resource Compiling

#RESOURCE metastatement

Converting a .RC to a .RES

Converting a .RC to a .RES
Using the IDE

Firstly, ensure that the PowerBASIC IDE's OPTIONS dialog is configured to correctly point to the RC.EXE
and PBRES.EXE files. Once configured, the IDE can automatically compile a .RC into a .RES file. When
the "Create a .PBR when compiling .RC files" option on the compiler options tab is selected the IDE will
also produce a .PBR file from the .RES file. This is achieved in one simple step: simply load the .RC file
into the IDE and select Compile.

Using the command-line Resource Compiler

To compile the .RC file, we need to run the Resource Compiler from a DOS box (command-line) to create
the binary (.RES) resource file.

The resource compiler takes the filename of your modified (.RC) resource script file as a parameter, and
produces a new 32-bit .RES file. For example:

C:\PB\BIN\RC.EXE MYAPP.RC

Note that you may need to change the path name to suit your individual settings. At this point, you should
have a compiled binary resource file (i.e., MYAPP.RES), ready to be used with the #RESOURCE
metastatement.

See Also

What is a Resource File?

Resource Editors

Resource Compiling

Resource Scripts

#RESOURCE metastatement

Working with Visual Basic

Visual Basic Data Types

Visual BASIC Data Types
Both Visual Basic and PowerBASIC support the following data types: Byte, Integer, Long-integer, Single-
precision float, Double-precision float, Currency, User-Defined Type, Fixed-length string, Dynamic string, and
Variant. Both products also support arrays of all data types.

PowerBASIC also supports the following data types, which Visual Basic does not: Word, Double-word,

PowerBASIC Compiler for Windows Version 10

359 / 2126

Quad-integer, Extended-currency, STRINGZ string, Unions, and Pointers.

· Currency

· Strings

· User-Defined Types

· Variants

· Arrays

· SafeArrays

See Also

Comparative Data Types To Visual Basic 6

VB Run-time errors when calling a PowerBASIC DLL

VB Run-time errors when calling a
PowerBASIC DLL
There is one common and avoidable error that may be encountered when first attempting to use a
PowerBASIC DLL with a Visual Basic application: Error 48 "Error in loading DLL" or "DLL not found".

javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)
javascript:kadovTextPopup(this)

PowerBASIC Compiler for Windows Version 10

360 / 2126

In almost all circumstances involving this VB error, the problem is not that VB cannot find the DLL, rather,
that VB is not able to locate the specified Sub/Function inside the DLL. When this occurs, the problem is
very likely to be due to mismatching capitalization of the Sub/Function and the VB Declare statement, or
the Sub/Function has not been

 from the DLL.

To remedy these situations, either add an explicit

 clause to the Exported PowerBASIC Subs and Functions to ensure that the exported name matches
the VB Declare, or capitalize the VB Declare Sub/Function name. The latter solution works because
PowerBASIC capitalizes all exported procedure (Sub, Function, Method, and Property) names that do
not have an explicit ALIAS clause. For more information, please refer to the FUNCTION, SUB,
METHOD, and PROPERTY topics.

In addition, VB Errors 53 and 453 may sometimes be resolved by the addition of an ALIAS clause.

In the design environment, it is common practice to provide an explicit path to the DLL in the LIB clause of
the VB Declare statement. In the final "distribution" version, such explicit paths should be removed from the
VB Declare statements. When the paths are omitted, Visual Basic use the following strategy to try to locate
the DLL:

1. Directory containing the calling EXE

2. Current directory

3. Windows 32-bit system directory

4. Windows 16-bit system directory

5. Windows directory

6. Folders specified in the PATH environmental variable

Therefore, it is also possible that certain VB run-time errors (especially in the design environment) may be
attributed to VB failing to locate the DLL, or that VB may be loading the wrong version/copy of the DLL.
When debugging such issues, place the DLL in the appropriate VB project directory, and all rename or
delete any other copies.

Problems calling DLLs, or General Protection Faults (GPFs) when the application runs/closes can often
be attributable to errors in the Visual Basic declarations. Visual basic declarations should generally be
placed in the declarations section of a Visual Basic module, rather than elsewhere in the project to avoid
scoping issues. Declarations in a module should not use the Private Declare syntax.

General Protection Faults (GPFs) may also occur when incorrect parameters or passing methods are
used with the DLL. Another source of GPF problems can occur if passed arrays are referenced beyond
their boundaries from within the DLL code.

See Also

Visual Basic Data Types

Optimizing your code

Optimizing your code
Internally, the DOS and 32-bit Windows operating systems are very different. DOS applications run in 16-bit
"Real Mode", which means that the largest single data object is 64 Kilobytes (the largest 16-bit value is
65535). And because of the way "memory segmentation" works, the total addressing space available in

PowerBASIC Compiler for Windows Version 10

361 / 2126

"Real Mode" is a little over 1 Megabyte. Since the CPU is running in 16-bit mode (Real mode), numeric
operations are fastest when variables are 16-bits (Integers and Words).

In contrast, 32-bit Windows runs in "Protected Mode", and the largest single data object is two Gigabytes
(the largest 32-bit value is actually four Gigabytes, but the operating system reserves half of that for itself).
Because the CPU is running in 32-bit mode (Protected mode), numeric operations are fastest when
variables are 32-bits (Long-integers and Double-words).

Use 32-bit Variables
As you move your DOS code into PowerBASIC, you should replace all "Integer" and "Word" variable types
with Long-integers and Double-words respectively - particularly in FOR/NEXT loops and integral-class math
calculations. It actually takes the CPU longer to perform a calculation on a 2-byte Integer than it does with
a 4-byte Long-integer, and it takes even longer with single byte variables.

Use Register Variables
Register variables are variables that are stored directly in specific CPU registers, rather than in application
memory. Since data in a CPU register can be accessed much faster, and with less code, Register
variables are valuable optimization tools.

Register variables are always local to the Sub, Function, Method, or Property where they appear. In the
current version of PowerBASIC, there may be up to two integral-class Register variables
(Word/Dword/Integer/Long), and up to four Extended-precision floats. It is possible that future versions of
the compiler will change these limits, so you may declare an unlimited number of them. Any "extra"
Register variables are automatically reclassified as locals.

The REGISTER statement allows you to choose which variables will be classified as Register variables. If
you do not make the choice in a particular procedure, the compiler will attempt to choose for you. By
default, the compiler will always assign the first two integral-class local variables available. Extended-
precision float variables will be automatically assigned only in functions that contain no external function
calls.

integral class Register variables are most efficient for variables that are updated or used often, such as
For/Next loop counter variables, and variables that are used repeatedly as array indexes. Floating-point
Register variables should generally be chosen with a bit more caution, since the compiler must generate
code to save and restore them to conventional memory around each call to a procedure. In some rather rare
cases, it is possible that floating-point Register variables could actually reduce execution speed. However,
they are extremely valuable with intensive floating-point calculations and in functions that have few
references to other procedures.

Due to the design of FPUs (floating point units), and the instruction sets available, the first float register
variable declared in your program has far more optimization possibilities than the others do. Use care in
choosing the variable which is used most within floating-point expressions (that is, on the right side of the '='
assignment operator), in order to gain the greatest advantage in execution speed. Also, remember it is
typically valuable to assign floating-point numeric constants to Register variables when they are used in
repetitive or intensive calculations.

You must use care with Inline Assembler floating-point opcodes in procedures that enable Register
variables. Floating-point Register variables may occupy up to four of the FPU registers, so you must limit
your use of the x87 registers to the remaining four. Further, floating-point Register variables may never be
referenced by name from Inline Assembler code, as the compiler cannot always track the register locations
with absolute certainty.

Register variables are preserved when a call to an external DLL or API function is
made. Register variables are automatically thread-safe too.

Because Register variables are stored within the CPU, it is not possible to use VARPTR on a register
variable. When passing a register variable to a procedure BYREF, the compiler temporarily converts the
register variable into a memory variable, and reloads the register variable upon return from the procedure
call. The overhead that this adds is insignificant.

See Also

PowerBASIC Compiler for Windows Version 10

362 / 2126

The Inline Assembler

Keyword Reference

Keyword Quick Finder

Keyword Quick Finder

%
%DEF operator

%PB_COMPILETIME numeric equate

#
#ALIGN metastatement

#BLOAT metastatement

#COM metastatement

#COMPILE metastatement

#COMPILER metastatement

#DEBUG CODE metastatement

#DEBUG DISPLAY metastatement

#DEBUG ERROR metastatement

#DEBUG PRINT metastatement

#DIM metastatement

#EXPORT metastatement

#IF/#ELSEIF/#ELSE/#ENDIF metastatements

#INCLUDE metastatement

#LINK metastatement

#MESSAGES metastatement

#OPTIMIZE metastatement

#OPTION metastatement

#PAGE metastatement

#PBFORMS metastatement

#REGISTER metastatement

#RESOURCE metastatement

#STACK metastatement

#TOOLS metastatement

#UNIQUE metastatement

PowerBASIC Compiler for Windows Version 10

363 / 2126

#UTILITY metastatement

A
ABS function

ACCEL ATTACH statement

ACODE$ function

AND operator

ARRAY ASSIGN statement

ARRAY DELETE statement

ARRAY INSERT statement

ARRAY SCAN statement

ARRAY SORT statement

ARRAYATTR function

ASC function

ASC statement

ASM statement

ASM ALIGN statement

ASMDATA/END ASMDATA statements

ATN function

B
BEEP statement

BGR function

BIN$ function

BIT CALC statement

BIT function

BIT statement

BITS$ function

BITS function

BITSE function

BUILD$ function

C
CALL statement

CALL DWORD statement

CALLSTK statement

CALLSTK$ function

CALLSTKCOUNT function

CB.CTL function

PowerBASIC Compiler for Windows Version 10

364 / 2126

CB.CTLMSG function

CB.HNDL function

CB.LPARAM function

CB.MSG function

CB.NMCODE function

CB.NMHDR function

CB.NMHDR$ function

CB.NMHWND function

CB.NMID function

CB.WPARAM function

CBYT function

CCUR function

CCUX function

CDBL function

CDWD function

CEIL function

CEXT function

CHDIR statement

CHDRIVE statement

CHOOSE function

CHOOSE& function

CHOOSE$ function

CHR$ function

CHR$$ function

CHRBYTES function

ChrToOem$ function

ChrToUtf8$ function

CINT function

CLASS/END CLASS block

CLIP$ function

CLIPBOARD GET BITMAP

CLIPBOARD GET OEMTEXT

CLIPBOARD GET TEXT

CLIPBOARD GET UNICODE

CLIPBOARD RESET

CLIPBOARD SET BITMAP

CLIPBOARD SET OEMTEXT

CLIPBOARD SET TEXT

CLIPBOARD SET UNICODE

CLNG function

PowerBASIC Compiler for Windows Version 10

365 / 2126

CLOSE statement

CLSID$ function

CODEPTR function

COMBOBOX ADD hDlg statement

COMBOBOX DELETE statement

COMBOBOX FIND statement

COMBOBOX FIND EXACT statement

COMBOBOX GET COUNT statement

COMBOBOX GET SELCOUNT statement

COMBOBOX GET SELECT statement

COMBOBOX GET STATE statement

COMBOBOX GET TEXT statement

COMBOBOX GET USER statement

COMBOBOX INSERT statement

COMBOBOX RESET statement

COMBOBOX SELECT statement

COMBOBOX SET TEXT statement

COMBOBOX SET USER statement

COMBOBOX UNSELECT statement

COMM CLOSE statement

COMM function

COMM LINE statement

COMM OPEN statement

COMM PRINT statement

COMM RECV statement

COMM RESET statement

COMM SEND statement

COMM SET statement

COMMAND$ function

CONTROL ADD statement

CONTROL ADD BUTTON statement

CONTROL ADD CHECK3STATE statement

CONTROL ADD CHECKBOX statement

CONTROL ADD COMBOBOX statement

CONTROL ADD FRAME statement

CONTROL ADD GRAPHIC statement

CONTROL ADD HEADER statement

CONTROL ADD IMAGE statement

CONTROL ADD IMAGEX statement

CONTROL ADD IMGBUTTON statement

PowerBASIC Compiler for Windows Version 10

366 / 2126

CONTROL ADD IMGBUTTONX statement

CONTROL ADD LABEL statement

CONTROL ADD LINE statement

CONTROL ADD LISTBOX statement

CONTROL ADD LISTVIEW statement

CONTROL ADD OPTION statement

CONTROL ADD PROGRESSBAR statement

CONTROL ADD SCROLLBAR statement

CONTROL ADD STATUSBAR statement

CONTROL ADD TAB statement

CONTROL ADD TEXTBOX statement

CONTROL ADD TOOLBAR statement

CONTROL ADD TREEVIEW statement

CONTROL DISABLE statement

CONTROL ENABLE statement

CONTROL GET CHECK statement

CONTROL GET CLIENT statement

CONTROL GET LOC statement

CONTROL GET SIZE statement

CONTROL GET TEXT statement

CONTROL GET USER statement

CONTROL HANDLE statement

CONTROL HIDE statement

CONTROL KILL statement

CONTROL NORMALIZE statement

CONTROL POST statement

CONTROL REDRAW statement

CONTROL SEND statement

CONTROL SET CHECK statement

CONTROL SET CLIENT statement

CONTROL SET COLOR statement

CONTROL SET FOCUS statement

CONTROL SET FONT statement

CONTROL SET IMAGE statement

CONTROL SET IMAGEX statement

CONTROL SET IMGBUTTON statement

CONTROL SET IMGBUTTONX statement

CONTROL SET LOC statement

CONTROL SET OPTION statement

CONTROL SET SIZE statement

PowerBASIC Compiler for Windows Version 10

367 / 2126

CONTROL SET TEXT statement

CONTROL SET USER statement

CONTROL SHOW STATE statement

COS function

CQUD function

CSET statement

CSET$ function

CSNG function

CURDIR$ function

CVBYT function

CVCUR function

CVCUX function

CVD function

CVDWD function

CVE function

CVI function

CVL function

CVQ function

CVS function

CVWRD function

CWRD function

D
DATA statement

DATACOUNT function

DATE$ system variable

DAYNAME$ function

DEC$ function

DECLARE statement

DECR statement

DEFBYT statement

DEFCUR statement

DEFCUX statement

DEFDBL statement

DEFDWD statement

DEFEXT statement

DEFINT statement

DEFLNG statement

DEFQUD statement

PowerBASIC Compiler for Windows Version 10

368 / 2126

DEFSNG statement

DEFSTR statement

DEFWRD statement

DESKTOP GET CLIENT statement

DESKTOP GET LOC statement

DESKTOP GET SIZE statement

DIALOG DEFAULT FONT statement

DIALOG DISABLE statement

DIALOG DOEVENTS statement

DIALOG ENABLE statement

DIALOG END statement

DIALOG GET CLIENT statement

DIALOG GET LOC statetement

DIALOG GET SIZE statement

DIALOG GET TEXT statement

DIALOG GET USER statement

DIALOG HIDE statement

DIALOG MAXIMIZE statement

DIALOG MINIMIZE statement

DIALOG NEW statement

DIALOG NONSTABLE statement

DIALOG NORMALIZE statement

DIALOG PIXELS statement

DIALOG POST statement

DIALOG REDRAW statement

DIALOG SEND statement

DIALOG SET CLIENT Statement

DIALOG SET COLOR statement

DIALOG SET ICON statement

DIALOG SET LOC statement

DIALOG SET SIZE statement

DIALOG SET TEXT statement

DIALOG SET USER statement

DIALOG SHOW MODAL statement

DIALOG SHOW MODELESS statement

DIALOG SHOW STATE statement

DIALOG STABILIZE statement

DIALOG UNITS statement

DIM statement

DIR$ function

PowerBASIC Compiler for Windows Version 10

369 / 2126

DIR$ CLOSE statement

DISKFREE function

DISKSIZE function

DISPLAY BROWSE statement

DISPLAY COLOR statement

DISPLAY FONT statement

DISPLAY OPENFILE statement

DISPLAY SAVEFILE statement

DLLMAIN function

DO/LOOP statements

E
END statement

ENUM/END ENUM statements

ENVIRON statement

ENVIRON$ function

EOF function

EQV operator

ERASE statement

ERL system variable

ERL$ function

ERR system variable

ERRCLEAR system variable

ERROR statement

ERROR$ function

EVENT SOURCE statement

EVENTS statement

EXE.Extn$ member

EXE.Full$ member

EXE.Inst member

EXE.Name$ member

EXE.Namex$ member

EXE.Path$ member

EXIT statement

EXP function

EXP2 function

EXP10 function

EXTRACT$ function

PowerBASIC Compiler for Windows Version 10

370 / 2126

F
FASTPROC/END FASTPROC statements

FIELD statement

FIELD RESET statement

FIELD STRING statement

FILEATTR function

FILECOPY statement

FILENAME$ function

FILESCAN statement

FIX function

FLUSH statement

FONT END statement

FONT NEW statement

FOR EACH/NEXT statements

FOR/NEXT statements

FORMAT$ function

FRAC function

FREEFILE function

FUNCNAME$ function

FUNCTION/END FUNCTION statements

G
GET statement

GET$ statement

GET$$ statement

GETATTR function

GLOBAL statement

GLOBALMEM ALLOC statement

GLOBALMEM FREE statement

GLOBALMEM LOCK statement

GLOBALMEM SIZE statement

GLOBALMEM UNLOCK statement

GOSUB statement

GOSUB DWORD statement

GOTO statement

GOTO DWORD statement

GRAPHIC(CANVAS.X) function

GRAPHIC(CANVAS.Y) function

GRAPHIC(Cell.Size.X) function

PowerBASIC Compiler for Windows Version 10

371 / 2126

GRAPHIC(Cell.Size.Y) function

GRAPHIC(Chr.Size.X) function

GRAPHIC(Chr.Size.Y) function

GRAPHIC(Client.X) function

GRAPHIC(Client.Y) function

GRAPHIC(Clip.X) function

GRAPHIC(Clip.Y) function

GRAPHIC(COL) function

GRAPHIC(DC) function

GRAPHIC(INSTAT) function

GRAPHIC(LINES) function

GRAPHIC(LOC.X) function

GRAPHIC(LOC.Y) function

GRAPHIC(MIX) function

GRAPHIC(OVERLAP) function

GRAPHIC(PIXEL...) function

GRAPHIC(POS.X) function

GRAPHIC(POS.Y) function

GRAPHIC(PPI.X) function

GRAPHIC(PPI.Y) function

GRAPHIC(ROW) function

GRAPHIC(SCROLLTEXT) function

GRAPHIC(SIZE.X) function

GRAPHIC(SIZE.Y) function

GRAPHIC(STRETCHMODE) function

GRAPHIC(TEXT.SIZE.X...) function

GRAPHIC(TEXT.SIZE.Y...) function

GRAPHIC(View.X) function

GRAPHIC(View.Y) function

GRAPHIC(WORDWRAP) function

GRAPHIC(WRAP) function

GRAPHIC$(CAPTION) function

GRAPHIC$(INKEY$) function

GRAPHIC$(WAITKEY$) function

GRAPHIC$(WAITKEY$...) function

GRAPHIC ARC statement

GRAPHIC ATTACH statement

GRAPHIC BITMAP END statement

GRAPHIC BITMAP LOAD statement

GRAPHIC BITMAP NEW statement

PowerBASIC Compiler for Windows Version 10

372 / 2126

GRAPHIC BOX statement

GRAPHIC CELL SIZE statement

GRAPHIC CELL statement

GRAPHIC CHR SIZE statement

GRAPHIC CLEAR statement

GRAPHIC Code Group

GRAPHIC COL statement

GRAPHIC COLOR statement

GRAPHIC COPY statement

GRAPHIC DETACH statement

GRAPHIC ELLIPSE statement

GRAPHIC GET BITS statement

GRAPHIC GET CANVAS statement

GRAPHIC GET CAPTION statement

GRAPHIC GET CLIENT statement

GRAPHIC GET CLIP statement

GRAPHIC GET DC statement

GRAPHIC GET LINES statement

GRAPHIC GET LOC statement

GRAPHIC GET MIX statement

GRAPHIC GET OVERLAP statement

GRAPHIC GET PIXEL statement

GRAPHIC GET POS statement

GRAPHIC GET PPI statement

GRAPHIC GET SCALE statement

GRAPHIC GET SCROLLTEXT statement

GRAPHIC GET SIZE statement

GRAPHIC GET STRETCHMODE statement

GRAPHIC GET VIEW statement

GRAPHIC GET WORDWRAP statement

GRAPHIC GET WRAP statement

GRAPHIC IMAGELIST statement

GRAPHIC INKEY$ statement

GRAPHIC INPUT statement

GRAPHIC INSTAT statement

GRAPHIC LINE statement

GRAPHIC LINE INPUT statement

GRAPHIC PAINT statement

GRAPHIC PIE statement

GRAPHIC POLYGON statement

PowerBASIC Compiler for Windows Version 10

373 / 2126

GRAPHIC POLYLINE statement

GRAPHIC PRINT statement

GRAPHIC REDRAW statement

GRAPHIC RENDER statement

GRAPHIC ROW statement

GRAPHIC SAVE statement

GRAPHIC SCALE statement

GRAPHIC SET AUTOSIZE statement

GRAPHIC SET BITS statement

GRAPHIC SET CAPTION statement

GRAPHIC SET CLIENT statement

GRAPHIC SET CLIP statement

GRAPHIC SET FIXED statement

GRAPHIC SET FOCUS statement

GRAPHIC SET FONT statement

GRAPHIC SET LOC statement

GRAPHIC SET MIX statement

GRAPHIC SET OVERLAP statement

GRAPHIC SET PIXEL statement

GRAPHIC SET POS statement

GRAPHIC SET SCROLLTEXT statement

GRAPHIC SET SIZE statement

GRAPHIC SET STRETCHMODE statement

GRAPHIC SET VIEW statement

GRAPHIC SET VIRTUAL statement

GRAPHIC SET WORDWRAP statement

GRAPHIC SET WRAP statement

GRAPHIC SPLIT statement

GRAPHIC STRETCH statement

GRAPHIC STYLE statement

GRAPHIC TEXT SIZE statement

GRAPHIC WAITKEY$ statement

GRAPHIC WIDTH statement

GRAPHIC WINDOW statement

GRAPHIC WINDOW CLICK statement

GRAPHIC WINDOW END statement

GRAPHIC WINDOW HIDE statement

GRAPHIC WINDOW MINIMIZE statement

GRAPHIC WINDOW NONSTABLE statement

GRAPHIC WINDOW NORMALIZE statement

PowerBASIC Compiler for Windows Version 10

374 / 2126

GRAPHIC WINDOW STABILIZE statement

GRAPHIC WINDOW TEXT statement

GUID$ function

GUIDTXT$ function

H
HEADER GET COUNT statement

HEADER GET ITEM statement

HEADER SEND statement

HEADER SET ITEM statement

HEX$ function

HI function

HOST ADDR statement

HOST NAME statement

I
IDISPINFO pseudo-object

IF statement

IF/END IF block

IIF function

IIF& function

IIF$ function

ILinkListCollection.ADD

ILinkListCollection.CLEAR

ILinkListCollection.COUNT

ILinkListCollection.FIRST

ILinkListCollection.INDEX

ILinkListCollection.INSERT

ILinkListCollection.ITEM

ILinkListCollection.LAST

ILinkListCollection.NEXT

ILinkListCollection.PREVIOUS

ILinkListCollection.REMOVE

ILinkListCollection.REPLACE

IMAGELIST ADD BITMAP statement

IMAGELIST ADD ICON statement

IMAGELIST ADD MASKED statement

IMAGELIST GET COUNT statement

IMAGELIST KILL statement

PowerBASIC Compiler for Windows Version 10

375 / 2126

IMAGELIST NEW BITMAP statement

IMAGELIST NEW ICON statement

IMAGELIST SET OVERLAY statement

IMP operator

IMPORT ADDR statement

IMPORT CLOSE statement

INCR statement

INPUT# statement

INPUTBOX$ function

INSTANCE statement

INSTR function

INT function

INTERFACE / END INTERFACE Block (Direct)

INTERFACE/END INTERFACE block (IDBind)

IPowerArray.ARRAYBASE

IPowerArray.ARRAYDESC

IPowerArray.ARRAYINFO <Get>

IPowerArray.ARRAYINFO <Set>

IPowerArray.CLONE

IPowerArray.COPYFROMVARIANT

IPowerArray.COPYTOVARIANT

IPowerArray.DIM

IPowerArray.ELEMENTPTR

IPowerArray.ELEMENTSIZE

IPowerArray.ERASE

IpowerArray.LBOUND

IPowerArray.LOCK

IPowerArray.MOVEFROMVARIANT

IPowerArray.MOVETOVARIANT

IPowerArray.REDIM

IPowerArray.REDIMPRESERVE

IPowerArray.RESET

IPowerArray.SUBSCRIPTS

IPowerArray.UBOUND

IPowerArray.UNLOCK

IPowerArray.VALUEGET

IPowerAraay.VALUESET

IPowerArray.VALUETYPE

IPowerCollection.ADD

IPowerCollection.CLEAR

PowerBASIC Compiler for Windows Version 10

376 / 2126

IPowerCollection.CONTAINS

IPowerCollection.COUNT

IPowerCollection.ENTRY

IPowerCollection.FIRST

IPowerCollection.INDEX

IPowerCollection.ITEM

IPowerCollection.LAST

IPowerCollection.NEXT

IPowerCollection.PREVIOUS

IPowerCollection.REMOVE

IPowerCollection.REPLACE

IPowerCollection.SORT

IPowerThread.Close

IPowerThread.Equals

IPowerThread.Handle

IPowerThread.Id

IPowerThread.IsAlive

IPowerThread.Join

IPowerThread.Launch

IPowerThread.Priority <Get>

IPowerThread.Priority <Set>

IPowerThread.Result

IPowerThread.Resume

IPowerThread.StackSize <Get>

IPowerThread.StackSize <Set>

IPowerThread.Suspend

IPowerThread.TimeCreate

IPowerThread.TimeExit

IPowerThread.TimeKernel

IPowerThread.TimeUser

IPowerTime.AddDays

IPowerTime.AddHours

IPowerTime.AddMinutes

IPowerTime.AddMonths

IPowerTime.AddMSeconds

IPowerTime.AddSeconds

IPowerTime.AddTicks

IPowerTime.AddYears

IPowerTime.DateDiff

IPowerTime.DateString

PowerBASIC Compiler for Windows Version 10

377 / 2126

IPowerTime.DateStringLong

IPowerTime.Day

IPowerTime.DayOfWeek

IPowerTime.DayOfWeekString

IPowerTime.DaysInMonth

IPowerTime.FileTime <Get>

IPowerTime.FileTime <Set>

IPowerTime.Hour

IPowerTime.IsLeapYear

IPowerTime.Minute

IPowerTime.Month

IPowerTime.MonthString

IPowerTime.MSecond

IPowerTime.NewDate

IPowerTime.NewTime

IPowerTime.Now

IPowerTime.NowUTC

IPowerTime.Second

IPowerTime.Tick

IPowerTime.TimeDiff

IPowerTime.TimeString

IPowerTime.TimeString24

IPowerTime.TimeStringFull

IPowerTime.Today

IPowerTime.ToLocalTime

IPowerTime.ToUTC

IPowerTime.Year

IQueueCollection.CLEAR

IQueueCollection.COUNT

IQueueCollection.DEQUEUE

IQueueCollection.ENQUEUE

IStackCollection.CLEAR

IStackCollection.COUNT

IStackCollection.POP

IStackCollection.PUSH

IStringBuilderA.Add

IStringBuilderA.Capacity <Get>

IStringBuilderA.Capacity <Set>

IStringBuilderA.Char <Get>

IStringBuilderA.Char <Set>

PowerBASIC Compiler for Windows Version 10

378 / 2126

IStringBuilderA.Clear

IStringBuilderA.Delete

IStringBuilderA.Insert

IStringBuilderA.Len

IStringBuilderA.String

IStringBuilderW.Add

IStringBuilderW.Capacity <Get>

IStringBuilderW.Capacity <Set>

IStringBuilderW.Char <Get>

IStringBuilderW.Char <Set>

IStringBuilderW.Clear

IStringBuilderW.Clear

IStringBuilderW.Delete

IStringBuilderW.Len

IStringBuilderW.String

ISFALSE operator

ISFILE Function

ISFOLDER Function

ISINTERFACE Function

ISMISSING function

ISNOTHING function

ISNOTNULL function

ISNULL function

ISOBJECT function

ISTACKCOLLECTION object

ISTRUE operator

ISWIN function

ITERATE statement

J
JOIN$ function

K
KILL statement

L
LBOUND function

LCASE$ function

LEFT$ function

PowerBASIC Compiler for Windows Version 10

379 / 2126

LEN function

LET statement

LET statement (with Objects)

LET statement (with Types)

LET statement (with Variants)

LIBMAIN function

LINE INPUT# statement

LISTBOX ADD statement

LISTBOX DELETE statement

LISTBOX FIND statement

LISTBOX FIND EXACT statement

LISTBOX GET COUNT statement

LISTBOX GET SELCOUNT statement

LISTBOX GET SELECT statement

LISTBOX GET STATE statement

LISTBOX GET TEXT statement

LISTBOX GET USER statement

LISTBOX INSERT statement

LISTBOX RESET statement

LISTBOX SELECT statement

LISTBOX SET TEXT statement

LISTBOX SET USER statement

LISTBOX UNSELECT statement

LISTVIEW DELETE COLUMN statement

LISTVIEW DELETE ITEM statement

LISTVIEW FIND statement

LISTVIEW FIND EXACT statement

LISTVIEW FIT CONTENT statement

LISTVIEW FIT HEADER statement

LISTVIEW GET COLUMN statement

LISTVIEW GET COUNT statement

LISTVIEW GET HEADER statement

LISTVIEW GET HEADERID statement

LISTVIEW GET MODE statement

LISTVIEW GET SELCOUNT statement

LISTVIEW GET SELECT statement

LISTVIEW GET STATE statement

LISTVIEW GET STYLEXX statement

LISTVIEW GET TEXT statement

LISTVIEW GET USER statement

PowerBASIC Compiler for Windows Version 10

380 / 2126

LISTVIEW INSERT COLUMN statement

LISTVIEW INSERT ITEM statement

LISTVIEW RESET statement

LISTVIEW SELECT statement

LISTVIEW SET COLUMN statement

LISTVIEW SET HEADER statement

LISTVIEW SET IMAGE statement

LISTVIEW SET IMAGE2 statement

LISTVIEW SET IMAGELIST statement

LISTVIEW SET MODE statement

LISTVIEW SET OVERLAY statement

LISTVIEW SET STYLEXX statement

LISTVIEW SET TEXT statement

LISTVIEW SET USER statement

LISTVIEW SORT statement

LISTVIEW UNSELECT statement

LISTVIEW VISIBLE statement

LO function

LOC function

LOCAL statement

LOCK statement

LOF function

LOG function

LOG2 function

LOG10 function

LPRINT ATTACH statement

LPRINT CLOSE statement

LPRINT FLUSH statement

LPRINT FORMFEED statement

LPRINT statement

LPRINT$ function

LSET statement

LSET$ function

LTRIM$ function

M
MACRO/END MACRO block

MAK function

MAT statement

PowerBASIC Compiler for Windows Version 10

381 / 2126

MAX function

MAX& function

MAX$ function

MCASE$ function

ME pseudo-variable

MEMORY COPY statement

MEMORY FILL statement

MEMORY SWAP statement

MENU ADD POPUP statement

MENU ADD STRING statement

MENU ATTACH statement

MENU CONTEXT statement

MENU DELETE statement

MENU DRAW BAR statement

MENU GET STATE statement

MENU GET TEXT statement

MENU NEW BAR statement

MENU NEW POPUP statement

MENU SET STATE statement

MENU SET TEXT statement

METHOD / END METHOD statements

METRICS function

MID$ function

MID$ statement

MIN function

MIN& function

MIN$ function

MKBYT$ function

MKCUR$ function

MKCUX$ function

MKD$ function

MKDIR statement

MKDWD$ function

MKE$ function

MKI$ function

MKL$ function

MKQ$ function

MKS$ function

MKWRD$ function

MOD operator

PowerBASIC Compiler for Windows Version 10

382 / 2126

MONTHNAME$ function

MOUSEPTR statement

MSGBOX function

MSGBOX statement

MYBASE pseudo-variable

N
NAME statement

NEXT statement

NOT operator

NUL$ function

O
OBJACTIVE function

OBJECT CALL statement

OBJECT GET statement

OBJECT LET statement

OBJECT SET statement

OBJECT RAISEEVENT statement

OBJEQUAL function

OBJPTR function

OBJRESULT function

OBJRESULT$ function

OCT$ function

OemToChr$ function

ON ERROR statement

ON GOSUB statement

ON GOTO statement

OPEN statement

OPTION EXPLICIT statement

OR operator

P
PARSE statement

PARSE$ function

PARSECOUNT function

PATHNAME$ function

PATHSCAN$ function

PBLIBMAIN function

PowerBASIC Compiler for Windows Version 10

383 / 2126

PBMAIN function

PEEK function

PEEK$ function

PEEK$$ function

PLAY WAVE statement

PLAY WAVE END statement

POKE statement

POKE$ statement

POKE$$ statement

POWERARRAY Object

POWERTIME object

PREFIX/END PREFIX statements

PRINT# statement

PRINTER$ function

PRINTERCOUNT function

PROCESS GET PRIORITY statement

PROCESS SET PRIORITY statement

PROFILE statement

PROGID$ function

PROGRESSBAR GET POS statement

PROGRESSBAR GET RANGE statement

PROGRESSBAR SET POS statement

PROGRESSBAR SET RANGE statement

PROGRESSBAR SET STEP statement

PROGRESSBAR STEP statement

PROPERTY GET statement

PROPERTY SET statement

PUT statement

PUT$ statement

PUT$$ statement

R
RAISEEVENT statement

RANDOMIZE statement

READ$ function

REDIM statement

REGEXPR statement

REGISTER statement

REGREPL statement

PowerBASIC Compiler for Windows Version 10

384 / 2126

REM statement

REMAIN$ function

REMOVE$ function

REPEAT$ function

REPLACE statement

RESET statement

RESOURCE$ function

RESUME statement

RESUME FLUSH statement

RESUME NEXT statement

RESUME <Label> statement

RETAIN$ function

RETURN statement

RETURN FLUSH statement

RGB function

RIGHT$ function

RMDIR statement

RND function

ROTATE statement

ROUND function

RSET statement

RSET$ function

RTRIM$ function

S
SCROLLBAR GET PAGESIZE statement

SCROLLBAR GET POS statement

SCROLLBAR GET RANGE statement

SCROLLBAR GET TRACKPOS statement

SCROLLBAR SET PAGESIZE statement

SCROLLBAR SET POS statement

SCROLLBAR SET RANGE statement

SEEK function

SEEK statement

SELECT CASE/END SELECT block

SETATTR statement

SETEOF statement

SGN function

SHELL function

PowerBASIC Compiler for Windows Version 10

385 / 2126

SHELL statement

SHIFT statement

SHRINK$ function

SIN function

SIZEOF function

SLEEP statement

SPACE$ function

SPLIT statement

SQR function

STATIC statement

STATUSBAR SET PARTS statement

STATUSBAR SET TEXT statement

STR$ function

STRDELETE$ function

STRING$ function

STRING$$ function

STRINGBUILDER Object

STRINSERT$ function

STRPTR function

STRREVERSE$ function

SUB/END SUB statements

SWAP statement

SWITCH function

T
TAB DELETE statement

TAB GET COUNT statement

TAB GET DIALOG statement

TAB GET IMAGE statement

TAB GET PAGE statement

TAB GET SELECT statement

TAB GET TEXT statement

TAB INSERT PAGE statement

TAB RESET statement

TAB SELECT statement

TAB SET IMAGE statement

TAB SET IMAGELIST statement

TAB SET TEXT statement

TAB$ function

PowerBASIC Compiler for Windows Version 10

386 / 2126

TALLY function

TAN function

TCP ACCEPT statement

TCP CLOSE statement

TCP LINE INPUT statement

TCP NOTIFY statement

TCP OPEN statement

TCP PRINT statement

TCP RECV statement

TCP SEND statement

THREAD CLOSE statement

THREAD Code Group

THREAD CREATE statement

THREAD FUNCTION statement

THREAD GET PRIORITY statement

THREAD Object

THREAD RESUME statement

THREAD SET PRIORITY statement

THREAD STATUS statement

THREAD SUSPEND statement

THREADCOUNT function

THREADED statement

THREADID function

TIME$ system variable

TIMER function

TIX statement

TOOLBAR ADD BUTTON statement

TOOLBAR ADD SEPARATOR statement

TOOLBAR DELETE BUTTON statement

TOOLBAR GET COUNT statement

TOOLBAR GET STATE statement

TOOLBAR SET IMAGELIST statement

TOOLBAR SET STATE statement

TRACE statement

TREEVIEW DELETE statement

TREEVIEW GET BOLD statement

TREEVIEW GET CHECK statement

TREEVIEW GET CHILD statement

TREEVIEW GET COUNT statement

TREEVIEW GET EXPANDED statement

PowerBASIC Compiler for Windows Version 10

387 / 2126

TREEVIEW GET NEXT statement

TREEVIEW GET PARENT statement

TREEVIEW GET PREVIOUS statement

TREEVIEW GET ROOT statement

TREEVIEW GET SELECT statement

TREEVIEW GET TEXT statement

TREEVIEW GET USER statement

TREEVIEW INSERT ITEM statement

TREEVIEW RESET statement

TREEVIEW SELECT statement

TREEVIEW SET BOLD statement

TREEVIEW SET CHECK statement

TREEVIEW SET EXPANDED statement

TREEVIEW SET IMAGELIST statement

TREEVIEW SET TEXT statement

TREEVIEW SET USER statement

TREEVIEW UNSELECT statement

TRIM$ function

TRY/END TRY block

TXT.CELL method

TXT.CLS method

TXT.COLOR method

TXT.END method

TXT.INKEY$ method

TXT.INSTAT method

TXT.LINE.INPUT method

TXT.PRINT method

TXT.WAITKEY$ method

TXT.WINDOW method

TYPE SET statement

TYPE/END TYPE block

U
UBOUND function

UCASE$ function

UCODE$ function

UCODEPAGE statement

UDP CLOSE statement

UDP NOTIFY statement

PowerBASIC Compiler for Windows Version 10

388 / 2126

UDP OPEN statement

UDP RECV statement

UDP SEND statement

UNION/END UNION block

UNLOCK statement

UNWRAP$ function

USING$ function

Utf8ToChr$ function

V
VAL function

VAL statement

VARIANT# function

VARIANT$ function

VARIANT$$ function

VARIANTVT function

VARPTR function

VERIFY function

W
WHILE/WEND statements

WINDOW GET HANDLE statement

WINDOW GET ID statement

WINDOW GET PARENT statement

WINDOW GET STYLE statement

WINDOW GET STYLEX statement

WINDOW GET USER statement

WINDOW SET ID statement

WINDOW SET STYLE statement

WINDOW SET STYLEX statement

WINDOW SET USER statement

WINMAIN function

WRAP$ function

WRITE# statement

X
XOR operator

XPRINT(CANVAS.X) function

XPRINT(CANVAS.Y) function

PowerBASIC Compiler for Windows Version 10

389 / 2126

XPRINT(Cell.Size.X) function

XPRINT(Cell.Size.Y) function

XPRINT(Chr.Size.X) function

XPRINT(Chr.Size.Y) function

XPRINT(Client.X) function

XPRINT(Client.Y) function

XPRINT(Clip.X) function

XPRINT(Clip.Y) function

XPRINT(COL) function

XPRINT(COLLATE) function

XPRINT(COLORMODE) function

XPRINT(COPIES) function

XPRINT(DC) function

XPRINT(DUPLEX) function

XPRINT(LINES) function

XPRINT(MIX) function

XPRINT(ORIENTATION) function

XPRINT(OVERLAP) function

XPRINT(PAPER) function

XPRINT(PIXEL...) function

XPRINT(POS.X) function

XPRINT(POS.Y) function

XPRINT(PPI.X) function

XPRINT(PPI.Y) function

XPRINT(QUALITY) function

XPRINT(ROW) function

XPRINT(SELECTION) function

XPRINT(SIZE.X) function

XPRINT(SIZE.Y) function

XPRINT(STRETCHMODE) function

XPRINT(TEXT.SIZE.X...) function

XPRINT(TEXT.SIZE.Y...) function

XPRINT(TRAY) function

XPRINT(WORDWRAP) function

XPRINT(WRAP) function

XPRINT$ function

XPRINT$(ATTACH) function

XPRINT$(PAPERS) function

XPRINT$(TRAYS) function

XPRINT ARC statement

PowerBASIC Compiler for Windows Version 10

390 / 2126

XPRINT ATTACH statement

XPRINT BOX statement

XPRINT CANCEL statement

XPRINT CELL statement

XPRINT CELL SIZE statement

XPRINT CHR SIZE statement

XPRINT CLOSE statement

XPRINT COLOR statement

XPRINT COPY statement

XPRINT ELLIPSE statement

XPRINT FORMFEED statement

XPRINT GET ATTACH statement

XPRINT GET CANVAS statement

XPRINT GET CLIENT statement

XPRINT GET CLIP statement

XPRINT GET COLLATE statement

XPRINT GET COLORMODE statement

XPRINT GET COPIES statement

XPRINT GET DC statement

XPRINT GET DUPLEX statement

XPRINT GET LINES statement

XPRINT GET MARGIN statement

XPRINT GET MIX statement

XPRINT GET ORIENTATION statement

XPRINT GET OVERLAP statement

XPRINT GET PAGES statement

XPRINT GET PAPER statement

XPRINT GET PAPERS statement

XPRINT GET PIXEL statement

XPRINT GET POS statement

XPRINT GET PPI statement

XPRINT GET QUALITY statement

XPRINT GET SCALE statement

XPRINT GET SELECTION statement

XPRINT GET SIZE statement

XPRINT GET STRETCHMODE statement

XPRINT GET TRAY statement

XPRINT GET TRAYS statement

XPRINT GET WORDWRAP statement

XPRINT GET WRAP statement

PowerBASIC Compiler for Windows Version 10

391 / 2126

XPRINT IMAGELIST statement

XPRINT LINE statement

XPRINT PIE statement

XPRINT POLYGON statement

XPRINT POLYLINE statement

XPRINT PREVIEW statement

XPRINT PREVIEW CLOSE statement

XPRINT PRINT statement

XPRINT RENDER statement

XPRINT SCALE statement

XPRINT SCALE PIXELS statement

XPRINT SET CLIP statement

XPRINT SET COLLATE statement

XPRINT SET COLORMODE statement

XPRINT SET COPIES statement

XPRINT SET DUPLEX statement

XPRINT SET FONT

XPRINT SET MIX statement

XPRINT SET ORIENTATION statement

XPRINT SET OVERLAP statement

XPRINT SET PAGES statement

XPRINT SET PAPER statement

XPRINT SET PIXEL statement

XPRINT SET POS statement

XPRINT SET QUALITY statement

XPRINT SET STRETCHMODE statement

XPRINT SET TRAY statement

XPRINT SET WORDWRAP statement

XPRINT SET WRAP statement

XPRINT SPLIT statement

XPRINT STRETCH statement

XPRINT STRETCH PAGE statement

XPRINT STYLE statement

XPRINT TEXT SIZE statement

XPRINT WIDTH statement

Keyword Reference

Keyword Reference

PowerBASIC Compiler for Windows Version 10

392 / 2126

This section contains an alphabetical listing of all of the PowerBASIC keywords. Each entry goes into
specific detail about each command, and is cross-references to other relevant commands. The
Programming Reference topics in this help file describe theory and example usage of a selection of
essential commands.

The commands can be classified into four primary categories, according to their syntactic class: functions,
statements, system variables, and metastatements:

Functions
These are predefined PowerBASIC functions, as opposed to user-defined functions. Functions generally
return either a

 or a value, and these can be used within a more complex expression. Most functions require the
program pass one or more arguments to them; these arguments being numeric or string, or combinations
thereof, depending on the function. For example:

T = COS(3.1!)
sResult = FORMAT$(T)
A$ = CHR$(123, "hello", 65, 66, 67, 65 TO 97)

Statements
Statements are building blocks that make up programs. They instruct the compiler to perform specific
actions, such as opening a file, setting the date, sending data to a device, etc. Statements do not return a
value, but often take one or more arguments. Each statement must appear on a line by itself; or be
separated from other program elements with a delimiting colon (:) character. For example:

A& = A& + 10& : B$ = "PowerBASIC"
OPEN "A Long Filename.txt" FOR BINARY AS #1
Count& = 100

System variables
System variables allow a program to interact with the system (in this sense, "system" means the computer,
the operating system, the internal run-time code, etc). System variables are predefined by PowerBASIC,
and can be used to access and control certain information maintained by the system. For example:

A$ = DATE$
DATE$ = "03-03-2003"
ErrVal = ERRCLEAR
B$ = TIME$
TIME$ = "03:00"

Metastatements
Metastatements are instructions that control the action of the PowerBASIC compiler. Strictly speaking,
metastatements are not part of the BASIC language because they do not operate at run-time (when the
program is executing). Like compiler option-switches, metastatements can be used to determine how the
compiler will operate during the compilation of program code (compile-time).

Metastatements are prefixed with a number (#) symbol to differentiate them from normal statements.
Metastatements may take one or more arguments. For example:

#COMPILE EXE "The target filename.exe"
#OPTION VERSION4
#DIM ALL
#INCLUDE "WIN32API.INC"

Please note that PowerBASIC supports both the dollar ($) symbol and a the pound (#) symbol as a

PowerBASIC Compiler for Windows Version 10

393 / 2126

metastatement prefixes.

See Also

Format and typefaces

Command Summary

Format and typefaces

Format and typefaces
Every PowerBASIC command is listed alphabetically, as a separate topic. Each entry contains a brief
explanation of what the command does, a description of its syntax, clarifying remarks and restrictions, plus
examples of use. The examples are designed to be indicative of syntax and usage only.

The syntax section of each entry describes the available options and format each command may use, as
follows:

Italic Indicates areas within commands that you need to fill in with application-specific
information, such as variable names, procedure names, numeric or string values, etc. For
example:

y = VAL(string_expression)

UPPERCASE Indicates part of the command must be entered exactly as shown. For example:

OPTION EXPLICIT

Brackets [] Indicates the information they enclose is optional. For example:

SEEK [#] filenum&, position&&

If the brackets enclose multiple items, any number of them may be omitted. When one is
omitted, all following items in that group must also be omitted. For example:

CONTROL ADD GRAPHIC, hDlg, id&, "", x&, y&, nWide&, nHigh&[, [style&] [,
[exstyle&]]] [[,] CALL CtrlCallback]

Brackets with
vertical bar [|]

Indicates a choice of two or more options. You may choose one or none.

DIALOG NEW [PIXELS, | UNITS,] ...
Braces with
vertical bar { | }

Indicates a choice of two or more options, one of which MUST be used. For example:

#DIM {ALL | NONE}

Ellipses … Indicates that part of the command can be repeated as many times as required. For
example:

MACRO macroname [(prm1, prm2, ...)] = replacementtext

See Also

Keyword Reference

Command Summary

Command Summary

Command Summary

Command Summary
The following is a list of the commands built into the compiler and separated into 18 groups of related

PowerBASIC Compiler for Windows Version 10

394 / 2126

commands, which can assist with identifying the best command for the task at hand. Some commands
may appear in more than one group.

Command List

Array Operations

Collection Objects

COM Commands

Communication Control

Compiler Operations

Debugging and Error Control

File Commands

Flow Control

Graphic Commands

Input Commands

Memory Management

Metastatements

Numeric Operations

Operating System

Printing Commands

String Operations

Thread Control

Time Commands

Misc Operations

See Also

Keyword Reference

Format and typefaces

Array Operations

Array Operations
The following functions can be used to manipulate and manage arrays:

#DEBUG ERROR Control generation of error checking code
#DIM Specify if variables must be declared before use
ARRAY ASSIGN Assign a number of values to successive elements of an array
ARRAY DELETE Delete a single item from a given array
ARRAY INSERT Insert a single item into a given array
ARRAY SCAN Scan all or part of an array for a given value
ARRAY SORT Sort all or part of a given array
ARRAYATTR Return descriptive attributes of a given array
BIT CALC Set or reset a bit in an implied bit-array
BIT Return the value of a particular bit in an implied bit-array
BIT Manipulate individual bits of an implied bit-array

PowerBASIC Compiler for Windows Version 10

395 / 2126

DATA Declare an array of constants to be read by READ$
DATACOUNT Return the total count of the number of local data items
DIM Declare and dimension arrays, scalar variables, and pointers
ERASE Deallocate array memory
FILESCAN Rapidly scan an open file, before loading into an array with GET
GET Read a complete array from a binary file
IPowerArray.ARRAYBASEReturns the address of the first element of the array.
IPowerArray.ARRAYDESCReturns the address of the SAFEARRAY descriptor.
IPowerArray.ARRAYINFO
<Get>

Retrieves the info string, if one is present.

IPowerArray.ARRAYINFO
<Set>

Assigns the info string.

IPowerArray.CLONE An exact duplicate of the SafeArray is created, and stored in the specified
PowerArray object.

IPowerArray.COPYFROM
VARIANT

An exact copy is made of the specified SafeArray and stored in this PowerArray
object.

IPowerArray.COPYTOVAR
IANT

An exact copy is made of the SafeArray in this object and stored in the
specified Variant.

IPowerArray.DIM Dimensions (creates) a new array.
IPowerArray.ELEMENTPT
R

Retrieves the address of the specified data element.

IPowerArray.ELEMENTSIZ
E

Retrieves the storage size (in bytes) of each data element of the array.

IPowerArray.ERASE Destroys the contained array and empties the object.
IpowerArray.LBOUND Retrieves the lower bound number for the dimension specified.
IPowerArray.LOCK Increments the lock count of the SAFEARRAY.
IPowerArray.MOVEFROM
VARIANT

Transfers ownership of the specified SafeArray to the PowerArray object.

IPowerArray.MOVETOVAR
IANT

Transfers ownership of the SafeArray contained in this PowerArray object to a
variant parameter.

IPowerArray.REDIM Allows the SafeArray to be erased and re-dimensioned to a new size.
IPowerArray.REDIMPRES
ERVE

Allows the least significant (rightmost) bound to be changed to a new size. The
remaining data items in the array are preserved.

IPowerArray.RESET All elements in the SafeArray are set back to their initial, default value.
IPowerArray.SUBSCRIPTSRetrieves the number of dimensions (subscripts) for this array.
IPowerArray.UBOUND Retrieves the upper bound number for the dimension specified.
IPowerArray.UNLOCK Decrements the lock count of the SAFEARRAY.
IPowerArray.VALUEGET Retrieves the value of the specified array element.
IPowerArray.VALUESET Assigns the specified value to the specified array element.
IPowerArray.VALUETYPE Retrieves the %VT code which describes the data contained in this array.
JOIN$ Return a

 consisting of all of the strings in a string array
LBOUND Return the lowest subscript of an array's specific dimension
LET Assign a Variant to an array or an array to a Variant
LINE INPUT# Read line(s) from a sequential file into a string variable or array
MAT Matrix calculations on

 arrays
PARSE Parse a string and extract all delimited fields into an array
PRINT# Write a complete array to a sequential file
PUT Write a complete array to a binary file
READ$ Retrieve string data from a local DATA list
REDIM Declare dynamic arrays, allocate, reallocate, deallocate memory
RESET Set an array subscript or an entire array to zero or null/empty
UBOUND Return the highest subscript of an array's specific dimension

PowerBASIC Compiler for Windows Version 10

396 / 2126

Collection Objects

Collection Objects
The following operations provides a convenient way to refer to a related group of items:

ILinkListCollection.ADD An item is added to the end of the LinkListCollection.
ILinkListCollection.CLEAR All items are removed from the LinkListCollection.
ILinkListCollection.COUNT Returns the number of data items currently contained in the

LinkListCollection.
ILinkListCollection.FIRST Sets the index to the first item and returns the previous value.
ILinkListCollection.INDEX Sets the index value and returns the previous value.
ILinkListCollection.INSERT An item is added to the LinkListCollection at the specified position.
ILinkListCollection.ITEM Returns the item at the position specified in the LinkListCollection.

ILinkListCollection.LAST Sets the index value to the last item and returns the previous value.

ILinkListCollection.NEXT Returns the next item in the LinkListCollection.
ILinkListCollection.PREVIOUS Returns the previous item in the LinkListCollection.
ILinkListCollection.REMOVE Removes the item at the specified position from the LinkListCollection.
ILinkListCollection.REPLACE Replaces the item at the specified position with a new item in the

LinkListCollection.
IPowerCollection.ADD An item and key is added to the end of the PowerCollection.
IPowerCollection.CLEAR Removes all items and keys from the PowerCollection.
IPowerCollection.CONTAINS Scans the PowerCollection for the specified key.
IPowerCollection.COUNT Returns the number of data items currently contained in the

PowerCollection.
IPowerCollection.ENTRY Returns the PowerCollection item specified by the Index number.
IPowerCollection.FIRST Sets the index to the first item and returns the previous value.
IPowerCollection.INDEX Sets the index value and returns the previous value.
IPowerCollection.ITEM Returns the item associated with the specified key in the PowerCollection.
IPowerCollection.LAST Sets the index to the last item and returns the previous value.
IPowerCollection.NEXT Returns the next item in the PowerCollection.
IPowerCollection.PREVIOUS Returns the previous item in the PowerCollection.
IPowerCollection.REMOVE Removes the item associated with the specified key from the

PowerCollection.
IPowerCollection.REPLACE Replaces the item associated with the specified key with a new item.
IPowerCollection.SORT The data items in the PowerCollection are sorted based upon the text in the

associated keys.
IQueueCollection.CLEAR All items are removed from the QueueCollection.
IQueueCollection.COUNT Returns the number of data items currently contained in the

QueueCollection.
IQueueCollection.DEQUEUE The item at the "oldest" position in the QueueCollection is returned.
IQueueCollection.ENQUEUE The specified item is added to the QueueCollection at the "newest" position.
IStackCollection.CLEAR All items are removed from the StackCollection.
IStackCollection.COUNT Returns the number of data items currently contained in the

StackCollection.
IStackCollection.POP The item at the "Stack-Top" (the item most recently added) is returned.
IStackCollection.PUSH The specified item is added to the StackCollection at the "Stack-Top"

position.

COM Commands

COM Operations
The following functions can be used to create and manage COM clients:

#COM DOC Specifies a help string which usually provides a general description of the COM
server.

PowerBASIC Compiler for Windows Version 10

397 / 2126

#COM HELP Specifies the name of the associated help file and the help context code.
#COM NAME Specifies the name of the server and the version number.
#COM GUID Specifies the GUID which identifies the entire application or library (APPID or

LIBID).
ACODE$ Translate a Unicode

 into an ANSI string.
CLASS/END CLASS Create the code and data for an object.
CLSID$ Return a 16-byte (128-bit) GUID string containing a CLSID.
ENUM/END ENUM Creates a group of logically related numeric equates.
EVENT SOURCE Declare an event interface within a Class definition.
EVENTS Attach or detach an event handler to/from an event source.
FOR EACH/NEXT Define a loop of program statements which can sequentially examine and act

upon each member of a PowerCollection or LinkListCollection.
GUID$ Return a 16-byte (128-bit) Globally Unique Identifier GUID.
GUIDTXT$ Return a 38-byte human-readable GUID/UUID string.
IDISPINFO Sets and returns additional information about certain Dispatch Status Codes for

the OBJRESULT function.
INSTANCE Declare INSTANCE variables which are unique to each object.
INTERFACE / END
INTERFACE Block
(Direct)

Declare a direct object interface and its member Methods/Properties.

INTERFACE/END
INTERFACE block
(IDBind)

Declare a dispatch interface and its member Methods/Properties for the purposes
of IDBinding to a Dispatch COM interface.

ISINTERFACE Determine whether an object supports a particular interface.
ISNOTHING Determine the current status of a given object variable.
ISOBJECT Determine the current status of a given object variable.
LET (with Objects) Assign an object reference to an object variable.
LET (with Variants) Assign a value to a variable or Variant.
ME A pseudo object variable to reference the current object.
METHOD / END
METHOD

Define a METHOD procedure within a class.

MYBASE A pseudo object variable to reference the inherited parent object.
OBJACTIVE Return True/False of the running state of a COM EXE object.
OBJECT GET Retrieve or read the value of an Dispatch Interface member Property.
OBJECT LET Assign or write a value to an Dispatch Interface member Property.
OBJECT SET Assign or write a value to an Dispatch Interface member Property that contains a

reference to an object.
OBJECT CALL Call or execute a member Method of an Dispatch Interface.
OBJECT RAISEEVENT Call or execute a member Method of an event Dispatch Interface.
OBJEQUAL Check if object variables refer to the same object.
OBJPTR Return an object pointer of a specified object variable.
OBJRESULT Return the execution result of the most recent OBJECT statement.
OBJRESULT$ Returns a string which describes an OBJRESULT (hResult) code.
PROGID$ Return the alphanumeric PROGID string (text) of a given CLSID.
PROPERTY GET Retrieve a data value from the object.
PROPERTY SET Assign a data value to an object.
RAISEEVENT Call Event Handler code.
RESET Clear a Variant to empty (%VT_EMPTY).
UCODE$ Translate an ANSI string into a Unicode string.
VARIANT# Return the numeric value contained in a Variant variable.
VARIANT$ Return the ANSI dynamic string value contained in a Variant variable.
VARIANT$$ Returns the Unicode string value contained in a Variant variable.
VARIANTVT Determine the internal data type of the data stored in a Variant.

PowerBASIC Compiler for Windows Version 10

398 / 2126

Communication Control

Communications Control
The following functions can be used for external communications:

COMM Retrieve the value or status of a communications parameter

COMM CLOSE Close an open serial port

COMM LINE Receive a CR/LF terminated "line" of data from a serial port

COMM OPEN Open a serial port

COMM PRINT Send a "line" of binary data through a serial port

COMM RECV Receive binary data from a serial port

COMM RESET Disable flow control for a given serial port

COMM SEND Send a

 of binary data through a serial port
COMM SET Set communication options for a serial port

COMM
TIMEOUT

Places a limit on the time to complete a COMM operation.

EOF Return end-of-file status of a file, serial or TCP/UDP transmission

FREEFILE Return the next available PowerBASIC file number

HOST ADDR Translate a host name into a corresponding IP address

HOST NAME Translate an IP address into a corresponding host name

OPEN Prepare a file or device for reading or writing

TCP ACCEPT Accept an incoming request for TCP communication

TCP CLOSE Close a previously opened TCP/IP port

TCP LINE INPUTReceive a line of text from a specified TCP/IP port

TCP NOTIFY Designate which TCP/IP events generate notification messages

TCP OPEN Enable an app to communicate with a TCP/IP server or client

TCP PRINT Write a string to a nominated TCP/IP

TCP RECV Receive data from a specified TCP/IP port

TCP SEND Write a string to a nominated TCP/IP port

UDP CLOSE Close a previously opened UDP socket

UDP NOTIFY Designate which TCP/IP events generate notification messages

UDP OPEN Create a socket to communicate with a UDP server or client

UDP RECV Receive data from a previously opened UDP port

UDP SEND Send a string of data through a previously opened UDP socket

Compiler Operations

Compiler Operations
The following functions manipulate the compiler's operation:

#ALIGN Align the next instruction to a boundary.

%DEF Determine if an equate has been previously defined

%
PB_COMPILETI
ME

Contains the date and time of compilation.

#BLOAT Artificially inflate the disk image size of a compiled program

#COMPILE Determine which type of file will be created by the compiler

#DEBUG CODE Compiler directive to suppress generation of debugging code

#DEBUG Display a message when an untrapped run-time error occurs.

PowerBASIC Compiler for Windows Version 10

399 / 2126

DISPLAY

#DIM Specify if variables must be declared before use

#EXPORT Declare a Sub/Function to have the EXPORT attribute.

#IF Define sections of source code to be compiled or ignored

#LINK Link a pre-compiled Static Link Library (SLL) into your host program.

#MESSAGES Specify which messages should be sent to a Control Callback Function

#OPTIMIZE Choose the optimization which should be applied to your program.

#OPTION Establish various compiler options.

#REGISTER Control automatic allocation of Register variables

#STACK Set the maximum potential stack size

#TOOLS Enable/disable integrated development tools in compiled code

#UNIQUE Specify whether unique variable names are required.

DECLARE Explicitly declare a Sub or Function

DEFBYT Declare the default variable type to be Byte

DEFCUR Declare the default variable type to be Currency

DEFCUX Declare the default variable type to be Extended Currency

DEFDBL Declare the default variable type to be Double-precision

DEFDWD Declare the default variable type to be Double-word

DEFEXT Declare the default variable type to be Extended-precision

DEFINT Declare the default variable type to be Integer

DEFLNG Declare the default variable type to be Long-integer

DEFQUD Declare the default variable type to be Quad-integer

DEFSNG Declare the default variable type to be Single-precision

DEFSTR Declare the default variable type to be String

DEFWRD Declare the default variable type to be Word

DIM Declare and dimension arrays, scalar variables, and pointers

DLLMAIN Function called by Windows each time a DLL is loaded into, and unloaded from, memory

ERASE Deallocate array memory

GLOBAL Declare global (shared) variables between Subs, Functions, Classes, Methods, and
Properties

INSTANCE Declare Instance variables which are unique to each object

LIBMAIN Function called by Windows each time a DLL is loaded into, and unloaded from, memory

LOCAL Declare local variables in a Sub, Function, Method or Property

MACRO Define a single or multi-line text substitution block

OPTION
EXPLICIT

Force explicit declaration of all variables

PBLIBMAIN Function called by Windows each time a DLL is loaded into, and unloaded from, memory

PBMAIN Define the initial entry-point Function for an application

PREFIX/END
PREFIX

Executes a series of statements, each of which utilizes pre-defined source code.

PROFILE Capture an execution time profile of the Subs, Functions, Methods, and Properties

REDIM Declare dynamic arrays, allocate, reallocate, deallocate memory

REGISTER Define local Register variables within a Sub, Function, Method, or Property

STATIC Declare static variables inside of a Sub, Function, Method, or Property

STRPTR Return the address of the data held by a variable length string

VARPTR Return the 32-bit address of a variable or

 handle
WINMAIN Define the initial entry-point Function for an application

PowerBASIC Compiler for Windows Version 10

400 / 2126

Debugging and Error Control

Debugging and Error Control
The following functions can be used to trap and manage error conditions:

#DEBUG CODE Compiler directive to suppress generation of debugging code.

#DEBUG DISPLAY Display a message when an untrapped run-time error occurs.

#DEBUG ERROR Control generation of error checking code.

#DEBUG PRINT Display information in the IDE's Debug Window.

#DIM Specify if variables must be declared before use.

#STACK Set the maximum potential stack size.

#TOOLS Enable/disable integrated development tools in compiled code.

CALLSTK Capture a representation of the stack frames in the call stack.

CALLSTK$ Retrieve the details of a specific stack frame.

CALLSTKCOUNT Retrieve the number of stack frames in the call stack.

ERL Return the line number of the most recent run-time error.

ERL$ Return the last label, line number, or procedure name executed prior to the most
recent error.

ERR Return the error code of the most recent run-time error.

ERRCLEAR Return and clear the error code of the most recent run-time error.

ERROR Cause a specific run-time error to be generated and set ERR.

ERROR$ Return a

 containing the descriptive name of an error.
FILENAME$ Return the file-system name of an open file.

FUNCNAME$ Return the name of the current Sub/Function/Method/Property.

ON ERROR Specify an error handling routine; enable/disable trapping.

OPTION EXPLICIT Force explicit declaration of all variables.

PROFILE Capture an execution time profile of the Subs, Functions, Methods, and Properties.

RESUME Continue execution after error handling with ON ERROR GOTO.

RESUME FLUSH Execution continues on the line immediately following the RESUME FLUSH.

RESUME NEXT Execution continues on the line immediately following the one which generated the
error.

RESUME <Label> Execution continues at the specified label location.

TRACE Capture the precise flow of execution in a module.

TRY/END TRY A structured method of trapping and responding to errors.

Dynamic Dialog Tools

Dynamic Dialog Tools Commands
The following functions can be used to create GUI application interfaces:

ACCEL ATTACH Attach a table of keyboard accelerators to a DDT dialog.
CALLBACK FUNCTION Define a Dialog/Control Callback Function block.
CB.CTL Return the numeric ID of the control sending a callback message.
CB.CTLMSG Return the numeric notification message parameter.
CB.HNDL Return the window handle of the parent dialog receiving the message.
CB.LPARAM Return the numeric value of the lParam& parameter of the message.
CB.MSG Return the numeric value of the message sent by the caller.
CB.WPARAM Return the numeric value of the wParam& parameter of the message.
CB.NMCODE Return the numeric value of the notification message describing the event

which occurred.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

401 / 2126

CB.NMHDR Returns the address (a

) to the NMHDR UDT for this notification message.
CB.NMHDR$ Returns the contents of the NMHDR UDT as a dynamic string.
CB.NMHWND Returns the handle of the control which sent this message.
CB.NMID Returns the ID number assigned to the control.
CLIPBOARD GET BITMAP A bitmap is copied from the CLIPBOARD and stored in a newly created

GRAPHIC BITMAP.
CLIPBOARD GET OEMTEXT A text string is retrieved from the CLIPBOARD. If necessary, it is converted

to OEM Text format.
CLIPBOARD GET TEXT A text string is retrieved from the CLIPBOARD. If necessary, it is converted

to ASCII Text format.
CLIPBOARD GET UNICODE A text string is retrieved from the CLIPBOARD. If necessary, it is converted

to Unicode Text format.
CLIPBOARD RESET The contents of the CLIPBOARD are deleted.
CLIPBOARD SET BITMAP Copies a GRAPHIC BITMAP to the CLIPBOARD.
CLIPBOARD SET OEMTEXT Copies a OEM text string to the CLIPBOARD.
CLIPBOARD SET TEXT Copies a ASCII text string to the CLIPBOARD.
CLIPBOARD SET UNICODE Copies a Unicode text string to the CLIPBOARD.
COMBOBOX ADD Add a

 value to a combo box control.
COMBOBOX DELETE Remove a string from a combo box control.
COMBOBOX FIND Strings in the COMBOBOX are searched to find the first string which begins

with the specified characters.
COMBOBOX FIND EXACT Strings in the COMBOBOX are searched to find the first string which exactly

matches the specified characters.
COMBOBOX GET COUNT The number of items in the list box of the COMBOBOX is retrieved.
COMBOBOX GET
SELCOUNT

The number of selected items in the list box of the COMBOBOX is retrieved.

COMBOBOX GET SELECT The index of the currently selected item in the list box of the COMBOBOX is
retrieved.

COMBOBOX GET STATE A data item is checked to see if it is currently selected.
COMBOBOX GET TEXT Retrieve the default text from a combo box.
COMBOBOX GET USER Retrieve the value in the user data area of the COMBOBOX.
COMBOBOX INSERT Insert a new data item at a specified location.
COMBOBOX RESET Remove all strings from a combo box.
COMBOBOX SELECT Select a string in a combo box and make it the default selection.
COMBOBOX SET TEXT Replace the string for a specific data item with a new string.
COMBOBOX SET USER Set a value in the user data area of the COMBOBOX.
COMBOBOX UNSELECT All items in a COMBOBOX control are set to an unselected state.
CONTROL ADD Add a custom control to a DDT dialog.
CONTROL ADD BUTTON Add a command button to a dialog.
CONTROL ADD
CHECK3STATE

Add an auto 3-state checkbox to a dialog.

CONTROL ADD CHECKBOX Add an checkbox to a dialog.
CONTROL ADD COMBOBOX Add a combo box to a dialog.
CONTROL ADD FRAME Add a frame control to a dialog.
CONTROL ADD GRAPHIC Add a graphic control to a dialog.
CONTROL ADD HEADER Add a header control to a dialog.
CONTROL ADD IMAGE Add a non-resizing image control to a dialog.
CONTROL ADD IMAGEX Add an image control to a dialog.
CONTROL ADD IMGBUTTON Add a non-resizing image button to a dialog.
CONTROL ADD IMGBUTTONXAdd an image button to a dialog.
CONTROL ADD LABEL Add a text label to a dialog.
CONTROL ADD LINE Add a line control to a dialog.
CONTROL ADD LISTBOX Add a list box control to a dialog.
CONTROL ADD LISTVIEW Add a ListView control to a dialog.

PowerBASIC Compiler for Windows Version 10

402 / 2126

CONTROL ADD OPTION Add an option button to a dialog.
CONTROL ADD
PROGRESSBAR

Add a ProgressBar control to a dialog.

CONTROL ADD SCROLLBAR Add a scroll bar control to a dialog.
CONTROL ADD STATUSBAR Add a StatusBar control to a dialog.
CONTROL ADD TAB Add a Tab Control to a dialog.
CONTROL ADD TEXTBOX Add a text box control to a dialog.
CONTROL ADD TOOLBAR Add a ToolBar control to a dialog.
CONTROL ADD TREEVIEW Add a TreeView control to a dialog.
CONTROL DISABLE Disable a control so that it no longer accepts user interaction.
CONTROL ENABLE Enable a control so that it can receive user interaction.
CONTROL GET CHECK Get the Check State of a 3-state, checkbox, or option button.
CONTROL GET CLIENT Get the client area dimensions of a control.
CONTROL GET LOC Get the location of the specified control in a dialog.
CONTROL GET SIZE Get the size of a control in the specified dialog.
CONTROL GET TEXT Get the text from a control.
CONTROL GET USER Retrieve a value from the user data area of a DDT control.
CONTROL HANDLE Return a window handle for a given control ID.
CONTROL HIDE Make a Control invisible.
CONTROL KILL Remove a control from a dialog.
CONTROL NORMALIZE Make a Control visible.
CONTROL POST Place a message into the message queue of a control (non-blocking).
CONTROL REDRAW Schedule a control to be redrawn.
CONTROL SEND Send a message to a control and wait for it to be processed.
CONTROL SET CHECK Set the Check State for a 3-state or checkbox control.
CONTROL SET CLIENT Change the size of a control to a specific client area size.
CONTROL SET COLOR Set the foreground and background color of a control.
CONTROL SET FOCUS Set the keyboard focus to the specified control.
CONTROL SET FONT Select a

 to be used for a particular Windows Control.
CONTROL SET IMAGE Change the icon or bitmap displayed in an IMAGE control.
CONTROL SET IMAGEX Change the icon or bitmap displayed in an IMAGEX control.
CONTROL SET IMGBUTTON Change the icon or bitmap displayed in an IMGBUTTON control.
CONTROL SET IMGBUTTONXChange the icon or bitmap displayed in an IMGBUTTONX control.
CONTROL SET LOC Move the control to a new location in the dialog.
CONTROL SET OPTION Set the Check State for an option (radio) control.
CONTROL SET SIZE Change the size of a control.
CONTROL SET TEXT Change the text in a control.
CONTROL SET USER Set a value in the user data area of a DDT control.
CONTROL SHOW STATE Change the visible state of a control.
DESKTOP GET CLIENT Retrieve the size of the client area of the desktop, in pixels.
DESKTOP GET LOC Retrieve the location of the top, left corner of the client area of the desktop,

in pixels.
DESKTOP GET SIZE Return the size of the specified dialog.
DIALOG DISABLE Disable a dialog so that it no longer responds to user interaction.
DIALOG DOEVENTS Process pending window or dialog messages for modeless dialogs.
DIALOG ENABLE Enable a dialog so that it responds to user interaction.
DIALOG END Close and destroy the specified dialog.
DIALOG DEFAULT FONT Specify the default DDT font and point size.
DIALOG GET CLIENT Return the client size of the specified dialog.
DIALOG GET LOC Return the location of the specified dialog.
DIALOG GET SIZE Return the size of the specified dialog.
DIALOG GET TEXT Retrieve the text in a dialog or window caption.
DIALOG GET USER Retrieve a value from the user data area of a DDT dialog.
DIALOG HIDE Make a Dialog invisible.
DIALOG MAXIMIZE Maximize a Dialog.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

403 / 2126

DIALOG MINIMIZE Minimize a Dialog.
DIALOG NEW Create a new dialog in memory, ready for display.
DIALOG NONSTABLE Make a Dialog non-stable (closeable).
DIALOG NORMALIZE Make a Dialog visible.
DIALOG PIXELS Convert pixels (device units) into dialog units.
DIALOG POST Place a message in the dialog message queue (non-blocking).
DIALOG REDRAW Force a dialog and all child controls to be redrawn immediately.
DIALOG SEND Send a message to a dialog and wait for it to be processed.
DIALOG SET CLIENT Change the size of a dialog to a specific client area size.
DIALOG SET COLOR Set the background color of a dialog to a specific RGB color.
DIALOG SET ICON Change both the dialog icon in the caption, and the icon shown in the

ALT+TAB task list.
DIALOG SET LOC Change the position of a dialog.
DIALOG SET SIZE Change the size of a dialog.
DIALOG SET TEXT Set the text in a dialog or window caption.
DIALOG SET USER Set a value in the user data area of a DDT dialog.
DIALOG SHOW MODAL Display and activate a modal dialog.
DIALOG SHOW MODELESS Display and activate a modeless dialog.
DIALOG SHOW STATE Change the visible state of a dialog.
DIALOG STABILIZE Make a Dialog stabilized (non-closeable).
DIALOG UNITS Convert dialog units into pixels.
DISPLAY BROWSE Display a folder selection dialog to return the user's choice.
DISPLAY COLOR Display a color selection dialog to return the user's choice.
DISPLAY FONT Display a selection dialog to return user choices.
DISPLAY OPENFILE Display an OpenFile selection dialog to return user choices.
DISPLAY SAVEFILE Display a SaveFile selection dialog to return user choices.
FONT END Destroy a font when it is no longer needed.
FONT NEW Create a new font for use with GRAPHIC PRINT, XPRINT, etc.
HEADER GET COUNT Retrieves the count of the items in a Header control.
HEADER GET ITEM Retrieves an HD_Item structure which describes an item in a Header control.
HEADER SEND Sends a message to a Header control.
HEADER SET ITEM Sets the attributes of the specified item in a Header Control.
IMAGELIST ADD BITMAP An bitmap image is added to the IMAGELIST.
IMAGELIST ADD ICON An icon image is added to the IMAGELIST.
IMAGELIST ADD MASKED A bitmap is added to the icon IMAGELIST.
IMAGELIST GET COUNT The number of images in the IMAGELIST is retrieved.
IMAGELIST KILL The specified IMAGELIST is destroyed.
IMAGELIST NEW BITMAP A new bitmap IMAGELIST structure is created.
IMAGELIST NEW ICON A new icon IMAGELIST structure is created.
IMAGELIST SET OVERLAY Specify an image to be used as an overlay.
INPUTBOX$ Displays a dialog box containing a prompt.
ISMISSING Determine whether an

 was passed by the calling code.
ISWIN Determine whether a Control/Dialog/Window currently exists.
LISTBOX ADD Add a string value to a LISTBOX control.
LISTBOX DELETE Remove a string from a LISTBOX control.
LISTBOX FIND Strings in the LISTBOX are searched to find the first string which begins with

the specified characters.
LISTBOX FIND EXACT Strings in the LISTBOX are searched to find the first string which exactly

matches the specified characters.
LISTBOX GET COUNT The number of items in the LISTBOX is retrieved.
LISTBOX GET SELCOUNT The number of selected items in the LISTBOX is retrieved.
LISTBOX GET SELECT The LISTBOX is searched to find the first selected item.
LISTBOX GET STATE A data item is checked to see if it is currently selected.
LISTBOX GET TEXT Retrieve the default text from a LISTBOX control.
LISTBOX GET USER Retrieve the value in the user data area of the LISTBOX.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

404 / 2126

LISTBOX INSERT Insert a new data item at a specified location.
LISTBOX RESET Remove all strings from a list box.
LISTBOX SELECT Select a string in a list box and make it the default selection.
LISTBOX SET TEXT Replace the string for a specific data item with a new string.
LISTBOX SET USER Set a value in the user data area of the LISTBOX.
LISTBOX UNSELECT A specified data item in the LISTBOX control is set to an unselected state.
LISTVIEW DELETE COLUMN Delete a column, including its associated header text (if any) from the

LISTVIEW control.
LISTVIEW DELETE ITEM The specified data item is deleted from the LISTVIEW control.
LISTVIEW FIND Strings in the LISTVIEW are searched to find the first string which begins

with the specified characters.
LISTVIEW FIND EXACT Strings in the LISTVIEW are searched to find the first string which exactly

matches the specified characters.
LISTVIEW FIT CONTENT The width of the specified column is adjusted to fit the width of the data

items displayed in that column.
LISTVIEW FIT HEADER The width of the specified column is adjusted to fit the width of the data

items displayed in that column, and the header text at the top of that
column.

LISTVIEW GET COLUMN The width of the designated column is retrieved from the LISTVIEW.
LISTVIEW GET COUNT The number of data items in the LISTVIEW is retrieved.
LISTVIEW GET HEADER Column header text is retrieved from the LISTVIEW.
LISTVIEW GET HEADERID Retrieves the Listview handle and header control id.
LISTVIEW GET MODE The display mode of the specified LISTVIEW control is retrieved.
LISTVIEW GET SELCOUNT The number of selected items in the LISTVIEW is retrieved.
LISTVIEW GET STATE A data item is tested to see if it is currently selected.
LISTVIEW GET STYLEXX Retrieves the current setting of the LISTVIEW controls extended style.
LISTVIEW GET TEXT A string data item is retrieved from the LISTVIEW control.
LISTVIEW GET USER Retrieve the value in the user data area of the LISTVIEW.
LISTVIEW INSERT COLUMN A new vertical column is defined for Report Mode of the LISTVIEW.
LISTVIEW INSERT ITEM A new data item is added to this LISTVIEW control.
LISTVIEW RESET All data items are deleted from the specified LISTVIEW control.
LISTVIEW SELECT The specified string data item is chosen as selected text for the LISTVIEW.
LISTVIEW SET COLUMN Change the width of a LISTVIEW column.
LISTVIEW SET HEADER New column header text is displayed above the specified column on the

LISTVIEW control.
LISTVIEW SET IMAGE The specified image is displayed next to the item specified.
LISTVIEW SET IMAGE2 The specified image is displayed as a secondary "status" image next to the

primary image.
LISTVIEW SET IMAGELIST Attach an IMAGELIST to the LISTVIEW control.
LISTVIEW SET MODE Change the display mode of the specified LISTVIEW control.
LISTVIEW SET OVERLAY The specified overlay image is displayed on top of the image specified.
LISTVIEW SET STYLE Alter the current settings of the LISTVIEW controls extended style.
LISTVIEW SET TEXT The text, if any, for the specified data item is replaced with new text.
LISTVIEW SET USER Set a value in the user data area of the LISTVIEW.
LISTVIEW SORT All of the items in a LISTVIEW are sorted.
LISTVIEW UNSELECT The specified data item is set to an unselected state.
LISTVIEW VISIBLE The specified data item is scrolled, if necessary, to ensure that the data item

is visible.
PROGRESSBAR GET POS The current position of the PROGRESSBAR is retrieved.
PROGRESSBAR GET
RANGE

The current range of the PROGRESSBAR is retrieved.

PROGRESSBAR SET POS Set the current position of the PROGRESSBAR .
PROGRESSBAR SET
RANGE

Set the minimum and maximum ranges of the PROGRESSBAR .

PROGRESSBAR SET STEP Specify the default increment value to be used by PROGRESSBAR STEP.
PROGRESSBAR STEP Advance the current position of the PROGRESSBAR by the default

increment value.

PowerBASIC Compiler for Windows Version 10

405 / 2126

MENU ADD POPUP Add a popup child menu to an existing menu.
MENU ADD STRING Add a string or separator to an existing menu.
MENU ATTACH Attach a menu to a given dialog.
MENU CONTEXT Create a floating context menu.
MENU DELETE Delete a menu item from an existing menu.
MENU DRAW BAR Redraw the menu bar for a given dialog.
MENU GET STATE Return the state of a specified menu item.
MENU GET TEXT Return the text associated with a given menu item.
MENU NEW BAR Create a new menu bar.
MENU NEW POPUP Create a new popup menu.
MENU SET STATE Set the state of a specified menu item.
MENU SET TEXT Set the text of a given menu item.
MOUSEPTR Change the mouse pointer (cursor) to a new shape.
SCROLLBAR GET PAGESIZERetrieve the current page size.
SCROLLBAR GET POS Returns the current position of the SCROLLBAR.
SCROLLBAR GET RANGE Returns the current range of the SCROLLBAR.
SCROLLBAR GET
TRACKPOS

Retrieve the current position of the scroll box.

SCROLLBAR SET PAGESIZESet the current page size.
SCROLLBAR SET POS Set the current position of the SCROLLBAR.
SCROLLBAR SET RANGE Set the range of the SCROLLBAR.
STATUSBAR SET PARTS Set the number of parts to be displayed in the STATUSBAR.
STATUSBAR SET TEXT Assign the text to be displayed in the specified part of the STATUSBAR.
TAB DELETE Delete a page from the TAB control.
TAB GET COUNT Return the number of pages in a TAB control.
TAB GET DIALOG Retrieve the handle of the dialog for a specific page in a TAB control.
TAB GET IMAGE Retrieves the index of the image displayed on the specified TAB page.
TAB GET PAGE Retrieves the page number of the specified TAB page dialog handle.
TAB GET SELECT Returns the currently selected page in a TAB control.
TAB GET TEXT The text displayed on the specified page tab is retrieved.
TAB INSERT PAGE Add a new page to a TAB control.
TAB RESET Delete all pages in a TAB control.
TAB SELECT Select a specific page in a TAB control to be the active page.
TAB SET IMAGE The specified image is displayed on the specified page tab.
TAB SET IMAGELIST Assign an IMAGELIST to be used in a TAB control.
TAB SET TEXT Displays the specified text on the tab of the page.
TOOLBAR ADD BUTTON Add a button to a TOOLBAR control.
TOOLBAR ADD SEPARATOR Add a separator to a TOOLBAR control.
TOOLBAR DELETE BUTTON Delete a button from a TOOLBAR control.
TOOLBAR GET STATE Get the state of a button on a TOOLBAR control.
TOOLBAR GET COUNT Retrieve the number of buttons on a TOOLBAR control.
TOOLBAR SET IMAGELIST Attach an IMAGELIST to a TOOLBAR control.
TOOLBAR SET STATE Set the state of a button on a TOOLBAR control.
TREEVIEW DELETE Delete a data item from a TREEVIEW control.
TREEVIEW GET BOLD The bold attribute for a data item is retrieved.
TREEVIEW GET CHECK The checkmark attribute for a data item is retrieved.
TREEVIEW GET CHILD Return the handle of the first child item of a specified data item.
TREEVIEW GET COUNT The number of data items in the TREEVIEW is retrieved.
TREEVIEW GET EXPANDED The expanded attribute for the data item is retrieved.
TREEVIEW GET NEXT Return the handle of the next sibling data item.
TREEVIEW GET PARENT The handle of the parent for a specified data item is returned.
TREEVIEW GET PREVIOUS Return the handle of the previous sibling data item.
TREEVIEW GET ROOT The handle of the very first data item (topmost) in the TREEVIEW is

retrieved.
TREEVIEW GET SELECT The handle of the currently selected data item is retrieved.
TREEVIEW GET TEXT The text of a specific data item is retrieved.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

406 / 2126

TREEVIEW GET USER Retrieve the value in the user data area for a specific data item of the
TREEVIEW.

TREEVIEW INSERT ITEM Add a new data item to a TREEVIEW control.
TREEVIEW RESET All data items are deleted from the specified TREEVIEW control.
TREEVIEW SELECT Select a specific data item in the TREEVIEW control.
TREEVIEW SET BOLD Set the bold attribute for specific data item.
TREEVIEW SET CHECK Set the checkmark attribute for a specific data item.
TREEVIEW SET EXPANDED Set the expanded attribute for a specific data item.
TREEVIEW SET IMAGELIST Attach an IMAGELIST to a TREEVIEW control.
TREEVIEW SET TEXT The text, if any, for the specified data item is replaced with new text.
TREEVIEW SET USER Set the value in the user data area for a specific data item in the TREEVIEW

control.
TREEVIEW UNSELECT All items in the TREEVIEW control are set to an unselected state.
WINDOW GET HANDLE Retrieves the handle of a Window.

WINDOW GET ID The integral ID of the window is retrieved.
WINDOW GET PARENT The handle of the parent is retrieved.
WINDOW GET STYLE Retrieves the style of the Window.
WINDOW GET STYLEX Retrieves the extended-style of the Window.
WINDOW GET USER Retrieves the 32-bit user data value associated with the window.
WINDOW SET ID Changes the integral ID of the window.
WINDOW SET STYLE Changes the style of the Window.
WINDOW SET STYLEX Changes the extended-style of the Window.
WINDOW SET USER Changes the 32-bit user data value associated with the window.

File Commands

File Commands
The following functions can be used to manipulate files, standard I/O and disk services:

CHDIR Change the current (default) directory on a given drive.
CHDRIVE Change the current default drive.
CLOSE Conclude I/O (input/output) to/from a file or device.
CURDIR$ Return the current directory for a given drive.
DIR$ Return a filename that matches the given mask.
DIR$ CLOSE Force the release the operating system FindNext handle.
DISKFREE Return the amount of available space of a disk, in bytes.
DISKSIZE Return the total amount of space on a disk, in bytes.
EOF Return end-of-file status of a file, serial or TCP/UDP transmission.
EXE Return the path and/or name of the executing program.
FIELD Bind a field string variable to a particular sub-section of a random file buffer or a dynamic

string variable.
FIELD RESET Reset the FIELD string to a nul (zero-length) dynamic string.
FIELD STRING Change the FILED string to a dynamic string, but first assigns the current sub-section data

to it.
FILEATTR Return information about an open file.
FILECOPY Copy a file.
FILENAME$ Return the file-system name of an open file.
FILESCAN Rapidly scan a INPUT or BINARY file to obtain

 size info.
FLUSH Flush file buffers to disk to ensure the disk information is current.
FREEFILE Return the next available PowerBASIC file number.
GET Read a record from a random-access file.
GET$ Reads an ANSI string from a file opened in binary mode.
GET$$ Reads WIDE string data from a file opened in binary mode.
GETATTR Return the file-system attribute(s) of a disk file or directory.

PowerBASIC Compiler for Windows Version 10

407 / 2126

INPUT# Load variables with data from a sequential file.
ISFILE Determine whether or not a file exists.
ISFOLDER Determine whether or not a folder exists.
KILL Delete a disk file.
LINE INPUT# Read line(s) from a sequential file into a string variable or array.
LOC Determine the current seek position in an open disk file.
LOCK Lock part or all of an open file for exclusive access.
LOF Return the length of an open disk file.
MKDIR Create a subdirectory/folder (like the DOS MKDIR command).
NAME Rename a file or a directory (like the DOS REN command).
OPEN Prepare a file or device for reading or writing.
PATHNAME$ Parse a path/file name to extract component parts.
PATHSCAN$ Find a file on disk and return the path and/or file name parts.
PRINT# Write data to a device or sequential file.
PROFILE Create a file containing the time profile of Subs, Functions, Methods, and Properties.
PUT Write a record to a random-access file or variable to a binary file.
PUT$ Writes an ANSI string to a file opened in binary mode.
PUT$$ Writes a WIDE Unicode string to a file opened in binary mode.
RMDIR Delete a disk directory (like the DOS RMDIR command).
SEEK File location where the next I/O operation will take place.
SEEK Set the position in a file for the next input or output operation.
SETATTR Set the file system attribute(s) of a disk file or directory.
SETEOF Truncate/extend a file to its current file pointer position.
SHELL Run an executable program asynchronously.
SHELL Run an executable program synchronously.
UNLOCK Remove exclusive-access locks placed on a file.
WRITE# Output data to a sequential file in a delimited format.

Flow Control

Flow Control
The following functions can be used to manage program execution/flow:

%DEF Determine if an equate has been previously defined.
#IF Define sections of source code to be compiled or ignored.
#TOOLS Enable/disable integrated development tools in compiled code.
CALL Invoke a procedure (Sub, Function, Method, Property, or FastProc).
CALL DWORD Invoke a procedure (Sub, Function, Method, Property, or FastProc) indirectly.
CALLSTK Capture a representation of the stack frames in the call stack.
CALLSTK$ Retrieve the details of a specific stack frame.
CALLSTKCOUNT Retrieve the number of stack frames in the call stack.
CHOOSE Return one of several values, based upon the value of an index.
CODEPTR Obtain a 32-bit address of a label or procedure..
DLLMAIN User-defined function called when a DLL the DLL is loaded/unloaded.
DO/LOOP Define a group of statements that are executed repetitively.
END Terminate the program immediately.
EXIT Transfer program execution out of a block structure.
FASTPROC/END
FASTPROC

Define a FastProc code section.

FOR/NEXT Define a loop of program statements controlled by a counter.
FOR EACH/NEXT Define a loop of program statements which can sequentially examine and act

upon each member of a PowerCollection or LinkListCollection.
FUNCNAME$ Return the name of the current Sub, Function, Method, or Property.
FUNCTION/END
FUNCTION

Define a Function block.

PowerBASIC Compiler for Windows Version 10

408 / 2126

GOSUB Invoke a local subroutine.
GOSUB DWORD Invoke a local subroutine indirectly.
GOTO Transfer program execution to the statement identified by a label.
GOTO DWORD Transfer execution indirectly to a local label or line number.
IF Test a condition and execute one or more program statements.
IF/END IF Create a IF/THEN/ELSE block with multiple lines and conditions.
IIF Return one of two values based upon a True/False evaluation.
ISFALSE Return the logical falsity of a given expression.
ISMISSING Determine whether an optional parameter was passed by the calling code.
ISNOTHING Determine the current status of a given object variable.
ISOBJECT Determine the current status of a given object variable.
ISTRUE Return the logical truth of a given expression.
ITERATE Start an immediate iteration of a

 structure.
LIBMAIN User-defined function called when a DLL the DLL is loaded/unloaded.
MACRO Define a single or multi-line text substitution block.
METHOD/END METHOD Define a METHOD procedure within a class.
ON ERROR Specify an error handling routine; enable/disable trapping.
ON GOSUB Call one of several subroutines based on a numeric expression.
ON GOTO Send program flow to one of several labels based on a value.
PBLIBMAIN User-defined function called when a DLL the DLL is loaded/unloaded.
PBMAIN Define the initial entry-point Function for an application.
PREFIX/END PREFIX Executes a series of statements, each of which utilizes pre-defined source code.
PROFILE Capture an execution time profile of the Subs, Functions, Methods, and

Properties.
PROPERTY/END
PROPERTY

Define a PROPERTY procedure within a class.

RESUME Continue execution after error handling with ON ERROR GOTO.

RESUME FLUSH Execution continues on the line immediately following the RESUME FLUSH.

RESUME NEXT Execution continues on the line immediately following the one which generated
the error.

RESUME <Label> Execution continues at the specified label location.

RETURN Return from a (GOSUB) subroutine to its caller.
RETURN FLUSH Removes the most recent return address from the system stack.
SELECT CASE Control program flow based on the value of an expression.
SLEEP Pause the current thread for a specified number of milliseconds.
SUB/END SUB Define a Sub (procedure) block.
TRY/END TRY A structured method of trapping and responding to errors.
WHILE/WEND Define a block of statements that are executed repeatedly.
WINMAIN Define the initial entry-point Function for an application.

Graphic Commands

Graphic Commands
The followings can be used to display graphics:

CONTROL ADD IMAGE Add a (non-resizing) image control to a dialog.
CONTROL ADD IMAGEX Add a stretched image control to a dialog.
CONTROL ADD
IMGBUTTON

Add an image button to a dialog.

CONTROL ADD
IMGBUTTONX

Add a stretched image button to a dialog.

CONTROL ADD GRAPHIC Add a graphic control to a dialog.
BGR Convert an RGB color value to BGR format.
GRAPHIC(CANVAS.X) Retrieves the writable width of the attached graphic target.

PowerBASIC Compiler for Windows Version 10

409 / 2126

GRAPHIC(CANVAS.Y) Retrieves the writable height of the attached graphic target.
GRAPHIC(Cell.Size.X) Retrieves the character cell width including external leading.
GRAPHIC(Cell.Size.Y) Retrieves the character cell height including external leading.
GRAPHIC(Chr.Size.X) Retrieves the character width on the graphic target.

GRAPHIC(Chr.Size.Y) Retrieves the character height on the graphic target.

GRAPHIC(Client.X) Retrieves the client width of the attached graphic target.
GRAPHIC(Client.Y) Retrieves the client height of the attached graphic target.
GRAPHIC(Clip.X) Retrieves the width of the clip area.
GRAPHIC(Clip.Y) Retrieves the height of the clip area.
GRAPHIC(COL) Retrieves the next column print position, based upon the row and column

position of a text cell.
GRAPHIC(DC) Retrieves the handle of the DC (device context) for the selected graphic target.
GRAPHIC(INSTAT) determines whether a keyboard character is ready.
GRAPHIC(LINES) Retrieves the number of text lines which will fit on the graphic target.
GRAPHIC(LOC.X) Retrieves the horizontal location of the graphic target on the desktop.
GRAPHIC(LOC.Y) Retrieves the vertical location of the graphic target on the desktop
GRAPHIC(MIX) Retrieves the color mix mode for the selected graphic target.
GRAPHIC(OVERLAP) Retrieves the status of Graphic Overlap Mode.
GRAPHIC(PIXEL...) Retrieves the color of the pixel at the specified point.
GRAPHIC(POS.X) Retrieves the horizontal POS (last point referenced) by a GRAPHIC statement.
GRAPHIC(POS.Y) Retrieves the vertical POS (last point referenced) by a GRAPHIC statement.
GRAPHIC(PPI.X) Retrieves the horizontal resolution of the display device, in points per inch.
GRAPHIC(PPI.Y) Retrieves the vertical resolution of the display device, in points per inch.
GRAPHIC(ROW) Retrieves the next row print position, based upon the row and column position

of a text cell.
GRAPHIC(SCROLLTEXT) Retrieves the status of Graphic ScrollText Mode.
GRAPHIC(SIZE.X) Retrieves the overall width of the selected graphic target.
GRAPHIC(SIZE.Y) Retrieves the overall height of the selected graphic target.
GRAPHIC(STRETCHMODE)Retrieves the default bitmap stretching mode for the attached DC.
GRAPHIC(TEXT.SIZE.X...) calculates the width of text to be printed.
GRAPHIC(TEXT.SIZE.Y...) calculates the height of text to be printed.
GRAPHIC(View.X) Retrieves the horizontal position of the virtual graphic viewport.
GRAPHIC(View.Y) Retrieves the vertical position of the virtual graphic viewport.
GRAPHIC(WORDWRAP) Retrieves the status of Graphic WordWrap Mode.
GRAPHIC(WRAP) Retrieves the status of Graphic Wrap Mode.
GRAPHIC$(CAPTION) Retrieves the caption from a Graphic Window.
GRAPHIC$(INKEY$) reads a keyboard character if one is ready.
GRAPHIC$(WAITKEY$) reads a keyboard character or extended key, waiting until one is ready.
GRAPHIC$(WAITKEY$...) reads a limited set of keyboard characters or extended keys, with an optional

timeout value.
GRAPHIC ARC Draw an arc in the selected graphic window.
GRAPHIC ATTACH Select the graphic target (window, control, or

) on which future drawing operations will take place.
GRAPHIC BITMAP END Close the selected graphic bitmap.
GRAPHIC BITMAP LOAD Create a memory bitmap and load an image into it.
GRAPHIC BITMAP NEW Create a new memory bitmap.
GRAPHIC BOX Draw a box with square or rounded corners in the selected graphic window.
GRAPHIC CELL Sets or Retrieves the next print position of a text cell.
GRAPHIC CELL SIZE Retrieve the character cell size including external leading.
GRAPHIC CHR SIZE Retrieve the character size for the current font in the selected graphic window.
GRAPHIC CLEAR Clear the entire selected graphic window, optionally using a specified color and

fill style.
GRAPHIC COLOR Set the foreground color and optionally the background color for various

graphic statements.
GRAPHIC COPY Copy a bitmap to the selected graphic target.
GRAPHIC DETACH Detaches a graphic target.

PowerBASIC Compiler for Windows Version 10

410 / 2126

GRAPHIC ELLIPSE Draw an ellipse or a circle in the selected graphic target.
GRAPHIC GET BITS Retrieve a copy of a bitmap, storing it as a device-independent bitmap in a

dynamic string variable.
GRAPHIC GET CANVAS Retrieves the buffer size of the attached graphic target.
GRAPHIC GET CAPTION Retrieves the caption from a Graphic Window.
GRAPHIC GET CLIENT Retrieve the client size of the selected graphic target.
GRAPHIC GET CLIP Retrieves the size of the clip area.
GRAPHIC GET DC Retrieve the handle of the DC (device context) for the selected graphic target.
GRAPHIC GET LINES Retrieve the number of lines that can be printed on the graphic target.
GRAPHIC GET LOC Retrieve the location of the selected graphic target on the screen.
GRAPHIC GET MIX Retrieve the color mix mode for the selected graphic target.
GRAPHIC GET OVERLAP Retrieves the status of Graphic Overlap Mode.
GRAPHIC GET PIXEL Retrieve the color of the pixel at the specified point in the selected graphic

target.
GRAPHIC GET POS Retrieve the POS (last point referenced) by a graphic statement.
GRAPHIC GET PPI Retrieve the resolution of the display device, in points per inch.
GRAPHIC GET SCALE Retrieve the current coordinate limits for the graphic target.
GRAPHIC GET
SCROLLTEXT

Retrieves the status of Graphic ScrollText Mode.

GRAPHIC GET SIZE Retrieves the overall size of the selected graphic target.
GRAPHIC GET
STRETCHMODE

Retrieves the default bitmap stretching mode for the attached DC.

GRAPHIC GET VIEW Retrieves the position of the virtual graphic viewport.
GRAPHIC GET
WORDWRAP

Retrieves the status of Graphic WordWrap Mode.

GRAPHIC GET WRAP Retrieves the status of Graphic Wrap Mode.
GRAPHIC IMAGELIST Display an image from an IMAGELIST.
GRAPHIC INKEY$ Read a keyboard character if one is ready from the graphic target.
GRAPHIC INPUT Read data from the keyboard from within a graphic window.
GRAPHIC INSTAT Determine whether a keyboard character is ready.
GRAPHIC INPUT FLUSH Remove all buffered keyboard data.
GRAPHIC LINE Draw a line in the selected graphic target.
GRAPHIC LINE INPUT Read an entire line from the keyboard from graphic window.
GRAPHIC PAINT Fill an area with a solid color or a hatch pattern.
GRAPHIC PIE Draw a pie section on the selected graphic target.
GRAPHIC POLYGON Draw a polygon in the selected graphic target.
GRAPHIC POLYLINE Draw a series of connected line segments.
GRAPHIC PRINT Output text to the selected graphic target.
GRAPHIC REDRAW Update buffered graphical statements, drawing them to the selected graphic

target.
GRAPHIC RENDER Render an image on the selected graphic target.
GRAPHIC SAVE Save an image to a bitmap (.BMP) file.
GRAPHIC SCALE Define a custom coordinate system for the graphic target.
GRAPHIC SET AUTOSIZE Expands a graphic target into autosize mode.
GRAPHIC SET BITS Replace a copy of a bitmap that was retrieved as a device-independent bitmap.
GRAPHIC SET CAPTION Change the caption on a Graphic Window.
GRAPHIC SET CLIENT Change the size of a graphic control or graphic window to a specific client area

size.
GRAPHIC SET CLIP Establishes margins around the outer edges of the graphic target.
GRAPHIC SET FIXED Restores a graphic target to standard fixed mode.
GRAPHIC SET FOCUS Bring the selected graphic window to the foreground and direct focus to it.
GRAPHIC SET FONT Select a font for the GRAPHIC PRINT, GRAPHIC INPUT, and GRAPHIC LINE

INPUT statements.
GRAPHIC SET LOC Change the location of the selected graphic window on the screen.
GRAPHIC SET MIX Set the color mix mode for the selected graphic target.
GRAPHIC SET OVERLAP Enables or disables Graphic Overlap Mode.
GRAPHIC SET PIXEL Draw a single pixel to the selected graphic window.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

411 / 2126

GRAPHIC SET POS Set the last point referenced (POS) for the selected graphic target.
GRAPHIC SET
SCROLLTEXT

Enables or disables Graphic ScrollText Mode.

GRAPHIC SET SIZE Change the overall size of a graphic control or graphic window.
GRAPHIC SET
STRETCHMODE

Sets the default bitmap stretching mode for the current DC.

GRAPHIC SET VIEW Changes the position of the viewport on a virtual graphic target.
GRAPHIC SET VIRTUAL Expands a graphic target into virtual mode.
GRAPHIC SET
WORDWRAP

Enables or disables Graphic WordWrap Mode.

GRAPHIC SET WRAP Enables or disables Graphic Wrap Mode.
GRAPHIC SPLIT Splits a string into two parts for display on a graphic target.
GRAPHIC STRETCH Copy and resize a bitmap to the selected graphic target.
GRAPHIC STYLE Set the line style to be used by various graphical statements in the selected

graphic target.
GRAPHIC TEXT SIZE Calculate the size of text to be printed.
GRAPHIC WAITKEY$ Read a keyboard character from the graphic window, waiting until one is ready.
GRAPHIC WIDTH Set the line width to be used by various graphical statements in the selected

graphic target.
GRAPHIC WINDOW Create a new graphic window.
GRAPHIC WINDOW CLICK Check whether a GRAPHIC WINDOW has been clicked with the mouse.
GRAPHIC WINDOW END Close and destroy the selected graphic window.
GRAPHIC WINDOW HIDE Make a graphic window invisible.
GRAPHIC WINDOW
MINIMIZE

Minimize a graphic window.

GRAPHIC WINDOW
NONSTABLE

Make a graphic window non-stable (closeable).

GRAPHIC WINDOW
NORMALIZE

Make a graphic window visible.

GRAPHIC WINDOW
STABILIZE

Make a graphic window stable (non-closeable).

GRAPHIC WINDOW TEXT Create a new graphic window oriented more towards the display of text.
IMAGELIST ADD BITMAP An bitmap image is added to the IMAGELIST.
IMAGELIST ADD ICON An icon image is added to the IMAGELIST.
IMAGELIST ADD MASKED A bitmap is added to the icon IMAGELIST.
IMAGELIST GET COUNT The number of images in the IMAGELIST is retrieved.
IMAGELIST KILL The specified IMAGELIST is destroyed.
IMAGELIST NEW BITMAP A new bitmap IMAGELIST structure is created.
IMAGELIST NEW ICON A new icon IMAGELIST structure is created.
IMAGELIST SET OVERLAY Specify an image to be used as an overlay.
RGB Return an RGB color value for use with the Windows API palette and GDIs.

Input Commands

Input Commands
The following functions can be used to gather input data:

COMM Retrieve the value or status of a communications parameter

COMM LINE Receive a CR/LF terminated "line" of data from a serial port

COMM RECV Receive binary data from a serial port

COMMAND$ Return the command-line used to start the program

ENVIRON Modify the current program's environment table.

ENVIRON$ Retrieve

 from the operating system's environment table
EOF Return end-of-file status of a file, serial or TCP/UDP transmission

PowerBASIC Compiler for Windows Version 10

412 / 2126

FIELD Bind a field string to a file buffer or dynamic string variable

FILESCAN Rapidly scan a INPUT or BINARY file to obtain string size info

FREEFILE Return the next available PowerBASIC file number

GET Read a record from a random-access file

GET$ Read a string from a file opened in binary mode

GRAPHIC INKEY$ Read a keyboard character if one is ready from the graphic window

GRAPHIC INPUT Read data from the keyboard from within a graphic window

GRAPHIC INPUT FLUSH Remove all buffered keyboard data.

GRAPHIC INSTAT Determine whether a keyboard character is ready.

GRAPHIC LINE INPUT Read an entire line from the keyboard from graphic window

GRAPHIC WAITKEY$ Read a keyboard character from the graphic window, waiting until one is
ready.

GRAPHIC WINDOW CLICK Check whether a graphic window has been clicked with the mouse

INPUT# Load variables with data from a sequential file

INPUTBOX$ INPUTBOX$ displays a dialog box containing a prompt

LINE INPUT# Read line(s) from a sequential file into a string variable or array

LOC Determine the current seek position in an open disk file

LOF Return the length of an open disk file

MSGBOX Display a message box and get the users Ok/Cancel selection

MSGBOX Display an informational message box and discard the users selection

PEEK Return the byte at a specific memory location

PEEK$ Return a sequence of bytes starting at a specific memory location

Memory Management

Metastatements

Metastatements
The following functions control compiler and debugger behavior:

#ALIGN Align the next instruction to a boundary.

%DEF Determine if an equate has been previously defined.

#COM DOC Specifies a help string which usually provides a
general description of the COM server.

#COM HELP Specifies the name of the associated help file and the
help context code.

#COM NAME Specifies the name of the server and the version
number.

#COM GUID Specifies the GUID which identifies the entire
application or library (APPID or LIBID).

#BLOAT Artificially inflate the disk image size of a compiled
program.

#COMPILE Determine which type of file will be created by the
compiler.

#COMPILER Define the compiler for this program.

#DEBUG CODE Compiler directive to suppress generation of
debugging code.

#DEBUG DISPLAY Display a message when an untrapped run-time error
occurs.

#DEBUG ERROR Control generation of error checking code.

#DEBUG PRINT Display information in the IDE's Debug Window.

PowerBASIC Compiler for Windows Version 10

413 / 2126

#DIM Specify if variables must be declared before use.

#EXPORT Declare a Sub/Function to have the EXPORT
attribute.

#IF Define sections of source code to be compiled or
ignored.

#INCLUDE Instruct the compiler to read an additional source file
from disk.

#LINK Link a pre-compiled Static Link Library (SLL) into
your host program.

#MESSAGES Specify which messages should be sent to a Control
Callback Function.

#OPTIMIZE Choose the optimization which should be applied to
your program.

#OPTION Establish various compiler options.

#PAGE Sets a page boundary for the PowerBASIC IDE.

#PBFORMS PowerBASIC Forms visual designer directives.

#REGISTER Control automatic allocation of Register variables.

#RESOURCE Embed a PowerBASIC Resource file into the
executable file.

#STACK Set the maximum potential stack size.

#TOOLS Enable/disable integrated development tools in
compiled code.

#UNIQUE Specify whether unique variable names are required.

#UTILITY Compiler directive to allow external utility programs to
read text inserted on the #UTILITY line.

Numeric Operations

Numeric Operations
The following functions manipulate and manage

 data:
ABS Return the absolute value of a numeric expression
AND AND works as both a logical and a bitwise arithmetic operator
ARRAY ASSIGN Assign a number of values to successive elements of an array
ARRAY DELETE Delete a single item from a given array
ARRAY INSERT Insert a single item into a given array
ARRAY SCAN Scan all or part of an array for a given value
ARRAY SORT Sort all or part of a given array
ASC Return the ASCII code of the specified character in a
ASC Place an ASCII byte at the specified position in a string
ATN Return the arctangent of its argument
BIN$ Return a string with the binary (base 2) representation of a value
BIT CALC Set or reset a bit in an

 variable
BIT Return the value of a particular bit in an integral-class variable
BIT Manipulate individual bits of an integral-class variable
BITS Return the least significant portion of an integral-class value
BITS Return the least significant 8, 16, or 32 bits of an argument
BITSE Compare integral-class values for equivalent bits regardless of sign
CBYT Convert a value to a Byte data type
CCUR Convert a value to a Currency data type
CCUX Convert a value to a Extended Currency data type

http://www.powerbasic.com/products/pbforms/

PowerBASIC Compiler for Windows Version 10

414 / 2126

CDBL Convert a value to a Double-precision data type
CDWD Convert a value to a Double-word data type
CEIL Return an

 that is greater than or equal to an argument
CEXT Convert a value to a Extended-precision data type
CHOOSE Return one of several values, based upon the value of an index
CINT Convert a value to a integral data type
CLNG Convert a value to a Long-integer data type
COS Return the cosine of an argument
CQUD Convert a value to a Quad-integer data type
CSNG Convert a value to a Single-precision data type
CVBYT Convert binary encoded string data to a byte value
CVCUR Convert binary encoded string data to a Currency value
CVCUX Convert binary encoded string data to Extended Currency
CVD Convert binary encoded string data to a Double-precision value
CVDWD Convert binary encoded string data to a Double-word value
CVE Convert binary encoded string data to Extended-precision
CVI Convert binary encoded string data to an integral value
CVL Convert binary encoded string data to a Long-integer value
CVQ Convert binary encoded string data to a Quad-integer value
CVS Convert binary encoded string data to a Single-precision value
CVWRD Convert binary encoded string data to a Word value
CWRD Convert a value to a Word data type
DEC$ Convert an integral value to a decimal string.
DECR Decrement a variable,

, or pointer target
DEFBYT Declare the default variable type to be Byte
DEFCUR Declare the default variable type to be Currency
DEFCUX Declare the default variable type to be Extended Currency
DEFDBL Declare the default variable type to be Double-precision
DEFDWD Declare the default variable type to be Double-word
DEFEXT Declare the default variable type to be Extended-precision
DEFINT Declare the default variable type to be integral value
DEFLNG Declare the default variable type to be Long-integer
DEFQUD Declare the default variable type to be Quad-integer
DEFSNG Declare the default variable type to be Single-precision
DEFSTR Declare the default variable type to be String
DEFWRD Declare the default variable type to be Word
ENUM/END ENUM Creates a group of logically related numeric equates.
EQV Perform a logical or a bitwise Equivalence operation
EXP Return a base number raised to a power, with a base of e
EXP2 Return a base number raised to a power, with a base of 2
EXP10 Return a base number raised to a power, with a base of 10
FIX Truncate a

 number to an integral value
FORMAT$ Format numeric data according to a string mask expression
FRAC Return the fractional part of a floating-point number
HEX$ Hexadecimal (base 16) string representation of an argument
HI Extract the most significant (high-order) portion of an argument
IIF Return one of two values based upon a True/False evaluation
IMP Perform a logical or a bitwise Implication operation
INCR Increment a variable, pointer, or pointer target
INT Convert a numeric expression to an integral-class value
ISFALSE Return the logical falsity of a given expression
ISNOTHING Determine the current status of a given object variable
ISOBJECT Determine the current status of a given object variable

PowerBASIC Compiler for Windows Version 10

415 / 2126

ISTRUE Return the logical truth of a given expression
LBOUND Return the lowest subscript of an array's specific dimension
LEN Return the logical length of a variable, UDT, or Union
LET Assign a value to a variable
LET (with Variants) Assign a value or an object reference to a variant variable
LO Extract the least significant (low-order) portion of an argument
LOG Return the natural (base e) logarithm of an argument
LOG2 Return the base 2 logarithm of an argument
LOG10 Return the base 10 logarithm of an argument
MAT Matrix calculations on numeric arrays
MAX Return the argument with the largest (maximum) value
MIN Return the argument with the smallest (minimum) value
MOD Return the remainder of the division between two numbers
NOT The NOT operator works as a bitwise arithmetic operator
OCT$ Return a string that is a octal (base 8) representation of a value
OR Perform a logical or a bitwise OR arithmetic operation
PEEK Return the byte at a specific memory location
POKE Store a byte at a specific memory location
RANDOMIZE Seed the random number generator
RESET Set a variable, array subscript, or an entire array to zero
RGB Return a composite RGB color value
RND Return a random number
ROTATE Rotate the bits in an integral-class variable
ROUND Round a numeric value to a specified number of decimal places
SGN Return the sign of a numeric expression
SHIFT Shift the bits in an integral-class variable
SIN Return the sine of an argument
SQR Return the square root of an argument
SWAP Exchange the values of two variables, pointers, or pointer targets
SWITCH Return one item of a series based upon a True/False evaluation
TAN Return the tangent of an argument
UBOUND Return the highest subscript of an array's specific dimension
USING$ Format string/numeric expressions using a mask string
VAL function Returns the numeric equivalent of a string argument
VAL statement Converts a text string to a numeric value with additional information.
VARIANT# Return the numeric value contained in a Variant variable
XOR Perform a logical or a bitwise Exclusive-OR operation

Operating System

Operating System
The following functions manipulate file and operating system features:

CHDIR Change the current (default) directory on a given drive.
CHDRIVE Change the current default drive.
CLIPBOARD GET BITMAP A bitmap is copied from the CLIPBOARD and stored in a newly created

GRAPHIC BITMAP.
CLIPBOARD GET OEMTEXT A text string is retrieved from the CLIPBOARD. If necessary, it is converted

to OEM Text format.
CLIPBOARD GET TEXT A text string is retrieved from the CLIPBOARD. If necessary, it is converted

to ASCII Text format.
CLIPBOARD GET UNICODE A text string is retrieved from the CLIPBOARD. If necessary, it is converted

to Unicode Text format.
CLIPBOARD RESET The contents of the CLIPBOARD are deleted.
CLIPBOARD SET BITMAP Copies a GRAPHIC BITMAP to the CLIPBOARD.

PowerBASIC Compiler for Windows Version 10

416 / 2126

CLIPBOARD SET OEMTEXT Copies a OEM text string to the CLIPBOARD.
CLIPBOARD SET TEXT Copies a ASCII text string to the CLIPBOARD.
CLIPBOARD SET UNICODE Copies a Unicode text string to the CLIPBOARD.
COMMAND$ Return the command-line used to start the program.
CURDIR$ Return the current directory for a given drive.
DATE$ Set and retrieve the system date.
DESKTOP GET CLIENT Retrieve the size of the client area of the desktop, in pixels.

DESKTOP GET LOC
Retrieve the location of the top, left corner of the client area of the desktop,
in pixels.

DESKTOP GET SIZE Retrieve the size of the entire desktop, in pixels.
DIR$ Return a filename that matches the given mask.
DIR$ CLOSE Force the release the operating system FindNext handle.
DISKFREE Return the amount of available space of a disk, in bytes.
DISKSIZE Return the total amount of space on a disk, in bytes.
DISPLAY BROWSE Display a folder selection dialog to return the user's choice.
DISPLAY COLOR Display a color selection dialog to return the user's choice.
DISPLAY FONT Display a selection dialog to return user choices.
DISPLAY OPENFILE Display an OpenFile selection dialog to return user choices.
DISPLAY SAVEFILE Display a SaveFile selection dialog to return user choices.
ENVIRON Modify the current program's environment table.
ENVIRON$ Retrieve

 from the operating system's environment table.
EXE.Inst Returns the instance handle of the programming which is currently

executing.
EXE.Extn$ Returns the extension of the program which is currently executing.
EXE.Full$ Returns the complete drive, path, and file name of the program which is

currently executing.
EXE.Name$ Returns just the file name of the program which is currently executing.
EXE.Namex$ Returns the file name and the extension of the program which is currently

executing.
EXE.Path$ Returns the complete drive and path of the program which is currently

executing.
FILEATTR Return information about an open file.
FILECOPY Copy a file.
FILENAME$ Return the file-system name of an open file.
FLUSH Flush file buffers to disk to ensure the disk information is current.
GETATTR Return the file-system attribute(s) of a disk file or directory.
HOST ADDR Translate a host name into a corresponding IP address.
HOST NAME Translate an IP address into a corresponding host name.
ISFILE Determine whether or not a file exists.
KILL Delete a disk file.
METRICS Retrieves information or dimensions of system elements.
MKDIR Create a subdirectory/folder (like the DOS MKDIR command).
NAME Rename a file or a directory (like the DOS REN command).
OPEN Prepare a file or device for reading or writing.
PATHNAME$ Parse a path/file name to extract component parts.
PATHSCAN$ Find a file on disk and return the path and/or file name parts.
RGB Return a composite RGB color value.
RMDIR Delete a disk directory (like the DOS RMDIR command).
SETATTR Set the file system attribute(s) of a disk file or directory.
SETEOF Truncate/extend a file to its current file pointer position.
SHELL Launch an executable program asynchronously.
SHELL Launch an executable program synchronously.
SLEEP Pause the current thread for a specified number of milliseconds.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

417 / 2126

Printing Commands

Printing Commands
The followings are used to send data to a printer:

LPRINT Output text and data to a printer device.
LPRINT ATTACH Connect directly to a line printer device.
LPRINT CLOSE Disconnect the current printer device.
LPRINT FLUSH Flush any remaining print data to the printer device.
LPRINT FORMFEED Send a formfeed (page eject) character to the printer.
LPRINT$ Return the current printer device used for LPRINT operations.
PRINTER$ Retrieve printer names and printer port names.
PRINTERCOUNT Retrieves the number of available (installed) printers.
XPRINT(CANVAS.X) Retrieves the writable width of the host printer page.
XPRINT(CANVAS.Y) Retrieves the writable height of the host printer page.
XPRINT(Cell.Size.X) Retrieves the character cell width including external leading.
XPRINT(Cell.Size.Y) Retrieves the character cell height including external leading.
XPRINT(Chr.Size.X) Retrieves the character width on the host printer page.
XPRINT(Chr.Size.Y) Retrieves the character height on the host printer page.
XPRINT(Client.X) Retrieves the width of the client area (printable area) on the host printer

page.
XPRINT(Client.Y) Retrieves the height of the client area (printable area) on the host

printer page.
XPRINT(Clip.X) Retrieves the width of the clip area on the selected printer.
XPRINT(Clip.Y) Retrieves the height of the clip area on the selected printer.
XPRINT(COL) Retrieves the next column print position, based upon the row and

column position of a text cell.
XPRINT(COLLATE) Retrieves the XPRINT collate status.
XPRINT(COLORMODE) Retrieves the XPRINT colormode status.
XPRINT(COPIES) Retrieves the XPRINT copy count.
XPRINT(DC) Retrieves the handle of the device context (DC) for the host printer

page.
XPRINT(DUPLEX) Retrieves the XPRINT duplex status.
XPRINT(LINES) Retrieves the number of lines that can be printed.
XPRINT(MIX) Retrieves the color mix mode for a host printer page.
XPRINT(ORIENTATION) Retrieves the paper orientation for a host printer page.
XPRINT(OVERLAP) Retrieves the status of XPrint Overlap Mode.
XPRINT(PAPER) Retrieves the current paper size/type.
XPRINT(PIXEL...) Retrieves the color of a pixel on a host printer page.
XPRINT(POS.X) Retrieves the last horizontal point referenced (POS) by an XPRINT

statement.
XPRINT(POS.Y) Retrieves the last vertical point referenced (POS) by an XPRINT

statement.
XPRINT(PPI.X) Retrieves the horizontal resolution of the host printer page.
XPRINT(PPI.Y) Retrieves the vertical resolution of the host printer page.
XPRINT(QUALITY) Retrieves the print quality setting for the host printer.
XPRINT(ROW) Retrieves the next row print position, based upon the row and column

position of a text cell.
XPRINT(SELECTION) Retrieves the status of the SELECTION flag.
XPRINT(SIZE.X) Retrieves the width of the host printer page.
XPRINT(SIZE.Y) Retrieves the height of the host printer page.
XPRINT(STRETCHMODE) Retrieves the default bitmap stretching mode for the attached DC.
XPRINT(TEXT.SIZE.X...) Calculates the width of text to be printed on a host printer.
XPRINT(TEXT.SIZE.Y...) Calculates the height of text to be printed on a host printer.
XPRINT(TRAY) Retrieves the active printer tray.
XPRINT(WORDWRAP) Retrieves the status of XPRINT WordWrap Mode.

PowerBASIC Compiler for Windows Version 10

418 / 2126

XPRINT(WRAP) Retrieves the status of XPRINT Wrap Mode.
XPRINT$ Returns the name of the attached host printer.
XPRINT$(ATTACH) Returns the name of the attached host printer.
XPRINT$(PAPERS) Retrieves a list of supported paper types.
XPRINT$(TRAYS) Retrieves a list of supported paper trays.
XPRINT Output text to a host-printer device.
XPRINT ARC Draw an arc on a host printer page.
XPRINT ATTACH Connect a host-based (GDI) printer for use with XPRINT.
XPRINT BOX Draw a box with square or rounded corners on a host printer page.
XPRINT CANCEL Cancel a print job on the host printer.
XPRINT CELL Sets or Retrieves the next print position for a text cell.
XPRINT CELL SIZE Retrieve the character cell size including external leading.
XPRINT CHR SIZE Retrieve the character size for the current font on a host printer page.
XPRINT CLOSE Detach a host printer so printing may begin.
XPRINT COLOR Set the foreground color (and, optionally, the background color) for

various XPRINT statements.
XPRINT COPY Copy a bitmap to a host printer page.
XPRINT ELLIPSE Draw an ellipse or a circle on a host printer page.
XPRINT FORMFEED Start a new page for the host printer.
XPRINT GET ATTACH Retrieve the name of the attached host printer.
XPRINT GET CANVAS Retrieves the buffer size of the attached host printer.
XPRINT GET CLIENT Retrieve the size of the client area (printable area) on the host printer

page.
XPRINT GET CLIP Retrieves the size of the clip area on the selected printer.
XPRINT GET COLLATE Retrieve the XPRINT collate status.
XPRINT GET COLORMODE Retrieve the XPRINT colormode status.
XPRINT GET COPIES Retrieve the XPRINT copy count.
XPRINT GET DC Retrieve the handle of the device context (DC) for the host printer page.
XPRINT GET DUPLEX Retrieve the XPRINT duplex status.
XPRINT GET LINES Retrieve the number of lines that can be printed.
XPRINT GET MARGIN Retrieve the margin sizes for the host printer.
XPRINT GET MIX Retrieve the color mix mode for a host printer page.
XPRINT GET ORIENTATION Retrieve the paper orientation for a host printer page.
XPRINT GET OVERLAP Retrieves the status of XPrint Overlap Mode.
XPRINT GET PAGES Retrieves the XPRINT page number limits for this print job.
XPRINT GET PAPER Retrieve the current paper size/type.
XPRINT GET PAPERS Retrieve a list of supported paper types.
XPRINT GET PIXEL Retrieve the color of a pixel on a host printer page.
XPRINT GET POS Retrieve the last point referenced (POS) by an XPRINT statement.
XPRINT GET PPI Retrieve the resolution of the host printer page.
XPRINT GET QUALITY Retrieve the print quality setting for the host printer.
XPRINT GET SCALE Retrieve the current coordinate limits for the host printer page.
XPRINT GET SELECTION Retrieves the status of the SELECTION flag.
XPRINT GET SIZE Retrieve the total size of the host printer page.
XPRINT GET STRETCHMODE Retrieves the default bitmap stretching mode for the attached DC.
XPRINT GET TRAY Retrieve the active printer tray.
XPRINT GET TRAYS Retrieve a list of supported paper trays.
XPRINT GET WORDWRAP Retrieves the status of XPRINT WordWrap Mode.
XPRINT GET WRAP Retrieves the status of XPRINT Wrap Mode.
XPRINT IMAGELIST Print an image from an IMAGELIST.
XPRINT LINE Draw a line on a host printer page.
XPRINT PIE Draw a pie section on a host printer page.
XPRINT POLYGON Draw a polygon on a host printer page.
XPRINT POLYLINE Draw a series of connected lines on a host printer page.
XPRINT PREVIEW Display a replica of a printed document on the screen.
XPRINT PREVIEW CLOSE Reverts XPRINT output back to the host printer.

PowerBASIC Compiler for Windows Version 10

419 / 2126

XPRINT PRINT Output text to be printed on the selected printer.
XPRINT RENDER Render an image on a host printer page.
XPRINT SCALE Define a custom world coordinate system for a host printer page.
XPRINT SCALE PIXELS Resets the coordinate system to the original default pixel coordinates.
XPRINT SET CLIP Establishes margins around the outer edges of the print page.
XPRINT SET COLLATE Change the XPRINT collate status.
XPRINT SET COLORMODE Change the XPRINT colormode status.
XPRINT SET COPIES Change the XPRINT copy count.
XPRINT SET DUPLEX Change the XPRINT duplex status.
XPRINT SET FONT Select a font for the XPRINT statement.
XPRINT SET MIX Set the color mix mode for a host printer page.
XPRINT SET ORIENTATION Set the paper orientation for a host printer page.
XPRINT SET OVERLAP Enables or disables XPRINT Overlap Mode.
XPRINT SET PAGES Sets the XPRINT page number limits for this print job.
XPRINT SET PAPER Set a new paper size/type.
XPRINT SET PIXEL Set the color of a pixel on a host printer page.
XPRINT SET POS Retrieve the last point referenced (POS) by an XPRINT statement.
XPRINT SET QUALITY Set the print quality for a host printer.
XPRINT SET STRETCHMODE Sets the default bitmap stretching mode for the current DC.
XPRINT SET TRAY Set a new active printer tray.
XPRINT SET WORDWRAP Enables or disables XPRINT WordWrap Mode.
XPRINT SET WRAP Enables or disables XPrint Wrap Mode.
XPRINT SPLIT Splits a string into two parts for printing with XPRINT.
XPRINT STRETCH Copy and resize a bitmap to a host printer page.
XPRINT STRETCH PAGE Copy and resize a bitmap to the clip or client area of the host printer

page.
XPRINT STYLE Set the line style to be used by various XPRINT statements.
XPRINT TEXT WIDTH Calculate the size of text to be printed on a host printer.
XPRINT WIDTH Set the graphic line width to be used by various XPRINT statements.

String Operations

String Operations
The following functions manipulate and manage

 data:
ACODE$ Translate a Unicode string into an ANSI string.
ARRAY ASSIGN Assign a number of values to successive elements of an array.
ARRAY DELETE Delete a single item from a given array.
ARRAY INSERT Insert a single item into a given array.
ARRAY SCAN Scan all or part of an array for a given value.
ARRAY SORT Sort all or part of a given array.
BIN$ Return a string with the binary (base 2) representation of a value.
BITS$ Copies string contents without modification.
BUILD$ Concatenate multiple strings with high efficiency.
CHOOSE$ Return one of several values, based upon the value of an index.
CHR$ Convert one or more character codes into ASCII character(s).
CHR$$ Convert one or more character codes into Unicode character(s).
CHRBYTES Determine the size of a single character in a string variable.
ChrToOem$ Translates a string of ANSI/WIDE characters to OEM byte characters.
ChrToUtf8$ Translates a string of ANSI/WIDE characters to UTF-8 byte characters.
CLIP$ Deletes characters from a string.
CLSID$ Return a 16-byte (128-bit) GUID string containing a CLSID.
COMM LINE Receive a CR/LF terminated "line" of data from a serial port.
COMM PRINT Send a "line" of binary data through a serial port.

PowerBASIC Compiler for Windows Version 10

420 / 2126

COMM RECV Receive binary data from a serial port.
COMM SEND Send a string of binary data through a serial port.
COMMAND$ Return the command-line used to start the program.
CSET Center a string within the space of another string or UDT.
CSET$ Return a string containing a centered (padded) string.
CURDIR$ Return the current directory for a given drive.
DATA Declare an array of constants to be read by READ$.
DATACOUNT Return the total count of the number of local data items.
DATE$ Set and retrieve the system date.
DEC$ Convert an integral value to a decimal string.
DIM Declare and dimension arrays, scalar variables, and pointers.
DIR$ Return a filename that matches the given mask.
DIR$ CLOSE Force the release the operating system FindNext handle.
ENVIRON Modify the current program's environment table..
ENVIRON$ Retrieve strings from the operating system's environment table.
ERASE Deallocate array memory.
ERL$ Return the last label, line number, or procedure name executed prior to the most recent error.
ERROR$ Return a string containing the descriptive name of an error.
EXTRACT$ Return up to the first occurrence of a specified character.
EXE Return the path and/or name of the executing program.
FIELD Bind a field string variable to a particular sub-section of a random file buffer or a dynamic string

variable.
FIELD RESET Reset the FIELD string to a nul (zero-length) dynamic string.
FIELD STRING Change the FIELD string to a dynamic string, but first assigns the current sub-section data to it.
FILENAME$ Return the file-system name of an open file.
FORMAT$ Return a string containing formatted numeric data.
FUNCNAME$ Return the name of the current Sub/Function/Method/Property.
GET Read a record from a random-access file.
GET$ Read a string from a file opened in binary mode.
GET$$ Reads WIDE string data from a file opened in binary mode.
GRAPHIC SPLIT Splits a string into two parts for display on a graphic target.
GUID$ Return a 16-byte (128-bit) Globally Unique Identifier GUID.
GUIDTXT$ Return a 38-byte human-readable GUID/UUID string.
HEX$ Hexadecimal (base 16) string representation of an argument.
IIF$ Return one of two values based upon a True/False evaluation.
INPUT# Load variables with data from a sequential file.
INPUTBOX$ INPUTBOX$ displays a dialog box containing a prompt.
INSTR Search a string for the first occurrence of a character or string.
ISNOTNULL Determine if a string is not nul (contains 1 or more characters).
ISNULL Determine if a string is nul (zero-length).
IStringBuilderA.Add Appends an ANSI string to the object.
IStringBuilderA.Capacity <Get> Retrieves the size of the internal buffer.
IStringBuilderA.Capacity <Set> Sets the size of the internal buffer.
IStringBuilderA.Char <Get> Returns the numeric character code of the character at the specified position.
IStringBuilderA.Char <Set> Changes the numeric character code of the character at the specified position.
IStringBuilderA.Clear All data in the object is erased.
IStringBuilderA.Delete Deletes a specified number of characters starting at a specified position.
IStringBuilderA.Insert Inserts a string at a specified position.
IStringBuilderA.Len Returns the number of characters stored in the object.
IStringBuilderA.String The ANSI string stored in the object is returned to the caller.
IStringBuilderW.Add Appends an WIDE string to the object.
IStringBuilderW.Capacity <Get> Retrieves the size of the internal buffer.
IStringBuilderW.Capacity <Set> Sets the size of the internal buffer.
IStringBuilderW.Char <Get> Returns the numeric character code of the character at the specified position.
IStringBuilderW.Char <Set> Changes the numeric character code of the character at the specified position.
IStringBuilderW.Clear All data in the object is erased.

PowerBASIC Compiler for Windows Version 10

421 / 2126

IStringBuilderW.Delete Deletes a specified number of characters starting at a specified position.
IStringBuilderW.Insert Inserts a string at a specified position.
IStringBuilderW.Len Returns the number of characters stored in the object.
IStringBuilderW.String The WIDE string stored in the object is returned to the caller.
JOIN$ Return a string consisting of all of the strings in a string array.
LCASE$ Return a lowercase version of a string argument.
LEFT$ Return the left-most n characters of a string.
LEN Return the logical length of a variable, UDT, or Union.
LET Assign a value to a variable.
LET (with Types) Assign data to a user-defined type variable.
LET (with Variants) Assign a value or an object reference to a variant variable.
LINE INPUT# Read line(s) from a sequential file into a string variable or array.
LPRINT Output text and data to a printer device.
LPRINT$ Return the current printer device used for LPRINT operations.
LSET Left-align a string within the space of another string or UDT.
LSET$ Return a string containing a left-justified (padded) string.
LTRIM$ Return a string with leading characters or strings removed.
MAX$ Return the argument with the largest (maximum) value.
MCASE$ Return a mixed case version of a string argument.
MID$ Return a portion of a string.
MID$ Replace characters in a string with characters from another string.
MIN$ Return the argument with the smallest (minimum) value.
MKBYT$ Convert a Byte value into a binary encoded string.
MKCUR$ Convert a Currency value into a binary encoded string.
MKCUX$ Convert an Extended Currency value into a binary encoded string.
MKD$ Convert a Double-precision value into a binary encoded string.
MKDWD$ Convert a Double-word value into a binary encoded string.
MKE$ Convert an Extended-precision value into a binary encoded string.
MKI$ Convert a integral value into a binary encoded string.
MKL$ Convert a Long-integer value into a binary encoded string.
MKQ$ Convert a Quad-integer value into a binary encoded string.
MKS$ Convert a Single-precision value into a binary encoded string.
MKWRD$ Convert a Word value into a binary encoded string.
MKDIR Create a subdirectory/folder (like the DOS MKDIR command).
NUL$ Return a string containing a specified number of $NUL characters.
OBJRESULT$ Returns a string which describes an OBJRESULT (hResult) code.
OCT$ Return a string that is a octal (base 8) representation of a value.
OemToChr$ Translates a byte string of OEM characters into ANSI/WIDE characters.
PARSE Parse a string and extract all delimited fields into an array.
PARSE$ Return a delimited field from a string expression.
PARSECOUNT Return the count of delimited fields in a string expression.
PATHNAME$ Parse a path/file name to extract component parts.
PATHSCAN$ Find a file on disk and return the path and/or file name parts..
PEEK$ Returns consecutive 1-byte characters starting at a specific memory location.
PEEK$$ Returns consecutive 2-byte wide characters starting at a specific memory location.
POKE$ Store a sequence of bytes starting at a specific memory location.
POKE$$ Store a sequence as 2-byte wide characters starting at a specific memory location.
PRINT# Write a complete array to a sequential file.
PROGID$ Return the alphanumeric PROGID string (text) of a given CLSID.
PUT Write a record to a random-access file or variable to a binary file.
PUT$ Writes an ANSI string to a file opened in binary mode.
PUT$$ Writes a WIDE Unicode string to a file opened in binary mode.
READ$ Retrieve string data from a local DATA list.
REGEXPR Scan a string for a matching "wildcard" or regular expression.
REGREPL Scan a "wildcard" match in a string with a new string.
REMAIN$ Returns the portion of a string which follows the first occurrence of a character or group of characters.

PowerBASIC Compiler for Windows Version 10

422 / 2126

REMOVE$ Return a copy of a string with characters or strings removed.
REPEAT$ Return a string consisting of multiple copies of a specified string.
REPLACE Replace all occurrences of one string with another string.
RESET Clear a string, string array subscript, or an entire array.
RESOURCE$ Returns predefined resource data.
RETAIN$ Return a string with all non-specified characters removed.
RIGHT$ Return the rightmost n characters of a string.
RSET Right justify a string into the space of a string variable or UDT.
RSET$ Return a string containing a right-justified (padded) string.
RTRIM$ Return a copy of a string with trailing characters/strings removed.
SHRINK$ Shrinks a string to use a consistent single character delimiter.
SIZEOF Return the total or physical length of any PowerBASIC variable.
SPACE$ Return a string consisting of a specified number of spaces.
SPLIT Splits a string into two parts.
STR$ Return the string representation of a number in printable form.
STRDELETE$ Delete a specified number of characters from a string expression.
STRING$ Returns an ANSI string consisting of multiple copies of a specified character.
STRING$$ Returns a WIDE string consisting of multiple copies of a specified character.
STRINSERT$ Insert a string at a specified position within another string.
STRPTR Return the address of the data held by a variable length string.
STRREVERSE$ Reverse the contents of a string expression.
SWAP Exchange the values of two strings, pointers, or pointer targets.
SWITCH$ Return one item of a series based upon a True/False evaluation.
TAB$ Return a string with TAB characters expanded with spaces.
TALLY Count the number of occurrences of specified characters/strings.
TIME$ Read and/or set the system time.
TRIM$ Return a string with leading and trailing characters removed.
TYPE SET Assign the value of a UDT or string expression to a UDT.
UCASE$ Return an all-uppercase (capitalized) version of a string.
UCODE$ Translate an ANSI string into a Unicode string.
UCODEPAGE Set the default codepage used for ANSI / UNICODE conversions.
UNWRAP$ Removes paired characters from the beginning and end of a string.
USING$ Format string/numeric expressions using a mask string.
Utf8ToChr$ Translates a byte string of OEM characters into ANSI/WIDE characters.
VAL function Returns the

 equivalent of a string argument.
VAL statement Converts a text string to a numeric value with additional information.
VARIANT$ Returns the ANSI dynamic string contained in a Variant variable.
VARIANT$$ Returns the Unicode dynamic string contained in a Variant variable.
VARPTR Return the 32-bit address of a string handle.
VERIFY Determine if each character of a string is in another string.
WRAP$ Adds paired characters to the beginning and end of a string.

Text Commands

Text Commands
The following commands can be used with a Text Window:

TXT.CELL Sets or retrieves the cursor position.
TXT.CLS Clears the Text Window and moves to caret to the upper left corner.
TXT.COLOR Sets the foreground color
TXT.END The Text Window currently attached to your program is destroyed and detached from the

process.
TXT.INKEY$ Reads a keyboard character if one is ready.
TXT.INSTAT Determines whether a keyboard character is ready.

PowerBASIC Compiler for Windows Version 10

423 / 2126

TXT.LINE.INPUTReads an entire line from the keyboard.
TXT.PRINT Write text data to the TEXT WINDOW at the current caret location.
TXT.WAITKEY$ Reads a keyboard character, waiting until one is ready.
TXT.WINDOW A new Text Window is created and attached to your program.

Thread Control

Thread Control
The following functions are used to create and manage threads:

IPowerThread.Close Releases the thread handle of this thread.
IPowerThread.Equals Compares the specified object to determine if it references the same object as

this object.
IPowerThread.Handle Retrieves the handle of the thread for use with Windows API functions.
IPowerThread.Id Retrieves the ID of the thread for use with Windows API functions.
IPowerThread.IsAlive Checks the thread to see if it is currently "alive".
IPowerThread.Join Waits for the specified thread object to complete before execution of this

thread continues.
IPowerThread.Launch Begins execution of the thread object.
IPowerThread.Priority
<Get>

Retrieves the priority value for this thread.

IPowerThread.Priority <Set>Sets the Priority Value for this thread.
IPowerThread.Result If the thread has ended, the result value is retrieved and returned to the caller.
IPowerThread.Resume Resumes execution of a suspended thread.
IPowerThread.StackSize
<Get>

Retrieves the size of the stack for this thread.

IPowerThread.StackSize
<Set>

Sets the size of the stack for this thread to the value specified.

IPowerThread.Suspend Suspends execution of the thread.
IPowerThread.TimeCreate Retrieves the date and time-of-day of the thread creation.
IPowerThread.TimeExit Retrieves the date and time-of-day of the thread exit
IPowerThread.TimeKernel Retrieves the amount of time this thread has spent in kernel mode.
IPowerThread.TimeUser Retrieves the amount of time this thread has spent in user mode.
PROCESS GET PRIORITY Retrieve the Priority Value for the current process.
PROCESS SET PRIORITY Sets the Priority Value for the current process.
THREADED Declare Thread Local Storage (TLS) variables.
THREAD CLOSE Close a Windows thread.
THREAD CREATE Create a Windows thread.
THREAD GET PRIORITY Retrieve the Priority Value for a thread.
THREAD FUNCTION Declares a thread function.
THREAD SET PRIORITY Sets the Priority Value for a thread.
THREAD RESUME Resume execution of a suspended Windows thread.
THREAD STATUS Retrieve the Status of a Windows thread.
THREAD SUSPEND Suspend execution of a Windows thread.
THREADCOUNT Return the number of active threads that exist in a module.
THREADID Return a Long-integer thread identifier of the current thread.

Time Commands

Time Commands
The following functions manipulate and manage time and the system date:

DATE$ Set and retrieve the system date.
DAYNAME$ Converts a Day-of-Week number to the associated name.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

424 / 2126

IPowerTime.AddDays Adds or subtracts a specified number of days to value of this object.
IPowerTime.AddHours Adds or subtracts a specified number of hours to value of this object.
IPowerTime.AddMinutes Adds or subtracts a specified number of minutes to value of this object.
IPowerTime.AddMonths Adds or subtracts a specified number of months to value of this object.
IPowerTime.AddMSeconds Adds or subtracts a specified number of milliseconds to value of this

object.
IPowerTime.AddSeconds Adds or subtracts a specified number of seconds to value of this object.
IPowerTime.AddTicks Adds or subtracts a specified number of ticks to value of this object.
IPowerTime.AddYears Adds or subtracts a specified number of years to value of this object.
IPowerTime.DateDiff Compares the date component of an external PowerTime object with

this objects date component.
IPowerTime.DateString Returns the Date component of the object expressed as a

.
IPowerTime.DateStringLong Returns the Date component of the PowerTime object, expressed as a

string, with a full alphabetic month name.
IPowerTime.Day Returns the Day component of the object.
IPowerTime.DayOfWeek Returns the Day-of-Week component of the object.
IPowerTime.DayOfWeekString Returns the Day-of-Week of the object, expressed as a string (Sunday,

Monday...).
IPowerTime.DaysInMonth Returns the number of days which comprise the month of the date of

the PowerTime object.
IPowerTime.FileTime <Get> Returns a Quad-Integer value of the PowerTime object as a FileTime.
IPowerTime.FileTime <Set> The FileTime Quad-Integer value specified by the parameter is assigned

as the PowerTime object value.
IPowerTime.Hour Returns the Hour component of the object.
IPowerTime.IsLeapYear Returns true/false (-1/0) to tell if the object year is a leap year.
IPowerTime.Minute Returns the Minute component of the object.
IPowerTime.Month Returns the Month component of the object.
IPowerTime.MonthString Returns the Month component of the object, expressed as a string

(January, February...).
IPowerTime.MSecond Returns the millisecond component of the PowerTime object.
IPowerTime.NewDate Assigns a new value to the date component of the PowerTime object.
IPowerTime.NewTime Assigns a new value to the time component of the PowerTime object.
IPowerTime.Now The current local date and time on this computer is assigned to this

object.
IPowerTime.NowUTC The current Coordinated Universal date and time (UTC) is assigned to

this object.
IPowerTime.Second Returns the Second component of the object.
IPowerTime.Tick Returns the Tick component of the object.
IPowerTime.TimeDiff Compares the time component of an external PowerTime object with

this objects time component.
IPowerTime.TimeString Returns the Time component of the PowerTime object expressed as a

string.
IPowerTime.TimeString24 Returns the Time component of the PowerTime object expressed as a

string. The time is formatted as hh:mm in 24-hour notation.
IPowerTime.TimeStringFull Returns the Time component of the PowerTime object expressed as a

string. The time is formatted as hh:mm:ss.tt in 24-hour notation.
IPowerTime.Today The current local date on this computer is assigned to this PowerTime

object. This is suitable for applications that work with dates only.
IPowerTime.ToLocalTime The object is converted to local time.
IPowerTime.ToUTC The object is converted to Coordinated Universal Time (UTC).
IPowerTime.Year Returns the Year component of the PowerTime object as a numeric

value.
MONTHNAME$ Converts a Month number to the associated name.
SLEEP Pause the current thread for a specified number of milliseconds.
TIME$ Read and/or set the system time.
TIMER Return the number of seconds that have elapsed since midnight.

PowerBASIC Compiler for Windows Version 10

425 / 2126

TIX Measures elapsed CPU cycles.

Misc Operations

Misc. Operations
Miscellaneous functions:

ASM Identify an assembly-language statement.

ASM ALIGN Rounds up the instruction location to a power of two address

ASMDATA/END
ASMDATA

Define a block where primitive read-only data is stored.

BEEP Play the default Windows sound through the computer speaker(s).

IMPORT Load or free a library (DLL) to access an imported procedure.

PLAY WAVE Play a sound under program control.

PLAY WAVE END Stops any waveform sound which is currently playing.

REM Indicates the remainder of a line of source code is a remark or comment.

%DEF operator

%DEF operator
Purpose Determine if an

 has been previously defined.
Syntax %DEF({%numeric_equate | $string_equate})

Remarks The %DEF operator tests whether or not an equate has been defined. If the equate has
been defined, %DEF returns TRUE (non-zero); or FALSE (zero) if it has not be defined.

PowerBASIC automatically defines the equates in the following table according to the
PowerBASIC compiler being used. Please note the references to other PowerBASIC
compilers are included for those writing programs that may be compilable by more than
one PowerBASIC compiler.

 Equate Definition
%PB_CC32 Pre-defined as TRUE (non-zero) in PB/CC for Windows, but is not

defined in other compilers.
%PB_DLL16 Pre-defined as TRUE (non-zero) in PB/DLL 16-bit, but is not defined

in other compilers.
%PB_DLL32 Synonym of %PB_WIN32
%PB_WIN32 Pre-defined as TRUE (non-zero) in PB/Win 32-bit, but is not defined

in other compilers.
%PB_REVISION Pre-defined as the hex revision (10.00 = &H1000).
%PB_REVLETTER Pre-defined as the ASCII code of the revision letter (a = &H61), or

&H20 if there is no revision letter.
%PB_EXE Pre-defined as TRUE (non-zero) if compiling to EXE or as FALSE

(zero) if compiling to DLL (PB/Win only) or SLL format.
The equate %PB_EXE is always defined in PowerBASIC, so %
DEF(%PB_EXE) will always be evaluated as TRUE. The difference
being the value assigned to the equate by the compiler. See the
examples below.

These can be used in conjunction with #IF as a compiler directive to selectively include or
exclude code from the compiled file.

See also #IF, Numeric Equates, Built-in numeric equates, String Equates, Built-in string equates

Example ' 1. Conditional compilation for PB/CC or PB/Win
#IF %DEF(%PB_CC32)

http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

426 / 2126

 'Assume PB/CC
 #COMPILE EXE "\PBCC\APPS\MYPROG.EXE"
#ELSE
 'Assume PB/Win
 #COMPILE DLL "MYAPP.DLL"
#ENDIF

' 2. Conditional compilation for EXE or DLL
#IF %PB_EXE
 ' we are compiling to an EXE (PB/CC or PB/Win)
 FUNCTION PBMAIN
 [statements]
 END FUNCTION
#ELSE
 ' we are compiling to a DLL (PB/Win)
 FUNCTION PBLIBMAIN
 [statements]
 END FUNCTION
#ENDIF

%PB_COMPILETIME numeric equate

Keyword Template
Purpose

Syntax

Remarks

See also

Example

%PB_COMPILETIME numeric equate
Purpose Helps to determine the date/time of compilation.

Remarks Each time you compile your program, this equate is filled with the current date and time
of the compilation in PowerTime binary format. You can use the PowerTIME Class to
convert it to a text equivalent for use in your application.

Example LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

#ALIGN metastatement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

427 / 2126

#ALIGN metastatement
Purpose Align the next instruction to a boundary.

Syntax #ALIGN boundary

Remarks The #ALIGN metastatement is primarily used by advanced assembler programmers to
gain ultimate efficiency from critical code sections.

#ALIGN is used to round up the instruction location to a power of two address. The
boundary parameter shown must be a power of two, in the range of 2 through 256.

PowerBASIC inserts NOP instructions into the code section to bring the instruction
location up to the desired address. If the instruction location is already at a multiple of
boundary, #ALIGN has no effect.

See also #OPTIMIZE, ASM, ASM ALIGN, TIX

#BLOAT metastatement

#BLOAT metastatement
Purpose Artificially inflate the disk image size of a compiled program.

Syntax #BLOAT size_expression

Remarks #BLOAT allows the creation of artificially bloated program files on disk, in order to match
or exceed that generated by competing "BloatWare" compilers. #BLOAT does not affect
the memory image size (running size) of a compiled program.

size_expression The size_expression parameter is a simple Long-integer expression that specifies the
total desired size of the compiled programs disk image, but is ignored if it is smaller than
the actual program size. #BLOAT uses sections of the actual compiled code to fill and
obfuscate the portion added to the file.

While #BLOAT adds no true merit to the technical efficiency of the compiled code, there
are a number of reasons for its use, including:

1. To allow "BloatWare" programmers to feel more comfortable when using
PowerBASIC.

2. To impress project leaders/managers with the volume of executable code created.

3. To allay the fears of uninformed customers who may mistakenly infer that "such
tiny programs couldn't possibly do everything that..."

4. To make certain versions of a program more readily identifiable simply by
examining the size of the file on disk.

5. To improve convolution of the contents of the executable disk image, because the
bloat region appears to contain executable code.

See also #COMPILE EXE, #OPTIMIZE

Example #BLOAT 1024 * 1024 * 4 ' Create a 4 MB EXE file

#COM metastatement

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

428 / 2126

Syntax

Remarks

See also

Example

#COM metastatement
Purpose Declare information to be included in a COM Type Library.

Syntax #COM CLASS ClassName [, ClassName...]
#COM DOC "This is specific information to be used in the Help String"
#COM HELP "MyProg.chm"[, &H1E00]
#COM NAME "LibName", 3.32
#COM GUID GUID$("{20000000-2000-2000-2000000000000002}")
#COM TLIB {ON|+ | OFF|-}

Remarks The #COM metastatement establishes information about the COM library or application
which can be extracted by COM client programs.

#COM CLASS allows you to add the COM attribute to a class defined elsewhere. The
COM attribute can even be added to a class in an SLL which was compiled separately. A
class which is declared AS COM makes it available to external programs through the
COM services of Windows. When you define a class as COM, it is automatically
considered to be COMMON as well.

#COM DOC specifies a help string which usually provides a general description of the
COM server.

#COM HELP specifies the name of the associated help file and the help context code.
 The name must appear as a string literal, while the context code is an unsigned DWORD
value greater than zero. The context code may be specified in decimal or radix format.

#COM NAME specifies the name of the server and the version number. The name must
consist of only letters, numbers, and underscore characters, and may contain no
punctuation nor spaces. If no name is specified, PowerBASIC substitutes the module
name. If no version is specified, PowerBASIC uses version number 0.0.

#COM GUID specifies the GUID which identifies the entire application or library (APPID or
LIBID). If no GUID is specified, PowerBASIC substitutes a random GUID for this purpose.

#COM TLIB ON specifies that the compiler should create a type library for the compiled
EXE or DLL.

#COM TLIB OFF (default) specifies that the compiler should not create a type library for
the compiled EXE or DLL.

Type Libraries only support the following data types: BYTE, WORD, DWORD,
INTEGER, LONG, QUAD, SINGLE, DOUBLE, CURRENCY, OBJECT, STRING, and
VARIANT. If any Methods or Properties use data types not supported by Type
Libraries, you will receive a Error 581 - Type Library creation error, when
using the #COM TLIB ON metastatement.

See also CLASS, INTERFACE (Direct), INTERFACE (IDBind), Just what is COM?

#COMPILE metastatement

#COMPILE metastatement
Purpose Determine what type of file will be created by the compiler.

Syntax #COMPILE {EXE | DLL | SLL} ["filename{.exe|.dll|.sll}"]

PowerBASIC Compiler for Windows Version 10

429 / 2126

Remarks This metastatement is used to specify whether a module is to be compiled as an EXE,
DLL, or SLL file. The #COMPILE metastatement can only be used once per program, and
must be placed before any executable code.

You may, optionally, specify the target name and path of the file. If the optional equal
sign (=) is included, the name given is considered to be an exact name, and nothing is
appended or changed. Otherwise, the file type is forced to be EXE, DLL, or SLL by the
compiler.

If the filename clause is omitted, the compiled file is given the name of the main source
code file with an appropriate extension.

If a path is included, the compiled file is placed in the named directory; otherwise, it is
placed in the current directory.

If the named directory does not exist, the filename is invalid or locked, if the EXE is still
running, or if the file cannot be successfully stored in that location for some other reason,
a compile-time Error 496 ("Destination file write error") occurs.

A related item is the built-in numeric equate %PB_COMPILETIME. Each time you
compile your program, this equate is filled with the current date and time of the
compilation in PowerTime binary format. You can use the PowerTIME Class to convert it
to a text equivalent for use in your application.

Restrictions If #COMPILE is not specified, the default is #COMPILE EXE.

Examples #COMPILE EXE ' Same name as source, i.e., ABC.EXE
#COMPILE DLL ' Same name as source, i.e., ABC.DLL
#COMPILE SLL "ABC" ' Compiles to ABC.SLL
#COMPILE EXE "ABC.BAS" ' Compiles to ABC.BAS.EXE

See also %PB_COMPILETIME, #COMPILER, DLLMAIN, LIBMAIN, PBLIBMAIN, PBMAIN,
WINMAIN

#COMPILER metastatement

#DEBUG CODE metastatement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

#DEBUG CODE metastatement
Purpose Compiler directive to suppress generation of debugging code.

Syntax #DEBUG CODE {ON|+ | OFF|-}

Remarks When a program is compiled for debugging in the PowerBASIC IDE, the compiler must
generate some additional code to facilitate setting of breakpoints and some other debug
operations. In most cases, this does not affect the execution of your program. However,
in the case of code repetition in a tight

, or for certain assembler code or data which must not be altered, it may be very
important that some debugging code be suppressed so that code will execute
correctly, and at full speed.

PowerBASIC Compiler for Windows Version 10

430 / 2126

#DEBUG CODE OFF suppresses generation of debug code, from that line, until a
subsequent #DEBUG CODE ON (or the end of the Sub/Function/Method/Property) is
reached. Of course, when debug code is suppressed, it is not possible to set
breakpoints on those lines.

 #DEBUG CODE metastatements are ignored if not compiling for debug.

See also Error Trapping, Errors, Debugging, #DEBUG DISPLAY, #DEBUG ERROR, #DEBUG
PRINT

#DEBUG DISPLAY metastatement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

#DEBUG DISPLAY metastatement
Purpose Display a message when an untrapped run-time error occurs.

Syntax #DEBUG DISPLAY {ON|+ | OFF|-}

Remarks #DEBUG DISPLAY ON enables error display mode within a compiled PowerBASIC
program. In this mode, whenever an untrapped error occurs (without the benefit of ON
ERROR GOTO, TRY/CATCH, etc.), program execution is suspended, and a descriptive
message is displayed. This message includes the error number, a brief description of the
error, and a position descriptor word to help you find the location of the error. The position
descriptor word is the first 8 characters of the name of the last (most recent) label, line
number, or procedure that was executed. This mode should only be used during program
development and debugging. It should never be used in a production program.

When the descriptive message is displayed, it is accompanied by two buttons marked
"OK" and "Cancel". If "OK" is selected, program execution continues despite the error
condition. If "Cancel" is selected, program execution is stopped. However, if any child
processes were started, it is possible they will continue running until ended normally.

#DEBUG DISPLAY OFF suppresses display mode, and is the default condition.

Restrictions #DEBUG DISPLAY ON|OFF can only be executed once and must precede all executable
code. If #DEBUG DISPLAY is omitted, the default condition is #DEBUG DISPLAY OFF.

See also Error Trapping, Errors, Debugging, #DEBUG CODE, #DEBUG ERROR, #DEBUG PRINT

#DEBUG ERROR metastatement

#DEBUG ERROR metastatement
Purpose Control generation of error checking code.

Syntax #DEBUG ERROR {ON|+ | OFF|-}

Remarks #DEBUG ERROR option specifies whether the compiler should generate code that
checks for array boundary and null-pointer errors wherever they may occur. The default
setting is OFF.

PowerBASIC Compiler for Windows Version 10

431 / 2126

When #DEBUG ERROR mode is ON, any attempt to access an array outside of its
boundaries, or attempting to use a null-pointer will generate a run-time Error 9
("Subscript/Pointer out of range"), and the statement itself is not executed.

When OFF, all statements are executed "as-is" and no errors are generated. However,
accessing an array outside its boundaries or using a null-pointer can cause a General
Protection Fault (GPF) or Exception error.

It is best to enable #DEBUG ERROR error checking when developing a program. Once all
of the more obvious bugs have been eradicated, you will want to return to the default
setting (OFF), as this will make your code smaller and faster. Depending on the type of
application being developed, the final (production) version of a program may not need to
contain any error-checking code.

Restrictions #DEBUG ERROR is always enabled when code is running within the Debugger,
regardless of any explicit #DEBUG ERROR metastatement.

Disk I/O errors are always caught, regardless of the state of #DEBUG ERROR.

#DEBUG ERROR ON does not trap array boundary errors of arrays within User-Defined
Types and Unions. Pointers are only tested for null (zero) values. Non-zero pointer target
addresses are not tested for readability or writeability.

See also Error Trapping, Errors, Debugging, #DEBUG CODE, #DEBUG DISPLAY, #DEBUG PRINT

#DEBUG PRINT metastatement

#DEBUG PRINT metastatement
Purpose Display information in the IDE's Debugger Output Window

Syntax #DEBUG PRINT string_expression

Remarks The PRINT option allows the programmer to display arbitrary information in the IDE's
Debug Output Window during a debugging session. The output window is provided by
debugger to display status information about the state of the debugging session; however,
#DEBUG PRINT provides a convenient way of creating a "process log" of a
Sub/Function/Method/Property/Variable as the program runs. Combined with
FUNCNAME$, #DEBUG PRINT can be a useful tool for debugging application code. See
the Example below.

This is possible because the Debugger Output Window has a scrollable range somewhat
like a console window, whereas the Watch Window shows only the instantaneous value of
a variable.

#DEBUG PRINT statements are ignored when code is compiled into a standalone
(EXE/DLL) file; they are only included when using the Debugger. Control codes in the
string are translated into hex format in the output window. For example, embedded
CHR$(0) or $NUL bytes are displayed as "<00>".

Restrictions You may use Unicode strings with #DEBUG PRINT, but the results will always be
converted to ANSI by Windows. This is a Windows design limitation, not a limitation of
PowerBASIC.

See also Debugging, #DEBUG ERROR, FUNCNAME$

Example FUNCTION PBMAIN() AS LONG
 Arg1% = 10000
 Arg2% = 20000
 CALL MySub(Arg1%, Arg2%)
 CALL MySub(Arg2%, Arg1%)
 #DEBUG PRINT "Done!"
END FUNCTION

SUB MySub(Arg1%, Arg2%)

PowerBASIC Compiler for Windows Version 10

432 / 2126

 #DEBUG PRINT "We're in " & FUNCNAME$
 #DEBUG PRINT "Arg2% is" & STR$(Arg2%)
END SUB

Result We're in MYSUB
Arg2% is 20000
We're in MYSUB
Arg2% is 10000
Done!

#DIM metastatement

#DIM metastatement
Purpose Specify if variables must be declared before use.

Syntax #DIM {ALL | NONE}

Remarks #DIM NONE (the default), requires you to dimension arrays, but not other kinds of variables,
before their use.

Using #DIM ALL requires you to declare all variables before they are used in a program.
This option makes PowerBASIC behave a lot like languages like C++ and Pascal which
require that all variables be declared before they can be used. Although this will require
more work, as even simple variables must be declared with DIM, INSTANCE, LOCAL,
GLOBAL, STATIC, or THREADED statements, it will protect you from subtle errors like
misspelling a variable name. For example, if you are using a variable NumRecords in your
program and write a line like:

INCR NumRecrods

PowerBASIC will detect that you're trying to use a previously undeclared variable (since
NumRecrods is misspelled) and give you a compile-time error 519 ("Missing declaration"). If
you hadn't specified #DIM ALL, you wouldn't have gotten an error, but your program would
now have a bug that could be difficult to diagnose.

#DIM ALL means the same thing as OPTION EXPLICIT, and the two can be used
interchangeably.

Restrictions When #DIM ALL is used, type-specifier symbols with variable names are not allowed in a
DIM var statement. e.g. Dim a$(10) will result in compile error 519. Instead variables or
arrays defined with the DIM statement must use the AS vartype format. Additionally,
DEFtype statements, such as DEFINT, DEFLNG, etc. will be ignored, resulting in an error
519 where any variable they would otherwise define is used.

See also DEFtype, DIM, GLOBAL, INSTANCE, LOCAL, REDIM, STATIC, OPTION EXPLICIT

Example #DIM ALL
[statements]
DIM ListName(1 TO 400) AS STRING
[statements]
FOR ix = 1 TO 10 ' PowerBASIC flags this line
 ' since "ix" wasn't dimensioned
 ListName(ix) = "Test"
NEXT

#EXPORT metastatement

Keyword Template
Purpose

Syntax

PowerBASIC Compiler for Windows Version 10

433 / 2126

Remarks

See also

Example

#EXPORT metastatement
Purpose Declare a Sub/Function to have the EXPORT attribute.

Syntax #EXPORT SubFuncName [, SubFuncName...]

Remarks #EXPORT allows you to add the EXPORT attribute to a Sub/Function defined elsewhere.
 The EXPORT attribute can even be added to a Sub/Function in an SLL which was
compiled separately.

The EXPORT descriptor identifies a Sub/Function which may be accessed between
Dynamic Link Libraries (DLLs), and/or the main executable which links them. If a
procedure is not marked EXPORT, it is hidden from these other modules. Generally
speaking, it's best not to mark a Sub/Function in an SLL as EXPORT. While it is
syntactically acceptable, it may limit your future options when linking the SLL into host
modules. PowerBASIC recommends that you mark them as COMMON in the SLL, and
add the EXPORT attribute in the host module.

It's easy to create an SLL which can be linked into an executable program or a dedicated
DLL for the same purpose. To add the EXPORT attribute to a linked Sub/Function, just
add the word EXPORT to the DECLARE statement in the host module or add an
#EXPORT metastatement.

Using this technique, your SLL can be linked directly into an application executable
without publishing the Subs/Functions as EXPORT. However, you can also link the same
SLL into a DLL host module which adds the EXPORT attribute with #EXPORT.

For example, let's say you want to make a library which publishes the SUB named XXX.
 You want to provide it in two forms, a linkable SLL and an industry standard DLL. So,
first just create the SLL:

#COMPILE SLL = "XXXLib.SLL"

SUB xxx() COMMON
 MSGBOX "Hello"
END SUB

Just compile it, and you're ready to link it into your application. But now you want to
create a DLL, too, since it might be used with other applications. It's just this easy:

#COMPILE DLL = "XXXLib.DLL"

#EXPORT xxx
#LINK "XXXLib.SLL"

That's all there is to it. You now have an SLL and an equivalent DLL to do the job of the
XXX procedure.

See also #LINK, DECLARE

#IF metastatement

#IF/#ELSEIF/#ELSE/#ENDIF metastatements
Purpose Define sections of source code to be compiled or ignored, depending on a certain condition.

This is often referred to as conditional compilation.

Syntax #IF [NOT] {%equate | %DEF({%numeric_equate | $string_equate}) | expression}
 [statements]

PowerBASIC Compiler for Windows Version 10

434 / 2126

[#ELSEIF [NOT] {%equate | %DEF({%numeric_equate | $string_equate}) |
expression}
 [statements]]
[#ELSE
 [statements]]
#ENDIF

Remarks %equate is a named constant or constant value. The %DEF operator allows you to test
whether an equate has been defined. %DEF returns TRUE or FALSE. Typical usage: #IF
%DEF(%PB_DLL16) or #ELSEIF NOT %DEF(%PB_WIN32). expression may be a simple
numeric expression using the arithmetic operators +, -, *, /, and \, and the relational
operators >, <, >=, <=, <>, and =, and may also include the CVQ function.

PowerBASIC automatically defines the equates in the following table according to the
PowerBASIC compiler being used. Please note the references to other PowerBASIC
compilers are included for those writing programs that may be compilable by more than one
PowerBASIC compiler.

Equate Definition
%PB_CC32 Pre-defined as TRUE (non-zero) in PB/CC for Windows, but is not

defined in other compilers.
%PB_DLL16 Pre-defined as TRUE (non-zero) in PB/DLL 16-bit, FALSE (zero) in

other compilers.
%PB_DLL32 Synonym of %PB_WIN32
%PB_WIN32 Pre-defined as TRUE (non-zero) in PB/Win 32-bit, but is not defined in

other compilers.
%PB_REVISION Pre-defined as the hex revision (10.00 = &H1000).
%PB_REVLETTER Pre-defined as the ASCII code of the revision letter (a = &H61), or

&H20 if there is no revision letter.
%PB_EXE Pre-defined as TRUE (non-zero) if compiling to EXE or as FALSE

(zero) if compiling to DLL format (PB/Win only). The equate %
PB_EXE is always defined in PowerBASIC, so %DEF(%PB_EXE) will
always be evaluated as TRUE. The difference being the value
assigned to the equate by the compiler.

 Examples of valid expressions can include:

#IF %DEBUG = -1&
#IF %DEBUG AND (NOT %RELEASE)
#IF NOT %DEBUG
#IF %VERSION <> CVQ("DemoMode")

Note that the AND, OR and NOT operators work as bitwise operators, rather than logical
operators, in #IF metastatements.

If the value of %equate or if %DEF(%equate|$equate) is TRUE (non-zero) or if the result of
expression is TRUE, the statements between #IF and #ELSE or #ELSEIF are compiled, and
the statements between #ELSE or #ELSEIF and #ENDIF are ignored.

If the value of %equate or %DEF(%equate|$equate) is FALSE (zero) or the result of
expression is FALSE, the statements between #IF and #ELSE or #ELSEIF are ignored, and
those between #ELSE or #ELSEIF and #ENDIF are compiled.

The #ELSE or #ELSEIF clause and associated statements are optional, but #ENDIF is
required.

Conditional compilation statements can be nested up to 16 levels deep. A primary use of
conditional compilation is to include test code in your programs that will be compiled during
program development (but not in the final product), and to facilitate building special editions
of an application from a single source code file.

It is possible to perform bitwise operations on

 to produce a TRUE/FALSE result. For example:
#IF (%PB_REVISION AND &H0FF00) - &H0700
 SoftwareVersion$ = "not 7.x"
#ELSE

http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

435 / 2126

 SoftwareVersion$ = "7.x"
#ENDIF

See also %DEF operator, IF statement, IF block

Example Example ' 1. Conditional compilation by equate value
%DEBUG = -1 'set to 0 for no debugging
#IF %DEBUG
 CALL SubRoutine(Arg1, Arg2, Arg3, Answer)
 CALL DisplayDebugData(Answer)
#ELSE
 CALL SubRoutine(Arg1, Arg2, Arg3, Answer)
#ENDIF

' 2. Conditional compilation for EXE or DLL
#IF %PB_EXE
 ' we are compiling to an EXE (PB/CC or PB/Win)
 FUNCTION PBMAIN
 [statements]
 END FUNCTION
#ELSE
 ' we are compiling to a DLL (PB/Win)
 FUNCTION PBLIBMAIN
 [statements]
 END FUNCTION
#ENDIF

#INCLUDE metastatement

#INCLUDE metastatement
Purpose Instruct the compiler to read a text file from disk and treat it as an integral part of the

source code.

Syntax #INCLUDE "FileSpec"
#INCLUDE ONCE "FileSpec"
#INCLUDE THIS ONCE

Remarks Use #INCLUDE to compile the text of another file along with the current file. The first
form causes FileSpec to be included in every case it is encountered. The second form
causes FileSpec to be included only once, the first time it is encountered. This is
particularly useful when including common declaration files like WIN32API.INC to avoid
redundant code, and the resulting errors. To be effective, the ONCE option must appear
on every #INCLUDE of a particular file. Effectively, #INCLUDE ONCE means: "Include
this file only if it has not already been included."

The third form (#INCLUDE THIS ONCE) is placed in the file to be included, and produces
an end result similar to form two. It tells the compiler to "Include me only one time, no
matter how many times it is requested". Depending upon the content and context, this
may be a simpler and more readable method to achieve the desired result.

FileSpec is a string constant that follows normal LFN file-naming conventions, and which
names a PowerBASIC source code file. If FileSpec does not include an extension, the
compiler looks for that file name with the default extension of .BAS.

If FileSpec does not include a path, the compiler scans the search path for each
#INCLUDE file before checking the current (default) directory. For the IDE, the search
path can be set in the Compiler Preferences tab in the Options dialog. The search path
can also be specified when compiling from the command-line by using the /I Include
option. The search path can contain one path or multiple paths to scan. If multiple paths
are used, they are separated by a semicolon (;).

When the compiler encounters an #INCLUDE metastatement, it reads FileSpec from disk

PowerBASIC Compiler for Windows Version 10

436 / 2126

and continues compilation with the source code in FileSpec. When the end of FileSpec
is reached, compilation continues with the statement immediately following the
#INCLUDE in the original source file. The result is the same as if the contents of the
included file were physically present within the original text. This allows large source files
to be broken into smaller sections that are more manageable.

#INCLUDE metastatements can be nested as many as twelve levels deep. That is, an
included file can have #INCLUDE metastatements of its own, including files that also have
#INCLUDE metastatements, and so on, for a total of twelve levels of files (including the
primary file). Note that macros count as #include files for nesting purposes.

See also WIN32API.INC Updates

Example ' MYHELLO.BAS
#INCLUDE ONCE "WIN32API.INC" 'include Windows API calls
FUNCTION PBMAIN
 MessageBox 0, "Hello World!", "PowerBASIC", %MB_OK
END FUNCTION

#LINK metastatement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

#LINK metastatement
Purpose LINK a pre-compiled Static Link Library (SLL) or a Power Library (PBLIB) into your host

program.

Syntax #LINK "filespec.SLL"
#LINK "filespec.PBLIB"

Remarks The #LINK metastatement is used to link pre-compiled Unit files (SLL or PBLIB) into your
primary host program. The host program must compile to an EXE or DLL module. You
cannot link a unit file into another unit file.

If a specified SLL unit file (or a component SLL in a PBLIB) is not needed by other
compiled code, it is ignored entirely. This allows the host program to be compiled to the
smallest possible size.

The filespec may include an optional path name, and must include the extension ".SLL"
or ".PBLIB". The #LINK metastatement may be placed at any location in your source file,
as long as it is outside of any block structure, such as Sub, Function, Method, Class,
etc.

#LINK shares the file search path with #INCLUDE. If filespec does not include a path, the
compiler scans the search path for each #LINK file before checking the current (default)
directory. For the IDE, the search path can be set in the Compiler Preferences tab in the
Options dialog. The search path can also be specified when compiling from the
command-line by using the /I Include option. The search path can contain one path or
multiple paths to scan. If multiple paths are used, they are separated by a semicolon (;).

See Also #COMPILE, #EXPORT

WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

437 / 2126

#MESSAGES metastatement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

#MESSAGES metastatement
Purpose Specify which messages should be sent to a Control Callback Function.

Syntax #MESSAGES COMMAND
#MESSAGES NOTIFY

Remarks #MESSAGES COMMAND specifies that only %WM_COMMAND messages be sent to
Control Callback Functions, just as in earlier versions of PowerBASIC

#MESSAGES NOTIFY specifies that %WM_NOTIFY messages (as well as %
WM_COMMAND messages) be sent to Control Callback Functions. This is the default
condition, and need not be explicitly stated.

There are two general types of CallBack Functions. The first is the DIALOG CALLBACK,
which is specified with the CALL DLGPROC clause of the

 statement. It receives all messages which are directed to the dialog, including certain
messages regarding its child controls. Specifically, this would include both %
WM_COMMAND and %WM_NOTIFY messages. The second is the CONTROL
CALLBACK, which is specified with the CALL CTLPROC clause of the statement.
If specified, it receives all %WM_COMMAND and %WM_NOTIFY messages sent
to the parent dialog.
Prior to version 9.0 of PowerBASIC for Windows, Control Callback Functions received
only %WM_COMMAND messages. Beginning with PB 9.0, %WM_NOTIFY messages
are sent as well. There are many situations where these added messages will prove to
be very important to you. If your existing callback functions are written with complete
error checking (ensuring that CB.MSG = %WM_COMMAND), this minor addition will
cause no problems. It just presents additional information which can be acted upon, or
just ignored. However, if callbacks were written without complete error checking, some
ambiguity is possible. In this case, you should either update your Control Callback code,
or suppress %WM_NOTIFY messages with a #MESSAGES Command metastatement.

See also Callbacks, DIALOG SHOW MODAL, DIALOG SHOW MODELESS, FUNCTION/END
FUNCTION

#OPTIMIZE metastatement

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

438 / 2126

Example

#OPTIMIZE metastatement
Purpose Choose the optimization which should be applied to your program.

Syntax #OPTIMIZE CODE [ON | OFF]
#OPTIMIZE {SIZE | SPEED}

Remarks The #OPTIMIZE metastatement is used to tell the compiler your preferences in regards to
the optimization of generated code. You can specify optimization for either execution
speed or smaller code size.

The first form of the directive (CODE) tells the compiler whether unreferenced code should
be removed from the compiled program to minimize the executable file size. This option
defaults to ON as there are few reasons to disable it (other than curiosity as to the
effectiveness). Regardless of the compiled module type (SLL, DLL, or EXE),
PowerBASIC removes every unneeded:

1 Sub

2 Function

3 FastProc

4 Method

5 Property

6 String Literal

7 Numeric Literal

8 Static Link Library

Extraction is always performed on a procedure basis, not an entire class. If you have a
CLASS with 50 Methods, but only one is ever called, the other 49 are removed entirely.
 This level of granularity is particularly important with your personal code library of general
purpose functions. You can include them all, and PowerBASIC will use just the minimum
necessary. If you generate a log file (using the /L command line option), a list of the
extracted procedures, classes, and SLL modules is provided.

The second form of the directive (SIZE/SPEED) tells the compiler whether you want
additional optimization for execution speed or smaller total code size. If not used, the
default is to choose faster code speed.

If you choose the SPEED option, one of the primary actions of the compiler is to align
heavily used code sections on an address boundary which is most beneficial to the
CPU/FPU.

In some cases, the speed of

 mechanisms (FOR/NEXT, DO/UNTIL...) can be improved by as much as 100%,
and occasionally even more.

Restrictions #OPTIMIZE SIZE | SPEED can only be executed once and must precede all executable
code. If #OPTIMIZE is omitted, the default condition is #OPTIMIZE SPEED.

See also #ALIGN, ASM ALIGN

#OPTION metastatement

#OPTION metastatement
Purpose Establish various compiler options.

Syntax #OPTION {LARGEMEM32 | VERSION3 | VERSION4 | VERSION5 | WIN95 | ANSIAPI}

Remarks #OPTION LARGEMEM32

PowerBASIC Compiler for Windows Version 10

439 / 2126

For 32-bit Windows applications, this option sets the "Large Memory Model" flag. This
allows your application to use more than the original limit of 2 Gigabytes of memory.
 Depending upon the version of Windows in use, and the installed memory, the exact
increase may vary from computer to computer. In most cases, you will likely be limited
to a total of approximately 3 Gigabytes.

#OPTION VERSION3, VERSION4, VERSION5

When the #OPTION metastatement is used with any one of the VERSION directives, it
controls the "minimum Windows version" tag that is written into your compiled code. If
the version you select is equal or lower to the version of Windows that is running, the
application will be executed. In turn, Windows will tailor the messages it sends to your
program according to this version number, so your program will not need to handle
messages from a later Windows version. The version tag may also affect the appearance
and behavior of Windows common dialogs.

Conversely, if the version tag you select is higher than the version of Windows that is
running, Windows will display an error message instead of running your application. For
example, running a VERSION5 application on a VERSION4 platform would fail. It is your
responsibility to make sure that your program only uses the Windows features that are
present in the specified version of Windows. For example, don't call an API that's present
only in Windows XP, if you want your program to run under Windows 98.

#OPTION VERSION3

Use #OPTION VERSION3 to make the compiled output file require a minimum of
Windows 95 or NT 3.1. That includes Windows 95, 98, ME, Windows NT 3.1-4.0,
Windows 2000, XP, Windows 2003, Windows Vista, Windows 7, and later.

#OPTION VERSION4

Use #OPTION VERSION4 (default) to make the compiled output file require a minimum of
Windows 95 or NT4. That includes Windows 95, 98, ME, Windows NT 4.0, Windows
2000, XP, Windows 2003, Windows Vista, Windows 7, and later.

#OPTION VERSION5

Use #OPTION VERSION5 to make the compiled output file require a minimum of
Windows 2000. That includes Windows 2000, XP, Windows 2003, Windows Vista,
Windows 7, and later.

#OPTION WIN95

Windows95, Windows98, and Windows ME do not offer Unicode support for Windows
API functions. Normally, that would make it possible to execute your compiled programs
on these operating systems, as this version of PowerBASIC offers complete support for
Wide Unicode text. However, if you specify #OPTION WIN95 in your source code,
PowerBASIC will include a complete Unicode emulation package in your executable or
DLL to allow them to run properly on these operating systems, This option will cause
your code to be a bit larger, so it should only be used where necessary.

#OPTION ANSIAPI

This version of PowerBASIC offers complete support for Wide Unicode text, so it follows
that the internal runtime library would call Unicode versions of functions in the Windows
API. In some fairly rare cases, this could cause an incompatibility with code you have
written, if your code calls ANSI functions in the Windows API. If you specify #OPTION
ANSIAPI in your source code, PowerBASIC will call only ANSI versions of these
functions. This option will cause your code to be a bit larger, so it should only be used
when needed.

Example #OPTION VERSION5

PowerBASIC Compiler for Windows Version 10

440 / 2126

#PAGE metastatement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

#PAGE metastatement
Purpose Sets a page boundary for the PowerBASIC IDE.

Syntax #PAGE

Remarks Program listings which are nicely formatted are easier to read and understand, particularly
after some elapsed time.

The #PAGE metastatement is used to set a page boundary when the source code is
printed from the PowerBASIC IDE. Each time a #PAGE is found, the PowerBASIC IDE
starts printing on a new page.

#PAGE has no effect on your compiled code.

#PBFORMS metastatement

#PBFORMS metastatement
Purpose Compiler directive to mark named blocks of generated PowerBASIC Forms™ code.

Syntax #PBFORMS named_block_marker

Remarks #PBFORMS metastatements are generated by the PowerBASIC Forms™ visual design
tool, and placed automatically into the generated source code. #PBFORMS
metastatements identify named blocks of code that have special meaning to both the
compiler and the PowerBASIC Forms™ visual design tool.

#PBFORMS metastatements should not be removed or utilized - they should only be
created and positioned by PowerBASIC Forms™. For more information, please refer to
the documentation supplied with PowerBASIC Forms™.

PowerBASIC Forms™ is a visual design environment that enables rapid visual
design of GUI application dialogs. PowerBASIC Forms generates compilable
Dynamic Dialog Tools (DDT) source code, directly from the dialogs created in
the designer. PowerBASIC Forms product information can be found at
http://www.powerbasic.com/products/pbforms.

An example PowerBASIC Forms™ template and completed project can be found in the
PB\SAMPLES\DDT\INTERFACE EXPLORER folder installed with PowerBASIC for
Windows.

Example #PBFORMS CREATED
#PBFORMS BEGIN INCLUDES

#REGISTER metastatement

http://www.powerbasic.com/products/pbforms/
http://www.powerbasic.com/products/pbforms/

PowerBASIC Compiler for Windows Version 10

441 / 2126

#REGISTER metastatement
Purpose Control automatic allocation of Register variables.

Syntax #REGISTER {ALL | DEFAULT | NONE}

Remarks Register variables may be Extended-precision floating-point variables, or 16/32-bit integral-
class variables (Word, Dword, Integer, or Long). The #REGISTER metastatement
determines the method of automatic allocation of Register variables.

The #REGISTER metastatement works at two levels - a "global" setting, and a "local"
setting for each Sub/Function/Method/Property. To set the global default #REGISTER
options, it must precede all executable code. To override the global register option for an
individual routine, it must be placed between the FUNCTION/END FUNCTION,
SUB/END SUB, METHOD/END METHOD, or PROPERTY/END PROPERTY pairs before
any executable code.

ALL #REGISTER ALL requests automatic allocations of all possible Register variables, both
integral-class and Extended-precision float variables.

DEFAULT #REGISTER DEFAULT (default) requests automatic allocations of integral-class variables
in all cases, and Extended-precision floating-point variables located in a routine which
contains no reference to another procedure.

NONE #REGISTER NONE disables automatic assignment of Register variables. You can still
use the REGISTER statement to explicitly define Register variables in your code on an
individual basis. This provides a way to hand-optimize your code to help obtain the
utmost performance.

Restrictions PowerBASIC transparently prevents the automatic register conversion of the variable used
in the TO clause of the DIALOG SHOW MODAL and DIALOG SHOW STATE statements.
 If the target variable is explicitly declared as a register variable, PowerBASIC raises a
compile-time Error 491 ("Invalid register variable"). This is necessary as the result values
stored in such variables may be assigned from the context of other procedures, and this
may only occur with a memory variable.

See also REGISTER, Optimizing your code

Example #REGISTER DEFAULT ' global register setting
FUNCTION PBMAIN() AS LONG
 #REGISTER NONE ' No automatic register
 ' vars in this function
 REGISTER x& ' Explicitly declare x&
 …
END FUNCTION

#RESOURCE metastatement

#RESOURCE metastatement
Purpose Embed a PowerBASIC Resource data into a compiled EXE or DLL.

Syntax #RESOURCE BITMAP, ResID, "filespec.BMP"
#RESOURCE ICON, ResID, "filespec.ICO"
#RESOURCE MANIFEST, 1, "filespec.XML"
#RESOURCE RCDATA, ResID, "filespec.DAT"
#RESOURCE STRING, ResID, "YourWideText"$$ [,LangID]
#RESOURCE TYPELIB, 1, "filespec.TLB"
#RESOURCE WAVE, ResID, "filespec.WAV"
#RESOURCE VERSIONINFO <<block>>

#RESOURCE RES, "filespec.RES"
#RESOURCE PBR, "filespec.PBR"

PowerBASIC Compiler for Windows Version 10

442 / 2126

Remarks This metastatement is used to include PowerBASIC Resource data into your program or
DLL. Resource data may consist of

, , , COM Type Libraries, Version Information, and more. You can even embed
custom binary data for your personal, specialized needs.
The parameter ResID is a unique identifier which you create to reference this item. It can
be a number or an alphanumeric label. If a number, it must be an integral value from 0 to
65535. If a label, it must begin with a letter, and consist of letters and numbers.
 Alphanumeric labels are not case sensitive. The filespec parameter must always be
expressed as a string literal which tells the location of the resource data.

With most programming languages, creation and embedding of resource data is a
cumbersome process. First you create a resource script (an .RC file) with a text editor.
 Then you save the .RC file. Now, compile the .RC file with a resource compiler to get a
.RES file. Next, you convert it to a linkable file using Microsoft's CVTRES.EXE or another
converter program like PBRES.EXE. Finally, you link it into your .EXE or .DLL with a
compiler or linker program. What if you find you need to make a tiny change? Do it all
over again, from the beginning. Even older versions of PowerBASIC suffered from this
problem.

Isn't there a better way? Yes, PowerBASIC now handles the entire process in a single
line of code. Need an embedded bitmap?

#RESOURCE BITMAP, 123, "MyPicture.BMP"

PowerBASIC finds your bitmap in the file MyPicture.BMP and embeds it in your
executable. When you need to use it, you can reference it by the ID you chose for it
(123). The ID can be an integral numeric value or a text name of your choice. So, to
display the bitmap on a graphic window, it's as simple as:

GRAPHIC RENDER "#123", (100,100)-(160,140)

The second group of syntax examples show how you can embed resources which have
been pre-compiled used a resource compiler. Standard resource compilers output a
binary resource with a .RES extension. PowerBASIC will embed this resource just as it
is given in the file. This form will always be supported to offer support resource forms
which are typically not needed for most PowerBASIC programs, or which usually require
the use of a resource editor.

The final example, using a .PBR file, will only be supported for a limited period of time.
 This is the form created by the PowerBASIC PBRES utility in older versions of the
compiler. It is recommended that you change to the .RES version soon, as it is more
efficient, and needs less effort from the programmer. It should be noted that prior versions
of PowerBASIC allowed the descriptor "PBR" to be omitted. While this option will be
supported for a limited period of time, we recommend that you always insert "PBR" for
clarity.

String Resources

The String resource contains string data which is always created and stored as Wide
Unicode characters. It is retrieved at run-time with the RESOURCE$ function. Due to the
manner in which Windows stores string resources in a string table, the ResID must be
numeric.

The string data must be from 1 to 127 characters in length, and may not contain any
embedded nuls (CHR$(0)). The string data may be specified as a quoted wide string
literal ("MyText"$$), or as a wide string literal expression. A string literal expression can
be constructed from combinations of wide string equates or wide quoted string literals, the
CHR$ function, SPACE$ function, and the STRING$ function when used with numeric
parameters.

VersionInfo Resources

The VersionInfo resource contains information about the file, such as its version number,
its intended operating system, its original file name, and much more. This resource is

PowerBASIC Compiler for Windows Version 10

443 / 2126

intended to be used with the Version Information API functions, so that Windows Explorer,
and other programs, can display the relevant information about your EXE. The VersionInfo
resource cannot be embedded in a Static Link Library (SLL).

The VersionInfo resource is unique in that it requires several #RESOURCE
metastatements which are interpreted as a complete block. They must be placed
consecutively in the correct sequence in order be processed correctly.

1. The block begins with the VERSIONINFO metastatement which marks the
beginning of the version block.

#RESOURCE VERSIONINFO

2. Next, you may choose to add one or more of the numeric version metastatements
which embed numeric values.

#RESOURCE FILEFLAGS FlagValue&
#RESOURCE FILEVERSION HiNum1&, LoNum1&, HiNum2&, LoNum2&
#RESOURCE PRODUCTVERSION HiNum1&, LoNum1&, HiNum2&, LoNum2&

3. Next, the mandatory STRINGINFO metastatement is added, to identify the
Language ID and CharSet to be used. Each of these parameters must be passed
as a 4-digit HEX value in a string literal. The parameter must not contain the "&H"
prefix used with numeric hex numbers.

#RESOURCE STRINGINFO "LangID", "CharSet"

4. Finally, you will add one or more of the string version metastatements, to provide
extensive information about the file. The first string literal parameter chooses one of
the following predefined names. The second string literal parameter adds your
personal choice of information about the file.

#RESOURCE VERSION$ "Comments", "Additional info"
#RESOURCE VERSION$ "CompanyName", "PowerBASIC Inc."
#RESOURCE VERSION$ "FileDescription", "Presented to users"
#RESOURCE VERSION$ "FileVersion", "Readable VerNum 1.02"
#RESOURCE VERSION$ "InternalName", "Private"
#RESOURCE VERSION$ "LegalCopyright", "Copyright 2011 PB Inc"
#RESOURCE VERSION$ "LegalTrademarks", "xx is a..."
#RESOURCE VERSION$ "OriginalFilename", "Original name w/o path"
#RESOURCE VERSION$ "PrivateBuild", "Private info"
#RESOURCE VERSION$ "ProductName", "Product distributed with"
#RESOURCE VERSION$ "ProductVersion", "Version distributed with"
#RESOURCE VERSION$ "SpecialBuild", "Special info"

FILEFLAGS

FlagValue& Description

%
VS_FF_DEBUG

File contains debugging information or is compiled with debugging
features enabled.

%
VS_FF_PATCH
ED

File has been modified and is not identical to the original shipping
file of the same version number.

%
VS_FF_PRERE
LEASE

File is a development version, not a commercially released
product.

%
VS_FF_PRIVA
TEBUILD

File was not built using standard release procedures. If this value
is given, you must include a PrivateBuild string item.

%
VS_FF_SPECI
ALBUILD

File was built by the original company using standard release
procedures, but is a variation of the standard file of the same
version number. If this value is given, you must include a
SpecialBuild string item.

PowerBASIC Compiler for Windows Version 10

444 / 2126

STRINGINFO

LangID Language LangID Language

&H0401 Arabic &H0415 Polish

&H0402 Bulgarian &H0416 Portuguese (Brazil)

&H0403 Catalan &H0417 Rhaeto-Romanic

&H0404 Traditional Chinese &H0418 Romanian

&H0405 Czech &H0419 Russian

&H0406 Danish &H041A Croato-Serbian (Latin)

&H0407 German &H041B Slovak

&H0408 Greek &H041C Albanian

&H0409 U.S. English &H041D Swedish

&H040A Castilian Spanish &H041E Thai

&H040B Finnish &H041F Turkish

&H040C French &H0420 Urdu

&H040D Hebrew &H0421 Bahasa

&H040E Hungarian &H0804 Simplified Chinese

&H040F Icelandic &H0807 Swiss German

&H0410 Italian &H0809 U.K. English

&H0411 Japanese &H080A Spanish (Mexico)

&H0412 Korean &H080C Belgian French

&H0413 Dutch &H0816 Portuguese (Portugal)

&H0414 Norwegian - Bokmal &H081A Serbo-Croatian (Cyrillic)

&H0810 Swiss Italian &H0C0C Canadian French

&H0813 Belgian Dutch &H100C Swiss French

&H0814 Norwegian - Nynorsk

STRINGINFO

CharSet Character Set

&H0000 7-bit ASCII

&H03A4 Japan (Shift - JIS X-0208)

&H03B5 Korea (Shift - KSC 5601)

&H03B6 Taiwan (Big5)

&H04B0 Unicode

&H04E2 Latin-2 (Eastern European)

&H04E3 Cyrillic

&H04E4 Multilingual

&H04E5 Greek

&H04E6 Turkish

&H04E7 Hebrew

&H04E8 Arabic

RES/PBR Resources

The second group of syntax examples show how you can embed resources which have
been pre-compiled used a resource compiler. Standard resource compilers output a
binary resource with a .RES extension. PowerBASIC will embed this resource just as it is

PowerBASIC Compiler for Windows Version 10

445 / 2126

given in the file. This form will always be supported to support resource forms which are
typically not needed for most PowerBASIC programs, or which usually require the use of
a resource editor.

The final example, using a .PBR file, will only be supported for a limited period of time.
 This is the form created by the PowerBASIC PBRES utility in older versions of the
compiler. It is recommended that you change to the .RES version soon, as it is more
efficient, and needs less effort from the programmer. It should be noted that prior versions
of PowerBASIC allowed the descriptor "PBR" to be omitted. While this option will be
supported for a limited period of time, we recommend that you always insert "PBR" for
clarity.

Restrictions Windows 95, 98, and ME offer limited support for resources. When compiling on one of
these versions of Windows, only #RESOURCE RES and #RESOURCE PBR may be
used. Other forms of the #RESOURCE metastatement are not functional.

RES and PBR resources cannot be mixed with any other resources. Once you add a
PBR or RES resource, you cannot add any other #RESOURCE metastatements in your
program.

See also RESOURCE$, Resource Files

Example #RESOURCE ICON, MySpecialIcon, "Icon.ICO"

#STACK metastatement

#STACK metastatement
Purpose Set the maximum potential stack size.

Syntax #STACK num_expr

Remarks The literal numeric expression is expressed in bytes, and is rounded up to the next 64
Kb boundary. The minimum allowable stack size is 128 Kb, and a typical stack size of
at least 1 Megabyte (the default) is usually recommended.

Upon program startup, an initial block of 128 Kb of physical memory is allocated to the
stack. As the stack grows, additional memory is automatically added, as necessary, up
to the specified maximum. Since physical memory is only committed as required, it is
usually prudent to overestimate potential stack needs.

Restrictions #STACK is meaningful with EXE (executable) files only.

#TOOLS metastatement

#TOOLS metastatement
Purpose Enable or disable integrated development tool code in compiled code.

Syntax #TOOLS [ON|+ | OFF|-]

Remarks The #TOOLS metastatement allows integrated development tools like TRACE, PROFILE,
and CALLSTK to be readily disabled, ensuring that extra code and data is not compiled
into the final (distribution) version of an application. #TOOLS defaults to ON, and may
appear only once in the source code, before any statement that generates executable
code.

See also CALLSTK, CALLSTK$, CALLSTKCOUNT, FUNCNAME$, PROFILE, TRACE

#UNIQUE metastatement

Keyword Template

PowerBASIC Compiler for Windows Version 10

446 / 2126

Purpose

Syntax

Remarks

See also

Example

#UNIQUE metastatement
Purpose Specify whether unique variable names are required.

Syntax #UNIQUE VAR [ON|OFF]

Remarks The #UNIQUE metastatement is used to tell the compiler whether it should require unique
variable names.

If this option is enabled, only LOCAL, STATIC, and parameter variable names may be
reused in other

. Other variable names (GLOBAL, THREADED, and INSTANCE) must be unique
from all other variable names.
If #UNIQUE VAR is omitted, the default condition is #UNIQUE VAR OFF.

See also #DIM, DEFtype, DIM, GLOBAL, LOCAL, REDIM, STATIC, OPTION EXPLICIT

#UTILITY metastatement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

#UTILITY metastatement
Purpose Compiler directive to allow external utility programs to read text inserted on the #UTILITY

line.

Syntax #UTILITY "any text for an external program"

Remarks The entire line is ignored by the PowerBASIC compiler.

ABS function

ABS function
Purpose Return the absolute value of a

 expression.
Syntax y = ABS(numeric_expression)

Remarks The absolute value of a number is its non-negative value. For example, the absolute value
of -3 is 3, and the absolute value of +3 is also 3. The absolute value of 0 is 0.

PowerBASIC Compiler for Windows Version 10

447 / 2126

See also SGN

ACCEL ATTACH statement

ACCEL ATTACH statement
Purpose Attach a table of keyboard accelerators to a DDT dialog.

Syntax ACCEL ATTACH hDlg, AccelTbl() TO hAccelHandle

Remarks ACCEL ATTACH permits you to attach one table of accelerator key definitions to each
DDT dialog in your application.

The keyboard accelerator itself is a specific keystroke combination, which results in a %
WM_COMMAND or %WM_SYSCOMMAND message being placed into the application's
message queue.

Keyboard accelerators are very similar to command accelerators, and often permit the
same action selections as menus offer. Since keyboard accelerators can be used
directly, they negate the need to navigate a menu in order to perform a specific action.

Typically, application menu items inform users of available keyboard accelerators so
expert users can work more efficiently without using the actual menus, but can still use
the menu if required. The following image shows a menu showing command accelerator
and keyboard accelerators for menu items (the command accelerators are underscored):

On Windows XP and Windows 2000 you may need to press the ALT key before
Command Accelerators are made visible. You can set if Command
Accelerators are visible when using the ALT key or all the time in the
Windows Display Settings.

For a command accelerator to operate, the specific menu item must be visible and
enabled. Conversely, keyboard accelerators can be used without the menu being open. In
the example above, the CTRL+X keystroke combination will perform the CUT action, but
the accelerator letter t will only perform the Cut action if the EDIT menu is opened first.

AccelTbl() To utilize ACCEL ATTACH, you must first build the array AccelTbl() of ACCELAPI User-
Defined Types (UDTs). This ACCELAPI structure is a 6-byte structure with the following
definition:

TYPE ACCELAPI WORD
 FVIRT AS BYTE ' Flags: One or more of %FVIRTKEY, %FSHIFT, %FALT and %
FCONTROL
 KEY AS WORD ' Accelerator key: ASCII code, or virtual key code {%
FVIRTKEY}
 CMD AS WORD ' Accelerator ID code gets passed in CB.CTL {LO(WORD,
WPARAM)}

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

448 / 2126

END TYPE

You must build the array of ACCELAPI types yourself, then attach it to a dialog by
executing an ACCEL ATTACH statement. There must be no empty elements in the array,
so it must be sized accurately.

.FVIRT The .FVIRT flags can be combined together with the OR operator to combine the actions
of the individual flags, as follows:

%FALT The ALT key must be pressed along with the accelerator key.

%FCONTROL The CTRL key must be pressed along with the accelerator key.

%FSHIFT The SHIFT key must be pressed along with the accelerator key.

%FVIRTKEY The .KEY member specifies a virtual-key code. If this flag is not
specified, the key member is assumed to specify an ASCII
character code. %FVIRTKEY permits case-insensitive accelerator
keystroke definitions - the Capslock state is ignored. For example,
ALT+A and ALT+a (as determined by the Capslock key) produce the
same accelerator event. If %FVIRTKEY is not used, the accelerator
ALT+A would not trigger if Capslock were inactive.

.KEY If the %FVIRTKEY flag is specified in the .FVIRT member, the .KEY field contains the
virtual key code for the accelerator key. Virtual key equates are defined in the
WIN32API.INC file, starting with the prefix %VK_.

If %FVIRTKEY is not specified, the accelerator key code in the .KEY member is the
ASCII code of the accelerator key. In this case, alphanumeric keystrokes become case-
sensitive and the state of the Capslock key state becomes important. For example, if an
accelerator were defined for ALT+A, it would be activated only if the Capslock key was on.
Conversely, if an accelerator were defined for ALT+a then it would only be activated
Capslock was off.

.CMD The .CMD member should contain the user-defined numeric ID code of the accelerator.
When an accelerator keystroke occurs, a WM_COMMAND message is sent to the dialog
Callback Function, with the accelerator identifier returned by the CB.CTL function.

It is usual practice to use the ID of a control that is to be activated by an accelerator.
Accelerator notification codes sent to the Callback Function have CB.CTLMSG set to 1
(as opposed to button click events messages where CB.CTLMSG = %BN_CLICKED).

hDlg The handle of the dialog to attach the accelerator table to.

hAccelHandle Double-word or Long-integer variable where the handle of the attached accelerator table
will be stored, or zero if the attach operation was unsuccessful.

Restrictions If a previous table was attached to the target dialog, the table is automatically destroyed
when the new table is attached in its place. The accelerator table is also destroyed
automatically when the dialog is closed.

You can destroy the current accelerator table by executing ACCEL ATTACH with an array
which is not dimensioned, but there is little or no reason to ever perform this action.

Accelerator tables can only run correctly when they are created in the same module that
creates the dialog to which each table is attached.

See also DIALOG NEW, MENU ADD STRING, MENU ATTACH

Example DIM ac(0 TO 8) AS ACCELAPI
LOCAL hAccelHandle AS DWORD

FOR x& = 0 TO 8
 ac(x&).fvirt = %FCONTROL OR %FSHIFT OR %FVIRTKEY
 ac(x&).key = %VK_1 + x& ' CTRL+SHIFT+1 to 9
 ac(x&).cmd = %BTN1 + x& ' %BTN1 to %BTN9
NEXT x&

ACCEL ATTACH hDlg, ac() TO hAccelHandle

WIN32API_INC_Updates.htm
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

449 / 2126

ACODE$ function

ACODE$ function
Purpose Translates Unicode bytes into ANSI bytes.

Syntax a$ = ACODE$(UnicodeStrExpression [,CodePage&])

Remarks This version of PowerBASIC handles all conversions between ANSI strings and
UNICODE strings automatically. For example:

MyAnsiString$ = MyWideString$$

In this case, the wide characters are transparently converted to byte characters when
they are stored in MyAnsiString$. You should not insert an ACODE$ function here. The
simple fact that the variables are of differing types (ANSI/WIDE) causes the compiler to
make all conversions for you, whenever they are needed.

Of course, this automatic conversion was not available in previous versions of the
compiler. In the past, there were no WIDE UNICODE variables offered, so it was
necessary to force wide characters into standard byte strings when UNICODE was
needed. The ACODE$ and UCODE$ functions are used for this purpose alone: to
support legacy programs which calculated strings in this fashion.

New PowerBASIC programs and updates to your older PowerBASIC programs should
use the new WIDE UNICODE variables which are now available.

ACODE$ presumes that the UnicodeStrExpression contains WIDE UNICODE
characters stored in an ANSI byte string. It converts them into ANSI byte characters
and returns them as an ANSI string. To convert an ANSI byte string into a UNICODE
byte string, use the UCODE$ function.

If the optional parameter CodePage& is present, it represents the code page to be used
for the conversion process. If not given, the default code page for the locale of the
executing computer is used.

Unicode strings require two bytes to represent a Unicode character, whereas ANSI
strings (the native PowerBASIC string format) use one byte to represent a character.
 Therefore, ACODE$ returns a string that has half of the byte count of the Unicode
string, yet represents the same number of characters.

See also UCODE$, UCODEPAGE

AND operator

AND operator
Purpose The AND operator works as both a logical and a bitwise arithmetic operator.

Syntax p AND q

Using AND as a logical operator

AND returns TRUE (non-zero) if (and only if) both its operands are TRUE. The AND truth
table looks like this:

Truth Table
x y x AND y
T T T
T F F
F T F
F F F

Using AND as a bitwise arithmetic operator

PowerBASIC Compiler for Windows Version 10

450 / 2126

AND masks clear selected bits of an integral-class value without affecting the other bits.
For example, to clear the most-significant (leftmost) 2 bits in the integer value &H9700,
AND it with &H3FFF. That is, the mask contains all 1s, except for the bit positions you
want to force to 0:

See also Arithmetic Operators, EQV, IMP, ISFALSE, ISTRUE, NOT, OR, XOR

ARRAY ASSIGN statement

ARRAY ASSIGN statement
Purpose Allow the assignment of a number of values to successive elements of an array.

Syntax ARRAY ASSIGN array() = param1 [,param2] [,…]

Remarks ARRAY ASSIGN allows the assignment of a number of values to successive elements of
an array. The assignment always starts with the first array element, and continues
sequentially as the elements appear in memory. The values to be assigned must match
the array type, and may be literals, variables, or expressions. ARRAY ASSIGN cannot be
used on an array of Interfaces.

See also ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT, DIM, LBOUND,
PowerArray, REDIM, UBOUND

Example ARRAY ASSIGN x&() = 1,2,3,4,5,6,7,8,9,10

ARRAY DELETE statement

ARRAY DELETE statement
Purpose Delete a single item from a given array.

Syntax ARRAY DELETE array([index]) [FOR count] [, expression]

Remarks ARRAY DELETE deletes the data stored at the nominated element in array, an n-
dimensional array. You can specify the index of the element which is to have its data
deleted, how many elements (count) are to be automatically shifted down by one position,
and what data value to give the last element after the rest of the elements have been
shifted (expression).

All of these parameters are optional. If index is not specified, the data stored in the
element at the beginning of the array is deleted. If expression is not present, the last
element that the data is shifted out of will contain zero if array is a numeric array, or an
empty

 if array is a string array. If a shift count is given, when shifting the rest of the array to
eliminate the element, only count elements will be shifted.
By default, ARRAY DELETE throws away the data at the element index of array, shifting
the data in the appropriate portion of the array to cover the old element:

DIM A(1 TO 4) AS LONG
ARRAY DELETE A(2), 17&

makes A(2)=A(3), A(3)=A(4), and A(4)=17. The original value of A(1) remains in place.
Use count to "protect" a portion of the array from the shift:

DIM A(1 TO 4) AS LONG
ARRAY DELETE A(2) FOR 2, 17&

PowerBASIC Compiler for Windows Version 10

451 / 2126

makes A(2)=A(3) and A(3)=17 because you told it to shift only 2 elements. The original
values of A(4) and A(1) remain in place.

DELETE with multi-dimensional arrays

count can also be used with a multi-dimensional array (stored in linear column-major
order; see ARRAY SORT), to prevent shifting element data from one dimension into
another dimension, thus preserving the organization of the array. For example:

DIM A(0 TO 1,0 TO 1) AS INTEGER
A(0,0)=0
A(1,0)=100
A(0,1)=200
A(1,1)=300
ARRAY DELETE A(0,0) FOR 2, 17%

makes A(0,0)=100 and A(1,0)=17. The original values of A(0,1) and A(1,1) remain in
place since you told it to shift only 2 elements. Without count:

ARRAY DELETE A(0,0), 17%

makes A(0,0)=100, A(1,0)=200, A(0,1)=300, and A(1,1)=17. The original value of A(0,0) is
lost.

Restrictions ARRAY DELETE cannot be used on arrays within UDT structures. However, ARRAY
DELETE can be used with arrays of UDT structures - simply treat them as if they were an
array of fixed-length strings.

To use ARRAY DELETE on an embedded UDT array, use DIM..AT to dimension a regular
array (of the same type) directly "over the top" of the UDT array, and use ARRAY DELETE
on that array. For example:

TYPE SalesType
 OrderNum AS LONG
 PartNumber(1 TO 20) AS STRING * 20
END TYPE
[statements]
DIM Sales AS SalesType
[statements]
DIM Temp(1 TO 20) AS STRING * 20 AT VARPTR(Sales.Partnumber(1))
ARRAY DELETE Temp(5), "string"
ERASE Temp()

See also ARRAY ASSIGN, ARRAY INSERT, ARRAY SCAN, ARRAY SORT, DIM, LBOUND,
PowerArray, REDIM, UBOUND

Example Makes A(2)=3 and A(3)=2.5. A(0) and A(1) remain in place:

DIM A(0 TO 3) AS CUX
A(0)=0
A(1)=1
A(2)=2
A(3)=3
ARRAY DELETE A(2), 2.5@@

Makes A(0)=2, A(1)=3, and A(2)=0. The original value of A(0) is lost:

DIM A(0 TO 2) AS EXT
A(0)=1
A(1)=2
A(2)=3
ARRAY DELETE A()

ARRAY INSERT statement

ARRAY INSERT statement

PowerBASIC Compiler for Windows Version 10

452 / 2126

Purpose Insert a single item into a given array.

Syntax ARRAY INSERT array([index]) [FOR count] [, expression]

Remarks ARRAY INSERT inserts a single data item into array, an n-dimensional array. You can
specify the index at which the new element data is to be inserted, how many elements
(count) are to be shifted up by one position to make room for the new element data, and
what data value to give the new element (expression).

All of these parameters are optional. If index is not specified, the element data is inserted
at the beginning of the array If expression is not present, the new element will contain
zero if array is a numeric array, or an empty

 if array is a string array.
If a shift count is given, when shifting the rest of the array to make way for the new
element data, only count elements will be shifted.

By default, ARRAY INSERT throws away the data in last element of array, then shifts the
appropriate portion of the array to make way for the new element data:

DIM A(1 TO 4) AS LONG
ARRAY INSERT A(2), 17

makes A(4)=A(3), A(3)=A(2), and A(2)=17. The original value of A(4) is lost, while the
original value of A(1) remains in place. Use count to "protect" a portion of the array from
the shift:

DIM A(1 TO 4) AS LONG
ARRAY INSERT A(2) FOR 2, 17

makes A(3)=A(2) and A(2)=17 because you told it to shift only 2 elements. The original
values of A(4) and A(1) remain in place.

INSERT with multi-dimensional arrays

count can also be used with a multi-dimensional array (stored in linear column-major
order; see ARRAY SORT), to prevent shifting data from one dimension into another
dimension, and thus preserving the organization of the array. For example:

DIM A(0 TO 1,0 TO 1) AS SINGLE
A(0,0)=0
A(1,0)=100
A(0,1)=200
A(1,1)=300
ARRAY INSERT A(0,0) FOR 2, 17

makes A(0,0)=17 and A(1,0)=0. The original values of A(0,1) and A(1,1) remain in place
since you told it to shift only 2 elements. Without count:

ARRAY INSERT A(0,0), 17

makes A(0,0)=17, A(1,0)=0, A(0,1)=100, and A(1,1)=200. The original value of A(1,1) is
lost.

Restrictions ARRAY INSERT cannot be used on arrays within UDT structures or on an array of
Interfaces. However, ARRAY INSERT can be used with arrays of UDT structures - simply
treat them as if they were an array of fixed-length strings.

To use ARRAY INSERT on an embedded UDT array, use DIM..AT to dimension a regular
array (of the same type) directly "over the top" of the UDT array, and use ARRAY INSERT
on that array. For example:

TYPE SalesType
 OrderNum AS LONG
 PartNumber(1 TO 20) AS STRING * 20
END TYPE
[statements]
DIM Sales AS SalesType
[statements]
DIM Temp(1 TO 20) AS STRING * 20 AT VARPTR(Sales.Partnumber(1))
ARRAY INSERT Temp(5), "string"

PowerBASIC Compiler for Windows Version 10

453 / 2126

ERASE Temp()

See also ARRAY ASSIGN, ARRAY DELETE, ARRAY SCAN, ARRAY SORT, DIM, LBOUND,
PowerArray, REDIM, UBOUND

Example Makes A(3)=2.5 and A(4)=3. A(0), A(1), and A(2) remain in place:

DIM A(0 TO 4) AS DOUBLE
A(0)=0
A(1)=1
A(2)=2
A(3)=3
ARRAY INSERT A(3), 2.5#

Makes A(0)=0, A(1)=1, and A(2)=2. The original value of A(2) is lost:

DIM A(0 TO 2) AS QUAD
A(0)=1
A(1)=2
A(2)=3
ARRAY INSERT A()

ARRAY SCAN statement

ARRAY SCAN statement
Purpose Scan all or part of an array for a given value.

Syntax Numeric array:

ARRAY SCAN array([index]) [FOR count], expression, TO lvar&

String arrays:

ARRAY SCAN array ([index]) [FOR count] [, FROM startChar TO endChar] [,
COLLATE {UCASE |
 cstring}], expression, TO lvar&

Remarks ARRAY SCAN scans all or part of array, an n-dimension array, for the first element that
satisfies expression. expression consists of a relational operator (=, >, <, <>, >=, =>,
<=, =<) followed by an expression of the same data type as array. The relative index of
the first match is stored in lvar&, which must be a Long-integer variable:

ARRAY SCAN A&(), > 5, TO I&

This line of code identifies the relative index of the first element of array A&() that is
greater than 5, and stores the relative index in I&. The match index ranges from 1 to the
last element of the scan + 1.

Since it is a relative index:

DIM A(1 TO 10) AS SINGLE
ARRAY SCAN A(), > 17.42!, TO I&

…will store 2 in I& if A(2) > 17.42, but:

DIM A(5 TO 20) AS SINGLE
ARRAY SCAN A(), > 17.42!, TO lvar&

…will store 2, not 6, in lvar& if A(6) > 17.42.

If none of the scanned elements satisfy expression, zero will be stored in lvar&.

Together, index and count specify the portion of array to be scanned. index specifies the
element at which the scan is to begin, while count specifies the number of consecutive
elements to be scanned. If index is not specified, the scan begins at the first element of
array. If count is not specified, the array is scanned from element index to the last
element of array. If neither is specified, the entire array is scanned:

DIM A&(1 TO 100)
ARRAY SCAN A&(5), =1, TO I& 'scans 5..100
ARRAY SCAN A&() FOR 10, =1, TO I& 'scans 1..10

PowerBASIC Compiler for Windows Version 10

454 / 2126

ARRAY SCAN A&(10) FOR 20, =1, TO I& 'scans 10..29
ARRAY SCAN A&(), =1, TO I& 'scans 1..100

Scanning a string array

When scanning a string array, COLLATE UCASE treats all lowercase letters as
uppercase during the scan (for example, element "Bob" would satisfy the condition =
"BOB"):

ARRAY SCAN A$(), COLLATE UCASE, = "BOB", TO I&
' scans A$() for "BOB"; all letters treated as
' uppercase

COLLATE string is used to specify a non-standard scanning order. cstring must contain
exactly 256 characters, in the order in which they should be compared, from lowest to
highest. For example, the normal ascending ASCII scan order (where "A" is considered
less than "B", etc.) would be described by a

 containing ASCII codes 0 through 255 in order:
C$ = CHR$(0 TO 255)
ARRAY SCAN A$(), COLLATE C$, > "BOB", TO I&

The normal descending ASCII scan order would be described by a string containing the
reverse of the above:

C$ = STRREVERSE$(CHR$(0 TO 255))
ARRAY SCAN A$(), COLLATE C$, > "BOB", TO I&

The COLLATE string option is provided as a flexible means with which to specify a
descending scan, or to specify the scanning order for strings containing international
characters or other special symbols.

See ARRAY SORT for more information on building collating strings.

When scanning a string array, all characters of each element of the array are normally
considered when performing comparisons. To limit the comparison to a specific subset of
characters, use FROM to specify the startChar position, and TO to specify the endChar
position that ARRAY SCAN will consider within each array element. For example, you
could scan based on the zip code contained in the last 5 characters of a 40-character
address string:

ARRAY SCAN A$(), = "90210", TO I&
' considers all characters when scanning for "90210"

ARRAY SCAN A$(), FROM 36 TO 40, = "90210", TO I&
' considers positions 36..40 only when scanning

Scanning a multi-dimensional array

When scanning a multi-dimensional array, the array is treated as a single-dimension array
containing all of the elements of the multi-dimensional array, in linear column-major order.
That is, all elements where all dimensions (except the first), are held at their minimum
bounds, will come first in memory. These are immediately followed by the elements
where the second dimension is set to its next consecutive index value, etc.

For example, the elements of a two-dimensional array (DIM A(0 TO n, 0 TO x)) would be
stored in consecutive memory locations as follows:

A(0,0), A(1,0), …, A(n,0) ' The first n+1 elements,
A(0,1), A(1,1), …, A(n,1) ' The next n+1 elements,
[statements] ' Subsequent elements,
A(0,x), A(1,x), …, A(n,x) ' The last n+1 statements.

…or more clearly:
 A(0,0), A(1,0)…, A(n,0), A(0,1), A(1,1)…, A(n,1), A(0,x),
 A(1,x) …, A(n,x)

In this case, ARRAY SCAN A(0,0) FOR n+1, >5, TO I& would scan only elements (0,0)...
(n,0), while ARRAY SCAN A(0,0), >5, TO I& would scan the entire array: elements (0,0)...
(n,x). As mentioned earlier, since ARRAY SCAN records the relative index of the

PowerBASIC Compiler for Windows Version 10

455 / 2126

matched element, ARRAY SCAN A(0,0), >5, TO I& would store 2 in I& if A(1,0) > 5.

Options The options for ARRAY SCAN can be specified in any order, as long as the FOR option, if
present, directly follows the closing parenthesis of the name of array.

Restrictions ARRAY SCAN cannot be used on arrays within UDT structures or on an array of
Interfaces. However, ARRAY SCAN can be used with arrays of UDT structures - simply
treat them as if they were an array of fixed-length strings.

To use ARRAY SCAN on an embedded UDT array, use DIM..AT to dimension a regular
array (of the same type) directly "over the top" of the UDT array, and use ARRAY SCAN
on that array. For example:

TYPE SalesType
 OrderNum AS LONG
 PartNumber(1 TO 20) AS STRING * 20
END TYPE
[statements]
DIM Sales AS SalesType
[statements]
DIM Temp(1 TO 20) AS STRING * 20 AT VARPTR(Sales.Partnumber(1))
ARRAY SCAN Temp(), FROM 1 TO LEN(Search$), = Search$, TO lResult&
ERASE Temp()

See also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SORT, DIM, LBOUND,
PowerArray, REDIM, UBOUND

Example ARRAY SCAN A&(5) FOR 10, > 64000&, TO B&

Scans elements 5 through 14 of array A&, looking for the first element whose value is >
64000, and stores the relative index of that element in B&.

ARRAY SCAN A$(5) FOR 10,FROM 16 TO 25,COLLATE C$, = D$, TO B&

Scans elements 5 through 14 of array A$, looking only at characters 16 to 25 of each
element, using the order specified by collating string C$, looking for the first element
whose value is equal to D$, and stores the relative index of that element in B&.

ARRAY SORT statement

ARRAY SORT statement
Purpose Sort all or part of a given array.

Syntax Numeric array:

ARRAY SORT darray([index]) [FOR count] [,TAGARRAY tarray()] [,{ASCEND |
DESCEND}]

String array:

ARRAY SORT dArray([index]) [FOR count] [,FROM startChar TO endChar]
[,COLLATE {UCASE |
 cstring}] [,TAGARRAY tarray()] [,{ASCEND | DESCEND}]

Custom sort array:

ARRAY SORT darray([index]) [FOR count] [,TAGARRAY tarray()] ,CALL
custfunc()

Remarks ARRAY SORT sorts all or part of darray, an n-dimensional array, in ascending or
descending order. tarray is a tag-along array whose elements are swapped in the same
order as those in darray as the sort proceeds (you could sort an array of names and have
an array of corresponding addresses tag along, for example). tarray must have at least as
many elements as darray, since corresponding elements of tarray will be swapped during
the sort.

Note that tarray does not have to be of the same type as darray. For example, you could
have a

PowerBASIC Compiler for Windows Version 10

456 / 2126

 array containing account numbers tag along with a string array containing user names:
DIM Users$(100 TO 500), AcctNum&(100 TO 500)
ARRAY SORT Users$(), TAGARRAY AcctNum&()

Together, index and count specify the portion of darray to be sorted. index specifies the
element at which the sort is to begin, while count specifies the number of consecutive
elements to be sorted. If index is omitted, the sort begins at the first element of darray. If
count is omitted or is zero, the array is sorted from element index to the last element of
darray. If both are omitted, the entire array is sorted:

DIM A&(1 TO 99)
ARRAY SORT A&(5) 'sorts elements 5..99 of A&
ARRAY SORT A&() FOR 10 'sorts elements 1..10 of A&
ARRAY SORT A&(9) FOR 20 'sorts elements 9..28 of A&
ARRAY SORT A&() 'sorts elements 1..99 of A&

Sorting numeric arrays

By default, arrays are sorted in ascending order. To sort in descending order, include the
DESCEND keyword:

ARRAY SORT A&(), DESCEND ' descending order
ARRAY SORT A&(), ASCEND ' ascending order
ARRAY SORT A&() ' ascending order

Sorting string arrays

When sorting a

 array, the sort is performed in ascending order by default. In addition to DESCEND,
ARRAY SORT provides the COLLATE UCASE and COLLATE string options.
COLLATE UCASE treats all lowercase letters as equal to their uppercase counterparts
during the sort (elements "Bob" and "BOB" would be considered equal, for example):

DIM A$(1 TO 5)
A$(1) = "Bob"
A$(2) = "Jan"
A$(3) = "Linda"
A$(4) = "Ann"
A$(5) = "Jerry"
ARRAY SORT A$(), COLLATE UCASE, DESCEND
'sorts A$() in descending order; case-insensitive

COLLATE cstring is used to specify an entirely new sorting order. This can be used for a
variety of purposes, the most obvious of which is the case of international character sets.
The collate string cstring must contain exactly 256 characters, one for each of the ASCII
codes 0-255, in the order that they would be sorted (from lowest to highest, if an
ascending sort were performed on them).

Each position in the string represents the ASCII code of that value. The contents of the
byte at that position tells PowerBASIC the "weight" or importance factor of that particular
ASCII code. The default is that position 0 has a weight of 0, position 1 has a weight of 1,
etc, so that CHR$(0) sorts first, CHR$(1) sorts next, and so on through CHR$(255).

Suppose you want the special character "ä" to have the same weight as the standard
character "a". It's easy: construct a string of 256 characters, 0-255; then go to the
position of "ä" (ASCII code 132), and change the contents of that byte so it is exactly
equal to the code for "a" (97). The following code fragment constructs just such a collate
string:

' Create a 256-character string:
FOR ix = 0 TO 255
 C$ = C$ + CHR$(ix)
NEXT
MID$(C$, 132 + 1) = CHR$(97)

We add one to the ASC value for MID$ because string positions start at 1, not 0. We can
also use the expanded CHR$ function to create the same collating string using less code:

PowerBASIC Compiler for Windows Version 10

457 / 2126

C$ = CHR$(0 TO 131, 97, 133 TO 255)

It is most important to remember the rule for creating a collating string, as it is easy to
make an intuitive jump to the wrong conclusion. Each position in the string (1-256)
represents the ASCII code with that value minus one (CHR$(0) to CHR$(255)). The
contents of the byte at that position tell the ARRAY SORT procedure the new "weight" or
importance factor for that particular code. This is exactly the technique used by the
80x86-assembler opcode XLAT.

Suppose you want CHR$(0) to sort at the very end of the sequence. To do that, you
would set the byte at position 0+1 to CHR$(255) and the bytes at positions 0+2 to 0+256
to the values 0 to 254. The ASCII sequence in the collating string would appear like this:
255,0,1,2,3,4…254. Using the expanded CHR$ function, this is straightforward:

C$ = CHR$(255, 0 TO 254)

To sort upper case and lower case alphabetic characters as exactly equal, just set
positions 97 to 122 (a-z) to the values 65-90 (A-Z). This is precisely how COLLATE
UCASE is handled. With the collating method implemented by this procedure in
PowerBASIC, it is possible for two or more ASCII codes to have equal "weight".

As mentioned earlier, many programmers make a common, fatal mistake by intuitively
creating a collating string that is simply a list of ASCII codes, in the sequence they wish
to sort. That is, they expect the byte which appears first in the string to sort first, the
byte which appears next to sort second, so that creating a collate string from the BASIC
code:

CHR$(65) + CHR$(66) + CHR$(67) + ...

…might cause the characters "ABC..." to be sorted first. This technique will never work
with the ARRAY statement and must be carefully avoided. We describe it here only
because it is a common error. While it is arguably more intuitive than the technique
implemented in PowerBASIC, the reason it does not work is that it doesn't allow two or
more ASCII codes to have the same "weight".

The following code builds a collating string compatible with the American OEM ASCII
character set. For the fastest operation, this code should be run only once and the
collating string should be made global.

GLOBAL cu AS STRING
FOR x = 0 TO 255
 cu = cu + CHR$(x)
NEXT
MID$(cu, 97+1, 26) = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
MID$(cu, 129+1, 6) = "ueaaaa" ' üéâäàã
MID$(cu, 136+1, 9) = "eeeiiiAAE" ' ëèïîìÄÂÉ
MID$(cu, 147+1, 8) = "ooouuyOU" ' ôöòûùÿÖÜ
MID$(cu, 161+1, 5) = "iounN" ' ìòùñÑ
MID$(cu, 168+1, 1) = "?" ' ¿
[your code goes here]
ARRAY SORT MyArray$(), COLLATE cu

An alternative arrangement using the expanded CHR$ function may look like this:

cu = CHR$(0 TO 96, "ABCDEFGHIJKLMNOPQRSTUVWXYZ", _
 123 TO 128, "ueaaaa", _ ' üéâäàã
 135, "eeeiiiAAE", _ ' ëèïîìÄÂÉ
 145 TO 146, "ooouuyOU", _ ' ôöòûùÿÖÜ
 155 TO 160, "iounN", _ ' ìòùñÑ
 166 TO 167, "?", _ ' ¿
 169 TO 255)

For example, the normal ascending ASCII sort order would be described by a string
containing ASCII codes 0 through 255 in order:

C$ = CHR$(0 TO 255)
ARRAY SORT A$(), COLLATE C$

The normal descending ASCII sort order would be described by a collating string

PowerBASIC Compiler for Windows Version 10

458 / 2126

containing the reverse of the above:

C$ = STRREVERSE$(CHR$(0 TO 255))
ARRAY SORT A$(), COLLATE C$

COLLATE string can also be used with the ASCEND or DESCEND option. With
ASCEND, the sort is performed in the order specified by COLLATE string; DESCEND
sorts using the reverse of the order specified by COLLATE string:

ARRAY SORT A$(), COLLATE C$, DESCEND

The COLLATE string option is provided as a flexible means with which to specify the
sorting order for strings containing international characters or other special symbols.
Please keep in mind that the characters with ASCII code above CHR$(127) may have
different meanings in different countries. The examples here assume that the default
American OEM ASCII code page is in use.

When sorting a string array, all characters of each element of the array are normally
considered when performing comparisons. To limit the comparison to a specific subset of
characters, use FROM to specify the startChar position, and TO to specify the endChar
position that ARRAY SORT will consider within each array element. For example, you
could sort based on the zip code contained in the last 5 characters of a 40-character
address string:

ARRAY SORT A$() ' sorts all chars
ARRAY SORT A$(), FROM 36 TO 40 ' sorts 36 - 40 only/p>

By using the FROM..TO keywords, it also becomes possible to sort an array of User-
Defined Types. In this case, ARRAY SORT can sort the array as if it were an array of
fixed-length strings.

Sorting custom arrays:

In most cases, the standard numeric and string sorts should serve your needs very well.
 However, in the case of more complex data, it is frequently necessary to create multi-key
sorts, or other unusual data sequences. Generally speaking, a multi-key sort is used
when you wish to order data based upon multiple sections of a string or UDT. For
example, you may wish to have customers sequenced by name -- but in the case of
duplicate names, order each set of duplicates by ZIP code. With the custom array
option, you can sort by any number of keys, in any sequence you may desire.

A custom array may be user-defined types, fixed-length strings, or nul-terminated strings.
 With a custom array sort, you can write your own simple function to tell PowerBASIC the
correct sequence for any two array elements. In the following example, the array
MyType() is sorted based upon the code you write in the user-written function named
MyFunc().

ARRAY SORT MyType(), CALL MyFunc()

As PowerBASIC proceeds through the sort, each time it needs to compare two array
elements, it calls your custom function (in this case named MyFunc) to determine the
correct sequence of the two elements. The custom function you write must always have
exactly two ByRef parameters with precisely the same data type as the sorted array, for
nul-terminated and FIELD strings, they must contain the length. These are the two
variables which you must compare to determine the correct sequence. Your custom
function must return a long integer to tell the correct sequence. It returns -1 if the first
parameter should precede the second parameter. It returns +1 if the second parameter
should precede the first. It returns 0 if the parameters are equal. This affords the
PowerBASIC programmer the ultimate tool in sorting capabilities. You can have any
number of keys. You can sort ascending, descending, or some other special sequence.
 The conditions are now totally under your control. The following example show how easy
it is to create a multi-key sort, even those based upon non-string members of a UDT.

Type TheType
 LastName as String * 40
 FirstName as String * 20
 BalanceDue as Currency
End Type

PowerBASIC Compiler for Windows Version 10

459 / 2126

[statements]
Dim MyType(100) as TheType
[statements]
Array Sort MyType(), Call MyFunc()
[statements]
Function MyFunc(Param1 as TheType, Param2 as TheType) As Long
 If Param1.LastName < Param2.LastName Then
 Function = -1 : Exit Function
 End If
 If Param1.LastName > Param2.LastName Then
 Function = +1 : Exit Function
 End If
 If Param1.FirstName < Param2.FirstName Then
 Function = -1 : Exit Function
 End If
 If Param1.FirstName > Param2.FirstName Then
 Function = +1 : Exit Function
 End If
 If Param1.BalanceDue < Param2.BalanceDue Then
 Function = +1 : Exit Function
 End If
 If Param1.BalanceDue > Param2.BalanceDue Then
 Function = -1 : Exit Function
 End If
End Function

Notice that this function first sorts by last name in ascending sequence. If the last names
are equal, it then sorts by first name in ascending sequence. If both names are equal, it
then sorts by Balance Due in descending sequence so that the accounts with the highest
balance appear first. This descending sequence is accomplished by switching the values
-1/+1 in the final tests.

The array to be sorted, and the function parameters, must be fixed-length strings, nul-
terminated strings, or user-defined types. PowerBASIC verifies that the size of the data
and parameters are identical. However, to allow maximum flexibility, it does not require
that the data types be the same. Therefore, for example, it's possible to sort an array of
fixed-length strings using a function with UDT parameters as long as the data size is
identical. It is the programmer's responsibility to ensure accuracy.

Sorting a multi-dimensional array

When sorting a multi-dimensional array, the array is treated as a single-dimension array
containing all of the elements of the multi-dimensional array, in linear column-major order.
That is, all elements where all dimensions (except the first), are held at their minimum
bounds, will come first in memory. These are immediately followed by the elements
where the second dimension is set to its next consecutive index value, etc.

For example, the elements of a two-dimensional array (i.e., DIM A(n,x)) would be stored in
consecutive memory locations like this:

(0,0), …, (n,0), (0,1), …, (n,1), …, (0,x), …, (n,x)

In this case, ARRAY SORT A(0,0) FOR n+1 would sort only elements (0,0)...(n,0), while
ARRAY SORT A(0,0) would sort the entire array: elements (0,0)…(n,x).

Be very careful when using ARRAY SORT with multi-dimensional arrays so as
not to disrupt the organization of the data in the arrays.

Options The options for ARRAY SORT can be specified in any order, as long as the FOR option, if
it is present, directly follows the closing parenthesis of the name of darray.

Restrictions ARRAY SORT cannot be used on arrays within UDT structures or on an array of
Interfaces. However, ARRAY SORT can be used with arrays of UDT structures - simply
treat them as if they were an array of fixed-length strings.

To use ARRAY SORT on an embedded UDT array, use DIM..AT to dimension a regular

PowerBASIC Compiler for Windows Version 10

460 / 2126

array (of the same type) directly "over the top" of the UDT array, and use ARRAY SORT
on that array. For example:

TYPE SalesType
 OrderNum AS LONG
 PartNumber(1 TO 20) AS STRING * 20
END TYPE
[statements]
DIM Sales AS SalesType
[statements]
DIM Temp(1 TO 20) AS STRING * 20 AT VARPTR(Sales.Partnumber(1))
ARRAY SORT Temp()
ERASE Temp()

See also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, CHR$, DIM,
LBOUND, PowerArray, REDIM, UBOUND

Example A&(5) FOR 10, TAGARRAY B$(), DESCEND

Sorts elements 5 through 14 of array A& in descending order, tagging along elements 5
through 14 of array B$.

ARRAY SORT A#()

Sorts all elements of array A# in ascending order, using no tag-along array.

ARRAY SORT A$(5) FOR 10, FROM 16 TO 25, COLLATE C$, TAGARRAY D()

Sorts elements 5 to 14 of array A$, considering only characters 16 to 25 of each element,
using the sort order specified by collating string C$, tagging along elements 5 to 14 of
array D.

ARRAY SORT A$()

Sorts all elements of array A$ in ascending order, considering all characters of each
element, using no tag-along array.

ARRAY SORT MYTYPE(), USING MYFUNC()

Sorts all elements of the UDT array MYTYPE, using the custom UDT comparison function
MYFUNC() to determine the sequence.

ARRAYATTR function

ARRAYATTR function
Purpose Return descriptive attributes of a given array.

Syntax y = ARRAYATTR(Arr(), AttrNum)

Remarks ARRAYATTR returns various descriptive attributes of an array, depending upon the value of
AttrNum

AttrNu
m

Definition

 0 Returns TRUE (-1) if the array is currently dimensioned, FALSE (0) if not.
 1 Returns the data type, as defined in the following table. Note that the numeric

equates listed on the right of the table are built into PowerBASIC, but the numeric
values they represent are subject to change. Therefore, application code should
always use the numeric equates rather than the numeric value, to ensure
compatibility with future versions of PowerBASIC. The current data type definitions
are:

 Type Array type Keyword Equate

 0 Byte BYTE %VARCLASS_BYT

 1 Word WORD %VARCLASS_WRD

 2 Double-word DWORD %VARCLASS_DWD

PowerBASIC Compiler for Windows Version 10

461 / 2126

 4 Integer INTEGER %VARCLASS_INT

 5 Long-integer LONG %VARCLASS_LNG

 8 Quad-integer QUAD %VARCLASS_QUD

 10 Single-precision SINGLE %VARCLASS_SNG

 11 Double-precision DOUBLE %VARCLASS_DBL

 12 Extended-precision EXT %VARCLASS_EXT

 13 Currency CURRENCY %VARCLASS_CUR

 14 Extended Currency CURRENCYX %VARCLASS_CUX

 17 Variant VARIANT %VARCLASS_VRNT

 18 Interface INTERFACE %VARCLASS_IFAC

 19 GUID GUID %VARCLASS_GUID

 20 UDT or Union TYPE/UNION %VARCLASS_TYPE

 21 ANSI NulTrm string ASCIIZ/STRINGZ * n %VARCLASS_STRZ

 22 Fixed-length string STRING * n %VARCLASS_FIX

 23 Dynamic string STRING %VARCLASS_STR

 24 Field string FIELD %VARCLASS_FLD

 25 Wide NulTrm string WSTRINGZ %VARCLASS_WSTRZ

 26 Wide FixLen string WSTRING * n %VARCLASS_WFIX

 27 Wide Dynamic string WSTRING * n %VARCLASS_FLD

 28 Wide Field string WFIELD %VARCLASS_WFLD

 2 Returns TRUE (-1) if it is an array of pointers, FALSE (0) if not.

 3 Returns the number of dimensions of the array. The lower and upper boundaries of
each dimension can be retrieved with the LBOUND and UBOUND
functions respectively

 4 Returns the total number of elements in the array. For example, the array DIM
A&(3,4,5) would comprise 120 elements (4 x 5 x 6 = 120).

 5 Returns the array element size. For example, an array of Double-precision
variables would be 8 bytes. For dynamic strings, the size of the string handle (4
bytes) is returned. For DISPATCH and INTERFACE arrays, ARRAYATTR returns
the size of a pointer variable (4 bytes).

You should note that a GUID is stored internally as a 16 byte User-defined type.
Therefore, ARRAYATTR returns %VARCLASS_TYPE.

See also DIM, LBOUND, UBOUND, PowerArray, REDIM

Example DIM z(3,4,5) AS CURRENCYX
DIM x AS LONG, Answer AS STRING
FOR x = 0 TO 5
 Answer = Answer + FORMAT$(x)
 Answer = Answer + $TAB
 Answer = Answer + FORMAT$(ARRAYATTR(z(),x))
 Answer = Answer + $CRLF
NEXT x
' The results are stored in Answer:

Result 0 -1
1 14
2 0
3 3
4 120
5 8

PowerBASIC Compiler for Windows Version 10

462 / 2126

ASC function

 ASC function
Purpose Returns the character code of the character at the specified position in a

.
Syntax y = ASC(string_expression [, position&])

Remarks ASC returns the character code of a particular character in the string expression. If the
string is an ANSI string, the returned value will be in the range of 0 to 255. If it is a
Unicode string, the returned value will be in the range of 0 to 65535.

The optional position& parameter determines which character is to be checked. The first
character is one, the second two, etc. If the position& parameter is missing, the first
character is presumed. If position& is negative, ASC counts from the end of the string in
reverse. That is, -1 specifies the last character, -2 specifies the second to last character,
etc.

CHR$ is the natural complement of ASC. It produces a one-character string
corresponding to its ASCII or Unicode argument.

Restrictions If the string passed is null (zero-length) or the position is zero or greater than the length of
the string, the value -1 is returned.

See also ASC statement, CHR$

Example x$ = "The ASCII value of A is" + STR$(ASC("A"))

Result The ASCII value of A is 65

ASC statement

ASC statement
Purpose Replaces one character in a

 by using its character code.
Syntax ASC(stringvar, position&) = CharCode&

Remarks The ASC statement replaces one character in a string variable. The position& parameter
determines which character is replaced. The first character is one, the second two, etc.
 If position& is negative, ASC counts from the end of the string in reverse. That is, -1
specifies the last character, -2 specifies the second to last character, etc.

If the stringVar is ANSI, the CharCode must be in the range of 0 to 255. If Unicode, the
CharCode must be in the range of 0 to 65535.

Restrictions The ASC statement cannot be used to extend the length of a string. If string is null (zero-
length), or position is zero or greater than the length of stringvar, the operation is ignored.

See also ASC function, CHR$, MID$ statement

Example A$ = "hello There"
ASC(A$,1) = 72 'replace 1st character with an "H"

ASM statement

ASM statement
Purpose Identify an assembly-language statement. PowerBASIC's Inline Assembler supports

PowerBASIC Compiler for Windows Version 10

463 / 2126

8086/8088, 80286, 80386, 80486, Pentium, Floating-Point, SIMD and MMX instructions.

Syntax {! | ASM} {opcode | label}
{! | ASM} ALIGN boundary

Remarks This statement allows you to place assembly-language code within your PowerBASIC
source code. An exclamation mark (!) serves as a shortcut for the ASM keyword.

Each group of ASM statements must preserve the following CPU registers if the
assembler code causes them to change: EBX, ESI, EDI, ESP, EBP, and all segment
registers. See Saving Registers for more information.

No other statements may appear on the same line as an ASM statement; however,
comments are acceptable.

Any variable referenced in an assembly-language statement must be defined prior to use.
For example:

x% = 10
! MOV AX, x%

You cannot access the target of a pointer with a single ASM statement as you might do in
BASIC source code. Instead, you must use the pointer address indirectly. To simulate
the BASIC statement INCR @x, you would write:

DIM x AS INTEGER PTR
ASM MOV EAX, x ; EAX holds a pointer to an Integer
ASM INC WORD PTR [EAX] ; Add one to target value

Labels can be created and accessed with the ASM statement as follows:

! CMP EAX, EBX
! JNE Done
...
! Done:
...

String literals of up to four characters may be used in Inline Assembler code:

! MOV AL, "a" ; move char a into reg AL
! MOV AX, "ab" ; move chars ab into reg AX
! ; "a" into AL, "b" into AH
! MOV EAX, "abcd" ; move chars abcd into reg EAX

PowerBASIC recognizes either an apostrophe (') or a semi-colon (;) to specify a
comment after a line of assembler code:

! PUSH EAX ; save the EAX register
! PUSH EBX ' save the EBX register

ALIGN ASM ALIGN is used in critical situations to gain maximum efficiency from assembler code
sections.

ASM ALIGN is used to round up the instruction location to a power of two address. The
boundary parameter shown must be a power of two, in the range of 2 through 256.

PowerBASIC inserts NOP instructions into the code section to bring the instruction
location up to the desired address. If the instruction location is already at a multiple of
boundary, ALIGN has no effect.

The #ALIGN metastatement functions in the same respect as ASM ALIGN, but the ASM
ALIGN statement is more suited to being used in a PREFIX/END PREFIX block.

Restrictions Care should be exercised to ensure registers are appropriately preserved when Inline
Assembler code is intermixed with BASIC statements. See Saving Registers for more
information.

See also The Inline Assembler, ASMDATA

Example To add the values a&, b&, and c&, you would write:

LOCAL a&, b&, c&, z&
! MOV EAX, a&
! ADD EAX, b&

PowerBASIC Compiler for Windows Version 10

464 / 2126

! ADD EAX, c&
! MOV z&, EAX

Notes The follow lists outline the supported mnemonics, data types, operators, and registers
that can be used with the ASM statement.

The ASM statement supports the following mnemonics:

AAA, AAD, AAM, AAS, ADC, ADD, ADDPD, ADDPS, ADDSD, ADDSS,
ADDSUBPD, ADDSUBPS, ANDNPD, ANDNPS, ANDPD, ANDPS, AND

BLENDPD, BLENDPS, BLENDVPD, BLENDVPS, BOUND, BSF, BSR, BSWAP,
BT, BTC, BTR, BTS

CALL, CBW, CWD, CDQ, CLC, CLD, CLFLUSH, CLI, CMC, CMOVA, CMOVAE,
CMOVB, CMOVBE, CMOVC, CMOVE, CMOVG, CMOVGE, CMOVL, CMOVLE,
CMOVNA, CMOVNAE, CMOVNB, CMOVNBE, CMOVNC, CMOVNE, CMOVNG,
CMOVNGE, CMOVNL, CMOVNLE, CMOVNO, CMOVNP, CMOVNS, CMOVNZ, CMOVO,
CMOVP, CMOVPE, CMOVPO, CMOVS, CMOVZ, CMP, CMPPD, CMPPS, CMPSB,
CMPSD, CMPSS, CMPSW, CMPXCHG, CMPXCHG8B, COMISD, COMISS, CPUID,
CRC32, CVTDQ2PD, CVTDQ2PS, CVTPD2DQ, CVTPD2PI, CVTPD2PS,
CVTPI2PD, CVTPI2PS, CVTPS2DQ, CVTPS2PD, CVTPS2PI, CVTSD2SI,
CVTSD2SS, CVTSI2SD, CVTSI2SS, CVTSS2SD, CVTSS2SI, CVTTPD2DQ,
CVTTPD2PI, CVTTPS2DQ, CVTTPS2PI, CVTTSD2SI, CVTTSS2SI, CWDE

DAA, DAS, DEC, DIV, DIVPD, DIVPS, DIVSD, DIVSS, DPPD, DPPS

EMMS, ENTER, EXTRACTPS

F2XM1, FABS, FADD, FADDP, FBLD, FBSTP, FCHS, FCLEX, FCMOVB,
FCMOVBE, FCMOVE, FCMOVNB, FCMOVNBE, FCMOVNE, FCMOVNU, FCMOVU,
FCOM, FCOMI, FCOMIP, FCOMP, FCOMPP, FCOS, FDECSTP, FDIV, FDIVP,
FDIVR, FDIVRP, FFREE, FIADD, FICOM, FICOMP, FIDIV, FIDIVR, FILD,
FIMUL, FINCSTP, FINIT, FIST, FISTP, FISTTP, FISUB, FISUBR, FLD,
FLD1, FLDCW, FLDENV, FLDL2E, FLDL2T, FLDLG2, FLDLN2, FLDPI,
FLDZ, FMUL, FMULP, FNCLEX, FNINIT, FNLDCW, FNOP, FNSAVE, FNSTCW,
FNSTENV, FNSTSW, FPATAN, FPREM, FPREM1, FPTAN, FRNDINT, FRSTOR,
FSAVE, FSCALE, FSIN, FSINCOS, FSQRT, FST, FSTCW, FSTENV, FSTP,
FSTSW, FSUB, FSUBP, FSUBR, FSUBRP, FTST, FUCOM, FUCOMI, FUCOMIP,
FUCOMP, FUCOMPP, FWAIT, FXAM, FXCH, FXRSTOR, FXSAVE, FXTRACT,
FYL2X, FYL2XP1

HADDPD, HADDPS, HLT, HSUBPD, HSUBPS

IDIV, IMUL, IN, INC, INSB, INSD, INSERTPS, INSW, INT, INTO,
IRET, IRETD

JA, JAE, JB, JBE, JC, JE, JECXZ, JG, JGE, JL, JLE, JMP, JNA,
JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE, JNO, JNP, JNS,
JNZ, JO, JP, JPE, JPO, JS, JZ

LAHF, LAR, LDDQU, LDMXCSR, LDS, LEA, LEAVE, LES, LFENCE, LFS,
LGS, LOCK, LODSB, LODSD, LODSW, LOOP, LOOPE, LOOPNE, LOOPNZ,
LOOPZ, LSL, LSS

MASKMOVDQU, MASKMOVQ, MAXPD, MAXPS, MAXSD, MAXSS, MFENCE, MINPD,
MINPS, MINSD, MINSS, MONITOR, MOV, MOVAPD, MOVAPS, MOVD,
MOVDDUP, MOVDQA, MOVDQU, MOVDQ2Q, MOVHLPS, MOVHPD, MOVHPS,
MOVLHPS, MOVLPD, MOVLPS, MOVMSKPD, MOVMSKPS, MOVNTDQA, MOVNTDQ,
MOVNTI, MOVNTPD, MOVNTPS, MOVNTQ, MOVQ2DQ, MOVQ, MOVSB, MOVSD,
MOVSHDUP, MOVSLDUP, MOVSS, MOVSW, MOVSX, MOVUPD, MOVUPS, MOVZX,
MPSADBW, MUL, MULPD, MULPS, MULSD, MULSS, MWAIT

NEG, NOP, NOT

OR, ORPD, ORPS, OUT, OUTSB, OUTSD, OUTSW

PABSB, PABSD, PABSW, PACKSSDW, PACKSSWB, PACKUSDW, PACKUSWB,

PowerBASIC Compiler for Windows Version 10

465 / 2126

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW,
PALIGNR, PAND, PANDN, PAUSE, PAVGB, PAVGW, PBLENDVB, PBLENDW,
PCMPEQB, PCMPEQD, PCMPEQW, PCMPEQQ, PCMPESTRI, PCMPESTRM,
PCMPISTRI, PCMPISTRM, PCMPGTB, PCMPGTD, PCMPGTQ, PCMPGTW,
PEXTRB, PEXTRD, PEXTRW, PHADDD, PHADDW, PHADDSW, PHMINPOSUW,
PHSUBD, PHSUBSW, PHSUBW, PINSRB, PINSRD, PINSRW, PMADDUBSW,
PMADDWD, PMAXSB, PMAXSD, PMAXSW, PMAXUB, PMAXUD, PMAXUW, PMINSB,
PMINSD, PMINSW, PMINUB, PMINUD, PMINUW, PMOVMSKB, PMOVSXBW,
PMOVSXBD, PMOVSXBQ, PMOVSXWD, PMOVSXWQ, PMOVSXDQ, PMOVZXBW,
PMOVZXBD, PMOVZXBQ, PMOVZXWD, PMOVZXWQ, PMOVZXDQ, PMULDQ,
PMULHRSW, PMULHUW, PMULHW, PMULLD, PMULLW, PMULUDQ, POP, POPA,
POPAD, POPCNT, POPF, POPFD, POR, PREFETCHT0, PREFETCHT1,
PREFETCHT2, PREFETCHNTA, PSADBW, PSHUFB, PSHUFD, PSHUFHW,
PSHUFLW, PSHUFW, PSIGNB, PSIGND, PSIGNW, PSLLD, PSLLDQ, PSLLQ,
PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLD, PSRLQ, PSRLW, PSUBB,
PSUBD, PSUBQ, PSUBW, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PTEST,
PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW,
PUNPCKLDQ, PUNPCKLQDQ, PUNPCKLWD, PUSH, PUSHA, PUSHAD, PUSHF,
PUSHFD, PXOR

RCL, RCR, RCPPS, RCPSS, RDPMC, RDTSC, REP, REPE, REPNE, REPNZ,
REPZ, RET, RETF, RETN, ROL, ROR, ROUNDPD, ROUNDPS, ROUNDSD,
ROUNDSS, RSQRTPS, RSQRTSS

SAHF, SAL, SAR, SBB, SCASB, SCASD, SCASW, SETA, SETAE, SETB,
SETBE, SETC, SETE, SETG, SETGE, SETL, SETLE, SETNA, SETNAE,
SETNB, SETNBE, SETNC, SETNE, SETNG, SETNGE, SETNL, SETNLE,
SETNO, SETNP, SETNS, SETNZ, SETO, SETP, SETPE, SETPO, SETS,
SETZ, SFENCE, SHL, SHLD, SHR, SHRD, SHUFPD. SHUFPS, SQRTPD,
SQRTPS, SQRTSD, SQRTSS, STC, STD, STI, STMXCSR, STOSB, STOSD,
STOSW, SUB, SUBPD, SUBPS, SUBSD, SUBSS

TEST

UCOMISD, UCOMISS, UNPCKHPD, UNPCKHPS, UNPCKLPD, UNPCKLPS

VERR, VERW

WAIT

XADD, XCHG, XGETBV, XLAT, XOR, XORPD, XORPS, XRSTOR, XSAVE,
XSETBV

The ASM statement supports the following data types and operators:

BYTE

DB, DD, DW, DWD, DWORD

FAR

NEAR

POINTER, PTR

QWD, QWORD

SHORT

TBY, TBYTE

WORD, WRD

The ASM statement supports the following registers:

Integer
32-bit Low 16-bit High 8-bit Low 8-bit
EAX AX AH AL
EBX BX BH BL

PowerBASIC Compiler for Windows Version 10

466 / 2126

ECX CX CH CL
EDX DX DH DL
ESI SI
EDI DI
ESP SP
EBP BP

Segments

CS, DS, ES, SS, FS, GS

MMX Registers

MM(0), MM(1), MM(2), MM(3), MM(4), MM(5), MM(6), MM(7)
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7

Floating Point registers

ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), ST(7)

XMM registers

XMM(0), XMM(1), XMM(2), XMM(3), XMM(4), XMM(5), XMM(6), XMM(7)
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7

ASM supports these special words

PowerBASIC supports three special reserved words, which are used to specify a return
value from a procedure of the same type:

FUNCTIO
N

ASM mov FUNCTION, eax

METHOD ASM mov METHOD, 3

PROPERT
Y

ASM mov PROPERTY, dx

The above examples are the functional equivalent of the comparable BASIC syntax:

FUNCTION = x&
METHOD = 3
PROPERTY = z%

The exception is that the assembler syntax allows you to assign a return value directly
from an appropriate CPU register. Of course, these special reserved words may only be
referenced within a procedure of the same type (FUNCTION may only be used in a user-
defined function, etc.)

See Also #ALIGN, ASMDATA/END ASMDATA

ASM ALIGN statement

ASM statement
Purpose Identify an assembly-language statement. PowerBASIC's Inline Assembler supports

8086/8088, 80286, 80386, 80486, Pentium, Floating-Point, SIMD and MMX instructions.

Syntax {! | ASM} {opcode | label}
{! | ASM} ALIGN boundary

Remarks This statement allows you to place assembly-language code within your PowerBASIC
source code. An exclamation mark (!) serves as a shortcut for the ASM keyword.

Each group of ASM statements must preserve the following CPU registers if the
assembler code causes them to change: EBX, ESI, EDI, ESP, EBP, and all segment
registers. See Saving Registers for more information.

No other statements may appear on the same line as an ASM statement; however,
comments are acceptable.

PowerBASIC Compiler for Windows Version 10

467 / 2126

Any variable referenced in an assembly-language statement must be defined prior to use.
For example:

x% = 10
! MOV AX, x%

You cannot access the target of a pointer with a single ASM statement as you might do in
BASIC source code. Instead, you must use the pointer address indirectly. To simulate
the BASIC statement INCR @x, you would write:

DIM x AS INTEGER PTR
ASM MOV EAX, x ; EAX holds a pointer to an Integer
ASM INC WORD PTR [EAX] ; Add one to target value

Labels can be created and accessed with the ASM statement as follows:

! CMP EAX, EBX
! JNE Done
...
! Done:
...

String literals of up to four characters may be used in Inline Assembler code:

! MOV AL, "a" ; move char a into reg AL
! MOV AX, "ab" ; move chars ab into reg AX
! ; "a" into AL, "b" into AH
! MOV EAX, "abcd" ; move chars abcd into reg EAX

PowerBASIC recognizes either an apostrophe (') or a semi-colon (;) to specify a
comment after a line of assembler code:

! PUSH EAX ; save the EAX register
! PUSH EBX ' save the EBX register

ALIGN ASM ALIGN is used in critical situations to gain maximum efficiency from assembler code
sections.

ASM ALIGN is used to round up the instruction location to a power of two address. The
boundary parameter shown must be a power of two, in the range of 2 through 256.

PowerBASIC inserts NOP instructions into the code section to bring the instruction
location up to the desired address. If the instruction location is already at a multiple of
boundary, ALIGN has no effect.

The #ALIGN metastatement functions in the same respect as ASM ALIGN, but the ASM
ALIGN statement is more suited to being used in a PREFIX/END PREFIX block.

Restrictions Care should be exercised to ensure registers are appropriately preserved when Inline
Assembler code is intermixed with BASIC statements. See Saving Registers for more
information.

See also The Inline Assembler, ASMDATA

Example To add the values a&, b&, and c&, you would write:

LOCAL a&, b&, c&, z&
! MOV EAX, a&
! ADD EAX, b&
! ADD EAX, c&
! MOV z&, EAX

Notes The follow lists outline the supported mnemonics, data types, operators, and registers
that can be used with the ASM statement.

The ASM statement supports the following mnemonics:

AAA, AAD, AAM, AAS, ADC, ADD, ADDPD, ADDPS, ADDSD, ADDSS,
ADDSUBPD, ADDSUBPS, ANDNPD, ANDNPS, ANDPD, ANDPS, AND

BLENDPD, BLENDPS, BLENDVPD, BLENDVPS, BOUND, BSF, BSR, BSWAP,
BT, BTC, BTR, BTS

CALL, CBW, CWD, CDQ, CLC, CLD, CLFLUSH, CLI, CMC, CMOVA, CMOVAE,

PowerBASIC Compiler for Windows Version 10

468 / 2126

CMOVB, CMOVBE, CMOVC, CMOVE, CMOVG, CMOVGE, CMOVL, CMOVLE,
CMOVNA, CMOVNAE, CMOVNB, CMOVNBE, CMOVNC, CMOVNE, CMOVNG,
CMOVNGE, CMOVNL, CMOVNLE, CMOVNO, CMOVNP, CMOVNS, CMOVNZ, CMOVO,
CMOVP, CMOVPE, CMOVPO, CMOVS, CMOVZ, CMP, CMPPD, CMPPS, CMPSB,
CMPSD, CMPSS, CMPSW, CMPXCHG, CMPXCHG8B, COMISD, COMISS, CPUID,
CRC32, CVTDQ2PD, CVTDQ2PS, CVTPD2DQ, CVTPD2PI, CVTPD2PS,
CVTPI2PD, CVTPI2PS, CVTPS2DQ, CVTPS2PD, CVTPS2PI, CVTSD2SI,
CVTSD2SS, CVTSI2SD, CVTSI2SS, CVTSS2SD, CVTSS2SI, CVTTPD2DQ,
CVTTPD2PI, CVTTPS2DQ, CVTTPS2PI, CVTTSD2SI, CVTTSS2SI, CWDE

DAA, DAS, DEC, DIV, DIVPD, DIVPS, DIVSD, DIVSS, DPPD, DPPS

EMMS, ENTER, EXTRACTPS

F2XM1, FABS, FADD, FADDP, FBLD, FBSTP, FCHS, FCLEX, FCMOVB,
FCMOVBE, FCMOVE, FCMOVNB, FCMOVNBE, FCMOVNE, FCMOVNU, FCMOVU,
FCOM, FCOMI, FCOMIP, FCOMP, FCOMPP, FCOS, FDECSTP, FDIV, FDIVP,
FDIVR, FDIVRP, FFREE, FIADD, FICOM, FICOMP, FIDIV, FIDIVR, FILD,
FIMUL, FINCSTP, FINIT, FIST, FISTP, FISTTP, FISUB, FISUBR, FLD,
FLD1, FLDCW, FLDENV, FLDL2E, FLDL2T, FLDLG2, FLDLN2, FLDPI,
FLDZ, FMUL, FMULP, FNCLEX, FNINIT, FNLDCW, FNOP, FNSAVE, FNSTCW,
FNSTENV, FNSTSW, FPATAN, FPREM, FPREM1, FPTAN, FRNDINT, FRSTOR,
FSAVE, FSCALE, FSIN, FSINCOS, FSQRT, FST, FSTCW, FSTENV, FSTP,
FSTSW, FSUB, FSUBP, FSUBR, FSUBRP, FTST, FUCOM, FUCOMI, FUCOMIP,
FUCOMP, FUCOMPP, FWAIT, FXAM, FXCH, FXRSTOR, FXSAVE, FXTRACT,
FYL2X, FYL2XP1

HADDPD, HADDPS, HLT, HSUBPD, HSUBPS

IDIV, IMUL, IN, INC, INSB, INSD, INSERTPS, INSW, INT, INTO,
IRET, IRETD

JA, JAE, JB, JBE, JC, JE, JECXZ, JG, JGE, JL, JLE, JMP, JNA,
JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE, JNO, JNP, JNS,
JNZ, JO, JP, JPE, JPO, JS, JZ

LAHF, LAR, LDDQU, LDMXCSR, LDS, LEA, LEAVE, LES, LFENCE, LFS,
LGS, LOCK, LODSB, LODSD, LODSW, LOOP, LOOPE, LOOPNE, LOOPNZ,
LOOPZ, LSL, LSS

MASKMOVDQU, MASKMOVQ, MAXPD, MAXPS, MAXSD, MAXSS, MFENCE, MINPD,
MINPS, MINSD, MINSS, MONITOR, MOV, MOVAPD, MOVAPS, MOVD,
MOVDDUP, MOVDQA, MOVDQU, MOVDQ2Q, MOVHLPS, MOVHPD, MOVHPS,
MOVLHPS, MOVLPD, MOVLPS, MOVMSKPD, MOVMSKPS, MOVNTDQA, MOVNTDQ,
MOVNTI, MOVNTPD, MOVNTPS, MOVNTQ, MOVQ2DQ, MOVQ, MOVSB, MOVSD,
MOVSHDUP, MOVSLDUP, MOVSS, MOVSW, MOVSX, MOVUPD, MOVUPS, MOVZX,
MPSADBW, MUL, MULPD, MULPS, MULSD, MULSS, MWAIT

NEG, NOP, NOT

OR, ORPD, ORPS, OUT, OUTSB, OUTSD, OUTSW

PABSB, PABSD, PABSW, PACKSSDW, PACKSSWB, PACKUSDW, PACKUSWB,
PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW,
PALIGNR, PAND, PANDN, PAUSE, PAVGB, PAVGW, PBLENDVB, PBLENDW,
PCMPEQB, PCMPEQD, PCMPEQW, PCMPEQQ, PCMPESTRI, PCMPESTRM,
PCMPISTRI, PCMPISTRM, PCMPGTB, PCMPGTD, PCMPGTQ, PCMPGTW,
PEXTRB, PEXTRD, PEXTRW, PHADDD, PHADDW, PHADDSW, PHMINPOSUW,
PHSUBD, PHSUBSW, PHSUBW, PINSRB, PINSRD, PINSRW, PMADDUBSW,
PMADDWD, PMAXSB, PMAXSD, PMAXSW, PMAXUB, PMAXUD, PMAXUW, PMINSB,
PMINSD, PMINSW, PMINUB, PMINUD, PMINUW, PMOVMSKB, PMOVSXBW,
PMOVSXBD, PMOVSXBQ, PMOVSXWD, PMOVSXWQ, PMOVSXDQ, PMOVZXBW,
PMOVZXBD, PMOVZXBQ, PMOVZXWD, PMOVZXWQ, PMOVZXDQ, PMULDQ,
PMULHRSW, PMULHUW, PMULHW, PMULLD, PMULLW, PMULUDQ, POP, POPA,
POPAD, POPCNT, POPF, POPFD, POR, PREFETCHT0, PREFETCHT1,

PowerBASIC Compiler for Windows Version 10

469 / 2126

PREFETCHT2, PREFETCHNTA, PSADBW, PSHUFB, PSHUFD, PSHUFHW,
PSHUFLW, PSHUFW, PSIGNB, PSIGND, PSIGNW, PSLLD, PSLLDQ, PSLLQ,
PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLD, PSRLQ, PSRLW, PSUBB,
PSUBD, PSUBQ, PSUBW, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PTEST,
PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW,
PUNPCKLDQ, PUNPCKLQDQ, PUNPCKLWD, PUSH, PUSHA, PUSHAD, PUSHF,
PUSHFD, PXOR

RCL, RCR, RCPPS, RCPSS, RDPMC, RDTSC, REP, REPE, REPNE, REPNZ,
REPZ, RET, RETF, RETN, ROL, ROR, ROUNDPD, ROUNDPS, ROUNDSD,
ROUNDSS, RSQRTPS, RSQRTSS

SAHF, SAL, SAR, SBB, SCASB, SCASD, SCASW, SETA, SETAE, SETB,
SETBE, SETC, SETE, SETG, SETGE, SETL, SETLE, SETNA, SETNAE,
SETNB, SETNBE, SETNC, SETNE, SETNG, SETNGE, SETNL, SETNLE,
SETNO, SETNP, SETNS, SETNZ, SETO, SETP, SETPE, SETPO, SETS,
SETZ, SFENCE, SHL, SHLD, SHR, SHRD, SHUFPD. SHUFPS, SQRTPD,
SQRTPS, SQRTSD, SQRTSS, STC, STD, STI, STMXCSR, STOSB, STOSD,
STOSW, SUB, SUBPD, SUBPS, SUBSD, SUBSS

TEST

UCOMISD, UCOMISS, UNPCKHPD, UNPCKHPS, UNPCKLPD, UNPCKLPS

VERR, VERW

WAIT

XADD, XCHG, XGETBV, XLAT, XOR, XORPD, XORPS, XRSTOR, XSAVE,
XSETBV

The ASM statement supports the following data types and operators:

BYTE

DB, DD, DW, DWD, DWORD

FAR

NEAR

POINTER, PTR

QWD, QWORD

SHORT

TBY, TBYTE

WORD, WRD

The ASM statement supports the following registers:

Integer
32-bit Low 16-bit High 8-bit Low 8-bit
EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL
ESI SI
EDI DI
ESP SP
EBP BP

Segments

CS, DS, ES, SS, FS, GS

MMX Registers

MM(0), MM(1), MM(2), MM(3), MM(4), MM(5), MM(6), MM(7)

PowerBASIC Compiler for Windows Version 10

470 / 2126

MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7

Floating Point registers

ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), ST(7)

XMM registers

XMM(0), XMM(1), XMM(2), XMM(3), XMM(4), XMM(5), XMM(6), XMM(7)
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7

ASM supports these special words

PowerBASIC supports three special reserved words, which are used to specify a return
value from a procedure of the same type:

FUNCTIO
N

ASM mov FUNCTION, eax

METHOD ASM mov METHOD, 3

PROPERT
Y

ASM mov PROPERTY, dx

The above examples are the functional equivalent of the comparable BASIC syntax:

FUNCTION = x&
METHOD = 3
PROPERTY = z%

The exception is that the assembler syntax allows you to assign a return value directly
from an appropriate CPU register. Of course, these special reserved words may only be
referenced within a procedure of the same type (FUNCTION may only be used in a user-
defined function, etc.)

See Also #ALIGN, ASMDATA/END ASMDATA

ASMDATA/END ASMDATA statements

Keyword Template
Purpose

Syntax

Remarks

See also

Example

ASMDATA/END ASMDATA statements
Purpose Define a block where primitive read-only data is stored.

Syntax ASMDATA BlockName
 DB 1, "ABC"$, 0
 DW 2, "XYZ"$$, 0
 DD &H12345678
 DQ 1234567890
END ASMDATA

Remarks It is frequently convenient to define some data within the code section of your program.
 This data is read-only, so it may never be altered. An attempt to do so will result in a
GPF (General Protection Fault), which will cause termination of your program. This type
of data is generally accessed only by ASM code.

Defined Data can be placed inside of a Sub, Function, Method, or Property using ASM
statements, but there are a number of pitfalls to that technique. When debugging, or

PowerBASIC Compiler for Windows Version 10

471 / 2126

when using TRACE, PROFILE, #DEBUG DISPLAY, ERL, ERL$, etc., PowerBASIC must
insert special code in various places which makes if difficult (if not impossible) for you to
access the data accurately. You don't know the size of the inserted code, so you'll have
some difficulty addressing it accurately.

An ASMDATA block solves that problem entirely. It is designed for the sole purpose of
defining data, and no extra code or extra data is ever inserted for any reason. Data within
the block is never aligned, so you always know the exact location of each item. The
ASMDATA block must be located outside of any Sub, Function, Method, or Property.
 However, the BlockName you assign is public, so it may be referenced from any place in
your program. You may have one block on your program, or many.

By default, all ASMDATA blocks are positioned at the first available byte. This allows
contiguous blocks to be accessed as though they were one larger block. You can align
any or all of the blocks differently by preceding the block with an #ALIGN metastatement.

Labels and line numbers are not allowed in an ASMDATA block. If you need a reference
point to a particular sub-section of your data, just split it into two or more blocks, using
each BlockName as the reference point.

The only statements allowed within an ASMDATA block are DB, DD, DQ, and DW, so
they do not need to be preceded by an ASM statement. An ANSI string literal expression
may be placed in a DB statement, and a WIDE (unicode) string literal expression may be
placed in a DW statement. A string literal expression may consist of quoted string
literals, string equates, and the concatenation operators (&,+). You may also use
CHR$(), SPACE$(), and STRING$() if they use only literal parameters.

You can access the address of an ASMDATA block with the CODEPTR() function. So, if
you create a block named ABC, like this:

ASMDATA ABC
 DB 5,2,3
 DB 7,8,9
END ASMDATA

You would access it something like this:

AsmVar = CODEPTR(ABC)

Another option is to access it directly to a CPU register of your choice by using one of
these opcodes:

ASM LEA EBX, abc
ASM MOV EBX, Offset abc

This would result in moving the first data byte (5) into register AL.

Or even move it directly to a 32-bit variable:

ASM MOV AsmVar, Offset abc

See also ASM

ATN function

ATN function
Purpose Return the arctangent of an argument.

Syntax y = ATN(numeric_expression)

Remarks ATN returns the arctangent (Inverse Tangent) of numeric_expression; that is, the angle
whose tangent is numeric_expression.

The result, as with all operations involving angles in PowerBASIC, is in radians rather than
degrees. Although it is common to specify angles in degrees, the radian is a more
convenient measurement for mathematical operations. One radian is defined as the angle
at the center of a circle that subtends an arc equal in length to one radius. Since for all

PowerBASIC Compiler for Windows Version 10

472 / 2126

circles, using the constant p:
Circumference / radius = 2 * p

the length of the circumference of a circle is equal to 2 * p * radius, and the angle of a full
circle (360 degrees) is equal to 2 * p radians.

To convert radians to degrees, just multiply the radian value by 180/p, or
57.29577951308232##. For example, the arctangent of 0.23456 can be converted this
way:

t = ATN(.23456!) 't = 0.230395 (radians)
t = 57.29577951308232## * ATN(.23456!) 't= 13.200 (degrees)

To convert degrees to radians, multiply by 0.0174532925199433##. For example:

14 degrees = (0.0174532925199433## * 14) = 0.2443460952792062 radians

Rather than memorizing the radians/degrees conversion factors, calculate them for
yourself by remembering this relationship: 2 p radians equals a full circle (360 degrees),
so 1 p radian is 180 / p degrees. Conversely, 1 degree equals p / 180 radians.

p is a transcendental constant, meaning that it has an infinite number of decimal places.
To 15-place accuracy, adequate for most applications, p = 3.141592653589793##. This
value can be closely approximated with the expression:

pi## = 4 * ATN(1)

Degrees-to-radians and radians-to-degrees conversions are good applications for user-
defined functions.

The ATN function always returns an Extended-precision result.

The Tangent (TAN) of a value can be easily calculated with the TAN function.

The Hyperbolic Tangent (TANH) can be calculated:

TanH = (EXP(2 * Value) - 1) / (EXP(2 * Value) + 1)

The Inverse Hyperbolic Tangent (ARCTANH) of a value can be calculated:

ArcTanH = LOG((1 + Value) / (1 - Value)) / 2

' Useful Macro functions
MACRO Pi = 3.141592653589793##
MACRO DegreesToRadians(dpDegrees) = (dpDegrees*0.0174532925199433##)
MACRO RadiansToDegrees(dpRadians) = (dpRadians*57.29577951308232##)

See also COS, SIN, TAN

BEEP statement

BEEP statement
Purpose Sound a tone through the computer's speaker.

Syntax BEEP

Remarks BEEP plays the default Windows waveform sound, typically a ¼ second tone, through
either the built-in speaker; or a sound card if installed (in which case the Windows
"Default Beep" sound is played). The Default Beep can be configured in the Sounds
section of Control Panel.

Restrictions The physical aspects of the built-in speaker may have an effect on the quality and level of
the resultant sound.

BGR function

BGR function

PowerBASIC Compiler for Windows Version 10

473 / 2126

Purpose Create a BGR color value from 3 primary color values or from an RGB value

Syntax result& = BGR(red&, green&, blue&)
result& = BGR(rgbexpr&)

Remarks An RGB value is a long integer value in the range of 0 to &H00FFFFFF. It is used to
specify a very precise color to various PowerBASIC functions and Windows API functions.
 The lowest three bytes of the value each specify the intensity of a primary color which
combine to form the resultant color. Byte 1 (lowest) represents the red component, byte
2 the green, and byte 3 the blue. They can each take on a value in the range of 0 to 255.
 Byte 4 (highest) is always 0.

Some Windows API functions, such as those which reference Device Independent
Bitmaps (DIB), require that the colors be specified in the reverse sequence (Blue-Green-
Red instead of Red-Green-Blue). In order to maximize performance and execution speed,
PowerBASIC statements and functions which reference these structures also use the
BGR format. These include GRAPHIC GET BITS and GRAPHIC SET BITS. When used
with 3 parameters, the BGR() function creates a BGR value from the three component
values.

When used with one parameter, this function translates an RGB value to its BGR
equivalent by swapping the first byte with the third byte, and returning the result.

For example, the RGB value of blue is &HFF0000. BGR() translates it to &H0000FF.
 Calling RGB() with that value converts it back to &HFF0000.

See also Built In RGB Color Equates, RGB

BIN$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

BIN$ function
Purpose Convert an integral value to a binary

.
Syntax s$ = BIN$(IntVal [, Digits, LeadSpaces, TrailSpaces])

Remarks IntVal is a numeric expression in the range of a 64-bit Quad Integer (-
9223372036854775808 to +9223372036854775807). Any fractional part of the value is
rounded. The result string is always formatted as an integral number using all the
significant digits in IntVal. It is never expressed in scientific notation.

If Digits is 0 (or not given), no leading characters will be added to the numeric field. If
Digits is a positive number greater than 0, the result string will be prepended with leading
zeros to achieve the desired length. If Digits is a negative number, leading spaces are
added to reach the absolute length. Digits may be in the range of -64 to +64.

LeadSpaces specifies additional leading spaces to be prepended, regardless of the length
of the numeric portion of the string.

TrailSpaces specifies additional trailing spaces to be appended to the end of the string.

See also DEC$, FORMAT$, HEX$, OCT$, STR$, TRIM$, USING$, VAL

PowerBASIC Compiler for Windows Version 10

474 / 2126

BIT CALC statement

BIT CALC statement
Purpose Set or reset a bit in an

 variable (or implied bit-array) based upon the result of an expression.
Syntax BIT CALC intvar, bitnumber, calcexpr

Remarks BIT CALC performs like a combination of the BIT SET and BIT RESET statements,
offering the choice between set (1) and reset (0) according to the result of a numeric
expression.

intvar An integral class variable (Byte, Word, Double-word, Integer, Long-integer or Quad-
integer), or a variable forming the base of an implied bit-array.

bitnumber An integral class expression or numeric literal that specifies the bit number to adjust. Bit
numbers start from zero (0), and extend to the size of the target variable or bit-array. For
example, a 16-bit integer variable uses the range 0 to 15. An implied bit-array comprised
of a Long-integer array with 100 elements (4 bytes * 100 = 400 bytes = 3200 bits) covers
the bit range 0 to 3199.

calcexpr The value derived from bit zero of calcexpr determines the set or reset action. If bit zero
contains a zero (0), the bit in intvar is reset; if bit zero in calcexpr contains a one (1), the
bit in intvar is set. This action can be more easily remembered if we consider
PowerBASIC performs an implied bitwise AND operation (calcexpr AND 1) to derive the
set or reset action.

Care must be exercised to ensure that the bit index number (bitnumber) does
not exceed the number of bits that can be validly accessed. For example,
reading the 17th bit of a 16-bit scalar variable may trigger a General
Protection Fault (GPF). Similarly, adjusting the 4097th bit of a bit-array
derived from a 128-element DWORD array may cause similar problems.
bitnumber is always zero-based, so the 129th bit of an implied bit-array is
referenced in the BIT statement with bitnumber equal to 128. For example: x&
= BIT(A?(1), 128).

The first bit is the least-significant bit, which is bit number zero. For example:

See also BIT function, BIT statement, BITS functions

Example DIM dwStatus1 AS DWORD
DIM dwStatus2 AS DWORD
DIM iBit AS INTEGER
DIM sResult1 AS STRING
DIM sResult2 AS STRING

FOR iBit = 0 TO 31
 BIT CALC dwStatus1, iBit, RND(0,1)
 BIT CALC dwStatus2, iBit, iBit MOD 3
NEXT iBit
sResult1 = BIN$(dwStatus1,32)
sResult2 = BIN$(dwStatus2,32)

Result sResult1 = "01001101001110101110111010010101"
sResult2 = "10010010010010010010010010010010"

BIT function

PowerBASIC Compiler for Windows Version 10

475 / 2126

BIT function
Purpose Return the value of a particular bit in an

 variable (or in an implied bit-array)
Syntax flag = BIT(intvar, bitnumber)

Remarks The BIT function is used to determine the value of one particular bit in an integral-class
variable or implied bit-array.

intvar The parameter intvar must be a variable, not an expression. The BIT function returns
either 0 or 1 to indicate the value of the specified bit.

bitnumber The bit in question. The allowable range for the parameter is the same as that of a Long-
integer. This makes it possible to have implicit bit-arrays of more than 2 billion bits in
size. For such arrays, bits 0 to 15 are in the first word starting at intvar, bits 16-31 are in
the next word, and so forth.

Implied bit-arrays are considered to start at the memory position of the variable intvar. For
example, if intvar is itself an array variable, it is possible to access bits in any of the
following elements of the array. See the array examples below.

Care must be exercised to ensure that the bit index number (bitnumber) does
not exceed the number of bits that can be validly accessed. For example,
reading the 17th bit of a 16-bit scalar variable may trigger a General
Protection Fault (GPF). Similarly, adjusting the 4097th bit of a bit-array
derived from a 128-element DWORD array may cause similar problems.
bitnumber is always zero-based, so the 129th bit of an implied bit-array is
referenced in the BIT statement with bitnumber equal to 128. For example: x&
= BIT(A?(1), 128).

The first bit is the least-significant bit, which is bit number zero. For example:

See also BIT CALC statement, BIT statement, BITS functions

Example x% = 7
y% = BIT(x%, 2)
[statements]
DIM z%(1:2000000) ' 32 million element bit-array
y% = BIT(z%(1),16) ' bit 0 of 2nd word of z%()
y% = BIT(z%(2000000),15) ' MSB of last element
y% = BIT(z%(1), 31999999&) ' MSB of last element

BIT statement

BIT statement
Purpose Manipulate individual bits of an

 variable (or in an implied bit-array), for storing values such as TRUE/FALSE (flag)
settings quickly and efficiently.

Syntax BIT {SET | RESET | TOGGLE} intvar, bitnumber

Remarks intvar must be one of the integral-class variable types: Byte, Word, Integer, Double-word,
Long-integer, or Quad-integer.

The allowable range for the parameter bitnumber is the same as that of a Long-integer,
making it possible to have implicit bit-arrays of more than 2 billion bits in size. Bits 0 to
15 are in the first word starting at intvar, bits 16-31 are in the next word, and so forth.

Implied bit-arrays are considered to start at the memory position of the variable intvar. For

PowerBASIC Compiler for Windows Version 10

476 / 2126

example, if intvar is itself an array variable, it is possible to access bits in any of the
following elements of the array. See the array examples below.

Care must be exercised to ensure that the bit index number (bitnumber) does
not exceed the number of bits that can be validly accessed. For example,
adjusting the 17th bit of a 16-bit scalar variable may cause a subtle memory
corruption problem, and/or may trigger a General Protection Fault (GPF).
Similarly, adjusting the 4097th bit of a bit-array derived from a 128-element
DWORD array may cause similar problems. bitnumber is always zero-based,
so the 129th bit of an implied bit-array is referenced in the BIT statement with
bitnumber equal to 128. For example: BIT SET A?(1), 128.

The first bit position is the least significant bit (LSB), which is bit number zero. For
example:

SET Sets the indicated bit to one.

RESET Sets the indicated bit to zero.

TOGGLE Toggles the indicated bit: one becomes zero; zero becomes one.

See also BIT CALC statement, BIT function, BITS functions

Example x% = 7
BIT SET x%, 2 ' Sets the 3rd bit (bit 2) to 1
BIT RESET x%, 10 ' Sets the 11th bit (bit 10) to 0
BIT TOGGLE x%, 5 ' Toggle bit 5
[statements]
DIM z%(1 TO 2000) ' 32000 element bit-array
BIT SET z%(1), 37 ' Sets bit 5 of 3rd word to a 1
BIT TOGGLE z%(1),0 ' Toggle lowest bit in 1st word
BIT RESET z%(2000), 15 ' Clear the MSB of integer array element
 ' 2000 (bit 31999 of the implied bit array,
 ' numbered 0 to 31999)
BIT RESET z%(1), 31999 ' Clear the MSB of element 2000
 ' (this is equivalent to the previous line)

BITS$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

BITS$ function
Purpose Copy

 contents without modification.
Syntax AnsiVar$ = BITS$(STRING, StringExpr)

WideVar$$ = BITS$(WSTRING, StringEXpr)

Remarks This function copies the exact contents of a string expression to a string variable without
making any ANSI/UNICODE conversions. It assumes that the data already matches the

PowerBASIC Compiler for Windows Version 10

477 / 2126

format specified by the director word STRING or WSTRING. This functionality will not
often be needed, so a certain amount of caution should be used.

For example, in older versions of PowerBASIC, there were no WIDE string variables
available. It was therefore necessary to store Unicode data in an ANSI byte string. In
updating these programs, you may find you need to transfer this WIDE data to a WIDE
variable, but without the automatic internal conversion normally provided by the compiler.
 BITS$ provides just that functionality. Of course, it can copy bytes from WIDE to ANSI
as well.

See also BITS

BITS function

BITS function
Purpose Converts an integral value into another data type, based upon the bit pattern of the value.

 This is particularly helpful in converting between signed and unsigned representations.

Syntax resultvar = BITS(datatype, expression)

datatype The parameter datatype may be BYTE, WORD, DWORD, INTEGER, or LONG to specify
the new data type which should be returned by the function.

expression An integral class variable, expression, or numeric literal, which designates the original
value to be converted.

Remarks Since the integer value -1 and word value 65535 have the identical bit pattern of
1111111111111111, BITS(WORD,-1) would return the unsigned word value of 65535. Of
course, BITS(INTEGER,65535) would then return the integer value -1. Other values and
data types would follow the same pattern and rules.

This newer form of BITS condenses the functionality of the older forms (BITS%, BITS&,
BITS?, BITS?? and BITS???) into a single function. In particular, this provides for the
addition of new data types in future version of PowerBASIC, particularly those which may
not have an associated type-specifier character.

See also BIT CALC statement, BIT function, BIT statement, BITS$, BITSE

BITSE function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

BITSE function
Purpose Compare integral values for equivalent bits regardless of sign.

Syntax x& = BITSE(nexp, nexp, bitsize)

Remarks This function allows you to compare two integral values for equivalent bit patterns,
regardless of whether they are signed or unsigned values. The two numeric expressions
(nexp) are the integral values to be compared, The bitsize parameter specifies the
number of bits to be compared, 8, 16, or 32.

PowerBASIC Compiler for Windows Version 10

478 / 2126

For example, the integer value -1 and the word value 65535 both have the identical bit
pattern: 1111111111111111. The difference is simply the way the bits are interpreted by a
program.

x& = BITSE(-1, 65535, 16)

The above example would cause the lowest 16 bits of the expressions to be compared.
 Since they are equal, the value TRUE (-1) is returned.

See also BITS

BUILD$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

BUILD$ function
Purpose Build or concatenate strings with very high efficiency.

Syntax x$ = BUILD$(a$,b$,c$,d$...)

Remarks In some cases, string concatenation using the classic string operators can be a slow
process. This is particularly true when there are many operands using longer strings.
 The BUILD$ function passes all the typical bottlenecks to create a new string at the
greatest possible speed. The following 2 lines are functionally identical, but the BUILD$
version will execute substantially faster.

x$ = a$ + "bb" + c$ + y$(7) + y$(i&) + z$
x$ = BUILD$(a$, "bb", c$, y$(7), y$(i&), z$)

It's interesting to note that this string function could have been named APPEND$ or
PREPEND$ because it performs these functionalities so well. For example, to prepend a
topic number to text$ while also adding a period at the end, you could execute:

text$ = BUILD$("1) " & text$ & ".")

In order to extract the utmost efficiency, BUILD$() was designed to work with a very
narrow definition. The component parameters must be dynamic string variables, either
scalar or array, string literals, or string equates. They may not be expressions. There is
virtually no limit as to the number of parameters.

The BUILD$() function is most valuable when you are concatenating numerous strings all
at the same time. However, when you must add many string sections, in many separate
operations, the StringBuilder object is much faster, and a more appropriate choice.

Generally speaking, the greater the number of parameters, the greater the increase in
execution speed.

See also LET, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$, STRING$,
STRINGBUILDER, STRINSERT$, WRAP$

CALL statement

CALL statement

PowerBASIC Compiler for Windows Version 10

479 / 2126

Purpose Invoke a procedure (Sub, Function, Method, Property, or FastProc).

Syntax CALL ProcName [([arguments])] [TO result_var]

Remarks The CALL statement has the following parts:

ProcName The name of a Sub, Function, Method, Property, or FastProc defined elsewhere in the
program.

arguments An optional, comma-delimited list of variables, expressions, and constants to be passed
to the procedure as parameters, for up to 32 parameters. If the CALL keyword is used,
the arguments must be enclosed in parentheses.

You can omit the CALL keyword. If you do so, you may also omit the parentheses
surrounding arguments. For example, the following lines are equivalent:

CALL MyProc(parm1, parm2)
MyProc(parm1, Parm2)
MyProc parm1, parm2

However, if the first parameter argument is enclosed in parentheses for any reason, the
entire parameter list must be enclosed in parentheses. For example:

MyProc (3+z, b) ' Valid syntax
MyProc ((3+z), b) ' Valid syntax
MyProc (3+z), b ' Invalid syntax

This updated syntax now permits macros to be called using the SUB-style convention
if/when the macros expand directly to Function calls. For example:

MACRO sm(Msg) = SendMessage(a, Msg, b, c)

…can be called like this (when the return value is not required):

sm(x)

In all cases, the number and type of parameters passed must agree with the arguments in
procedure definition.

Variant Arguments

You can think of a Variant as a kind of container, which can hold a variable of most any
data type. If you call a procedure which requires a variant for one or more of its
arguments, PowerBASIC will automatically convert a standard data type into a variant
data type.

While a variant may not normally contain a UDT, PowerBASIC offers a special
methodology to do so. At programmer direction, a TYPE may be assigned to a variant
(as a byte

) by using:
[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CALL ProcName(UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDT) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When you retrieve that UDT data (with
Variant$), PowerBASIC understands the content and handles it accurately. However,
other programming languages may not understand this technique, so it should be limited
to PowerBASIC applications. This methodology is implemented in all of the PowerBASIC
COLLECTION objects as it greatly enhances ease of coding and performance of the final
executable.

Passing Parameters

In a procedure definition, every parameter is described by the data type, and the format
used to pass it. The type may be any normal variable type, such as long, string, User-
Defined Type, etc. The passing format describes how the value is presented to the
procedure: by reference (BYREF), by value (BYVAL), or by reference to a copy

PowerBASIC Compiler for Windows Version 10

480 / 2126

(BYCOPY).

BYREF When a parameter is passed by reference, it consists of a 4-byte address of the data. In
this case, the original data can be modified by the procedure.

BYVAL When a parameter is passed by value, it consists of an actual copy of the data. Since
the parameter is a copy, the original data cannot be modified by the procedure.

When you pass parameters from the calling code with an explicit BYVAL, you effectively
switch off the compilers type-checking for that parameter. This can be useful in cases
where the called code is expecting a BYREF parameter, and you wish to pass an
address of another data type that would trigger a compile-time error without the BYVAL
method. For example:

SUB TheSub(x AS STRINGZ) ' Address of x expected
 [statements]
END SUB
[statements]
DIM a$
a$ = "Dynamic string data"
CALL TheSub(BYVAL STRPTR(a$)) ' Pass data address

BYCOPY A parameter passed by copy is a special case; somewhat of a hybrid of the other two
methods. When a procedure expects a parameter to be passed by reference, it expects
to see a pointer to the data. In some cases, such as when the parameter is a calculated
expression, it is not precisely possible to pass a pointer, since an expression result is a
temporary value that does not exist in a permanent memory location. On the other hand,
if you wish to ensure that the original data is not modified by the procedure, you can place
a BYCOPY override in the arguments list.

In both cases, a copy of the data is stored in a temporary memory location, and the
parameter consists of a 4-byte address of this temporary location. Another way to force
BYCOPY is to enclose a variable name in parentheses, so it will appear to the compiler
as an expression, rather than just a single variable.

Unless declared otherwise, parameters default to BYREF passing method. Expressions
and constants are always passed BYCOPY. Fixed length strings, User-Defined Types,
and full arrays are always passed BYREF.

CALL MySub (i&) ' i& is passed by reference
CALL MySub (BYREF i&) ' i& is passed by reference
CALL MySub (BYCOPY i&) ' i& is passed by copy
CALL MySub ((i&)) ' i& is passed by copy

Unless declared otherwise, parameters default to the BYREF passing method.
 Expressions and constants are always passed BYCOPY. Full arrays are always passed
BYREF.

Entire arrays are specified by using an empty set of parentheses after the array, while
individual array elements are specified by subscript index number. For example:

CALL SumArray(a()) ' pass entire array 'a'
CALL SumArray(a(3)) ' pass element 3 of array 'a'

The CALL statement can be used to invoke functions, subs, methods, properties, or
fastprocs. In this case, the return value of the function is simply discarded, unless the TO
keyword is used to specify a return variable.

If a procedure expects a parameter by reference, it is possible to substitute a pointer by
value, for the identical result. This is particularly useful with Fixed-length strings and
Types:

DECLARE SUB a(z%)
DIM MyInt AS INTEGER, x AS INTEGER PTR
x = VARPTR(MyInt)
CALL a(MyInt)
 ' or
CALL a(BYVAL x)
 ' or

PowerBASIC Compiler for Windows Version 10

481 / 2126

CALL a(BYVAL VARPTR(MyInt))

Of course, if the procedure is expecting a parameter by value, you may not pass the
pointer, but rather the pointer target (i.e., CALL a(@x)).

PowerBASIC compilers have a limit of 32 parameters per SUB, FUNCTION, METHOD,
and PROPERTY. To pass more than 32 parameters, construct a User-Defined Type
(UDT) and pass (the address of) the UDT by reference (BYREF) instead.

Fixed-length strings, STRINGZ strings, and User-Defined Types/Unions may also
be passed as BYVAL or OPTIONAL parameters, now. Try to avoid passing
large items BYVAL, as it's terribly inefficient, and there is a maximum size
limit of 64 Kb for a given parameter list. Arrays cannot be passed BYVAL.

When a procedure definition specifies either a BYREF parameter or a pointer variable
parameter, the calling code may freely pass a BYVAL DWORD or a Pointer instead.
While the use of the explicit BYVAL override in the calling code is optional, it is
recommended for clarity. It is necessary to explicitly declare all pointer parameters as
BYVAL (i.e., BYVAL X AS BYTE PTR). Failure to do so will generate a compile-time
Error 549 ("BYVAL required with pointers").

A procedure may also be imported and exported within the same module. That is, a
function in the module may be stated as EXPORT, while a DECLARE in the same module
specifies it as an imported function by the option LIB "XXX.DLL", provided that XXX.DLL is
the name of the module. This may be particularly valuable when you wish to build an
#INCLUDE file with all of the DECLARE statements for a project.

For information on using OPTIONAL parameters, please see DECLARE, FUNCTION,
METHOD, PROPERTY and SUB topics.

NOTHING The reserved word NOTHING can be used to replace any OBJECT variable parameter. In
this case, the compiler passes a null object (or a pointer to a null object if BYREF) in
place of a typical parameter. While this simplifies some programming issues, the
technique must be used with caution. If the target METHOD or FUNCTION is not
expecting a null parameter, it could cause a fatal error condition.

TO result_var This offers an optional way to assign a function return value to result_var. For example,
the following code assigns the return value to x% in two different ways:

x% = MyFunCall
CALL MyFunCall TO x%

Restrictions A thread Function may not be directly called or executed, except by a THREAD CREATE
statement.

See also CALL DWORD, DECLARE, FASTPROC, FUNCTION/END FUNCTION, METHOD,
PROPERTY, SUB/END SUB, THREAD CREATE

CALL DWORD statement

CALL DWORD statement
Purpose Invoke a Sub or Function indirectly.

Syntax CALL DWORD TargetPtr
CALL DWORD TargetPtr USING abc([arguments]) [TO result_var]

Remarks CALL DWORD is an essential ingredient for implementing run-time (explicit) dynamic
linking of DLLs, rather than the more common load-time (implicit) linking. This provides a
way of constructing calls to APIs and DLLs that may not be present in all versions of
Windows. This technique ensures that an application can start up successfully, even if
Windows cannot resolve the location of the API or DLL function.

The first (simplified) form of CALL DWORD may be used if the target Sub/Function takes
no parameters and offers no return value. It also requires STDCALL (

) calling conventions, which is used by the vast majority (99%+) of import procedures.

PowerBASIC Compiler for Windows Version 10

482 / 2126

 In all other cases, you must use the second form, with a USING clause to define the
signature of the target Sun/Function.

TargetPtr A Double-word, Long-integer, or pointer variable that contains the address of the entry
point of a procedure (Sub or Function). If the target Sub/Function is located in the same
module, you can retrieve the address with the CODEPTR function. If it's located in an
external DLL, use IMPORT ADDR to load it and get the address.

USING This option is used to define a model procedure declaration which matches all of the
calling conventions desired to be used to invoke the target Sub/Function. For example,
the following two calls to the function MySubCall are equivalent:

DECLARE SUB MySubCall
DIM PtrMySubCall AS DWORD
PtrMySubCall= CODEPTR(MySubCall)
[statements]
CALL MySubCall
CALL DWORD PtrMySubCall USING MySubCall

arguments An optional, comma-delimited list of variables, expressions, and constants to be passed
to the procedure as parameters. In the CALL DWORD context, enclosing parentheses
are required. The number and type of parameters passed must agree with the arguments
of the procedure named by the USING clause. See CALL for more information on
parameter passing methods.

TO result_var When calling a Function which returns a value, the TO keyword offers a way to assign the
function return value to result_var.

Restrictions Thread Functions and Callback Functions may not be invoked with CALL DWORD. The
DECLARE model for the USING clause may not specify a LIB or IMPORT option.

See also CALL, CODEPTR, DECLARE, FASTPROC, FUNCTION/END FUNCTION, IMPORT,
SUB/END SUB, THREAD CREATE

CALLSTK statement

CALLSTK statement
Purpose Capture a complete representation of the stack frames in the call stack.

Syntax CALLSTK diskfilename$

Remarks PowerBASIC creates a stack frame for each call to a Sub, Function, Method, or Property,
and records each nested call in a call stack . The stack frame holds the parameters being
passed to the routine, and providing space for local variable storage, etc. Since
procedures can call other procedures to an almost limitless depth, there may be a
substantial number of stack frames present at any given moment.

The CALLSTK statement can help provide answers to the age-old "how did I get here?"
question. When combined with other debugging statements such as CALLSTK$,
CALLSTKCOUNT, and TRACE, the programmer has a set of tools that can significantly
reduce the amount of effort required to debug an application.

Executing a CALLSTK statement captures a representation of all of the stack frames that
exist above the one that includes the CALLSTK statement. When the CALLSTK
statement is executed, a standard sequential file (of the specified file name in
diskfilename$) is created. The resulting disk file contains a list of every call to a
procedure, and their associated parameter values, which are currently defined on the call
stack.

diskfilename$ must be a legal file spec, may be a Long File Name (LFN), and may
include a path. If the file cannot be created for any reason, the operation will be ignored
and no run-time error will be generated. If present, CALLSTK overwrites the existing file.

If PBMAIN calls the SUB aaa(x&) which then calls the SUB bbb(y&), the CALLSTK from

PowerBASIC Compiler for Windows Version 10

483 / 2126

within bbb(y&) might look like this:

PBMAIN()
aaa(77)
bbb(-1)

Later, if bbb(y&) exited, then aaa(x&) called ccc(z&), the updated CALLSTK from within
ccc(z&) might then appear as:

PBMAIN()
aaa(77)
ccc(33)

Numeric parameters are displayed in decimal, while pointer and array parameters display
a decimal representation of the offset of the target value.

Restrictions CALLSTK can be invaluable during debugging, but it generates substantial additional code
that should be avoided in a final release version of an application. If the source code
contains #TOOLS OFF, all CALLSTK statements which remain in the program are
ignored.

The CALLSTK statement is "thread-aware", displaying only stack frame details from the
thread in which it was executed.

See also #TOOLS, CALLSTK$, CALLSTKCOUNT, FUNCNAME$, PROFILE, TRACE

Example FUNCTION PBMAIN
 CALL Sb1(100)
END FUNCTION

SUB Sb1(x AS LONG)
 CALL Sb2(x + 1)
END SUB

SUB Sb2(y AS LONG)
 CALLSTK "Stack frame test.txt"
END SUB

Result PBMAIN()
SB1(100)
SB2(101)

CALLSTK$ function

CALLSTK$ function
Purpose Retrieve the details of a specific stack frame from the call stack.

Syntax sfname$ = CALLSTK$(n)

Remarks CALLSTK$(1) returns the name of the current Sub, Function, Method, or Property, and
the value of each of the parameters at the time it was called. CALLSTK$(2) returns the
name of the procedure which called the current one, as well as its parameters. Likewise,
CALLSTK$(3) returns the one above it, and so forth.

If the CALLSTK$(n) parameter is outside the range of one (1) through the number of stack
frames identified by CALLSTKCOUNT, an empty

 is returned. parameters are displayed in decimal, while pointer and array parameters
display a decimal representation of the offset of the target value.

Restrictions The CALLSTK$ function can be invaluable during debugging, but it generates substantial
extra code which should be avoided in a final release version of an application. If the
source code contains #TOOLS OFF, all CALLSTK$ functions which remain in the
program return an empty string.

PowerBASIC Compiler for Windows Version 10

484 / 2126

The CALLSTK$ function is "thread-aware", returning only stack frame details from the
thread in which it was referenced.

See also #TOOLS, CALLSTK, CALLSTKCOUNT, FUNCNAME$, PROFILE, TRACE

Example FOR x& = CALLSTKCOUNT TO 1 STEP -1
 A$ = A$ + CALLSTK$(x&)
NEXT x&

CALLSTKCOUNT function

CALLSTKCOUNT function
Purpose Retrieve the number of stack frames in the call stack. Used in conjunction with the

CALLSTK$ function.

Syntax count& = CALLSTKCOUNT

Remarks CALLSTKCOUNT returns a Long-integer value that represents the total number of stack
frames that currently exist on the application call stack.

Retrieve individual stack frame details with the CALLSTK$ function, or write them all to a
disk file with the CALLSTK statement.

Restrictions The CALLSTKCOUNT function, when used in conjunction with the CALLSTK$ function,
can be invaluable during debugging, but its use generates substantial extra code which
should be avoided in a final release version of an application. If the source code contains
#TOOLS OFF, all CALLSTKCOUNT functions which remain in the program return zero.

The CALLSTKCOUNT function is "thread-aware", returning only the stack frame count
from the thread in which it was referenced.

See also #TOOLS, CALLSTK$, CALLSTK, FUNCNAME$, PROFILE, TRACE

Example FOR x& = CALLSTKCOUNT TO 1 STEP –1
 A$ = A$ + CALLSTK$(x&)
NEXT x&

CB Callback functions

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CB Callback functions
Purpose In a Callback Function, return information about a message.

Syntax CtlID = CB.CTL
CtlMsg = CB.CTLMSG
WinHndl = CB.HNDL
Value = CB.LPARAM
Msg = CB.MSG
Value = CB.WPARAM
CodeMsg = CB.NMCODE

PowerBASIC Compiler for Windows Version 10

485 / 2126

NmPtr = CB.NMHDR
NmStruc = CB.NMHDR$
NmHndl = CB.NMHWND
NmID = CB.NMID

Remarks When an event occurs (like a user clicking on a button, a character typed into a text box,
etc.) Windows sends a message to the

 Callback Function, or the Dialog Callback Function. The CB functions are used to
easily retrieve information about the message. These CB functions can only be used
within a callback function.
Callback functions in Windows have a standard set of four parameters. For this reason,
PowerBASIC allows you to ignore them and save some typing in your source code. The
implied parameters are:

FUNCTION DlgCallback(BYVAL hDlg AS DWORD _
 BYVAL wMsg AS LONG _
 BYVAL wParam AS LONG _
 BYVAL lParam AS LONG)

Generic Callback Functions

CB.HNDL This function returns the window handle of the parent dialog. This is the
value specified by the hDlg parameter above.

CB.MSG Each type of message sent to your callback function has a unique numeric
value, such as %WM_COMMAND, %WM_NOTIFY, etc. CB.MSG will
return the actual numeric message value of the message being processed.
The definitions of the numeric values in other CB functions (CB.LPARAM,
CB.WPARAM, CB.CTL, etc.) can only be ascertained once CB.MSG is
identified. Therefore, callback functions usually test the value of CB.MSG
first.

CB.WPARA
M

When Windows sends a message to a callback function, the wParam
value contains different values, depending on the nature of the particular
message (CB.MSG). In other words, CB.WPARAM returns a message-
dependent value.

CB.LPARA
M

When Windows sends a message to a callback function, the lParam value
contains different values, depending on the nature of the particular
message (CB.MSG). In other words, CB.LPARAM returns a message-
dependent value.

%WM_COMMAND Specific Callback Functions

CB.CTL If CB.MSG = %WM_COMMAND, this function returns the ID number
assigned to the control with the

 statement. For other values of CB.MSG, it returns message-
dependent values. This value is sent as the low-order word of the
wParam parameter. It's functionally equivalent to LO(WORD,
wParam&) in a conventional function, or LO(WORD, CB.WPARAM)
in a DDT Callback Function.

CB.CTLMS
G

If CB.MSG = %WM_COMMAND, this function returns the specific control
message describing the event which occurred. For example, CB.CTLMSG
returns %BN_CLICKED when the user clicks a button. For other values of
CB.MSG, it returns message-dependent values. This value is sent as the
high-order word of the wParam parameter. It's functionally equivalent to
HI(WORD, wParam&) in a conventional function, or HI(WORD,
CB.WPARAM) in a DDT Callback Function.

%WM_NOTIFY Specific Callback Functions

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

486 / 2126

CB.NMCOD
E

If CB.MSG = %WM_NOTIFY, this function returns the specific notification
message describing the event which occurred. For example,
CB.NMCODE returns %NM_SETFOCUS when the described control gains
the

. For other values of CB.MSG, the value returned is meaningless.
CB.NMHDR If CB.MSG = %WM_NOTIFY, this function returns the address (a

) to the NMHDR UDT for this notification message. NMHDR is
defined as:
Type NMHDR
 hwndFrom as DWord ' Handle of the control sending the
message
 idfrom as DWord ' Identifier of the control sending the
message
 code as Long ' Notification code
End Type

Some notification messages (%NM_CHAR, %NM_CLICK, etc.) require an
extended version of the NM structure. However, all NM structures begin
with an NMHDR UDT, so the pointer returned here is always accurate. For
other values of CB.MSG, the pointer returned by CB.NMHDR is
meaningless.

CB.NMHDR
$

If CB.MSG = %WM_NOTIFY, this function returns the contents of the
NMHDR UDT as a dynamic string. If the notification message is one which
requires an extended version of the NM structure, the string returned
contains all of the data for the extended UDT. However, in all cases, the
first 12 bytes of the returned string will be the contents of NMHDR. You
can use TYPE SET to assign the string data to an appropriate user-defined
type. For other values of CB.MSG, the string returned by CB.NMHDR$ is
meaningless.

The following notification messages use the extended NM structures as
listed, so an appropriately longer string is returned:

Message UDT

%NM_CLICK NMMOUSE

%NM_RCLICK NMMOUSE

%NM_NCHITTEST NMMOUSE

%NM_KEYDOWN NMKEY

%NM_SETCURSOR NMMOUSE

%NM_CHAR NMCHAR

%
NM_TOOLTIPSCREATE
D

NMTOOLTIPSCREATED

Other special notify messages may use a different extended NM structure
than those listed above. To ensure compatibility, you can include an
optional numeric parameter to specify the size of the special UDT you are
using:

TYPE SET NotifyUDT = CB.NMHDR$(sizeof(NotifyUDT))

CB.NMHWN
D

If CB.MSG = %WM_NOTIFY, this function returns the handle of the control
which sent this message. For other values of CB.MSG, the value returned
is meaningless.

CB.NMID If CB.MSG = %WM_NOTIFY, this function returns the ID number assigned
to this control. For other values of CB.MSG, the value returned is
meaningless.

Restrictions These functions are only valid inside a Callback Function. The CB Callback functions
replace CBMSG, CBHNDL, CBLPARAM, CBWPARAM, CBCTL, and CBCTLMSG . Note

PowerBASIC Compiler for Windows Version 10

487 / 2126

these functions are no longer supported, so update your code to use the new syntax.

See also Callbacks, Dynamic Dialog Tools

CBYT function

CBYT, CCUR, CCUX, CDBL, CDWD, CEXT,
CINT, CLNG, CQUD, CSNG, and CWRD
functions
Purpose Convert a value to specific variable type.

Syntax bytevar? = CBYT(numeric_expression)
currencyvar@ = CCUR(numeric_expression)
currencyextvar@@ = CCUX(numeric_expression)
doublevar# = CDBL(numeric_expression)
doublewordvar??? = CDWD(numeric_expression)
extendedvar## = CEXT(numeric_expression)
integervar% = CINT(numeric_expression)
longintvar& = CLNG(numeric_expression)
quadintvar&& = CQUD(numeric_expression)
singlevar! = CSNG(numeric_expression)
wordvar?? = CWRD(numeric_expression)

Remarks Each of these functions converts a

 expression to a particular variable type. In each case, numeric_expression must be
within the legal range for the result type. The numeric_expression will be rounded if
necessary.

Function Result type
CBYT Byte
CCUR Currency
CCUX Extended-currency
CDBL Double-precision floating-point
CDWD Double-word
CEXT Extended-precision floating-point
CINT Integer
CLNG Long-integer
CQUD Quad-integer
CSNG Single-precision floating-point
CWRD Word

These conversion functions are rarely needed as PowerBASIC automatically performs any
necessary conversions when executing an assignment statement or passing parameters.
For example:

e% = f#

is equivalent to:

e% = CINT(f#)

In the case of the functions that convert to

 values, the fractional part of the number is rounded. If the fractional part is exactly .5
then it rounds to the nearest even integral value. For example, CINT(1.5) returns 2,
CINT(.5) returns 0, and CLNG(-0.6) returns -1.

Restrictions CSNG limit string display to 7 significant digits.

See also CEIL, CVI and associated functions, FIX, INT, MKI$ and associated functions

PowerBASIC Compiler for Windows Version 10

488 / 2126

Example ' Calculate CINT for a series of values
FOR I! = 2.4! TO 2.65! STEP 0.05!
 x$ = FORMAT$(I!, "0.00") + " is" + STR$(CINT(I!))
NEXT I!

Result 2.40 is 2
2.45 is 2
2.50 is 2
2.55 is 3
2.60 is 3
2.65 is 3

CCUR function

CBYT, CCUR, CCUX, CDBL, CDWD, CEXT,
CINT, CLNG, CQUD, CSNG, and CWRD
functions
Purpose Convert a value to specific variable type.

Syntax bytevar? = CBYT(numeric_expression)
currencyvar@ = CCUR(numeric_expression)
currencyextvar@@ = CCUX(numeric_expression)
doublevar# = CDBL(numeric_expression)
doublewordvar??? = CDWD(numeric_expression)
extendedvar## = CEXT(numeric_expression)
integervar% = CINT(numeric_expression)
longintvar& = CLNG(numeric_expression)
quadintvar&& = CQUD(numeric_expression)
singlevar! = CSNG(numeric_expression)
wordvar?? = CWRD(numeric_expression)

Remarks Each of these functions converts a

 expression to a particular variable type. In each case, numeric_expression must be
within the legal range for the result type. The numeric_expression will be rounded if
necessary.

Function Result type
CBYT Byte
CCUR Currency
CCUX Extended-currency
CDBL Double-precision floating-point
CDWD Double-word
CEXT Extended-precision floating-point
CINT Integer
CLNG Long-integer
CQUD Quad-integer
CSNG Single-precision floating-point
CWRD Word

These conversion functions are rarely needed as PowerBASIC automatically performs any
necessary conversions when executing an assignment statement or passing parameters.
For example:

e% = f#

is equivalent to:

e% = CINT(f#)

PowerBASIC Compiler for Windows Version 10

489 / 2126

In the case of the functions that convert to

 values, the fractional part of the number is rounded. If the fractional part is exactly .5
then it rounds to the nearest even integral value. For example, CINT(1.5) returns 2,
CINT(.5) returns 0, and CLNG(-0.6) returns -1.

Restrictions CSNG limit string display to 7 significant digits.

See also CEIL, CVI and associated functions, FIX, INT, MKI$ and associated functions

Example ' Calculate CINT for a series of values
FOR I! = 2.4! TO 2.65! STEP 0.05!
 x$ = FORMAT$(I!, "0.00") + " is" + STR$(CINT(I!))
NEXT I!

Result 2.40 is 2
2.45 is 2
2.50 is 2
2.55 is 3
2.60 is 3
2.65 is 3

CCUX function

CBYT, CCUR, CCUX, CDBL, CDWD, CEXT,
CINT, CLNG, CQUD, CSNG, and CWRD
functions
Purpose Convert a value to specific variable type.

Syntax bytevar? = CBYT(numeric_expression)
currencyvar@ = CCUR(numeric_expression)
currencyextvar@@ = CCUX(numeric_expression)
doublevar# = CDBL(numeric_expression)
doublewordvar??? = CDWD(numeric_expression)
extendedvar## = CEXT(numeric_expression)
integervar% = CINT(numeric_expression)
longintvar& = CLNG(numeric_expression)
quadintvar&& = CQUD(numeric_expression)
singlevar! = CSNG(numeric_expression)
wordvar?? = CWRD(numeric_expression)

Remarks Each of these functions converts a

 expression to a particular variable type. In each case, numeric_expression must be
within the legal range for the result type. The numeric_expression will be rounded if
necessary.

Function Result type
CBYT Byte
CCUR Currency
CCUX Extended-currency
CDBL Double-precision floating-point
CDWD Double-word
CEXT Extended-precision floating-point
CINT Integer
CLNG Long-integer
CQUD Quad-integer
CSNG Single-precision floating-point
CWRD Word

PowerBASIC Compiler for Windows Version 10

490 / 2126

These conversion functions are rarely needed as PowerBASIC automatically performs any
necessary conversions when executing an assignment statement or passing parameters.
For example:

e% = f#

is equivalent to:

e% = CINT(f#)

In the case of the functions that convert to

 values, the fractional part of the number is rounded. If the fractional part is exactly .5
then it rounds to the nearest even integral value. For example, CINT(1.5) returns 2,
CINT(.5) returns 0, and CLNG(-0.6) returns -1.

Restrictions CSNG limit string display to 7 significant digits.

See also CEIL, CVI and associated functions, FIX, INT, MKI$ and associated functions

Example ' Calculate CINT for a series of values
FOR I! = 2.4! TO 2.65! STEP 0.05!
 x$ = FORMAT$(I!, "0.00") + " is" + STR$(CINT(I!))
NEXT I!

Result 2.40 is 2
2.45 is 2
2.50 is 2
2.55 is 3
2.60 is 3
2.65 is 3

CDBL function

CBYT, CCUR, CCUX, CDBL, CDWD, CEXT,
CINT, CLNG, CQUD, CSNG, and CWRD
functions
Purpose Convert a value to specific variable type.

Syntax bytevar? = CBYT(numeric_expression)
currencyvar@ = CCUR(numeric_expression)
currencyextvar@@ = CCUX(numeric_expression)
doublevar# = CDBL(numeric_expression)
doublewordvar??? = CDWD(numeric_expression)
extendedvar## = CEXT(numeric_expression)
integervar% = CINT(numeric_expression)
longintvar& = CLNG(numeric_expression)
quadintvar&& = CQUD(numeric_expression)
singlevar! = CSNG(numeric_expression)
wordvar?? = CWRD(numeric_expression)

Remarks Each of these functions converts a

 expression to a particular variable type. In each case, numeric_expression must be
within the legal range for the result type. The numeric_expression will be rounded if
necessary.

Function Result type
CBYT Byte
CCUR Currency
CCUX Extended-currency
CDBL Double-precision floating-point

PowerBASIC Compiler for Windows Version 10

491 / 2126

CDWD Double-word
CEXT Extended-precision floating-point
CINT Integer
CLNG Long-integer
CQUD Quad-integer
CSNG Single-precision floating-point
CWRD Word

These conversion functions are rarely needed as PowerBASIC automatically performs any
necessary conversions when executing an assignment statement or passing parameters.
For example:

e% = f#

is equivalent to:

e% = CINT(f#)

In the case of the functions that convert to

 values, the fractional part of the number is rounded. If the fractional part is exactly .5
then it rounds to the nearest even integral value. For example, CINT(1.5) returns 2,
CINT(.5) returns 0, and CLNG(-0.6) returns -1.

Restrictions CSNG limit string display to 7 significant digits.

See also CEIL, CVI and associated functions, FIX, INT, MKI$ and associated functions

Example ' Calculate CINT for a series of values
FOR I! = 2.4! TO 2.65! STEP 0.05!
 x$ = FORMAT$(I!, "0.00") + " is" + STR$(CINT(I!))
NEXT I!

Result 2.40 is 2
2.45 is 2
2.50 is 2
2.55 is 3
2.60 is 3
2.65 is 3

CDWD function

CBYT, CCUR, CCUX, CDBL, CDWD, CEXT,
CINT, CLNG, CQUD, CSNG, and CWRD
functions
Purpose Convert a value to specific variable type.

Syntax bytevar? = CBYT(numeric_expression)
currencyvar@ = CCUR(numeric_expression)
currencyextvar@@ = CCUX(numeric_expression)
doublevar# = CDBL(numeric_expression)
doublewordvar??? = CDWD(numeric_expression)
extendedvar## = CEXT(numeric_expression)
integervar% = CINT(numeric_expression)
longintvar& = CLNG(numeric_expression)
quadintvar&& = CQUD(numeric_expression)
singlevar! = CSNG(numeric_expression)
wordvar?? = CWRD(numeric_expression)

Remarks Each of these functions converts a

 expression to a particular variable type. In each case, numeric_expression must be

PowerBASIC Compiler for Windows Version 10

492 / 2126

within the legal range for the result type. The numeric_expression will be rounded if
necessary.

Function Result type
CBYT Byte
CCUR Currency
CCUX Extended-currency
CDBL Double-precision floating-point
CDWD Double-word
CEXT Extended-precision floating-point
CINT Integer
CLNG Long-integer
CQUD Quad-integer
CSNG Single-precision floating-point
CWRD Word

These conversion functions are rarely needed as PowerBASIC automatically performs any
necessary conversions when executing an assignment statement or passing parameters.
For example:

e% = f#

is equivalent to:

e% = CINT(f#)

In the case of the functions that convert to

 values, the fractional part of the number is rounded. If the fractional part is exactly .5
then it rounds to the nearest even integral value. For example, CINT(1.5) returns 2,
CINT(.5) returns 0, and CLNG(-0.6) returns -1.

Restrictions CSNG limit string display to 7 significant digits.

See also CEIL, CVI and associated functions, FIX, INT, MKI$ and associated functions

Example ' Calculate CINT for a series of values
FOR I! = 2.4! TO 2.65! STEP 0.05!
 x$ = FORMAT$(I!, "0.00") + " is" + STR$(CINT(I!))
NEXT I!

Result 2.40 is 2
2.45 is 2
2.50 is 2
2.55 is 3
2.60 is 3
2.65 is 3

CEIL function

CEIL function
Purpose Convert a

 variable or expression into an value, by returning the smallest integral value that is
greater than or equal to its argument.

Syntax intvar = CEIL(numeric_expression)

Remarks The CEIL function rounds upward, returning the smallest integral value that is greater than
or equal to numeric_expression. For example, y = CEIL(1.5) places the value 2 into y.

See also CINT, FIX, FRAC, INT, ROUND

Example ' Display the ceiling for a series of values
FOR W! = -1.5! TO 1.5! STEP 0.5!
 x$ = "CEIL" + FORMAT$(W!, "* 0.00") + _

PowerBASIC Compiler for Windows Version 10

493 / 2126

 " =" + FORMAT$(CEIL(W!), "* 0.00")
NEXT W!

Result CEIL -1.50 = -1.00
CEIL -1.00 = -1.00
CEIL -0.50 = 0.00
CEIL 0.00 = 0.00
CEIL 0.50 = 1.00
CEIL 1.00 = 1.00
CEIL 1.50 = 2.00

CEXT function

CBYT, CCUR, CCUX, CDBL, CDWD, CEXT,
CINT, CLNG, CQUD, CSNG, and CWRD
functions
Purpose Convert a value to specific variable type.

Syntax bytevar? = CBYT(numeric_expression)
currencyvar@ = CCUR(numeric_expression)
currencyextvar@@ = CCUX(numeric_expression)
doublevar# = CDBL(numeric_expression)
doublewordvar??? = CDWD(numeric_expression)
extendedvar## = CEXT(numeric_expression)
integervar% = CINT(numeric_expression)
longintvar& = CLNG(numeric_expression)
quadintvar&& = CQUD(numeric_expression)
singlevar! = CSNG(numeric_expression)
wordvar?? = CWRD(numeric_expression)

Remarks Each of these functions converts a

 expression to a particular variable type. In each case, numeric_expression must be
within the legal range for the result type. The numeric_expression will be rounded if
necessary.

Function Result type
CBYT Byte
CCUR Currency
CCUX Extended-currency
CDBL Double-precision floating-point
CDWD Double-word
CEXT Extended-precision floating-point
CINT Integer
CLNG Long-integer
CQUD Quad-integer
CSNG Single-precision floating-point
CWRD Word

These conversion functions are rarely needed as PowerBASIC automatically performs any
necessary conversions when executing an assignment statement or passing parameters.
For example:

e% = f#

is equivalent to:

e% = CINT(f#)

In the case of the functions that convert to

PowerBASIC Compiler for Windows Version 10

494 / 2126

 values, the fractional part of the number is rounded. If the fractional part is exactly .5
then it rounds to the nearest even integral value. For example, CINT(1.5) returns 2,
CINT(.5) returns 0, and CLNG(-0.6) returns -1.

Restrictions CSNG limit string display to 7 significant digits.

See also CEIL, CVI and associated functions, FIX, INT, MKI$ and associated functions

Example ' Calculate CINT for a series of values
FOR I! = 2.4! TO 2.65! STEP 0.05!
 x$ = FORMAT$(I!, "0.00") + " is" + STR$(CINT(I!))
NEXT I!

Result 2.40 is 2
2.45 is 2
2.50 is 2
2.55 is 3
2.60 is 3
2.65 is 3

CHDIR statement

CHDIR statement
Purpose Change the current (default) directory on the default drive, or any other drive (similar to the

DOS CHDIR command). CHDIR affects only the default drive for the current program.

Syntax CHDIR path

Remarks path is a string expression containing either a relative or an explicit directory name. The
directory name can be constructed from a (DOS-Style) Short File Name (SFN) directory
name, a Long File Name (LFN) directory name, or a combination of the two. Also, path
may be prefixed with a drive letter and colon (i.e., "D:") to change the current directory on
a non-default drive.

The current directory is the location where your program will perform file operations by
default. Thus:

CHDIR "\DATA"

changes to the \DATA subdirectory on the current drive, and:

CHDIR "..\DATA2"

changes the current directory to a directory whose parent is also the parent to the original
directory. The double-period implies the parent directory.

CHDIR "J:\Program Files\Internet Explorer"

changes the current directory of Drive J. Drive J need not be the current default drive.

If path does not specify a valid directory on the target drive, a run-time Error 76 occurs
("Path not found").

A program that changes the current directory on the default drive also changes its active
directory.

path may also be used with UNC names (i.e., \\server\share), but their use is subject to
operating system restrictions.

Restrictions CHDIR is not intended to change the current default drive. Use CHDRIVE instead.

See also CHDRIVE, CURDIR$, MKDIR, RMDIR

CHDRIVE statement

PowerBASIC Compiler for Windows Version 10

495 / 2126

CHDRIVE statement
Purpose Change the current default drive.

Syntax CHDRIVE drive

Remarks drive is a string expression whose first character is a letter from A to the highest logical
drive letter. The trailing colon (:) that DOS uses is optional in PowerBASIC. If drive does
not indicate a valid drive, a run-time Error 76 occurs ("Path not found").

See also CHDIR, CURDIR$, MKDIR, RMDIR

Example SDrive$ = "C"
CHDRIVE SDrive$ ' change to the C: drive

CHRBYTES function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CHRBYTES function
Purpose Determine the size of a single character in a

 variable.
Syntax siz& = CHRBYTES(MyStringVar)

Remarks This function is used to determine whether a particular string variable contains ANSI
characters or Unicode (wide) characters, ANSI characters are stored in 1 byte, so the
function returns 1 if the variable is a dynamic string, stringz, string*n, or field string.
 Unicode characters are stored in 2 bytes, so the function returns 2 if the variable is a
wstring, wstringz, wstring*n, or wfield string. This function may be particularly valuable in
some macros which use string variables.

See Also LEN, SIZEOF

ChrToOem$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CHRTOOEM$ function
Purpose Translates a

PowerBASIC Compiler for Windows Version 10

496 / 2126

 of ANSI/WIDE characters to OEM byte characters.
Syntax o$ = ChrToOem$(AnsiOrWide$)

Remarks AnsiOrWide$ contains a series of ANSI characters or WIDE (16-bit) characters,
 ChrToOem$ translates it into OEM byte characters.

See also OemToChr$, ChrToUtf8$, Utf8ToChr$

ChrToUtf8$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

ChrToUtf8$ function
Purpose Translates a string of ANSI/WIDE characters to UTF-8 byte characters.

Syntax o$ = ChrToUtf8$(AnsiOrWide$)

Remarks AnsiOrWide$ contains a series of ANSI characters or WIDE (16-bit) characters,
 ChrToUtf8$ translates it into UTF-8 byte characters.

See also ChrToOem$, OemToChr$, Utf8ToChr$

CHOOSE function

CHOOSE function
Purpose Return one of several values, based upon the value of an index.

Syntax y = CHOOSE(index&, choice1 [, choice2] ...[ELSE choice9])
y& = CHOOSE&(index&, choice1 [, choice2] ...[ELSE choice9])
y$ = CHOOSE$(index&, choice1 [, choice2] ...[ELSE choice9])
y = CHOOSE([BIT] index&, choice1 [, choice2] ...[ELSE choice9])
y& = CHOOSE&([BIT] index&, choice1 [, choice2] ...[ELSE choice9])
y$ = CHOOSE$([BIT] index&, choice1 [, choice2] ...[ELSE choice9])
y$ = CHOOSE$([BITS] index&, choice1 [, choice2] ...[ELSE choice9])

Remarks These functions may take any number of choice parameters. They return one of the
parameters, or a combination of them, based upon the value of index&. In the standard
form, index& makes the choice based upon the sequence of the parameters. That is, if
index& is one, choice1 is returned. If two, choice2 is returned, etc. If index& is not equal
to one of the choice values, the default value is returned to the calling code.

CHOOSE expects choices of any

 type. CHOOSE& expects choices optimized for an integral data type. CHOOSE$
expects choices of type. CHOOSE% is recognized as a valid synonym for
CHOOSE&.

ELSE If no match is made with one of the choice values, the value zero (0) or an empty (zero-
length) string is normally returned. However, if an ELSE clause is included as the last
choice, its value is returned as the default value. For example:

ChoiceVar$ = CHOOSE$(7,"ONE", "TWO" ELSE "NUL")

PowerBASIC Compiler for Windows Version 10

497 / 2126

In this case, the ELSE expression "NUL" is returned.

BIT If the BIT option is included, the selection is based upon the first bit set (lowest to
highest) in index&. That is, the lowest bit (1) returns choice1, the next bit (2) returns
choice2, the next bit (4) returns choice3, the next bit(8) returns choice4, etc. Evaluation of
index& stops as soon as one set bit is found. This is particularly valuable when used with
an ENUMERATION which also uses the BIT option, to describe a set of attributes for an
item in your program.

BITS This is similar to the BIT option, but is only available with the CHOOSE$() version. index&
is evaluated in the same general fashion, but the function may return multiple choices, as
a concatenated string, if more than one bit is set. For example:

x$ = CHOOSE$(BITS 5, "Computer ", "Laptop ", "Desktop ")

Since the value 5 consists of 2 bits (the lowest and third-lowest) set, the first and third
strings are concatenated and returned to the caller. In this case, "Computer Desktop " is
the result.

Restrictions PowerBASIC only evaluates the selected choice(s) at run-time, not all of them. This
ensures optimum execution speed, as well as the elimination of unanticipated side
effects.

See also IIF, IIF&, IIF$, MAX, MAX&, MAX$, MIN, MIN&, MIN$, SWITCH, SWITCH&, SWITCH$,
SELECT

Example y& = 4
a$ = CHOOSE$(y&, "Bill", "Bob", "Bruce", "Barry")

Result a$ = "Barry"

CHR$ function

CHR$/CHR$$ function
Purpose Converts one or more numeric character codes (ANSI or UNICODE), code ranges, and/or

 into a single string containing the corresponding character(s).
Syntax s$ = CHR$(expression [,expression] [,...])

s$ = CHR$(string_expression [,...])
s$$ = CHR$$(x& TO y&, ...)

Remarks The CHR$() form of the function creates a string of ANSI (1-byte) characters. Arguments
must be ANSI (1-byte) characters, or codes in the range of 0 to 255. The CHR$$() form of
the function creates a string of WIDE (2-byte) characters. Arguments must be WIDE (2-
byte) characters, or codes in the range of 0 to 65535. Generally speaking, PowerBASIC
handles ANSI/WIDE conversions for you, automatically and transparently. However, there
are just a few functions (CHR$, PEEK$, POKE$, STRING$, etc.) which are ambiguous,
by definition, and require that the programmer choose the appropriate result type (ANSI or
WIDE). Use CHR$ for ANSI results, or use CHR$$ for Unicode results. In the remainder
of these remarks, CHR$ is used to represent both CHR$ and CHR$$.

CHR$ creates and returns a string. There are three forms of arguments available, and
they may be intermixed in a single CHR$ function. The created string may contain no
characters, one character, or multiple characters, depending upon the arguments you
use. You may specify any number of arguments for this function.

If the argument is a numeric expression, it is translated into the character defined by that
number. A character code of -1 is treated as a special case. If you use it as an
argument, CHR$ returns an empty (zero length) string for that character. For example,
CHR$(65, -1, 66) returns "AB".

CHR$(x& TO y&) returns a sequence of all characters from CHR$(x&) through CHR$(y&)
inclusive. The characters may be ascending or descending in sequence. For example,
CHR$(65 TO 70) returns the string "ABCDEF". CHR$(52 T0 50) returns the string "432",

PowerBASIC Compiler for Windows Version 10

498 / 2126

and CHR$(65 TO 65) returns the string "A".

If the argument is a string expression, the characters are simply copied into the newly
created string at the specified position. The expanded CHR$ definition is intended to
assist in the encoding of longer strings, to avoid the need for concatenation operations.

For example, the CHR$ function can be used to create COLLATE strings for the ARRAY
SORT and ARRAY SCAN statements at run-time, and can be used to create string
equates at compile time:

$colstring = CHR$(0 TO 131, 97, 133 TO 255)

The following lines are functionally equivalent, and return the same string result:

a$ = CHR$("Line1", 13, 10, "Line2")
a$ = "Line1" & CHR$(13) & CHR$(10) & "Line2"
a$ = "Line1" & $CRLF & "Line2"

CHR$ complements the ASC function, which returns the numeric character code of a
nominated character in a string.

See also ARRAY SCAN, ARRAY SORT, ASC function, ASC statement, NUL$, SPACE$, STRING$

Example H$ = CHR$("a$=", $DQ, 33, $DQ+$DQ, 35 TO 39, 40, $DQ)

Result a$="!""#$%&'("

CHR$$ function

CHR$/CHR$$ function
Purpose Converts one or more numeric character codes (ANSI or UNICODE), code ranges, and/or

 into a single string containing the corresponding character(s).
Syntax s$ = CHR$(expression [,expression] [,...])

s$ = CHR$(string_expression [,...])
s$$ = CHR$$(x& TO y&, ...)

Remarks The CHR$() form of the function creates a string of ANSI (1-byte) characters. Arguments
must be ANSI (1-byte) characters, or codes in the range of 0 to 255. The CHR$$() form of
the function creates a string of WIDE (2-byte) characters. Arguments must be WIDE (2-
byte) characters, or codes in the range of 0 to 65535. Generally speaking, PowerBASIC
handles ANSI/WIDE conversions for you, automatically and transparently. However, there
are just a few functions (CHR$, PEEK$, POKE$, STRING$, etc.) which are ambiguous,
by definition, and require that the programmer choose the appropriate result type (ANSI or
WIDE). Use CHR$ for ANSI results, or use CHR$$ for Unicode results. In the remainder
of these remarks, CHR$ is used to represent both CHR$ and CHR$$.

CHR$ creates and returns a string. There are three forms of arguments available, and
they may be intermixed in a single CHR$ function. The created string may contain no
characters, one character, or multiple characters, depending upon the arguments you
use. You may specify any number of arguments for this function.

If the argument is a numeric expression, it is translated into the character defined by that
number. A character code of -1 is treated as a special case. If you use it as an
argument, CHR$ returns an empty (zero length) string for that character. For example,
CHR$(65, -1, 66) returns "AB".

CHR$(x& TO y&) returns a sequence of all characters from CHR$(x&) through CHR$(y&)
inclusive. The characters may be ascending or descending in sequence. For example,
CHR$(65 TO 70) returns the string "ABCDEF". CHR$(52 T0 50) returns the string "432",
and CHR$(65 TO 65) returns the string "A".

If the argument is a string expression, the characters are simply copied into the newly
created string at the specified position. The expanded CHR$ definition is intended to
assist in the encoding of longer strings, to avoid the need for concatenation operations.

PowerBASIC Compiler for Windows Version 10

499 / 2126

For example, the CHR$ function can be used to create COLLATE strings for the ARRAY
SORT and ARRAY SCAN statements at run-time, and can be used to create string
equates at compile time:

$colstring = CHR$(0 TO 131, 97, 133 TO 255)

The following lines are functionally equivalent, and return the same string result:

a$ = CHR$("Line1", 13, 10, "Line2")
a$ = "Line1" & CHR$(13) & CHR$(10) & "Line2"
a$ = "Line1" & $CRLF & "Line2"

CHR$ complements the ASC function, which returns the numeric character code of a
nominated character in a string.

See also ARRAY SCAN, ARRAY SORT, ASC function, ASC statement, NUL$, SPACE$, STRING$

Example H$ = CHR$("a$=", $DQ, 33, $DQ+$DQ, 35 TO 39, 40, $DQ)

Result a$="!""#$%&'("

CINT function

CBYT, CCUR, CCUX, CDBL, CDWD, CEXT,
CINT, CLNG, CQUD, CSNG, and CWRD
functions
Purpose Convert a value to specific variable type.

Syntax bytevar? = CBYT(numeric_expression)
currencyvar@ = CCUR(numeric_expression)
currencyextvar@@ = CCUX(numeric_expression)
doublevar# = CDBL(numeric_expression)
doublewordvar??? = CDWD(numeric_expression)
extendedvar## = CEXT(numeric_expression)
integervar% = CINT(numeric_expression)
longintvar& = CLNG(numeric_expression)
quadintvar&& = CQUD(numeric_expression)
singlevar! = CSNG(numeric_expression)
wordvar?? = CWRD(numeric_expression)

Remarks Each of these functions converts a

 expression to a particular variable type. In each case, numeric_expression must be
within the legal range for the result type. The numeric_expression will be rounded if
necessary.

Function Result type
CBYT Byte
CCUR Currency
CCUX Extended-currency
CDBL Double-precision floating-point
CDWD Double-word
CEXT Extended-precision floating-point
CINT Integer
CLNG Long-integer
CQUD Quad-integer
CSNG Single-precision floating-point
CWRD Word

These conversion functions are rarely needed as PowerBASIC automatically performs any
necessary conversions when executing an assignment statement or passing parameters.
For example:

PowerBASIC Compiler for Windows Version 10

500 / 2126

e% = f#

is equivalent to:

e% = CINT(f#)

In the case of the functions that convert to

 values, the fractional part of the number is rounded. If the fractional part is exactly .5
then it rounds to the nearest even integral value. For example, CINT(1.5) returns 2,
CINT(.5) returns 0, and CLNG(-0.6) returns -1.

Restrictions CSNG limit string display to 7 significant digits.

See also CEIL, CVI and associated functions, FIX, INT, MKI$ and associated functions

Example ' Calculate CINT for a series of values
FOR I! = 2.4! TO 2.65! STEP 0.05!
 x$ = FORMAT$(I!, "0.00") + " is" + STR$(CINT(I!))
NEXT I!

Result 2.40 is 2
2.45 is 2
2.50 is 2
2.55 is 3
2.60 is 3
2.65 is 3

CLASS/END CLASS block

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CLASS/END CLASS Block
Purpose Create the code and data for an object.

Syntax CLASS name [$GUID] [COMMON] [OPTIMIZE] [AS COM | AS EVENT]
 INSTANCE ClassName AS STRING
 Class Method code blocks...
 INTERFACE name $GUID [AS EVENT]
 INHERIT IUNKNOWN
 Method and Property code blocks...
 END INTERFACE
 EVENT SOURCE interface-name
END CLASS

Remarks CLASS / END CLASS statements enclose the Interface implementation(s) and Instance
variable declarations of a Class. METHOD and PROPERTY blocks contain the code to
be executed on an object. INSTANCE statements define the variables which are unique
to each instance of an object of this class.

The name and optional $GUID are supplied by the programmer to identify the class. By
default, a class is considered private, so that the methods are accessible only from within
the EXE or DLL where it is defined. The AS COM attribute makes the class available
externally, to virtually any process which is COM-aware.

PowerBASIC Compiler for Windows Version 10

501 / 2126

With a private class, the $GUID may be freely omitted, as PowerBASIC can readily
identify the class by name. With a published COM class, you should insert a specific
GUID of your choice. If omitted, a random GUID will be created by the compiler, but it
will change every time you compile the program. This will be difficult to synchronize with
other programs which wish to identify and access your object.

COMMON The optional COMMON descriptor may be included to specify that this class may be
freely referenced by and between linked unit modules (Host/Main or SLL). This has the
added side effect of ensuring that the class will not be removed by #OPTIMIZE CODE ON.

AS EVENT If a class is an Event Source (it generates events rather than handling events), one or
more EVENT SOURCE statements are included to name the event interfaces. The event
interfaces must be declared and implemented separately. An event is generated by
executing a RAISEEVENT statement or an OBJECT RAISEEVENT statement in the
class. If a class is an Event Handler (it contains code to handle an event generated by an
Event Source), the AS EVENT attribute must appear on the CLASS statement and each
INTERFACE statement. An Event Handler is also known as an "Event Sink".

OPTIMIZE With code optimization enabled (#OPTIMIZE CODE ON), PowerBASIC removes code for
subs and functions which are not called. Where possible, this technique is even applied
to individual methods and property methods within classes.

Of course, if an object variable is transferred out of the current module (to another
EXE/SLL/DLL), there is no way to determine (at compile-time) which methods may be
called on it at run-time, so none can be safely removed. COM, COMMON, and EVENT
classes allow variables to be transferred out of the module, so they block removal of any
code in the class.

The OPTIMIZE descriptor allows you to control this code optimization to a high degree. If
you specify the OPTIMIZE option, you are stating that no object variables on this class
will be transferred out of the module. Therefore, PowerBASIC is free to remove any code
in the class which is not referenced. This is a powerful tool which can allow you to
substantially reduce the size of your program.

The OPTIMIZE rules can be summarized:

1. If a class is marked COM, COMMON, or EVENT, no methods or property methods
are ever removed from it.

2. If a class is marked OPTIMIZE, you state that no object variables from this class
will be transferred out of the module. Methods which are not referenced are
removed from the final code. OPTIMIZE may not be combined with COM,
COMMON, or EVENT.

3. If no classes in the module are marked COM, COMMON, or EVENT, all classes
are considered to be marked OPTIMIZE. All methods in all classes which are not
referenced are extracted from the final code.

See also #OPTIMIZE, EVENT SOURCE, EVENTS, INSTANCE, INTERFACE (Direct), INTERFACE
(IDBind), Just what is COM?, METHOD, PROPERTY, RAISEEVENT, What is an object,
anyway?

CLIP$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

502 / 2126

CLIP$ function
Purpose Delete characters from a

.
Syntax s$ = CLIP$(LEFT StringExpression, Count&)

s$ = CLIP$(RIGHT StringExpression, Count&)
s$ = CLIP$(MID StringExpression, Start&, Count&)

Remarks LEFT Returns the contents of StringExpression with Count& characters
removed from the left side.

RIGHT Returns the contents of StringExpression with Count& characters
removed from the right side.

MID Returns the contents of StringExpression with Count& characters
removed starting at position Start&. The first character is considered
position 1, the second position 2...

If Count& is negative, or Start& is less than one, the return value is undefined.

Restrictions If Count& is less than one, the entire string is returned. If Start& is less than one, the
results are undefined.

See also EXTRACT$, LTRIM$, MID$, REMOVE$, REPLACE, RTRIM$, SHRINK$, STRINSERT$,
STRDELETE$, TRIM$, UNWRAP$

CLIPBOARD GET BITMAP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CLIPBOARD statement
Purpose Copy data to/from the Windows ClipBoard.

Syntax CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]
CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]
CLIPBOARD GET TEXT TO StrgVar [, ClipResult]
CLIPBOARD GET UNICODE TO StrgVar [, ClipResult]
CLIPBOARD RESET [, ClipResult]
CLIPBOARD SET BITMAP ClipHndl [, ClipResult]
CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]
CLIPBOARD SET TEXT StrgExpr [, ClipResult]
CLIPBOARD SET UNICODE StrgExpr [, ClipResult]

ClipHndl A Long Integer or Dword value which specifies the 32-bit handle of a

 passed to the clipboard.
ClipResult A Long Integer or Dword variable which receives a true result (-1) if the operation was

successful, or a false result (0) if it failed.

ClipVar A Long Integer or Dword variable which receives a 32-bit handle of a newly created
GRAPHIC BITMAP.

PowerBASIC Compiler for Windows Version 10

503 / 2126

StrgExpr A string expression which specifies data to be passed to the clipboard.

StrgVar A

 variable which receives string data from the clipboard.
Remarks The Windows ClipBoard provides support for the transfer of various types of data between

applications, or even different parts of a single application. The concept is simple -- save
some data on the ClipBoard and retrieve it later. In most cases, it's just used to transfer
plain text, so the PowerBASIC CLIPBOARD statement concentrates on the common data
formats. With text transfer, you can just read or write a string. With bitmaps, a GRAPHIC
BITMAP is used for this purpose.

When you retrieve data using CLIPBOARD, the original copy always remains in the
CLIPBOARD, so the operation can be repeated any number of times. When you store
data on the CLIPBOARD, your original copy remains unchanged. The data is copied,
with no change of ownership.

The clipboard can hold multiple data items, but only one of each data format at a time.
 Generally speaking, multiple data items are only used to store a single piece of data in
multiple formats to ensure it can be retrieved successfully later. However, you should
note that Windows automatically converts string data between TEXT, OEMTEXT, and
UNICODE. When you store data in one of those forms, it's not necessary to repeat it with
the others.

You must execute a CLIPBOARD RESET to empty the clipboard before storing
new data items.

Each form of the CLIPBOARD statement offers an optional ClipResult variable. If the
requested operation is deemed successful by Windows, this variable is assigned the
value TRUE (-1). If it fails, the value FALSE (0) is assigned instead. You should note that
the success test is not a comprehensive one. It tests only the operation, not the validity
of the data.

There are nine general forms of the CLIPBOARD statement:

CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]

A new GRAPHIC BITMAP is automatically created. A Bitmap is copied from the
ClipBoard and stored in this newly created GRAPHIC BITMAP. The handle of the
new GRAPHIC BITMAP is assigned to the ClipVar, a DWord or Long Integer
variable. If the operation is not successful, the value zero (0) is assigned instead.

CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. If necessary, it is converted to OEM Text
format, the format used by the Windows Console. If no text can be retrieved, a nul
(zero-length) string is assigned instead.

CLIPBOARD GET TEXT TO StrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the string variable
specified by StrgVar, which may be ANSI or WIDE format. If necessary, the text
is automatically converted to match the format of the target variable. If no text can
be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD RESET [, ClipResult]

The contents of the CLIPBOARD are deleted.

CLIPBOARD SET BITMAP ClipHndl [, ClipResult]

A GRAPHIC BITMAP, specified by ClipHndl, is stored on the CLIPBOARD. The
GRAPHIC BITMAP may be a GRAPHIC CONTROL, GRAPHIC WINDOW, or
GRAPHIC BITMAP. When passing a GRAPHIC CONTROL to the Clipboard, use
CONTROL HANDLE to obtain the handle to the GRAPHIC CONTROL.

CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data is
assumed to use characters in the OEM character set.

CLIPBOARD SET TEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data

PowerBASIC Compiler for Windows Version 10

504 / 2126

may be in either ANSI or WIDE format.

The following two functions, with UNICODE options, were specifically
designed for older versions of PowerBASIC which did not support wide
Unicode strings. They may only be used with legacy programs which must
store wide characters in an ANSI string variable. They should be converted to
the TEXT option with wide string variables as soon as possible, as these forms
of CLIPBOARD will not be supported in future versions of PowerBASIC.

CLIPBOARD GET UNICODE TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. Even though the string variable uses 1-byte
ANSI characters, the data is represented as 2-byte wide Unicode characters. If no
text can be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD SET UNICODE AnsiStrgExpr [, ClipResult]

A UniCode text string, stored in ANSI variables and constants, is stored on the
CLIPBOARD.

CLIPBOARD GET OEMTEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CLIPBOARD statement
Purpose Copy data to/from the Windows ClipBoard.

Syntax CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]
CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]
CLIPBOARD GET TEXT TO StrgVar [, ClipResult]
CLIPBOARD GET UNICODE TO StrgVar [, ClipResult]
CLIPBOARD RESET [, ClipResult]
CLIPBOARD SET BITMAP ClipHndl [, ClipResult]
CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]
CLIPBOARD SET TEXT StrgExpr [, ClipResult]
CLIPBOARD SET UNICODE StrgExpr [, ClipResult]

ClipHndl A Long Integer or Dword value which specifies the 32-bit handle of a

 passed to the clipboard.
ClipResult A Long Integer or Dword variable which receives a true result (-1) if the operation was

successful, or a false result (0) if it failed.

ClipVar A Long Integer or Dword variable which receives a 32-bit handle of a newly created
GRAPHIC BITMAP.

StrgExpr A string expression which specifies data to be passed to the clipboard.

StrgVar A

 variable which receives string data from the clipboard.
Remarks The Windows ClipBoard provides support for the transfer of various types of data between

applications, or even different parts of a single application. The concept is simple -- save
some data on the ClipBoard and retrieve it later. In most cases, it's just used to transfer

PowerBASIC Compiler for Windows Version 10

505 / 2126

plain text, so the PowerBASIC CLIPBOARD statement concentrates on the common data
formats. With text transfer, you can just read or write a string. With bitmaps, a GRAPHIC
BITMAP is used for this purpose.

When you retrieve data using CLIPBOARD, the original copy always remains in the
CLIPBOARD, so the operation can be repeated any number of times. When you store
data on the CLIPBOARD, your original copy remains unchanged. The data is copied,
with no change of ownership.

The clipboard can hold multiple data items, but only one of each data format at a time.
 Generally speaking, multiple data items are only used to store a single piece of data in
multiple formats to ensure it can be retrieved successfully later. However, you should
note that Windows automatically converts string data between TEXT, OEMTEXT, and
UNICODE. When you store data in one of those forms, it's not necessary to repeat it with
the others.

You must execute a CLIPBOARD RESET to empty the clipboard before storing
new data items.

Each form of the CLIPBOARD statement offers an optional ClipResult variable. If the
requested operation is deemed successful by Windows, this variable is assigned the
value TRUE (-1). If it fails, the value FALSE (0) is assigned instead. You should note that
the success test is not a comprehensive one. It tests only the operation, not the validity
of the data.

There are nine general forms of the CLIPBOARD statement:

CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]

A new GRAPHIC BITMAP is automatically created. A Bitmap is copied from the
ClipBoard and stored in this newly created GRAPHIC BITMAP. The handle of the
new GRAPHIC BITMAP is assigned to the ClipVar, a DWord or Long Integer
variable. If the operation is not successful, the value zero (0) is assigned instead.

CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. If necessary, it is converted to OEM Text
format, the format used by the Windows Console. If no text can be retrieved, a nul
(zero-length) string is assigned instead.

CLIPBOARD GET TEXT TO StrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the string variable
specified by StrgVar, which may be ANSI or WIDE format. If necessary, the text
is automatically converted to match the format of the target variable. If no text can
be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD RESET [, ClipResult]

The contents of the CLIPBOARD are deleted.

CLIPBOARD SET BITMAP ClipHndl [, ClipResult]

A GRAPHIC BITMAP, specified by ClipHndl, is stored on the CLIPBOARD. The
GRAPHIC BITMAP may be a GRAPHIC CONTROL, GRAPHIC WINDOW, or
GRAPHIC BITMAP. When passing a GRAPHIC CONTROL to the Clipboard, use
CONTROL HANDLE to obtain the handle to the GRAPHIC CONTROL.

CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data is
assumed to use characters in the OEM character set.

CLIPBOARD SET TEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data
may be in either ANSI or WIDE format.

The following two functions, with UNICODE options, were specifically
designed for older versions of PowerBASIC which did not support wide
Unicode strings. They may only be used with legacy programs which must
store wide characters in an ANSI string variable. They should be converted to
the TEXT option with wide string variables as soon as possible, as these forms

PowerBASIC Compiler for Windows Version 10

506 / 2126

of CLIPBOARD will not be supported in future versions of PowerBASIC.

CLIPBOARD GET UNICODE TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. Even though the string variable uses 1-byte
ANSI characters, the data is represented as 2-byte wide Unicode characters. If no
text can be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD SET UNICODE AnsiStrgExpr [, ClipResult]

A UniCode text string, stored in ANSI variables and constants, is stored on the
CLIPBOARD.

CLIPBOARD GET TEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CLIPBOARD statement
Purpose Copy data to/from the Windows ClipBoard.

Syntax CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]
CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]
CLIPBOARD GET TEXT TO StrgVar [, ClipResult]
CLIPBOARD GET UNICODE TO StrgVar [, ClipResult]
CLIPBOARD RESET [, ClipResult]
CLIPBOARD SET BITMAP ClipHndl [, ClipResult]
CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]
CLIPBOARD SET TEXT StrgExpr [, ClipResult]
CLIPBOARD SET UNICODE StrgExpr [, ClipResult]

ClipHndl A Long Integer or Dword value which specifies the 32-bit handle of a

 passed to the clipboard.
ClipResult A Long Integer or Dword variable which receives a true result (-1) if the operation was

successful, or a false result (0) if it failed.

ClipVar A Long Integer or Dword variable which receives a 32-bit handle of a newly created
GRAPHIC BITMAP.

StrgExpr A string expression which specifies data to be passed to the clipboard.

StrgVar A

 variable which receives string data from the clipboard.
Remarks The Windows ClipBoard provides support for the transfer of various types of data between

applications, or even different parts of a single application. The concept is simple -- save
some data on the ClipBoard and retrieve it later. In most cases, it's just used to transfer
plain text, so the PowerBASIC CLIPBOARD statement concentrates on the common data
formats. With text transfer, you can just read or write a string. With bitmaps, a GRAPHIC
BITMAP is used for this purpose.

When you retrieve data using CLIPBOARD, the original copy always remains in the
CLIPBOARD, so the operation can be repeated any number of times. When you store

PowerBASIC Compiler for Windows Version 10

507 / 2126

data on the CLIPBOARD, your original copy remains unchanged. The data is copied,
with no change of ownership.

The clipboard can hold multiple data items, but only one of each data format at a time.
 Generally speaking, multiple data items are only used to store a single piece of data in
multiple formats to ensure it can be retrieved successfully later. However, you should
note that Windows automatically converts string data between TEXT, OEMTEXT, and
UNICODE. When you store data in one of those forms, it's not necessary to repeat it with
the others.

You must execute a CLIPBOARD RESET to empty the clipboard before storing
new data items.

Each form of the CLIPBOARD statement offers an optional ClipResult variable. If the
requested operation is deemed successful by Windows, this variable is assigned the
value TRUE (-1). If it fails, the value FALSE (0) is assigned instead. You should note that
the success test is not a comprehensive one. It tests only the operation, not the validity
of the data.

There are nine general forms of the CLIPBOARD statement:

CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]

A new GRAPHIC BITMAP is automatically created. A Bitmap is copied from the
ClipBoard and stored in this newly created GRAPHIC BITMAP. The handle of the
new GRAPHIC BITMAP is assigned to the ClipVar, a DWord or Long Integer
variable. If the operation is not successful, the value zero (0) is assigned instead.

CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. If necessary, it is converted to OEM Text
format, the format used by the Windows Console. If no text can be retrieved, a nul
(zero-length) string is assigned instead.

CLIPBOARD GET TEXT TO StrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the string variable
specified by StrgVar, which may be ANSI or WIDE format. If necessary, the text
is automatically converted to match the format of the target variable. If no text can
be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD RESET [, ClipResult]

The contents of the CLIPBOARD are deleted.

CLIPBOARD SET BITMAP ClipHndl [, ClipResult]

A GRAPHIC BITMAP, specified by ClipHndl, is stored on the CLIPBOARD. The
GRAPHIC BITMAP may be a GRAPHIC CONTROL, GRAPHIC WINDOW, or
GRAPHIC BITMAP. When passing a GRAPHIC CONTROL to the Clipboard, use
CONTROL HANDLE to obtain the handle to the GRAPHIC CONTROL.

CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data is
assumed to use characters in the OEM character set.

CLIPBOARD SET TEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data
may be in either ANSI or WIDE format.

The following two functions, with UNICODE options, were specifically
designed for older versions of PowerBASIC which did not support wide
Unicode strings. They may only be used with legacy programs which must
store wide characters in an ANSI string variable. They should be converted to
the TEXT option with wide string variables as soon as possible, as these forms
of CLIPBOARD will not be supported in future versions of PowerBASIC.

CLIPBOARD GET UNICODE TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. Even though the string variable uses 1-byte

PowerBASIC Compiler for Windows Version 10

508 / 2126

ANSI characters, the data is represented as 2-byte wide Unicode characters. If no
text can be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD SET UNICODE AnsiStrgExpr [, ClipResult]

A UniCode text string, stored in ANSI variables and constants, is stored on the
CLIPBOARD.

CLIPBOARD GET UNICODE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CLIPBOARD statement
Purpose Copy data to/from the Windows ClipBoard.

Syntax CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]
CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]
CLIPBOARD GET TEXT TO StrgVar [, ClipResult]
CLIPBOARD GET UNICODE TO StrgVar [, ClipResult]
CLIPBOARD RESET [, ClipResult]
CLIPBOARD SET BITMAP ClipHndl [, ClipResult]
CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]
CLIPBOARD SET TEXT StrgExpr [, ClipResult]
CLIPBOARD SET UNICODE StrgExpr [, ClipResult]

ClipHndl A Long Integer or Dword value which specifies the 32-bit handle of a

 passed to the clipboard.
ClipResult A Long Integer or Dword variable which receives a true result (-1) if the operation was

successful, or a false result (0) if it failed.

ClipVar A Long Integer or Dword variable which receives a 32-bit handle of a newly created
GRAPHIC BITMAP.

StrgExpr A string expression which specifies data to be passed to the clipboard.

StrgVar A

 variable which receives string data from the clipboard.
Remarks The Windows ClipBoard provides support for the transfer of various types of data between

applications, or even different parts of a single application. The concept is simple -- save
some data on the ClipBoard and retrieve it later. In most cases, it's just used to transfer
plain text, so the PowerBASIC CLIPBOARD statement concentrates on the common data
formats. With text transfer, you can just read or write a string. With bitmaps, a GRAPHIC
BITMAP is used for this purpose.

When you retrieve data using CLIPBOARD, the original copy always remains in the
CLIPBOARD, so the operation can be repeated any number of times. When you store
data on the CLIPBOARD, your original copy remains unchanged. The data is copied,
with no change of ownership.

The clipboard can hold multiple data items, but only one of each data format at a time.
 Generally speaking, multiple data items are only used to store a single piece of data in
multiple formats to ensure it can be retrieved successfully later. However, you should
note that Windows automatically converts string data between TEXT, OEMTEXT, and

PowerBASIC Compiler for Windows Version 10

509 / 2126

UNICODE. When you store data in one of those forms, it's not necessary to repeat it with
the others.

You must execute a CLIPBOARD RESET to empty the clipboard before storing
new data items.

Each form of the CLIPBOARD statement offers an optional ClipResult variable. If the
requested operation is deemed successful by Windows, this variable is assigned the
value TRUE (-1). If it fails, the value FALSE (0) is assigned instead. You should note that
the success test is not a comprehensive one. It tests only the operation, not the validity
of the data.

There are nine general forms of the CLIPBOARD statement:

CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]

A new GRAPHIC BITMAP is automatically created. A Bitmap is copied from the
ClipBoard and stored in this newly created GRAPHIC BITMAP. The handle of the
new GRAPHIC BITMAP is assigned to the ClipVar, a DWord or Long Integer
variable. If the operation is not successful, the value zero (0) is assigned instead.

CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. If necessary, it is converted to OEM Text
format, the format used by the Windows Console. If no text can be retrieved, a nul
(zero-length) string is assigned instead.

CLIPBOARD GET TEXT TO StrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the string variable
specified by StrgVar, which may be ANSI or WIDE format. If necessary, the text
is automatically converted to match the format of the target variable. If no text can
be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD RESET [, ClipResult]

The contents of the CLIPBOARD are deleted.

CLIPBOARD SET BITMAP ClipHndl [, ClipResult]

A GRAPHIC BITMAP, specified by ClipHndl, is stored on the CLIPBOARD. The
GRAPHIC BITMAP may be a GRAPHIC CONTROL, GRAPHIC WINDOW, or
GRAPHIC BITMAP. When passing a GRAPHIC CONTROL to the Clipboard, use
CONTROL HANDLE to obtain the handle to the GRAPHIC CONTROL.

CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data is
assumed to use characters in the OEM character set.

CLIPBOARD SET TEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data
may be in either ANSI or WIDE format.

The following two functions, with UNICODE options, were specifically
designed for older versions of PowerBASIC which did not support wide
Unicode strings. They may only be used with legacy programs which must
store wide characters in an ANSI string variable. They should be converted to
the TEXT option with wide string variables as soon as possible, as these forms
of CLIPBOARD will not be supported in future versions of PowerBASIC.

CLIPBOARD GET UNICODE TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. Even though the string variable uses 1-byte
ANSI characters, the data is represented as 2-byte wide Unicode characters. If no
text can be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD SET UNICODE AnsiStrgExpr [, ClipResult]

A UniCode text string, stored in ANSI variables and constants, is stored on the
CLIPBOARD.

PowerBASIC Compiler for Windows Version 10

510 / 2126

CLIPBOARD RESET statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CLIPBOARD statement
Purpose Copy data to/from the Windows ClipBoard.

Syntax CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]
CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]
CLIPBOARD GET TEXT TO StrgVar [, ClipResult]
CLIPBOARD GET UNICODE TO StrgVar [, ClipResult]
CLIPBOARD RESET [, ClipResult]
CLIPBOARD SET BITMAP ClipHndl [, ClipResult]
CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]
CLIPBOARD SET TEXT StrgExpr [, ClipResult]
CLIPBOARD SET UNICODE StrgExpr [, ClipResult]

ClipHndl A Long Integer or Dword value which specifies the 32-bit handle of a

 passed to the clipboard.
ClipResult A Long Integer or Dword variable which receives a true result (-1) if the operation was

successful, or a false result (0) if it failed.

ClipVar A Long Integer or Dword variable which receives a 32-bit handle of a newly created
GRAPHIC BITMAP.

StrgExpr A string expression which specifies data to be passed to the clipboard.

StrgVar A

 variable which receives string data from the clipboard.
Remarks The Windows ClipBoard provides support for the transfer of various types of data between

applications, or even different parts of a single application. The concept is simple -- save
some data on the ClipBoard and retrieve it later. In most cases, it's just used to transfer
plain text, so the PowerBASIC CLIPBOARD statement concentrates on the common data
formats. With text transfer, you can just read or write a string. With bitmaps, a GRAPHIC
BITMAP is used for this purpose.

When you retrieve data using CLIPBOARD, the original copy always remains in the
CLIPBOARD, so the operation can be repeated any number of times. When you store
data on the CLIPBOARD, your original copy remains unchanged. The data is copied,
with no change of ownership.

The clipboard can hold multiple data items, but only one of each data format at a time.
 Generally speaking, multiple data items are only used to store a single piece of data in
multiple formats to ensure it can be retrieved successfully later. However, you should
note that Windows automatically converts string data between TEXT, OEMTEXT, and
UNICODE. When you store data in one of those forms, it's not necessary to repeat it with
the others.

You must execute a CLIPBOARD RESET to empty the clipboard before storing
new data items.

Each form of the CLIPBOARD statement offers an optional ClipResult variable. If the

PowerBASIC Compiler for Windows Version 10

511 / 2126

requested operation is deemed successful by Windows, this variable is assigned the
value TRUE (-1). If it fails, the value FALSE (0) is assigned instead. You should note that
the success test is not a comprehensive one. It tests only the operation, not the validity
of the data.

There are nine general forms of the CLIPBOARD statement:

CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]

A new GRAPHIC BITMAP is automatically created. A Bitmap is copied from the
ClipBoard and stored in this newly created GRAPHIC BITMAP. The handle of the
new GRAPHIC BITMAP is assigned to the ClipVar, a DWord or Long Integer
variable. If the operation is not successful, the value zero (0) is assigned instead.

CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. If necessary, it is converted to OEM Text
format, the format used by the Windows Console. If no text can be retrieved, a nul
(zero-length) string is assigned instead.

CLIPBOARD GET TEXT TO StrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the string variable
specified by StrgVar, which may be ANSI or WIDE format. If necessary, the text
is automatically converted to match the format of the target variable. If no text can
be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD RESET [, ClipResult]

The contents of the CLIPBOARD are deleted.

CLIPBOARD SET BITMAP ClipHndl [, ClipResult]

A GRAPHIC BITMAP, specified by ClipHndl, is stored on the CLIPBOARD. The
GRAPHIC BITMAP may be a GRAPHIC CONTROL, GRAPHIC WINDOW, or
GRAPHIC BITMAP. When passing a GRAPHIC CONTROL to the Clipboard, use
CONTROL HANDLE to obtain the handle to the GRAPHIC CONTROL.

CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data is
assumed to use characters in the OEM character set.

CLIPBOARD SET TEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data
may be in either ANSI or WIDE format.

The following two functions, with UNICODE options, were specifically
designed for older versions of PowerBASIC which did not support wide
Unicode strings. They may only be used with legacy programs which must
store wide characters in an ANSI string variable. They should be converted to
the TEXT option with wide string variables as soon as possible, as these forms
of CLIPBOARD will not be supported in future versions of PowerBASIC.

CLIPBOARD GET UNICODE TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. Even though the string variable uses 1-byte
ANSI characters, the data is represented as 2-byte wide Unicode characters. If no
text can be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD SET UNICODE AnsiStrgExpr [, ClipResult]

A UniCode text string, stored in ANSI variables and constants, is stored on the
CLIPBOARD.

CLIPBOARD SET BITMAP statement

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

512 / 2126

Syntax

Remarks

See also

Example

CLIPBOARD statement
Purpose Copy data to/from the Windows ClipBoard.

Syntax CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]
CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]
CLIPBOARD GET TEXT TO StrgVar [, ClipResult]
CLIPBOARD GET UNICODE TO StrgVar [, ClipResult]
CLIPBOARD RESET [, ClipResult]
CLIPBOARD SET BITMAP ClipHndl [, ClipResult]
CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]
CLIPBOARD SET TEXT StrgExpr [, ClipResult]
CLIPBOARD SET UNICODE StrgExpr [, ClipResult]

ClipHndl A Long Integer or Dword value which specifies the 32-bit handle of a

 passed to the clipboard.
ClipResult A Long Integer or Dword variable which receives a true result (-1) if the operation was

successful, or a false result (0) if it failed.

ClipVar A Long Integer or Dword variable which receives a 32-bit handle of a newly created
GRAPHIC BITMAP.

StrgExpr A string expression which specifies data to be passed to the clipboard.

StrgVar A

 variable which receives string data from the clipboard.
Remarks The Windows ClipBoard provides support for the transfer of various types of data between

applications, or even different parts of a single application. The concept is simple -- save
some data on the ClipBoard and retrieve it later. In most cases, it's just used to transfer
plain text, so the PowerBASIC CLIPBOARD statement concentrates on the common data
formats. With text transfer, you can just read or write a string. With bitmaps, a GRAPHIC
BITMAP is used for this purpose.

When you retrieve data using CLIPBOARD, the original copy always remains in the
CLIPBOARD, so the operation can be repeated any number of times. When you store
data on the CLIPBOARD, your original copy remains unchanged. The data is copied,
with no change of ownership.

The clipboard can hold multiple data items, but only one of each data format at a time.
 Generally speaking, multiple data items are only used to store a single piece of data in
multiple formats to ensure it can be retrieved successfully later. However, you should
note that Windows automatically converts string data between TEXT, OEMTEXT, and
UNICODE. When you store data in one of those forms, it's not necessary to repeat it with
the others.

You must execute a CLIPBOARD RESET to empty the clipboard before storing
new data items.

Each form of the CLIPBOARD statement offers an optional ClipResult variable. If the
requested operation is deemed successful by Windows, this variable is assigned the
value TRUE (-1). If it fails, the value FALSE (0) is assigned instead. You should note that
the success test is not a comprehensive one. It tests only the operation, not the validity
of the data.

There are nine general forms of the CLIPBOARD statement:

CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]

PowerBASIC Compiler for Windows Version 10

513 / 2126

A new GRAPHIC BITMAP is automatically created. A Bitmap is copied from the
ClipBoard and stored in this newly created GRAPHIC BITMAP. The handle of the
new GRAPHIC BITMAP is assigned to the ClipVar, a DWord or Long Integer
variable. If the operation is not successful, the value zero (0) is assigned instead.

CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. If necessary, it is converted to OEM Text
format, the format used by the Windows Console. If no text can be retrieved, a nul
(zero-length) string is assigned instead.

CLIPBOARD GET TEXT TO StrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the string variable
specified by StrgVar, which may be ANSI or WIDE format. If necessary, the text
is automatically converted to match the format of the target variable. If no text can
be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD RESET [, ClipResult]

The contents of the CLIPBOARD are deleted.

CLIPBOARD SET BITMAP ClipHndl [, ClipResult]

A GRAPHIC BITMAP, specified by ClipHndl, is stored on the CLIPBOARD. The
GRAPHIC BITMAP may be a GRAPHIC CONTROL, GRAPHIC WINDOW, or
GRAPHIC BITMAP. When passing a GRAPHIC CONTROL to the Clipboard, use
CONTROL HANDLE to obtain the handle to the GRAPHIC CONTROL.

CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data is
assumed to use characters in the OEM character set.

CLIPBOARD SET TEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data
may be in either ANSI or WIDE format.

The following two functions, with UNICODE options, were specifically
designed for older versions of PowerBASIC which did not support wide
Unicode strings. They may only be used with legacy programs which must
store wide characters in an ANSI string variable. They should be converted to
the TEXT option with wide string variables as soon as possible, as these forms
of CLIPBOARD will not be supported in future versions of PowerBASIC.

CLIPBOARD GET UNICODE TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. Even though the string variable uses 1-byte
ANSI characters, the data is represented as 2-byte wide Unicode characters. If no
text can be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD SET UNICODE AnsiStrgExpr [, ClipResult]

A UniCode text string, stored in ANSI variables and constants, is stored on the
CLIPBOARD.

CLIPBOARD SET OEMTEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

514 / 2126

CLIPBOARD statement
Purpose Copy data to/from the Windows ClipBoard.

Syntax CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]
CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]
CLIPBOARD GET TEXT TO StrgVar [, ClipResult]
CLIPBOARD GET UNICODE TO StrgVar [, ClipResult]
CLIPBOARD RESET [, ClipResult]
CLIPBOARD SET BITMAP ClipHndl [, ClipResult]
CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]
CLIPBOARD SET TEXT StrgExpr [, ClipResult]
CLIPBOARD SET UNICODE StrgExpr [, ClipResult]

ClipHndl A Long Integer or Dword value which specifies the 32-bit handle of a

 passed to the clipboard.
ClipResult A Long Integer or Dword variable which receives a true result (-1) if the operation was

successful, or a false result (0) if it failed.

ClipVar A Long Integer or Dword variable which receives a 32-bit handle of a newly created
GRAPHIC BITMAP.

StrgExpr A string expression which specifies data to be passed to the clipboard.

StrgVar A

 variable which receives string data from the clipboard.
Remarks The Windows ClipBoard provides support for the transfer of various types of data between

applications, or even different parts of a single application. The concept is simple -- save
some data on the ClipBoard and retrieve it later. In most cases, it's just used to transfer
plain text, so the PowerBASIC CLIPBOARD statement concentrates on the common data
formats. With text transfer, you can just read or write a string. With bitmaps, a GRAPHIC
BITMAP is used for this purpose.

When you retrieve data using CLIPBOARD, the original copy always remains in the
CLIPBOARD, so the operation can be repeated any number of times. When you store
data on the CLIPBOARD, your original copy remains unchanged. The data is copied,
with no change of ownership.

The clipboard can hold multiple data items, but only one of each data format at a time.
 Generally speaking, multiple data items are only used to store a single piece of data in
multiple formats to ensure it can be retrieved successfully later. However, you should
note that Windows automatically converts string data between TEXT, OEMTEXT, and
UNICODE. When you store data in one of those forms, it's not necessary to repeat it with
the others.

You must execute a CLIPBOARD RESET to empty the clipboard before storing
new data items.

Each form of the CLIPBOARD statement offers an optional ClipResult variable. If the
requested operation is deemed successful by Windows, this variable is assigned the
value TRUE (-1). If it fails, the value FALSE (0) is assigned instead. You should note that
the success test is not a comprehensive one. It tests only the operation, not the validity
of the data.

There are nine general forms of the CLIPBOARD statement:

CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]

A new GRAPHIC BITMAP is automatically created. A Bitmap is copied from the
ClipBoard and stored in this newly created GRAPHIC BITMAP. The handle of the
new GRAPHIC BITMAP is assigned to the ClipVar, a DWord or Long Integer
variable. If the operation is not successful, the value zero (0) is assigned instead.

CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. If necessary, it is converted to OEM Text

PowerBASIC Compiler for Windows Version 10

515 / 2126

format, the format used by the Windows Console. If no text can be retrieved, a nul
(zero-length) string is assigned instead.

CLIPBOARD GET TEXT TO StrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the string variable
specified by StrgVar, which may be ANSI or WIDE format. If necessary, the text
is automatically converted to match the format of the target variable. If no text can
be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD RESET [, ClipResult]

The contents of the CLIPBOARD are deleted.

CLIPBOARD SET BITMAP ClipHndl [, ClipResult]

A GRAPHIC BITMAP, specified by ClipHndl, is stored on the CLIPBOARD. The
GRAPHIC BITMAP may be a GRAPHIC CONTROL, GRAPHIC WINDOW, or
GRAPHIC BITMAP. When passing a GRAPHIC CONTROL to the Clipboard, use
CONTROL HANDLE to obtain the handle to the GRAPHIC CONTROL.

CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data is
assumed to use characters in the OEM character set.

CLIPBOARD SET TEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data
may be in either ANSI or WIDE format.

The following two functions, with UNICODE options, were specifically
designed for older versions of PowerBASIC which did not support wide
Unicode strings. They may only be used with legacy programs which must
store wide characters in an ANSI string variable. They should be converted to
the TEXT option with wide string variables as soon as possible, as these forms
of CLIPBOARD will not be supported in future versions of PowerBASIC.

CLIPBOARD GET UNICODE TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. Even though the string variable uses 1-byte
ANSI characters, the data is represented as 2-byte wide Unicode characters. If no
text can be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD SET UNICODE AnsiStrgExpr [, ClipResult]

A UniCode text string, stored in ANSI variables and constants, is stored on the
CLIPBOARD.

CLIPBOARD SET TEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CLIPBOARD statement
Purpose Copy data to/from the Windows ClipBoard.

Syntax CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]
CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]
CLIPBOARD GET TEXT TO StrgVar [, ClipResult]

PowerBASIC Compiler for Windows Version 10

516 / 2126

CLIPBOARD GET UNICODE TO StrgVar [, ClipResult]
CLIPBOARD RESET [, ClipResult]
CLIPBOARD SET BITMAP ClipHndl [, ClipResult]
CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]
CLIPBOARD SET TEXT StrgExpr [, ClipResult]
CLIPBOARD SET UNICODE StrgExpr [, ClipResult]

ClipHndl A Long Integer or Dword value which specifies the 32-bit handle of a

 passed to the clipboard.
ClipResult A Long Integer or Dword variable which receives a true result (-1) if the operation was

successful, or a false result (0) if it failed.

ClipVar A Long Integer or Dword variable which receives a 32-bit handle of a newly created
GRAPHIC BITMAP.

StrgExpr A string expression which specifies data to be passed to the clipboard.

StrgVar A

 variable which receives string data from the clipboard.
Remarks The Windows ClipBoard provides support for the transfer of various types of data between

applications, or even different parts of a single application. The concept is simple -- save
some data on the ClipBoard and retrieve it later. In most cases, it's just used to transfer
plain text, so the PowerBASIC CLIPBOARD statement concentrates on the common data
formats. With text transfer, you can just read or write a string. With bitmaps, a GRAPHIC
BITMAP is used for this purpose.

When you retrieve data using CLIPBOARD, the original copy always remains in the
CLIPBOARD, so the operation can be repeated any number of times. When you store
data on the CLIPBOARD, your original copy remains unchanged. The data is copied,
with no change of ownership.

The clipboard can hold multiple data items, but only one of each data format at a time.
 Generally speaking, multiple data items are only used to store a single piece of data in
multiple formats to ensure it can be retrieved successfully later. However, you should
note that Windows automatically converts string data between TEXT, OEMTEXT, and
UNICODE. When you store data in one of those forms, it's not necessary to repeat it with
the others.

You must execute a CLIPBOARD RESET to empty the clipboard before storing
new data items.

Each form of the CLIPBOARD statement offers an optional ClipResult variable. If the
requested operation is deemed successful by Windows, this variable is assigned the
value TRUE (-1). If it fails, the value FALSE (0) is assigned instead. You should note that
the success test is not a comprehensive one. It tests only the operation, not the validity
of the data.

There are nine general forms of the CLIPBOARD statement:

CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]

A new GRAPHIC BITMAP is automatically created. A Bitmap is copied from the
ClipBoard and stored in this newly created GRAPHIC BITMAP. The handle of the
new GRAPHIC BITMAP is assigned to the ClipVar, a DWord or Long Integer
variable. If the operation is not successful, the value zero (0) is assigned instead.

CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. If necessary, it is converted to OEM Text
format, the format used by the Windows Console. If no text can be retrieved, a nul
(zero-length) string is assigned instead.

CLIPBOARD GET TEXT TO StrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the string variable
specified by StrgVar, which may be ANSI or WIDE format. If necessary, the text
is automatically converted to match the format of the target variable. If no text can

PowerBASIC Compiler for Windows Version 10

517 / 2126

be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD RESET [, ClipResult]

The contents of the CLIPBOARD are deleted.

CLIPBOARD SET BITMAP ClipHndl [, ClipResult]

A GRAPHIC BITMAP, specified by ClipHndl, is stored on the CLIPBOARD. The
GRAPHIC BITMAP may be a GRAPHIC CONTROL, GRAPHIC WINDOW, or
GRAPHIC BITMAP. When passing a GRAPHIC CONTROL to the Clipboard, use
CONTROL HANDLE to obtain the handle to the GRAPHIC CONTROL.

CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data is
assumed to use characters in the OEM character set.

CLIPBOARD SET TEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data
may be in either ANSI or WIDE format.

The following two functions, with UNICODE options, were specifically
designed for older versions of PowerBASIC which did not support wide
Unicode strings. They may only be used with legacy programs which must
store wide characters in an ANSI string variable. They should be converted to
the TEXT option with wide string variables as soon as possible, as these forms
of CLIPBOARD will not be supported in future versions of PowerBASIC.

CLIPBOARD GET UNICODE TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. Even though the string variable uses 1-byte
ANSI characters, the data is represented as 2-byte wide Unicode characters. If no
text can be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD SET UNICODE AnsiStrgExpr [, ClipResult]

A UniCode text string, stored in ANSI variables and constants, is stored on the
CLIPBOARD.

CLIPBOARD SET UNICODE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CLIPBOARD statement
Purpose Copy data to/from the Windows ClipBoard.

Syntax CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]
CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]
CLIPBOARD GET TEXT TO StrgVar [, ClipResult]
CLIPBOARD GET UNICODE TO StrgVar [, ClipResult]
CLIPBOARD RESET [, ClipResult]
CLIPBOARD SET BITMAP ClipHndl [, ClipResult]
CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]
CLIPBOARD SET TEXT StrgExpr [, ClipResult]
CLIPBOARD SET UNICODE StrgExpr [, ClipResult]

PowerBASIC Compiler for Windows Version 10

518 / 2126

ClipHndl A Long Integer or Dword value which specifies the 32-bit handle of a

 passed to the clipboard.
ClipResult A Long Integer or Dword variable which receives a true result (-1) if the operation was

successful, or a false result (0) if it failed.

ClipVar A Long Integer or Dword variable which receives a 32-bit handle of a newly created
GRAPHIC BITMAP.

StrgExpr A string expression which specifies data to be passed to the clipboard.

StrgVar A

 variable which receives string data from the clipboard.
Remarks The Windows ClipBoard provides support for the transfer of various types of data between

applications, or even different parts of a single application. The concept is simple -- save
some data on the ClipBoard and retrieve it later. In most cases, it's just used to transfer
plain text, so the PowerBASIC CLIPBOARD statement concentrates on the common data
formats. With text transfer, you can just read or write a string. With bitmaps, a GRAPHIC
BITMAP is used for this purpose.

When you retrieve data using CLIPBOARD, the original copy always remains in the
CLIPBOARD, so the operation can be repeated any number of times. When you store
data on the CLIPBOARD, your original copy remains unchanged. The data is copied,
with no change of ownership.

The clipboard can hold multiple data items, but only one of each data format at a time.
 Generally speaking, multiple data items are only used to store a single piece of data in
multiple formats to ensure it can be retrieved successfully later. However, you should
note that Windows automatically converts string data between TEXT, OEMTEXT, and
UNICODE. When you store data in one of those forms, it's not necessary to repeat it with
the others.

You must execute a CLIPBOARD RESET to empty the clipboard before storing
new data items.

Each form of the CLIPBOARD statement offers an optional ClipResult variable. If the
requested operation is deemed successful by Windows, this variable is assigned the
value TRUE (-1). If it fails, the value FALSE (0) is assigned instead. You should note that
the success test is not a comprehensive one. It tests only the operation, not the validity
of the data.

There are nine general forms of the CLIPBOARD statement:

CLIPBOARD GET BITMAP TO ClipVar [, ClipResult]

A new GRAPHIC BITMAP is automatically created. A Bitmap is copied from the
ClipBoard and stored in this newly created GRAPHIC BITMAP. The handle of the
new GRAPHIC BITMAP is assigned to the ClipVar, a DWord or Long Integer
variable. If the operation is not successful, the value zero (0) is assigned instead.

CLIPBOARD GET OEMTEXT TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. If necessary, it is converted to OEM Text
format, the format used by the Windows Console. If no text can be retrieved, a nul
(zero-length) string is assigned instead.

CLIPBOARD GET TEXT TO StrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the string variable
specified by StrgVar, which may be ANSI or WIDE format. If necessary, the text
is automatically converted to match the format of the target variable. If no text can
be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD RESET [, ClipResult]

The contents of the CLIPBOARD are deleted.

CLIPBOARD SET BITMAP ClipHndl [, ClipResult]

A GRAPHIC BITMAP, specified by ClipHndl, is stored on the CLIPBOARD. The
GRAPHIC BITMAP may be a GRAPHIC CONTROL, GRAPHIC WINDOW, or

PowerBASIC Compiler for Windows Version 10

519 / 2126

GRAPHIC BITMAP. When passing a GRAPHIC CONTROL to the Clipboard, use
CONTROL HANDLE to obtain the handle to the GRAPHIC CONTROL.

CLIPBOARD SET OEMTEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data is
assumed to use characters in the OEM character set.

CLIPBOARD SET TEXT StrgExpr [, ClipResult]

A text string, specified by StrExpr, is stored on the CLIPBOARD. The string data
may be in either ANSI or WIDE format.

The following two functions, with UNICODE options, were specifically
designed for older versions of PowerBASIC which did not support wide
Unicode strings. They may only be used with legacy programs which must
store wide characters in an ANSI string variable. They should be converted to
the TEXT option with wide string variables as soon as possible, as these forms
of CLIPBOARD will not be supported in future versions of PowerBASIC.

CLIPBOARD GET UNICODE TO AnsiStrgVar [, ClipResult]

A text string is retrieved from the CLIPBOARD, and assigned to the ANSI string
variable specified by AnsiStrgVar. Even though the string variable uses 1-byte
ANSI characters, the data is represented as 2-byte wide Unicode characters. If no
text can be retrieved, a nul (zero-length) string is assigned instead.

CLIPBOARD SET UNICODE AnsiStrgExpr [, ClipResult]

A UniCode text string, stored in ANSI variables and constants, is stored on the
CLIPBOARD.

CLNG function

CBYT, CCUR, CCUX, CDBL, CDWD, CEXT,
CINT, CLNG, CQUD, CSNG, and CWRD
functions
Purpose Convert a value to specific variable type.

Syntax bytevar? = CBYT(numeric_expression)
currencyvar@ = CCUR(numeric_expression)
currencyextvar@@ = CCUX(numeric_expression)
doublevar# = CDBL(numeric_expression)
doublewordvar??? = CDWD(numeric_expression)
extendedvar## = CEXT(numeric_expression)
integervar% = CINT(numeric_expression)
longintvar& = CLNG(numeric_expression)
quadintvar&& = CQUD(numeric_expression)
singlevar! = CSNG(numeric_expression)
wordvar?? = CWRD(numeric_expression)

Remarks Each of these functions converts a

 expression to a particular variable type. In each case, numeric_expression must be
within the legal range for the result type. The numeric_expression will be rounded if
necessary.

Function Result type
CBYT Byte
CCUR Currency
CCUX Extended-currency
CDBL Double-precision floating-point
CDWD Double-word

PowerBASIC Compiler for Windows Version 10

520 / 2126

CEXT Extended-precision floating-point
CINT Integer
CLNG Long-integer
CQUD Quad-integer
CSNG Single-precision floating-point
CWRD Word

These conversion functions are rarely needed as PowerBASIC automatically performs any
necessary conversions when executing an assignment statement or passing parameters.
For example:

e% = f#

is equivalent to:

e% = CINT(f#)

In the case of the functions that convert to

 values, the fractional part of the number is rounded. If the fractional part is exactly .5
then it rounds to the nearest even integral value. For example, CINT(1.5) returns 2,
CINT(.5) returns 0, and CLNG(-0.6) returns -1.

Restrictions CSNG limit string display to 7 significant digits.

See also CEIL, CVI and associated functions, FIX, INT, MKI$ and associated functions

Example ' Calculate CINT for a series of values
FOR I! = 2.4! TO 2.65! STEP 0.05!
 x$ = FORMAT$(I!, "0.00") + " is" + STR$(CINT(I!))
NEXT I!

Result 2.40 is 2
2.45 is 2
2.50 is 2
2.55 is 3
2.60 is 3
2.65 is 3

CLOSE statement

CLOSE statement
Purpose Conclude I/O (input/output) to / from a file or device.

Syntax CLOSE [[#] filenum& [, [#] filenum&] ...]

Remarks CLOSE ends the relationship between a PowerBASIC file number and the disk file or
device that was associated with it by an OPEN statement. Any pending I/O operations
on the file/device are concluded, buffers are flushed and released, and the disk directory
information (if any) for that file is updated.

If no file number is specified, CLOSE closes all open files.

If the file was opened using OPEN HANDLE, the CLOSE statement is still needed,
although it does not tell the operating system to close the file. In this special case, the
file was already open when OPEN HANDLE provided access to it, and will remain open
after CLOSE disassociates the file from PowerBASIC.

CLOSE works with all types of files and devices (disk files, devices,

, , , etc).
The number symbols (#) are optional but recommended for clarity.

See also COMM CLOSE, FILEATTR, FLUSH, OPEN, TCP CLOSE, UDP CLOSE

PowerBASIC Compiler for Windows Version 10

521 / 2126

CLSID$ function

CLSID$ function
Purpose Return a 16-byte GUID string (128-bit GUID format string) containing a CLSID associated

with a unique ProgramID string of a COM object or component.

Syntax a$ = CLSID$(ProgramID$)

Remarks A CLSID string is a 128-bit (16-byte) binary string representing the GUID or UUID of a
COM object/component. A CLSID string is not in a human-readable format.

You can convert textual ID name of a COM object/component into a CLSID string with the
CLSID$ function. CLSID examines the system registry in order to determine the CLSID
string associated with the ProgramID$ string.

The ProgramID$ parameter is not case-sensitive, so "MSAGENT.CONTROL.2",
"MSAgent.Control.2" and "msagent.control.2" all refer to the same COM
object/component. If the ProgramID$ cannot be found, or if any error occurs during the
lookup and conversion process, CLSID$ will not set the ERR system variable, but will
return an empty string.

To convert the binary CLSID string into human-readable GUID/UUID format, use the
GUIDTXT$ function. CLSID$ is the complement to the PROGID$ function.

PowerBASIC programmers rarely, if ever, need to deal with CLSID strings in order to
utilize a COM object or component.

a$ The return string may be assigned to a dynamic string, fixed-length or nul-terminated
string (at least 16 bytes long), or (typically) a GUID variable. See DIM for more
information.

See also DIM, GUID$, GUIDTXT$, INTERFACE (Direct), INTERFACE (IDBind), ISNOTHING,
ISOBJECT, LET (with Objects), OBJECT, OBJACTIVE, OBJPTR, OBJRESULT,
PROGID$, What does a Class look like?, What is an object, anyway?

Example MSWordClassID$ = CLSID$("word.application.8")
IF LEN(MSWordClassID$) = 16 THEN
 ' Success getting the CLSID$ of MSWord
 a$ = PROGID$(MSWordClassID$)
 'a$ holds "Word.Application.8"
 b$ = GUIDTXT$(MSWordClassID$)
 'b$ holds "{000209FF-0000-0000-C000-000000000046}"
END IF

CODEPTR function

CODEPTR function
Purpose Obtain a 32-bit address of a label, Sub, Function, or Fastproc.

Syntax AddrVar = CODEPTR(Label)
AddrVar = CODEPTR(ProcName)

Remarks CODEPTR retrieves the address of a Label, Sub, Function, or FastProc. The first form
may be used to get the address of a label located within the same procedure. The
second form is used to obtain the address of a Sub, Function, or FastProc.

CODEPTR is particularly useful when it is necessary to pass the address of a SUB or
FUNCTION to PowerBASIC or Windows to specify a Callback Function.

PowerBASIC Compiler for Windows Version 10

522 / 2126

Restrictions CODEPTR cannot obtain the address of a METHOD or PROPERTY as direct access to
them would constitute an illegal operation.

See also STRPTR, VARPTR, CALL DWORD

Example #COMPILE EXE
SUB MySub()
END SUB

FUNCTION PBMAIN
 LOCAL MySubPtr AS LONG, X AS STRING
 MySubPtr = CODEPTR(MySub) ' Address of MySub()
 X = "MySub() is located at address " + FORMAT$(MySubPtr))
END FUNCTION

COMBOBOX ADD statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

523 / 2126

datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

PowerBASIC Compiler for Windows Version 10

524 / 2126

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user

PowerBASIC Compiler for Windows Version 10

525 / 2126

values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX DELETE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

526 / 2126

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.

PowerBASIC Compiler for Windows Version 10

527 / 2126

 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

PowerBASIC Compiler for Windows Version 10

528 / 2126

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX FIND statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

529 / 2126

CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

PowerBASIC Compiler for Windows Version 10

530 / 2126

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

PowerBASIC Compiler for Windows Version 10

531 / 2126

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX FIND EXACT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

532 / 2126

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

PowerBASIC Compiler for Windows Version 10

533 / 2126

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of

PowerBASIC Compiler for Windows Version 10

534 / 2126

Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX GET COUNT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

535 / 2126

COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains

PowerBASIC Compiler for Windows Version 10

536 / 2126

the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

PowerBASIC Compiler for Windows Version 10

537 / 2126

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX GET SELCOUNT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

538 / 2126

datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement

PowerBASIC Compiler for Windows Version 10

539 / 2126

instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

PowerBASIC Compiler for Windows Version 10

540 / 2126

COMBOBOX GET SELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

541 / 2126

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

PowerBASIC Compiler for Windows Version 10

542 / 2126

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX GET STATE statement

PowerBASIC Compiler for Windows Version 10

543 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

544 / 2126

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the

PowerBASIC Compiler for Windows Version 10

545 / 2126

discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX GET TEXT statement

Keyword Template

PowerBASIC Compiler for Windows Version 10

546 / 2126

Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

547 / 2126

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for

PowerBASIC Compiler for Windows Version 10

548 / 2126

the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX GET USER statement

Keyword Template
Purpose

Syntax

PowerBASIC Compiler for Windows Version 10

549 / 2126

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

550 / 2126

in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers

PowerBASIC Compiler for Windows Version 10

551 / 2126

an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX INSERT statement

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

552 / 2126

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

553 / 2126

list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

PowerBASIC Compiler for Windows Version 10

554 / 2126

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX RESET statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

555 / 2126

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

556 / 2126

by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of

PowerBASIC Compiler for Windows Version 10

557 / 2126

data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX SELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

PowerBASIC Compiler for Windows Version 10

558 / 2126

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

559 / 2126

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the

PowerBASIC Compiler for Windows Version 10

560 / 2126

variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX SET TEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&

PowerBASIC Compiler for Windows Version 10

561 / 2126

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

562 / 2126

the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

PowerBASIC Compiler for Windows Version 10

563 / 2126

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX SET USER statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&

PowerBASIC Compiler for Windows Version 10

564 / 2126

COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$
COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

565 / 2126

string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

PowerBASIC Compiler for Windows Version 10

566 / 2126

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMBOBOX UNSELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMBOBOX statement
Purpose Manipulate a COMBOBOX control in order to set/retrieve data.

Syntax COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]
COMBOBOX DELETE hDlg, id&, item&
COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&
COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
COMBOBOX GET COUNT hDlg, id& TO datav&
COMBOBOX GET SELCOUNT hDlg, id& TO datav&
COMBOBOX GET SELECT hDlg, id& TO datav&
COMBOBOX GET STATE hDlg, id&, item& TO datav&
COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

PowerBASIC Compiler for Windows Version 10

567 / 2126

COMBOBOX GET USER hDlg, id&, item& TO datav&
COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
COMBOBOX RESET hDlg, id&
COMBOBOX SELECT hDlg, id&, item&
COMBOBOX SET TEXT hDlg, id&, item&, StrExpr
COMBOBOX SET USER hDlg, id&, item&, NumExpr
COMBOBOX UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the combobox.

id& The control identifier assigned with CONTROL ADD COMBOBOX.

item& Position of data in the COMBOBOX. First string=1, second=2...

NumExpr A numeric expression passed as a parameter.

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the COMBOBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the
COMBOBOX (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD COMBOBOX.

COMBOBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the COMBOBOX control. If the
COMBOBOX has the %CBS_SORT style, the new string is inserted in alphanumeric
order; otherwise it is added to the end of the existing list. If the optional TO clause is
included, the index position of the added string is assigned to the variable represented by
datav&. The index is one for the first string, two for the second, etc. If the index is less
than one, an error occurred and no string was added.

COMBOBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the COMBOBOX. The item
number (item&) is indexed to one (1=first, 2=second, and so on).

COMBOBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which begins with the data
in StrExpr, regardless of any characters which follow. Comparisons are not case-
sensitive. Strings are searched beginning with the string specified by item&, and ending
with the last string in the COMBOBOX. Searching does not wrap to the beginning of the
list. The item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire COMBOBOX starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

COMBOBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the COMBOBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the COMBOBOX.
 Searching does not wrap to the beginning of the list. The item number (item&) is indexed
to 1 (1=first, 2=second, etc.). To search the entire COMBOBOX starting with the first
string, item& should be set to one (1). If a matching string is found, the index value of the
match is assigned to the variable specified by datav&. If no match is found, the value zero
(0) is assigned to it.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

568 / 2126

COMBOBOX GET COUNT hDlg, id& TO datav&

The number of items in the list box of the COMBOBOX is retrieved, and assigned to the
long integer variable specified by datav&.

COMBOBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the list box of the COMBOBOX is retrieved, and assigned
to the long integer variable specified by datav&. Since this is a single-selection list box,
the retrieved value will always be either zero or one.

COMBOBOX GET SELECT hDlg, id& TO datav&

The index of the currently selected item in the list box of the COMBOBOX is retrieved, and
assigned to the variable specified by datav&. The index is 1 for the first item, 2 for the
second item, etc. If there is no current selection, the value zero (0) is assigned.

COMBOBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item, etc.
 If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

COMBOBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the COMBOBOX and assigned to the string variable specified by
txtv$. If the numeric expression item& is included, it determines which text string is
returned, 1 for the first item, 2 for the second item, etc. If item& is missing, or contains
the value zero, the selected text is returned (or an empty string if none is selected). If you
wish to retrieve the text found in the edit box portion of the COMBOBOX (regardless of
whether it was typed or selected), you should use the CONTROL GET TEXT statement
instead.

COMBOBOX GET USER hDlg, id&, item& TO datav&

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with COMBOBOX GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first item, 2 for
the second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. COMBOBOX user values are assigned with the COMBOBOX SET
USER statement. In addition to these COMBOBOX user values, every DDT control offers
an additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

COMBOBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the COMBOBOX was created with the style %
CBS_SORT. If you wish to sort all of the items, use COMBOBOX ADD instead. If the
optional TO clause is included, the index position of the inserted string is assigned to the
variable represented by datav&. The index is one for the first string, two for the second,
etc. If the index is less than one, an error occurred and no string was inserted.

COMBOBOX RESET hDlg, id&

Delete all contents of the specified COMBOBOX.

COMBOBOX SELECT hDlg, id&, item&

The string value specified by item& is chosen as selected text for the COMBOBOX

PowerBASIC Compiler for Windows Version 10

569 / 2126

control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc.

COMBOBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr. The
value of item& = 1 for the first item, 2 for the second item, etc. The list of data items is
not re-sorted, even if the COMBOBOX was created with the style %CBS_SORT. If you
wish to sort all of the items, use COMBOBOX DELETE followed by COMBOBOX ADD
instead.

COMBOBOX SET USER hDlg, id&, item&, NumExpr

Each item in a COMBOBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with COMBOBOX SET USER,
and retrieved with COMBOBOX GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these COMBOBOX user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

COMBOBOX UNSELECT hDlg, id&

All items in a COMBOBOX control are set to an unselected state.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD COMBOBOX, CONTROL GET TEXT

COMM CLOSE statement

COMM CLOSE statement
Purpose Close an open serial port.

Syntax COMM CLOSE [#] hComm [, [#] hComm ...]

Remarks Closes one or more communication ports, as specified by the PowerBASIC file number
held in each hComm parameter. COMM CLOSE ends the relationship between a
PowerBASIC file number, and the serial port device that was previously associated with it
by the COMM OPEN statement.

The Number symbol (#) prefix is optional, but recommended for the purposes of clarity.

It is also recommended that you explicitly close any serial port that you have opened
before your application terminates. Note that COMM CLOSE is a synonym for CLOSE.

See also Serial Communications, CLOSE, COMM function, COMM LINE, COMM OPEN,
COMM PRINT, COMM RECV, COMM RESET, COMM SEND, COMM SET, COMM
TIMEOUT

Example COMM CLOSE #hComm, 5 ' Close hComm and file number 5

COMM function

COMM function
Purpose Retrieve the value or status of a communications parameter.

PowerBASIC Compiler for Windows Version 10

570 / 2126

Syntax lResult& = COMM([#] hComm, Comfunc)

Remarks hComm is the PowerBASIC file number as was used by the COMM OPEN statement to
open the communications port. Select a Comfunc keyword from the following table to
retrieve the associated setting.

Comfunc value (TRUE <> 0, FALSE = 0)
BAUD Port Baud Rate (9600, 14400, 19200, etc).
BREAK TRUE/FALSE Break is asserted. Break is generally used to "get the

attention" of the connected modem, terminal or system.
BYTE Number of bits per byte (4, 5, 6, 7, or 8).
CD TRUE/FALSE Carrier Detect state; synonym for RLSD (READ-ONLY).

When CD is TRUE, the DCE (modem) has a suitable connection on the
communications channel present. When CD is FALSE, there is no
suitable connection.

CTS TRUE/FALSE Clear-To-Send state is returned (READ-ONLY).
CTSFLOW TRUE/FALSE Enable CTS output flow control (Input signal). When

CTSFLOW is enabled, it causes the DTE (computer) to stop sending data
whenever the CTS signal is set to logic low by the DCE (modem).
Transmission continues when the DCE (modem) sets the CTS signal
back to logic high. The CTS signal is usually used in response to an RTS
signal.

DSR TRUE/FALSE Data-Set-Ready state is returned (READ-ONLY).
DSRFLOW TRUE/FALSE Enable DSR output flow control (Input signal). When

DSRFLOW is enabled, it causes the DTE (computer) to stop sending data
whenever the DSR signal is set to logic low by the DCE (modem).
Transmission is enabled when the DSR signal returns to logic high. The
DSR signal is often used in conjunction with CTS in response to a RTS
signal.

DSRSENS TRUE/FALSE Enable DSR sensitivity. When DSRSENS is enabled, data
received by the DTE (computer) is placed into the receive buffer only if
DSR is set to logic high. If DSR is set low, received data is discarded.
Enabling DSRSENS allows DSR to enable or disable the DTE (the
computer) to receive data from the DTE (the modem). DSRSENS is rarely
used in practical communications situations.

DTRFLOW TRUE/FALSE Enable DTR handshaking flow control (Output signal).
When DTRFLOW is enabled, it signals that the DCE (modem) should
prepare to connect to the communications channel. DTR is usually used
for modem on-hook/off-hook control, but can also be used in conjunction
with DSR for handshaking.

DTRLINE TRUE/FALSE Enable DTR line. When enabled, DTRLINE leaves the DTR
line active when the port is closed by the DTE (computer). This ensures
that the DCE (modem) does not close the communications channel when
the port is closed.

NULL TRUE/FALSE Null ($NUL) bytes are discarded when read.
PARITY TRUE/FALSE Enable parity checking. This mode must be enabled for the

other Parity options to be selected.
PARITYCHAR Character to use for parity error replacement. PARITY must be enabled.
PARITYREPL TRUE/FALSE Enable character replacement on parity error. PARITY

must be enabled.
PARITYTYPE 0 = None, 1 = Odd, 2 = Even, 3 = Mark, 4 = Space. PARITY must be

enabled. Default = 0.
RING TRUE/FALSE Ring indicator is on (READ-ONLY). When RING returns

TRUE, a ringing signal is being received on the communications channel
(by the modem). RING approximates the state of the ringing signal;
however, it may not be reported accurately on all Windows platforms.

RLSD Receive-line-signal-detect (READ-ONLY). See CD/Carrier Detect above.
RTSFLOW Ready To Send (Output signal). 0 = Disable, 1 = Enable, 2 = Handshake,

3 = Toggle. Toggle is used for half-duplex (2-wire) operations to "reverse"
the line. While the DTE (computer) is busy sending data, it raises the

PowerBASIC Compiler for Windows Version 10

571 / 2126

RTS signal and the DCE (modem) blocks its data receive channel. When
RTS signal reverts to logic low, the DCE (modem) reverts to transmit
mode and the DTE (computer) switches to receive mode.
Handshake mode causes the DTE (computer) to check the receive buffer
(RXQUE) after each character is placed into the buffer. When the buffer is
5/6th full, the RTS signal is dropped. When the receive buffer drops to
below 1/6th full, RTS is raised again

RXBUFFER Size of the receive buffer in bytes.
RXQUE Characters currently in the receive buffer (READ-ONLY).
STOP 0 = 1 stop bits, 1 = 1.5 stop bits, 2 = 2 stop bits.
TXBUFFER Size of the transmit buffer in bytes. In some cases, Windows may not be

able to report the transmit size.
TXQUE Characters currently in the transmit buffer (READ-ONLY).
XINPFLOW TRUE/FALSE Enable XON/XOFF input flow control. When the DTE

(computer) receive buffer is full, an XOFF character is sent to the DCE
(modem) to instruct it to halt transmission. When the DCE is ready to
resume transmission, an XON character is sent to the DCE. Typically,
XOFF is sent when the receive buffer has less than 1/16th remaining, and
XON is sent when the receive buffer drops to less than 1/16th of its
maximum size. Default = FALSE.

XOUTFLOW TRUE/FALSE Enable XON/XOFF out flow control. When enabled, the
DCE (modem) sends an XOFF to the DTE (computer) to halt data
transmission to the DCE. When the DCE is ready to receive more data,
an XON character is sent. XOUTFLOW typically uses the same 1/16th
rules as XINPFLOW. Default = FALSE.

 Common baud rates range from 110 to 256000. There are equates defined in the
WIN32API.INC file, prefixed with %CBR_ to assist you with specifying a common baud
rate, but you are not restricted to a limited set of rates.

PowerBASIC sets the ERR system variable if an error occurs when using the COMM
function.

The Number symbol (#) prefix is optional, but recommended for the purposes of clarity.

Restrictions Due to differences between Win32 operating systems, parameters (such as the
TXBUFFER and TXQUE) may not be queried successfully in all circumstances.

See also Serial Communications, COMM CLOSE, COMM LINE, COMM OPEN, COMM PRINT,
COMM RECV, COMM RESET, COMM SEND, COMM SET, COMM TIMEOUT

Example Qty& = COMM(#hComm, RXQUE)
x$ = "The receive buffer contains " + _
 FORMAT$(Qty&) + " bytes of data."

Qty& = COMM(#hComm, TXBUFFER) - COMM(#hComm, TXQUE)
x$ = "There is room for " + FORMAT$(Qty&) + _
 " bytes in the transmit buffer."

COMM LINE statement

COMM LINE statement
Purpose Receive a CR/LF ($CRLF) terminated "line" of data from a serial port.

Syntax COMM LINE [INPUT] [#] hComm, string_var

Remarks Read a delimited line of data from the receive buffer, where a "line" is defined as a stream
of data that is terminated by a CR/LF (carriage return and linefeed, $CRLF, or
CHR$(13,10)). COMM LINE INPUT is ideal for retrieving modem response strings in reply
to "AT" commands sent to a modem.

hComm is the file number you used with COMM OPEN, an integer in the range of 1 to

WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

572 / 2126

32767. The Number symbol (#) prefix is optional, but recommended for clarity.

COMM LINE reads the receive buffer up to the next $CRLF character pair. The $CRLF
bytes are removed from the buffer but do not form part of the string data returned by
COMM LINE. Note that if there is no $CRLF pair in the receive buffer, the statement will
wait indefinitely for a complete $CRLF terminated line of data. In this sense, COMM LINE
is a blocking statement. The COMM TIMEOUT statement can be used to specify COMM
timeouts limits.

The data received is assigned to the string_var. The character mode of the string_var
must match the CHR option in COMM OPEN (ANSI/WIDE). If not, an error 5 (Illegal
function call) will be generated, and no data will be received.

The EOF function may also be used with COMM LINE (and TCP LINE) to detect that an
incomplete line was received. Normally, the COMM LINE statement reads data until a
$CRLF character pair is found, and in that case, EOF will return false (zero). However, if
a timeout does occur, COMM LINE will return whatever data has been accumulated, and
set EOF to logical TRUE (non-zero).

In many cases, it would be prudent to test EOF after every COMM LINE statement to
verify that a full line has been received. In some cases, you may wish to execute the
statement one or more additional times, combining the data, in order to obtain a full line of
text.

See also Serial Communications, COMM CLOSE, COMM function, COMM OPEN, COMM PRINT,
COMM RECV, COMM RESET, COMM SEND, COMM SET, COMM TIMEOUT, EOF

Example COMM PRINT #hComm, "AT"
SLEEP 1000 ' delay for modem to respond
DO
 COMM LINE INPUT #hComm, a$
 CALL DisplayResponse(a$) ' display the modem echo
LOOP UNTIL LEN(a$)

COMM OPEN statement

COMM OPEN statement
Purpose Open a serial port.

Syntax COMM OPEN "COMn" AS [#] hComm [CHR = ANSI|WIDE]

Remarks Opens a serial port to begin communications, creating a relationship between a file
number and a specific serial port device.

COMn Identifies the serial port number, for example, COM1, COM4, etc. A colon must not follow
the port specification. See Restrictions below.

hComm A numeric expression specifying an unused PowerBASIC file number, in the range of 1 to
32767. This is typically provided by the FREEFILE function. The Number symbol (#)
prefix is optional, but recommended for clarity.

If the port was not opened successfully, the ERR system variable will contain the error
code. Before actual communications through the port can commence, you must
configure the communication parameters by using a COMM SET statement for each
parameter.

Restrictions A colon may not be used in the port name, as was common in DOS code. COMM OPEN
cannot use an operating system file handle, nor open a port that is already in use. When
opening ports above COM9, Windows requires the port name to be specified using the
following syntax:

COMM OPEN "\\.\COM15" AS #hComm

See also Serial Communications, COMM CLOSE, COMM function, COMM LINE, COMM PRINT,
COMM RECV, COMM RESET, COMM SEND, COMM SET, COMM TIMEOUT,

PowerBASIC Compiler for Windows Version 10

573 / 2126

FREEFILE, OPEN

Example DIM hComm AS LONG
hComm = FREEFILE
COMM OPEN "COM1" AS #hComm
COMM OPEN "COM2" AS #5

COMM PRINT statement

COMM PRINT statement
Purpose Send a string of text through a serial port with optional CR/LF.

Syntax COMM PRINT [#] hComm, string_expression [;] [TO CharCountVar]

Remarks The text data contained in string_expression is sent to the serial port associated with the
file number hComm. The number symbol (#) is optional.

The data is sent in the character form specified in the COMM OPEN statement. If
CHR=WIDE was given, the data is sent in wide Unicode characters. Otherwise, it is sent
in ANSI bytes. The data will be converted to the appropriate form automatically.

This statement is a variation of COMM SEND, but is usually used with text only. Each
string_expression sent is automatically followed by a Carriage-Return and Line-Feed pair
to delimit the line. However, if a trailing semi-colon (;) is added, the CR/LF is suppressed.

If the optional "TO CharCountVar" clause is included, a count of the number of characters
written is assigned to it. This count includes the CR/LF, if utilized. This will allow you to
gauge the success of the operation. If a TimeOut occurred, this value will be less than
expected, and a run-time error 24 (Device Timeout) will be generated.

COMM PRINT is ideal for sending "AT" commands to a modem. Omit the trailing
semicolon for this purpose, since you would want the CR/LF to be sent along with the
data.

See also Serial Communications, COMM CLOSE, COMM function, COMM LINE, COMM OPEN,
COMM RECV, COMM RESET, COMM SEND, COMM SET, COMM TIMEOUT

COMM RECV statement

COMM RECV statement
Purpose Receive binary data from a serial port.

Syntax COMM RECV [#] hComm, count&, string_var

Remarks Retrieve the count& number of bytes from the receive buffer, placing the results in
string_var. Program execution will halt until count& bytes are available, so it is wise to
check how many bytes are available before making a COMM RECV request. You can do
this by checking the RXQUE value with the COMM function, as shown in the example
below.

hComm is the file number you used with COMM OPEN, an integer in the range of 1 to
32767. The Number symbol (#) prefix is optional, but recommended for clarity.

The data received is assigned to the string_var. The character mode of the string_var
must match the CHR option in COMM OPEN (ANSI/WIDE). If not, an error 5 (Illegal
function call) will be generated, and no data will be received.

See also Serial Communications, COMM CLOSE, COMM function, COMM LINE, COMM OPEN,
COMM PRINT, COMM RESET, COMM SEND, COMM SET, COMM TIMEOUT

Example Qty& = COMM(#hComm, RXQUE)
COMM RECV #hComm, Qty&, a$

PowerBASIC Compiler for Windows Version 10

574 / 2126

COMM RESET statement

COMM RESET statement
Purpose Disable flow control for a given serial port.

Syntax COMM RESET [#] hComm, FLOW

Remarks Switches off all flow control to the serial port as specified by the file number stored in
hComm.

The Number symbol (#) prefix is optional, but recommended for the purposes of clarity.

See also Serial Communications, COMM CLOSE, COMM function, COMM LINE, COMM OPEN,
COMM PRINT, COMM RECV, COMM SEND, COMM SET, COMM TIMEOUT

COMM SEND statement

COMM SEND statement
Purpose Send a string of data through a serial port.

Syntax COMM SEND [#] hComm, string_expression TO [CharCountVar]

Remarks The data contained in string_expression is sent to the serial port associated with the file
number hComm. The number symbol (#) is optional.

The data is sent in the character form specified in the COMM OPEN statement. If
CHR=WIDE was given, the data is sent in wide Unicode characters. Otherwise, it is sent
in ANSI bytes. The data will be converted to the appropriate form automatically.

With COMM SEND, no delimiters are added to the data. If a trailing CR/LF is needed, it's
usually best to use COMM PRINT instead.

If the optional "TO CharCountVar" clause is included, a count of the number of characters
written is assigned to it. This will allow you to gauge the success of the operation. If a
TimeOut occurred, this value will be less than expected, and a run-time error 24 (Device
Timeout) will be generated.

See also Serial Communications, COMM CLOSE, COMM function, COMM LINE, COMM OPEN,
COMM PRINT, COMM RECV, COMM RESET, COMM SET, COMM TIMEOUT

Example A$ = "ATDT1,555-1234;"
COMM SEND #hComm, a$

COMM SET statement

COMM SET statement
Purpose Set communication options for a serial port.

Syntax COMM SET [#] hComm, Comfunc = value

Remarks Set the parameters needed to communicate with a serial port. This must always be done
before you can send and receive data through the port.

To configure the communication parameters, use keywords from the following table to
specify the Comfunc as well as a suitable value chosen from the range applicable to the
Comfunc parameter you want to set. If an error occurs when attempting to set a
parameter, PowerBASIC sets the ERR system variable to indicate the error number.
While each parameter must be set individually, it is also possible to change certain

PowerBASIC Compiler for Windows Version 10

575 / 2126

parameters without the need to close and re-establish communications.

COMM SET keywords table

Comfunc value (TRUE <> 0, FALSE = 0)

BAUD Port Baud Rate (9600, 14400, 19200, etc). See notes below.

BREAK TRUE/FALSE Break is asserted. Break is generally used to "get the
attention" of the connected modem, terminal or system.

BYTE Number of bits per byte (4, 5, 6, 7, or 8).

CD TRUE/FALSE Carrier Detect state; synonym for RLSD (READ-ONLY).
When CD is TRUE, the DCE (modem) has a suitable connection on the
communications channel present. When CD is FALSE, there is no
suitable connection.

CTSFLOW TRUE/FALSE Enable CTS output flow control (Input signal). When
CTSFLOW is enabled, it causes the DTE (computer) to stop sending
data whenever the CTS signal is set to logic low by the DCE (modem).
Transmission continues when the DCE (modem) sets the CTS signal
back to logic high. The CTS signal is usually used in response to an
RTS signal.

DSRFLOW TRUE/FALSE Enable DSR output flow control (Input signal). When
DSRFLOW is enabled, it causes the DTE (computer) to stop sending
data whenever the DSR signal is set to logic low by the DCE (modem).
Transmission is enabled when the DSR signal returns to logic high. The
DSR signal is often used in conjunction with CTS in response to a RTS
signal.

DSRSENS TRUE/FALSE Enable DSR sensitivity. When DSRSENS is enabled, data
received by the DTE (computer) is placed into the receive buffer only if
DSR is set to logic high. If DSR is set low, received data is discarded.
Enabling DSRSENS allows DSR to enable or disable the DTE (the
computer) to receive data from the DTE (the modem). DSRSENS is
rarely used in practical communications situations.

DTRFLOW TRUE/FALSE Enable DTR handshaking flow control (Output signal).
When DTRFLOW is enabled, it signals that the DCE (modem) should
prepare to connect to the communications channel. DTR is usually used
for modem on-hook/off-hook control, but can also be used in conjunction
with DSR for handshaking.

DTRLINE TRUE/FALSE Enable DTR line. When enabled, DTRLINE leaves the DTR
line active when the port is closed by the DTE (computer). This ensures
that the DCE (modem) does not close the communications channel when
the port is closed.

NULL TRUE/FALSE Null ($NUL) bytes are discarded when read.

PARITY TRUE/FALSE Enable parity checking. This mode must be enabled for
the other Parity options to be selected.

PARITYCHAR Character to use for parity error replacement. PARITY must be enabled.

PARITYREPL TRUE/FALSE Enable character replacement on parity error. PARITY
must be enabled.

PARITYTYPE 0 = None, 1 = Odd, 2 = Even, 3 = Mark, 4 = Space. PARITY must be
enabled. Default = 0.

RING TRUE/FALSE Ring indicator is on (READ-ONLY). When RING returns
TRUE, a ringing signal is being received on the communications channel
(by the modem). RING approximates the state of the ringing signal;
however, it may not be reported accurately on all Windows platforms.

RLSD Receive-line-signal-detect (READ-ONLY). See CD/Carrier Detect above.

PowerBASIC Compiler for Windows Version 10

576 / 2126

RTSFLOW Ready To Send (Output signal). 0 = Disable, 1 = Enable, 2 =
Handshake, 3 = Toggle. Toggle is used for half-duplex (2-wire)
operations to "reverse" the line. While the DTE (computer) is busy
sending data, it raises the RTS signal and the DCE (modem) blocks its
data receive channel. When RTS signal reverts to logic low, the DCE
(modem) reverts to transmit mode and the DTE (computer) switches to
receive mode.

Handshake mode causes the DTE (computer) to check the receive buffer
(RXQUE) after each character is placed into the buffer. When the buffer
is 5/6th full, the RTS signal is dropped. When the receive buffer drops to
below 1/6th full, RTS is raised again.

RXBUFFER Size of the receive buffer in bytes.

RXQUE Characters currently in the receive buffer (READ-ONLY).

STOP 0 = 1 stop bits, 1 = 1.5 stop bits, 2 = 2 stop bits.

TXBUFFER Size of the transmit buffer in bytes. In some cases, Windows may not be
able to report the transmit size.

TXQUE Characters currently in the transmit buffer (READ-ONLY).

XINPFLOW TRUE/FALSE Enable XON/XOFF input flow control. When the DTE
(computer) receive buffer is full, an XOFF character is sent to the DCE
(modem) to instruct it to halt transmission. When the DCE is ready to
resume transmission, an XON character is sent to the DCE. Typically,
XOFF is sent when the receive buffer has less than 1/16th remaining, and
XON is sent when the receive buffer drops to less than 1/16th of its
maximum size. Default = FALSE.

XOUTFLOW TRUE/FALSE Enable XON/XOFF out flow control. When enabled, the
DCE (modem) sends an XOFF to the DTE (computer) to halt data
transmission to the DCE. When the DCE is ready to receive more data,
an XON character is sent. XOUTFLOW typically uses the same 1/16th
rules as XINPFLOW. Default = FALSE.

Common baud rates range from 110 to 256000. There are equates defined in the
WIN32API.INC file, prefixed with %CBR_ to assist you with specifying a common baud
rate, but you are not restricted to a limited set of rates.

Attempting to set a READ-ONLY attribute will result in a compile-time Error 542 ("May not
be altered").

The Number symbol (#) prefix is optional, but recommended for the purposes of clarity.

See also Serial Communications, COMM CLOSE, COMM function, COMM LINE, COMM OPEN,
COMM PRINT, COMM RECV, COMM RESET, COMM SEND, COMM TIMEOUT

Example To open a communication port and initialize it for use, you will need to set the following
parameters (the selection is typical, but is mainly for demonstration purposes - you may
choose your own settings as necessary)

' Minimum settings
COMM SET #hComm, BAUD = 9600 ' 9600 baud
COMM SET #hComm, BYTE = 8 ' 8 bits
COMM SET #hComm, PARITY = %FALSE ' No parity
COMM SET #hComm, STOP = 0 ' 1 stop bit
COMM SET #hComm, TXBUFFER = 2048 ' transmit buffer
COMM SET #hComm, RXBUFFER = 4096 ' receive buffer

' Optional settings for flow control
COMM SET #hComm, CTSFLOW = 1 ' Enable CTS
COMM SET #hComm, RTSFLOW = 1 ' Enable RTS
COMM SET #hComm, XINPFLOW = 0 ' Disable XON/OFF
 ' Input flow control
COMM SET #hComm, XOUTFLOW = 0 ' Disable XON/XOFF

WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

577 / 2126

 ' Output flow control

COMM TIMEOUT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COMM TIMEOUT statement
Purpose Place a limit on the time to complete a

 operation.
Syntax COMM TIMEOUT [#] hComm, TimeOutMS&

Remarks COMM TIMEOUT allows you to specify how long a COMM operation should wait to send
or receive a byte of data. This value is measured in milliseconds. If the specified number
of milliseconds elapses without a response, the COMM operation will fail and a run-time
error 24 (Device Timeout) will be generated.

See also Serial Communications, COMM CLOSE, COMM function, COMM LINE, COMM OPEN,
COMM PRINT, COMM RECV, COMM RESET, COMM SEND, COMM SET, COMM
TIMEOUT, FREEFILE, OPEN

COMMAND$ function

COMMAND$ function
Purpose Return the command-line arguments used to start the program.

Syntax s$ = COMMAND$
s$ = COMMAND$(ArgNum)

Remarks COMMAND$ returns everything that was typed following the program name. Some
operating system manuals refer to this text as the trailer or command tail. You can use
COMMAND$ to collect run-time arguments, like filenames, and program options.

Depending upon the optional argument number, COMMAND$ will return either the
complete trailer, or just one of the arguments. If the ArgNum is zero (0), or not present,
the complete trailer is returned. If the ArgNum is greater than zero, the trailer is parsed to
return an individual argument (1 = first argument. 2 = second argument, etc.). If the
ArgNum is greater than the number of arguments, a null

 (zero-length) is returned.
Arguments are delimited by one or more blank spaces. If blank spaces are significant,
you should enclose the argument in double quotes ("). Any such double-quotes are
stripped from the return value by COMMAND$. If a zero-length quoted string ("") is found,
it is ignored entirely.

For example, consider a program named FASTSORT.EXE that reads data from one file,
sorts it, and puts the result in a new file. Using COMMAND$ lets you specify the input
and output file names when the program is invoked:

FASTSORT.EXE cust.dta cust.new

PowerBASIC Compiler for Windows Version 10

578 / 2126

When FASTSORT begins execution, COMMAND$ or COMMAND$(0) would return:

cust.dta cust.new

COMMAND$(1) would return:

cust.dta

COMMAND$(2) would return:

cust.new

Restrictions In some recent versions of Windows, file association and drag-drop file operations cause
filenames to be enclosed with double-quote marks when they are passed in
COMMAND$. It would be wise to ensure that your applications are prepared for this
possibility. Some operating systems automatically enclose the command-line in double-
quote marks.

PowerBASIC imposes no arbitrary limits on the length of the string returned by
COMMAND$ but, the operating system may impose limits. Such limits may become
evident, for example, when attempting to Drag and Drop a large number of files onto an
EXE within Windows Explorer. Usually, attempting to drop more files than the operating
system permits will result in an operating system warning message.

Within the IDE, a COMMAND$ command-line parameter can be specified for the
purposes of testing in both Compile and Execute and Compile and Debug modes.

See also JOIN$, PARSE, PARSE$, PARSECOUNT, PATHNAME$, PATHSCAN$, WINMAIN

Example #COMPILE EXE
FUNCTION PBMAIN
 IF TRIM$(COMMAND$) = "" THEN
 EXIT FUNCTION ' No command-line params given, just quit
 ELSEIF INSTR(COMMAND$, "/Q") THEN
 ' Process the /Q option
 ELSEIF INSTR(COMMAND$, "/W") THEN
 ' Process the /W option
 END IF
END FUNCTION

CONTROL ADD statement

CONTROL ADD "custom-control" statement
Purpose Add a custom control to a DDT dialog.

Syntax CONTROL ADD classname$, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

classname$ A registered custom control or common control class name, for example,
"MSCTLS_STATUSBAR32", etc. classname$ may be a string expression, quoted string
literal, or a string equate.

hDlg Handle of the dialog in which the control will be created.

id& Unique identifier for the control. Equates are recommended for clarity of the source code.

txt$ Text to be displayed in the control, if any. txt$ may be a string expression,

, or string constant, and may be zero length.
x, y expressions, variables, or numeric literal values, specifying the location of the control

inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog.

yy Integral expression, variable, or numeric literal value, specifying the height of the control

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

579 / 2126

The height is given in the same terms (pixels or dialog units) as the parent dialog..

style& Primary style of the custom control. There are no default style values for a custom
control. Many standard Windows common controls require the %WS_CHILD and %
WS_VISIBLE styles to be explicitly specified, or the control may not be visible or function
correctly. Please consult the control's documentation for information on its primary and
extended styles.

exstyle& Extended style of the custom control. As with style& above, there are no default extended
style values for a custom control - the statement should explicitly include all required
primary and extended styles for the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the custom control. See the #MESSAGES metastatement to
choose which messages will be received. If a callback for the control is not designated,
you must create a dialog Callback Function to process messages from your control.

If the control Callback Function processes a message, it should return TRUE (non-zero)
to prevent the message being passed unnecessarily to the dialog callback (if one exists).
The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the messages are handled by the DDT engine.

Remarks When the user interacts with the control, a message is sent to the designated Callback
Function. If there is no Callback Function designated, the message is sent to the
callback for the dialog.

The style& and exstyle& values are dependent on the type of custom control or common
control being used. The notification messages sent to your callback are also dependent
on the type of custom control or common control being used.

When the Callback Function receives a %WM_COMMAND message, the identity of the
control sending the message can be found with the CB.CTL function. Use the
CB.CTLMSG function to retrieve the notification message value in your callback. However,
many Windows common controls send %WM_NOTIFY messages (to the parent dialog's
callback, not the control callback) rather than the more conventional %WM_COMMAND
messages. In such cases, the meaning of the message parameters CB.WPARAM and
CB.LPARAM will vary according to the type of notification message being processed.

Restrictions Custom controls may require special handling other than the DDT generic functions
(CONTROL SET COLOR, CONTROL SET FONT, etc.). Consult the controls
documentation for information.

See also #MESSAGES, Dynamic Dialog Tools, CONTROL HANDLE, CONTROL SEND,

CONTROL ADD BUTTON statement

CONTROL ADD BUTTON statement
Purpose Add a command button to a dialog. A command button is a button that causes an action

to occur when the button is clicked. A common example of a command button is the
"OK" button on a message box dialog.

Syntax CONTROL ADD BUTTON, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the button will be created. The dialog will become the parent
of the command button.

id& Unique identifier for the button in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %NewAccount is more
informative than a literal value such as 497. Best practice suggests identifiers should start
at 100 to avoid conflict with any of the standard predefined identifiers.

However, it is typical for a dialog to include an OK and/or a Cancel button, represented by

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

580 / 2126

the predefined equates %IDOK and %IDCANCEL respectively. A button with an ID of %
IDOK is triggered (clicked) when the ENTER key is pressed by the user, and a button
with the ID of %IDCANCEL is triggered when the ESCAPE key is pressed. These and
other predefined "standard" equates can be found in the WIN32API.INC and DDT.INC
files.

txt$ Text to be displayed in the button. An ampersand (&) may be included in txt$ to specify a
hot-key. See the Remarks section below. OK and Cancel/Close buttons do not usually
contain accelerators, since such buttons usually respond to the ENTER and ESCAPE
keystrokes, respectively.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the button.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 50 dialog
units.

yy Integral expression, variable, or numeric literal value, specifying the height of the button.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 14 dialog
units.

style& Primary style of the button. The default button style comprises %BS_CENTER, %
BS_VCENTER, and %WS_TABSTOP. The default style is used if both the primary and
extended style parameters are omitted from the statement. For example:

CONTROL ADD BUTTON, hDlg, id&, txt$, 100, 100, 150, 200, , , _
 CALL ButtonCallback() ' Use default styles

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary button style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%BS_BOTTOM Place the text at the bottom of the button.

%BS_CENTER Center the text horizontally in the button. (default)

%BS_DEFAULT Create a button with a heavy black border. The user
can select this button by pressing the ENTER key.
This style is useful for enabling the user to quickly
select the most likely option. You can only have one
Default button per dialog. It is recommended to make
id& = 1, or id& = %IDOK for this control. Synonym of
%BS_DEFPUSHBUTTON.

%BS_DEFPUSHBUTTON Synonym of %BS_DEFAULT.

%BS_FLAT Create a flat button (without the raised 3D look).

%BS_LEFT Place the text on the left side of the button.

%BS_MULTILINE Wrap the caption text across multiple lines, if the text
string is too long to fit on a single line. To force a wrap,
insert a $CR (or $CRLF) into the caption text at the
desired wrap position.

%BS_NOTIFY Enable a button to send the %BN_KILLFOCUS and %
BN_SETFOCUS notification messages to the button
Callback Function.

%BS_PUSHLIKE Button state alternates (toggles) between normal
(raised) and depressed (sunken) modes.

%BS_RIGHT Place the text on the right side of the button.

WIN32API_INC_Updates.htm
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

581 / 2126

%BS_TOP Place the text at the top edge of the button.

%BS_VCENTER Center the text vertically in the button. (default)

%WS_BORDER Add a thin line border around the control.

%WS_DISABLED Create a control that is initially disabled. A disabled
control cannot receive input from the user. Use the
CONTROL ENABLE statement to re-enable the
button.

%WS_GROUP Define the start of a group of controls. The first control
in each group should also use %WS_TABSTOP style.
The next %WS_GROUP control in the tab order
defines the end of this group and the start of a new
group. Groups configured this way permit the arrow
keys to shift focus between the controls within the
group, and focus can jump from group to group with
the usual TAB and SHIFT+TAB keys. Both tab stops
and groups are permitted to wrap from the end of the
tab order back to the start.

%WS_TABSTOP Allow button control to receive keyboard focus when
the user presses the TAB and SHIFT+TAB keys. The
TAB key shifts keyboard focus to the next control with
the %WS_TABSTOP style, and SHIFT+TAB shifts
focus to the previous control with %WS_TABSTOP.
(default)

exstyle& Extended style of the button control. The default extended button style comprises %
WS_EX_LEFT. The default extended style is used if both the primary and extended style
parameters are omitted from the CONTROL ADD BUTTON statement, in the same
manner as style& above.

The extended button style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%WS_EX_LEFT The button has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The button has generic "right-aligned" properties.
This style has an effect only if the shell language is
Hebrew, Arabic, or another language that supports
reading order alignment; otherwise, the style is
ignored.

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks If the ampersand (&) character appears in the txt$ parameter, the letter that follows will be
displayed underscored. This adds a control accelerator (hot-key) to enable the user to
directly "click" a control, simply by pressing and holding the ALT key while pressing the
specified hot-key. For example, "E&xit" makes ALT+x the hot-key.

On Windows XP and Windows 2000 you may need to press the ALT key before

http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

582 / 2126

Control Accelerators are made visible. You can set if Command Accelerators
are visible when using the ALT key or all the time in the Windows Display
Settings.

Unless the %BS_FLAT style is used, the button is drawn on the dialog using a 3-
dimensional look. When the user clicks a button, a message is sent to the Callback
Function designated for the button. If there is no Callback Function designated, the
message is sent to the callback for the dialog.

In general, if the control Callback Function processes a message, it should return TRUE
(non-zero) to prevent the message being passed unnecessarily to the dialog callback (if
one exists). The dialog callback should also return TRUE, if the notification message is
processed by that Callback Function. Otherwise, the DDT engine processes unhandled
messages.

Notification messages are sent to the Callback Function, with CB.MSG = %
WM_COMMAND, CB.CTL holding the ID (id&) of the control, and CB.CTLMSG holding
the following values:

%BN_CLICKED Sent when the user clicks a mouse button, or activates the
button with the hot-key (unless the button has been
disabled).

%BN_DISABLE Sent when a button is disabled.

%BN_KILLFOCUS Sent when a button loses the keyboard focus. The button
must include the %BS_NOTIFY style.

%BN_SETFOCUS Sent when a button receives the keyboard focus. The
button must include the %BS_NOTIFY style.

When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

See also Dynamic Dialog Tools, CONTROL GET TEXT, CONTROL SET FONT,
CONTROL SET TEXT

CONTROL ADD CHECK3STATE statement

CONTROL ADD CHECK3STATE statement
Purpose Add an auto 3-state checkbox to a dialog. This is

commonly used to indicate a selection that may be True
(set or checked), False (unset or cleared) or
Indeterminate (grayed), and is often found in dialogs that
provide "multiple choice" options.

Syntax CONTROL ADD CHECK3STATE, hDlg, id&, txt$, x, y,
xx, yy [, [style&] [, [exstyle&]]] [[,] CALL
callback]

hDlg Handle of the dialog in which the 3-state checkbox will be
created. The dialog will become the parent of the control.

id& Unique identifier for the control in the range 1 to 65535,
frequently specified with numeric equates for clarity of the
code. For example, the %AutoLogoff equate is more
informative than a literal value such as 497. Best practice
suggests identifiers should start at 100 to avoid conflict
with any of the standard predefined identifiers.

txt$ Text to be displayed in the 3-state checkbox. An
ampersand (&) may be included in txt$ to specify a hot-
key. See the Remarks section below.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

583 / 2126

x, y expressions, variables, or numeric literal values,
specifying the location of the control inside the dialog
client area. x is the horizontal position, and y is the
vertical position. 0,0 refers to the upper left corner of
the dialog box client area. Coordinates are specified in
the same terms (pixels or dialog units) as the parent
dialog.

xx Integral expression, variable, or numeric literal value,
specifying the width of the control. The width is given in
the same terms (pixels or dialog units) as the parent
dialog. The most common value used in the Microsoft
Dialog Editor and Visual Studio is 40 dialog units.

yy Integral expression, variable, or numeric literal value,
specifying the height of the control. The height is given in
the same terms (pixels or dialog units) as the parent
dialog. The most common value used in the Microsoft
Dialog Editor and Visual Studio is 14 dialog units.

style& Primary style of the 3-state checkbox control. The default
3-state checkbox style comprises %BS_LEFT, %
BS_VCENTER, and %WS_TABSTOP. The default style
is used only if both the primary and extended style
parameters are omitted from the statement. For example:

CONTROL ADD CHECK3STATE, hDlg, id&, txt$,
100, 100, 40, 14, , , _
 CALL Check3Callback() ' Use default styles

Custom style values replace the default values. That is,
they are not additional to the default style values - your
code must specify all necessary primary and extended
style parameters.

The primary 3-state checkbox style value can be a
combination of any values below, combined together with
the OR operator to form a bitmask:

%BS_BOTTOM Place the text at
the bottom of the
control.

%BS_CENTER Center the text
horizontally in the
control.

%BS_FLAT Create a flat control
(without the raised
3D look).

%BS_LEFT Place the text on
the left side of the
checkbox. Also see
%BS_LEFTTEXT.
(default)

%BS_LEFTTEXT Place the checkbox
to the right of the
text portion of the
control. Combine
with %BS_RIGHT
to right-align text
against the left side
of the checkbox
control.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

584 / 2126

%BS_MULTILINE Wrap the caption
text across multiple
lines, if the text
string is too long to
fit on a single line.
To force a wrap,
insert a $CR (or
$CRLF) into the
caption text at the
desired wrap
position.

%BS_NOTIFY Enable a control to
send the %
BN_KILLFOCUS
and %
BN_SETFOCUS
messages to the
callback.

%BS_PUSHLIKE Button state
alternates (toggles)
between normal
(raised) and
depressed (sunken)
modes.

%BS_RIGHT Place the text on
the right side of the
checkbox. Also see
%BS_LEFTTEXT.

%BS_TOP Place the text at
the top of the
control.

%BS_VCENTER Center the text
vertically in the
control. (default)

%WS_DISABLED Create a control
that is initially
disabled. A disabled
control cannot
receive input from
the user.

%WS_GROUP Define the start of a
group of controls.
The first control in
each group should
also use %
WS_TABSTOP
style. The next %
WS_GROUP
control in the tab
order defines the
end of this group
and the start of a
new group. Groups
configured this way
permit the arrow
keys to shift focus
between the
controls within the

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

585 / 2126

group, and focus
can jump from
group to group with
the usual TAB and
SHIFT+TAB keys.
Both tab stops and
groups are
permitted to wrap
from the end of the
tab order back to
the start.

%WS_TABSTOP Allow the 3-state
checkbox to receive
keyboard focus
when the user
presses the TAB
and SHIFT+TAB
keys. The TAB key
shifts keyboard
focus to the next
control with the %
WS_TABSTOP
style, and
SHIFT+TAB shifts
focus to the
previous control
with %
WS_TABSTOP.
(default)

exstyle& Extended style of the 3-state checkbox control. The
default extended 3-state checkbox style comprises %
WS_EX_LEFT. The default extended style is used if both
the primary and extended style parameters are omitted
from the CONTROL ADD CHECK3STATE statement, in
the same manner as style& above.

The extended 3-state checkbox style value can be a
combination of any values below, combined together with
the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a
sunken edge
border to the
control.

%WS_EX_LEFT The control
has generic
"left-aligned"
properties.
(default)

%WS_EX_RIGHT The control
has generic
"right-aligned"
properties.
This style has
an effect only if
the shell
language is
Hebrew,
Arabic, or
another

PowerBASIC Compiler for Windows Version 10

586 / 2126

language that
supports
reading order
alignment;
otherwise, the
style is
ignored.

%WS_EX_STATICEDGE Apply a three-
dimensional
border style to
the control
(intended to be
used for items
that do not
accept user
input).

%WS_EX_TRANSPARENT Controls/windo
ws beneath
the control are
drawn before
the control is
drawn. The
control is
deemed
transparent
because
elements
behind the
control have
already been
painted - the
control itself is
not drawn
differently.
True
transparency
is achieved by
using Regions
- see MSDN
for more
information.

%WS_EX_WINDOWEDGE Apply a raised
edge border to
the control.

callback Optional name of a Callback Function that receives all %
WM_COMMAND and %WM_NOTIFY messages for the
control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the
control is not designated, you must create a dialog
Callback Function to process messages from your
control.

In general, if the control Callback Function processes a
message, it should return TRUE (non-zero) to prevent the
message being passed unnecessarily to the dialog
callback (if one exists). The dialog callback should also
return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine
processes unhandled messages.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

587 / 2126

Remarks If the ampersand (&) character appears in the txt$
parameter, the letter that follows will be displayed
underscored. This adds a control accelerator (hot-key) to
enable the user to directly "click" a control, simply by
pressing and holding the ALT key while pressing the
specified hot-key. For example, "Set s&tate" makes
ALT+t the hot-key.

When the user clicks a 3-state checkbox, a message is
sent to the Callback Function designated for the control.
If there is no Callback Function designated, the message
is sent to the callback for the dialog.

If the control callback processes the notification
message, it should return TRUE (non-zero) to prevent the
message being passed needlessly to the dialog callback,
and eventually to the DDT engine itself.

Notification messages are sent to the Callback Function,
with CB.MSG = %WM_COMMAND, CB.CTL holding the
ID (id&) of the control, and CB.CTLMSG holding the
following values:

%BN_CLICKED Sent when the user
clicks a mouse button,
or activates the control
with the hot-key
(unless the control has
been disabled).

%BN_DISABLE Sent when a control is
disabled.

%BN_KILLFOCUS Sent when a control
loses the keyboard
focus. The control must
include the %
BS_NOTIFY style.

%BN_SETFOCUS Sent when a control
receives the keyboard
focus. The control must
include the %
BS_NOTIFY style.

When a Callback Function receives a %WM_COMMAND
message, it should explicitly test the value of CB.CTL
and CB.CTLMSG to guarantee it is responding
appropriately to the notification message.

See also Dynamic Dialog Tools, CONTROL ADD CHECKBOX,
CONTROL ADD OPTION, CONTROL GET CHECK,
CONTROL SET CHECK, CONTROL SET COLOR,
CONTROL SET FONT

CONTROL ADD CHECKBOX statement

CONTROL ADD CHECKBOX statement
Purpose Add an auto-checkbox to a dialog. This is typically used to indicate a True/False or on/off

selection, and is common in dialogs that offer choices of options to a user.

Syntax CONTROL ADD CHECKBOX, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

PowerBASIC Compiler for Windows Version 10

588 / 2126

hDlg Handle of the dialog in which the checkbox will be created. The dialog will become the
parent of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %DisableUser is more
informative than a literal value such as 497. Best practice suggests identifiers should start
at 100 to avoid conflict with any of the standard predefined identifiers.

txt$ Text to be displayed next to the checkbox. An ampersand (&) may be included in txt$ to
specify a hot-key. See the Remarks section below.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 40 dialog
units.

yy Integral expression, variable, or numeric literal value, specifying the height of the control.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 14 dialog
units.

style& Primary style of the checkbox control. The default checkbox style comprises %
BS_LEFT, %BS_VCENTER, and %WS_TABSTOP. The default style is used only if both
the primary and extended parameters are omitted from the statement. For example:

CONTROL ADD CHECKBOX, hDlg, id&, txt$, 100, 100, 40, 14, , , _
 CALL CheckboxCallback() ' Use default styles

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary checkbox style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%BS_BOTTOM Place the text at the bottom of the control.

%BS_CENTER Center the text horizontally in the control.

%BS_LEFT Place the text on the left side of the label portion of
the control. Also see %BS_LEFTTEXT. (default)

%BS_LEFTTEXT Place the checkbox to the right of the text portion of
the control. Combine with %BS_RIGHT to right-align
text against the left side of the checkbox control.

%BS_MULTILINE Wrap the caption text across multiple lines, if the text
string is too long to fit on a single line. To force a
wrap, insert a $CR (or $CRLF) into the caption text at
the desired wrap position.

%BS_NOTIFY Enable a control to send the %BN_KILLFOCUS and
%BN_SETFOCUS messages to the callback.

%BS_PUSHLIKE Button state alternates (toggles) between normal
(raised) and depressed (sunken) modes.

%BS_RIGHT Place the text on the right side of the label portion of
the control. Also see %BS_LEFTTEXT.

%BS_TOP Place the text at the top of the control.

%BS_VCENTER Center the text vertically in the control. (default)

%WS_DISABLED Create a control that is initially disabled. A disabled
control cannot receive input from the user.

%WS_GROUP Define the start of a group of controls. The first control

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

589 / 2126

in each group should also use %WS_TABSTOP style.
The next %WS_GROUP control in the tab order
defines the end of this group and the start of a new
group. Groups configured this way permit the arrow
keys to shift focus between the controls within the
group, and focus can jump from group to group with
the usual TAB and SHIFT+TAB keys. Both tab stops
and groups are permitted to wrap from the end of the
tab order back to the start.

%WS_TABSTOP Allow checkbox control to receive the keyboard focus
when the user presses the TAB and SHIFT+TAB keys.
Pressing the TAB key changes the keyboard focus to
the next control with the %WS_TABSTOP style, and
SHIFT+TAB moves it to the previous control with %
WS_TABSTOP. (default)

exstyle& Extended style of the checkbox control. The default extended checkbox style comprises
%WS_EX_LEFT. The default extended style is used if both the primary and extended
parameters are omitted from the CONTROL ADD CHECKBOX statement, in the same
manner as style& above.

The extended checkbox style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned"
properties. This style has an effect only if the
shell language is Hebrew, Arabic, or another
language that supports reading order alignment;
otherwise, the style is ignored.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is
deemed transparent because elements behind
the control have already been painted - the
control itself is not drawn differently. True
transparency is achieved by using Regions - see
MSDN for more information.

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

In general, when the control Callback Function processes a message, it should return
TRUE (non-zero) to prevent the message being passed unnecessarily to the dialog
callback (if one exists). The dialog callback should also return TRUE if the notification
message is processed by that Callback Function. Otherwise, the DDT engine processes
unhandled messages.

Remarks If the ampersand (&) character appears in the txt$ parameter, the letter that follows will be
displayed underscored. This adds a control accelerator (hot-key) to enable the user to
directly "click" a control, simply by pressing and holding the ALT key while pressing the
specified hot-key. For example, "O&ption " makes ALT+p the hot-key.

When the user clicks a control, a message is sent to the Callback Function designated
for the control. If there is no Callback Function designated, the message is sent to the

http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

590 / 2126

callback for the dialog.

If the control callback processes the notification message, it should return TRUE (non-
zero) to prevent the message being passed needlessly to the dialog callback, and
eventually to the DDT engine itself.

Notification messages are sent to the Callback Function, with CB.MSG = %
WM_COMMAND, CB.CTL holding the ID (id&) of the control, and CB.CTLMSG holding
the following values:

%BN_CLICKED Sent when the user clicks a mouse button or activates
the control with the hot-key (unless the control has
been disabled).

%BN_DISABLE Sent when a control is disabled.

%BN_KILLFOCUS Sent when a control loses the keyboard focus. The
control must include the %BS_NOTIFY style.

%BN_SETFOCUS Sent when a control receives the keyboard focus. The
control must include the %BS_NOTIFY style.

When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

See also Dynamic Dialog Tools, CONTROL ADD CHECK3STATE, CONTROL ADD OPTION,
CONTROL GET CHECK, CONTROL SET CHECK, CONTROL SET COLOR, CONTROL
SET FONT

CONTROL ADD COMBOBOX statement

CONTROL ADD COMBOBOX statement
Purpose Add a combo box to a dialog. A combo box is often used to allow a user to select an item

from a predefined list, or enter a fresh (unlisted) item. A combo box may contain only text
strings. To put numbers in a combo box, convert them to

 with the FORMAT$, USING$, or STR$ functions.
Syntax CONTROL ADD COMBOBOX, hDlg, id&, [items$()], x, y, xx, yy [, [style&] [,

[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the combo box will be created. The dialog will become the
parent of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %StockNumberList is more
informative than a literal value such as 497. Best practice suggests identifiers should start
at 100 to avoid conflict with any of the standard predefined identifiers

items$() Optional dynamic (variable length) string array, containing the initial items to be displayed
in the combo box. Items are copied from the array to the combo box, starting at the
lowest subscript of the array (LBOUND), continuing on toward the end of the array, until
an empty string is encountered, or the highest subscript is reached. If an array with an
LBOUND of zero (the default) is specified, be sure that the 1st element (0) contains data.

To create a combo box that is initially empty, either omit this parameter, or specify an
array whose first element contains an empty string. If the combo box uses the %
CBS_SORT style, the items are sorted alphanumerically as they are added to the combo
box.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

591 / 2126

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is around 100
dialog units.

yy Integral expression, variable, or numeric literal value, specifying the height of the control.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 40 dialog
units.

style& Primary style of the control.

There are three types of combo boxes: simple, dropdown, and dropdownlist. A simple
combo box consists of a text box control and a list box; the list box is always displayed.
A dropdown combo box consists of a text box control and a list box; the list box is not
displayed unless the user clicks an icon. A dropdownlist combo box consists of a label
control (not editable) and a list box; the list box is not displayed unless the user clicks an
icon.

Combo box style List box control Text box control

Simple No Yes

Dropdown (default) Yes Yes

Dropdownlist Yes No

Note that some styles of combo box are mutually exclusive. In other words, you cannot
combine certain styles that may conflict with one another. For example, you cannot
specify %CBS_SIMPLE and %CBS_DROPDOWN at the same time.

The default combo box style comprises %CBS_DROPDOWN, %CBS_SORT, and %
WS_TABSTOP. The default style is used only if both the primary and extended style
parameter values are omitted from the statement. For example:

CONTROL ADD COMBOBOX, hDlg, id&, txt$(), 100, 100, 100, 40, , , CALL
ComboCallback() ' Use default styles

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary combo box style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%CBS_AUTOHSCROLL Automatically scroll the text in the text box to the
right when the user types a character at the end
of the line. If this style is not set, only text that
fits within the rectangular boundary is allowed.

%CBS_DISABLENOSCROLL Show a disabled vertical scroll bar in the list box
when the box does not contain enough items to
scroll. Without this style, the scroll bar is hidden
when the list box does not contain enough items.

%CBS_DROPDOWN Similar to %CBS_SIMPLE, except that the list
box is not displayed unless the user selects the
icon next to the edit control. (default)

%CBS_DROPDOWNLIST Similar to %CBS_DROPDOWN, except that the
text box is replaced by a (non-editable) label item
that displays the current selection in the list box.

%CBS_HASSTRINGS The combo box will contain strings. (persistent)

%CBS_LOWERCASE Convert to lowercase any uppercase characters
entered into the text box control portion of the
combo box.

%CBS_NOINTEGRALHEIGHT Create the list box portion of the combo box with
exactly the size specified by the CONTROL ADD
COMBOBOX statement. Without this style,

PowerBASIC Compiler for Windows Version 10

592 / 2126

Windows reduces the height of the list box portion
of the combo box so that it does not display any
partial (clipped) items.

%CBS_SIMPLE Display the list box at all times. The current
selection in the list box is displayed in the text
box.

%CBS_SORT Automatically sorts strings added to the combo
box. (default)

%CBS_UPPERCASE Convert any characters entered into the text box
of a combo box into uppercase.

%WS_DISABLED Create a control that is initially disabled. A
disabled control cannot receive input from the
user. Use the CONTROL ENABLE statement to
re-enable a disabled control.

%WS_GROUP Define the start of a group of controls. The first
control in each group should also use %
WS_TABSTOP style. The next %WS_GROUP
control in the tab order defines the end of this
group and the start of a new group.

%WS_TABSTOP Allow combo box control to receive keyboard
focus when the user presses the TAB and
SHIFT+TAB keys. The TAB key shifts keyboard
focus to the next control with the %
WS_TABSTOP style, and SHIFT+TAB shifts
focus to the previous control with %
WS_TABSTOP. (default)

%WS_VSCROLL Allow the control to display a vertical scroll bar if
the list is longer than the height of the combo
box. Use in conjunction with %
CBS_DISABLENOSCROLL to make the scroll bar
visible at all times.

Do not intermix list box styles with similarly named combo box styles as the
numeric values of similar styles can produce unexpected results. For
example, %LBS_SORT =&H2 and %CBS_SORT = &H100. Combo box styles are
prefixed with %CBS.

exstyle& Extended style of the combo box control. The default extended combo box style
comprises %WS_EX_LEFT, and %WS_EX_CLIENTEDGE. The default extended style is
only used if both the primary and extended parameters are omitted from the CONTROL
ADD COMBOBOX statement, in the same manner as style& above.

The extended combo box style value can be a combination of any values below,
combined together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control. (default)

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned" properties.
This style has an effect only if the shell language is
Hebrew, Arabic, or another language that supports
reading order alignment; otherwise, the style is
ignored.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

593 / 2126

have already been painted - the control itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

In general, when the control Callback Function processes a message, it should return
TRUE (non-zero) to prevent the message being passed unnecessarily to the dialog
callback (if one exists). The dialog callback should also return TRUE if the notification
message is processed by that Callback Function. Otherwise, the DDT engine processes
unhandled messages.

Remarks When the user selects an item or edits the text of a combo box, a message is sent to the
Callback Function designated for the combo box. If there is no Callback Function
designated then the message is sent to the callback for the dialog.

If the control callback processes the notification message, it should return TRUE (non-
zero) to prevent the message being passed needlessly to the dialog callback, and
eventually to the DDT engine itself.

Notification messages are sent to the Callback Function, with CB.MSG = %
WM_COMMAND, CB.CTL holding the ID (id&) of the control, and CB.CTLMSG holding
the following values:

%CBN_CLOSEUP Sent when the list box of a combo box has been
closed.

%CBN_DBLCLK Sent when the user double-clicks a string in the list
box of a combo box.

%CBN_DROPDOWN Sent when the list box of a combo box is about to
be made visible.

%CBN_EDITCHANGE Sent after the user has taken an action that may
have altered the text in the text box portion of a
combo box. Unlike the %CBN_EDITUPDATE
notification message, this notification message is
sent after Windows updates the screen.

%CBN_EDITUPDATE Sent when the text box portion of a combo box is
about to display altered text. This notification
message is sent after the control has formatted the
text, but before it displays the text.

%CBN_ERRSPACE Sent when a combo box cannot allocate enough
memory to meet a specific request.

%CBN_KILLFOCUS Sent when a combo box loses the keyboard focus.

%CBN_SELCHANGE Sent when the selection in the list box of a combo
box is about to be changed, as a result of the user
either clicking in the list box or changing the
selection by using the arrow keys.

%CBN_SELCANCEL Sent when the user selects an item, but then
selects another control or closes the dialog box. It
indicates the user's initial selection is to be
ignored.

%CBN_SELENDOK Sent when the user selects a list item, or selects
an item and then closes the list. It indicates that
the user's selection is to be processed.

%CBN_SETFOCUS Sent when a combo box receives the keyboard
focus.

When a Callback Function receives a %WM_COMMAND message, it should explicitly

http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

594 / 2126

test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

See also Dynamic Dialog Tools, COMBOBOX, CONTROL SET COLOR, CONTROL SET FONT

CONTROL ADD FRAME statement

CONTROL ADD FRAME statement
Purpose Add a frame to a dialog. This is also known as a "group" control, and is typically drawn

around controls to indicate a visual association between such controls. A frame control is
often used around related Option controls.

Syntax CONTROL ADD FRAME, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]]

hDlg Handle of the dialog in which the frame will be created. The dialog will become the parent
of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %RelatedItems is more
informative than a literal value such as 497. If you will not be changing the text in a frame
control after it is created, you may use -1 for the id&; however, best practice suggests
identifiers should start at 100 to avoid conflict with any of the standard predefined
identifiers.

txt$ Text to be displayed in the frame. An ampersand (&) may be included in txt$ to specify a
hot-key. See the Remarks section below.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 40 dialog
units.

yy Integral expression, variable, or numeric literal value, specifying the height of the control.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 14 dialog
units.

style& Primary style of the frame control. The default frame style comprises %BS_LEFT, and %
BS_TOP. The default style is used only if both the primary and extended parameters are
omitted from the statement. For example:

CONTROL ADD FRAME, hDlg, id&, txt$, 100, 100, 40, 14, , ' Use default
styles

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary frame style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%BS_CENTER Center the text horizontally in the frame.

%BS_LEFT Place the text on the left side of the frame. (default)

%BS_GROUPBOX Display a frame in which other controls can be
positioned to infer a "visual association" or relationship
between those controls. (persistent)

%BS_MULTILINE Wrap the caption text across multiple lines if the text

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

595 / 2126

string is too long to fit on a single line. Wrapping is not
automatic, but the line wrap position can be specified by
inserting a $CR (or $CRLF) character at the desired wrap
position in the caption text.

%BS_RIGHT Place the text on the right side of the frame.

%BS_TOP Place the text at the top of the frame. (persistent) Note:
the %BS_TOP style is persistent - the frame control
does not support %BS_BOTTOM alignment.

%WS_GROUP Define the start of a group of controls. The first control in
each group should also use %WS_TABSTOP style. The
next %WS_GROUP control in the tab order defines the
end of this group and the start of a new group. Groups
configured this way permit the arrow keys to shift focus
between the controls within the group, and focus can
jump from group to group with the usual TAB and
SHIFT+TAB keys. Both tab stops and groups are
permitted to wrap from the end of the tab order back to
the start.

%WS_DISABLED Create a control that is initially disabled. A disabled
frame control is displayed with grayed text.

exstyle& Extended style of the frame control. The default extended frame style comprises %
WS_EX_LEFT. The default extended style is used if both the primary and extended
parameters are omitted from the CONTROL ADD FRAME statement, in the same manner
as style& above.

The extended combo box style value can be a combination of any values below,
combined together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned" properties.
This style has an effect only if the shell language
is Hebrew, Arabic, or another language that
supports reading order alignment; otherwise, the
style is ignored.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is
not drawn differently. True transparency is
achieved by using Regions - see MSDN for more
information.

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

Remarks A frame control does not send messages to its parent dialog and does not require or
support a Callback.

See also Dynamic Dialog Tools, CONTROL GET TEXT, CONTROL SET COLOR, CONTROL SET
FONT, CONTROL SET TEXT

CONTROL ADD HEADER statement

http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

596 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CONTROL ADD HEADER statement
Purpose Add a header control to a dialog.

Syntax CONTROL ADD HEADER, hDlg, ID, Txt$, x, y, wide, high [,style] [,exstyle]
[,CALL CallBack]

Remarks Handle of the dialog on which the header control will be placed. The dialog will become
the parent of the control.

ID A unique numeric identifier for this control which is specified by the programmer. It must
be an integral value in the range of 1 to 65535. This ID is usually specified with a numeric
equate for clarity of the code. For example, the equate %IDC_HEADER1 is more
informative than a literal value such as 497. PowerBASIC recommends that identifier
values should start at 100 to avoid conflict with any of the standard predefined identifiers.

Txt$ Text to associate with the Header control. A Header control does not display this text, so
it is common to set this value to a null, empty string literal ("" or $NUL).

x, y Integral expressions which specify the location of the control within the dialog client area.
 X is the horizontal position, and Y is the vertical position. 0,0 refers to the upper left
corner of the Dialog. Coordinates are specified in the same terms (pixels or dialog units)
as the parent dialog.

wide, high Integral expressions which specify the overall width and height of the header area.

style Optional primary style of the header control. This value can be a combination of the values
below, combined together with the OR operator to form a bitmask. If style is omitted, the
default combination is %WS_CHILD OR %WS_VISIBLE.

%WS_CHILD The control is a child window.

%WS_VISIBLE The control is visible.

%WS_BORDER Add a thin line border around the header control.

exstyle Optional extended style of the header control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to
choose which messages will be received. If a callback for the control is not designated,
you must create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

See Also HEADER

CONTROL ADD GRAPHIC statement

CONTROL ADD GRAPHIC statement
Purpose Add a static graphic control to a dialog for drawing, pictures, text, etc.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

597 / 2126

Syntax CONTROL ADD GRAPHIC, hDlg, ID, Txt$, x, y, nWide, nHigh [,style]
[,exstyle] [,CALL CallBack]

hDlg Handle of the dialog in which the graphic control will be placed. The dialog will become
the parent of the control.

ID A unique numeric identifier for this control which is specified by the programmer. It must
be an integral value in the range of 1 to 65535. This ID is usually specified with a numeric
equate for clarity of the code. For example, the equate %IDC_GRAPHIC1 is more
informative than a literal value such as 497. PowerBASIC recommends that identifier
values should start at 100 to avoid conflict with any of the standard predefined identifiers.

Txt$ Text to associate with the Graphic control. A Graphic control does not display this text,
so it is common to set this value to a null, empty string literal ("" or $NUL).

x, y Integral expressions which specify the location of the control within the dialog client area.
 X is the horizontal position, and Y is the vertical position. 0,0 refers to the upper left
corner of the Dialog. Coordinates are specified in the same terms (pixels or dialog units)
as the parent dialog.

nWide, nHigh Integral expressions which specify the overall width and height of the image area. If you
choose a style which includes a border, the client area will be slightly smaller, in order to
accommodate it. You use GRAPHIC GET CLIENT to determine the exact client size
available to you. The width and height are given in the same terms (pixels or dialog units)
as the parent dialog.

style Optional primary style of the image control. This value can be a combination of the values
below, combined together with the OR operator to form a bitmask. If style is omitted, the
default combination is %WS_CHILD OR %WS_VISIBLE OR %SS_OWNERDRAW.

%SS_NOTIFY Send %STN_CLICKED and %STN_DBLCLK notification
messages to the Callback Function when the user clicks
or double-clicks the control.

%SS_SUNKEN Draw a half-sunken border around the graphic control.

%WS_BORDER Add a thin line border around the graphic control.

%WS_DLGFRAME Create a graphic control that has a border of the style
typically used with dialog boxes.

exstyle Optional extended style of the graphic control. This value can be a combination of the
values below, combined together with the OR operator to form a bitmask. If exstyle is
omitted, there is no default extended style.

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks A graphic control is typically used with graphic statements to draw graphs, pictures, text,
etc. After you create a graphic control, you would normally use GRAPHIC ATTACH to
select it as the target of subsequent GRAPHIC statements. However, if there is no
selected graphic target at the time of creation, the new Graphic Control is automatically
attached and selected.

A graphic control will only send notification messages to a callback if the %SS_NOTIFY
style is used. Notification messages are sent to the callback function with CB.MSG = %
WM_COMMAND, CB.CTL holding the ID (id&) of the control, and CB.CTLMSG holding

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

598 / 2126

one of the following values:

%STN_CLICKED Sent when the user clicks a mouse button on the
graphic control (unless the image control has been
disabled).

%STN_DBLCLK Sent when the user double-clicks on a graphic
control (unless the control has been disabled).

%STN_DISABLE Sent when a graphic control has been disabled.

%STN_ENABLE Sent when a graphic control has been enabled.

When a callback function receives a %WM_COMMAND message, it should explicitly test
the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to the
notification message.

All PowerBASIC graphical displays are persistent -- they will be automatically redrawn
when altered or temporarily covered by another window.

See also Dynamic Dialog Tools, GRAPHIC ATTACH, GRAPHIC COLOR, GRAPHIC SCALE,
GRAPHIC SET FONT, GRAPHIC STYLE, GRAPHIC WIDTH, GRAPHIC WINDOW

CONTROL ADD IMAGE statement

CONTROL ADD IMAGE statement
Purpose Add a (non-resizing) image control to a dialog. This is typically used to display a bitmap

or icon stored in a resource file.

Syntax CONTROL ADD IMAGE, hDlg, id&, image$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the image will be created. The dialog will become the parent
of the control.

id& Unique identifier for the image in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %WizardBMP is more informative
than a literal value such as 497. If you will not be changing the image in the control after it
is created, you may use -1 for the id&; however, best practice suggests identifiers should
start at 100 to avoid conflict with any of the standard predefined identifiers.

image$ Name of the bitmap or icon in the resource file. If the image resource uses an integral
identifier, image$ should begin with a Number symbol (#) followed by the identifier in an
ASCII format, e.g., "#998" or FORMAT$(rcid&, "\##"). Otherwise, use the text identifier
name for the image.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the image.
The width is given in the same terms (pixels or dialog units) as the parent dialog. This
value is ignored unless the %SS_CENTERIMAGE style is specified.

yy Integral expression, variable, or numeric literal value, specifying the height of the image.
The height is given in the same terms (pixels or dialog units) as the parent dialog. This
value is ignored unless the %SS_CENTERIMAGE style is specified.

style& Primary style of the image control. This value can be a combination of the values below,
combined together with the OR operator to form a bitmask.

In addition, the initial image format may be specified explicitly as either %SS_ICON or %
SS_BITMAP, or the image format may be omitted completely.

If the image format is specified, it must match the format of the file specified in image$.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

599 / 2126

However, if the image format is not specified, PowerBASIC will examine the file to
determine the correct image format to use.

%SS_BITMAP Display only bitmap images. Also see %SS_ICON.
(persistent)

%SS_CENTERIMAGE If the image is smaller than the label, fill the rest of the
label with the color of the pixel in the top left corner of
the image.

%SS_ICON Display only icon images. Also see %SS_ICON.
(persistent)

%SS_NOTIFY Send %STN_CLICKED and %STN_DBLCLK notification
messages to the Callback Function when the user clicks
or double-clicks the control.

%SS_SUNKEN Draw a half-sunken border around the image control.

%WS_GROUP Define the start of a group of controls. The first control in
each group should also use %WS_TABSTOP style. The
next %WS_GROUP control in the tab order defines the
end of this group and the start of a new group. Groups
configured this way permit the arrow keys to shift focus
between the controls within the group, and focus can
jump from group to group with the usual TAB and
SHIFT+TAB keys. Both tab stops and groups are
permitted to wrap from the end of the tab order back to
the start.

exstyle& Extended style of the image control. The default extended image control style comprises
%WS_EX_LEFT. The default extended style is used if both the primary and extended
parameters are omitted from the CONTROL ADD IMAGE statement, in the same manner
as style& above.

The extended image control style value can be a combination of any values below,
combined together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned" properties.
This style has an effect only if the shell language
is Hebrew, Arabic, or another language that
supports reading order alignment.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is
not drawn differently. True transparency is
achieved by using Regions - see MSDN for more
information.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

In general, when the control Callback Function processes a message, it should return
TRUE (non-zero) to prevent the message being passed unnecessarily to the dialog
callback (if one exists). The dialog callback should also return TRUE if the notification
message is processed by that Callback Function. Otherwise, the DDT engine processes
unhandled messages.

javascript:void(0);
http://msdn.microsoft.com

PowerBASIC Compiler for Windows Version 10

600 / 2126

Remarks The bitmap or icon used in the image is not resized to fit the control. If your control is 64
dialog units wide and your icon or bitmap is only 32, half of the image will be blank. For
best results, icons should be 32x32 pixels.

Once an image control has been created, the images it displays can be changed with the
CONTROL SET IMAGE statement, but only if the images are of the same format as the
original. For example, if an image control was initially created showing a bitmap file, all
subsequent image changes must also be bitmap images. However, if the image format
must be changed at run-time, for example, because icons are to be displayed instead of
bitmaps, there are a couple of options. For example, the application could use separate
controls for each image format, or the existing control could be destroyed, and a new
control created with an image of the opposite format.

An image control will only send notification messages to a callback if the %SS_NOTIFY
style is used. Notification messages are sent to the Callback Function with CB.MSG = %
WM_COMMAND, CB.CTL holding the ID (id&) of the control, and CB.CTLMSG holding
the following values:

%STN_CLICKED Sent when the user clicks a mouse button on the image
control (unless the image control has been disabled).

%STN_DBLCLK Sent when the user double-clicks on an image control
(unless the control has been disabled).

%STN_DISABLE Sent when an image control has been disabled.

%STN_ENABLE Sent when an image control has been enabled.

When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

See also Dynamic Dialog Tools, CONTROL ADD GRAPHIC, CONTROL ADD IMAGEX,
CONTROL ADD IMGBUTTON, CONTROL ADD IMGBUTTONX, CONTROL SET IMAGE,
CONTROL SET IMAGEX, CONTROL SET IMGBUTTON, CONTROL SET IMGBUTTONX

CONTROL ADD IMAGEX statement

CONTROL ADD IMAGEX statement
Purpose Add a stretched image control to a dialog. This is typically used to display bitmaps and

icons, which are automatically stretched or condensed to fill the controls client area.

Syntax CONTROL ADD IMAGEX, hDlg, id&, image$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the image will be created. The dialog will become the parent
of the control.

id& Unique identifier for the image in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %BackgroundIMG is more
informative than a literal value such as 497. If you will not be changing the image in the
control after it is created, you may use -1 for the id&; however, best practice suggests
identifiers should start at 100 to avoid conflict with any of the standard predefined
identifiers.

image$ Name of the bitmap or icon in the resource file. If the image resource uses an integral
identifier, image$ should begin with a Number symbol (#) followed by the identifier in an
ASCII format, e.g., "#998" or FORMAT$(rcid&, "\##"). Otherwise, use the text identifier
name for the image.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

601 / 2126

xx Integral expression, variable, or numeric literal value, specifying the width of the image.
The width is given in the same terms (pixels or dialog units) as the parent dialog.

yy Integral expression, variable, or numeric literal value, specifying the height of the image.
The height is given in the same terms (pixels or dialog units) as the parent dialog.

style& Primary style of the stretched image control. In addition to the image control styles listed
below, the initial image format may be specified explicitly as either %SS_ICON or %
SS_BITMAP, or you may choose not to specify the image format at all.

If the image format is specified, it must match the format of the file specified in image$.
However, if the image format is not specified, PowerBASIC will examine the file to
determine the correct image format to use.

This value can be a combination of any values below, combined together with the OR
operator to form a bitmask:

%SS_BITMAP Display only bitmap images. Also see %SS_ICON.
(persistent)

%SS_ICON Display only icon images. Also see %SS_ICON.
(persistent)

%SS_NOTIFY Send %STN_CLICKED and %STN_DBLCLK notification
messages to the Callback Function when the user clicks
or double-clicks the control.

%SS_SUNKEN Draw a half-sunken border around the image control.

%WS_GROUP Define the start of a group of controls. The first control in
each group should also use %WS_TABSTOP style. The
next %WS_GROUP control in the tab order defines the
end of this group and the start of a new group. Groups
configured this way permit the arrow keys to shift focus
between the controls within the group, and focus can
jump from group to group with the usual TAB and
SHIFT+TAB keys. Both tab stops and groups are
permitted to wrap from the end of the tab order back to
the start.

exstyle& Extended style of the stretched image control. The default extended image style
comprises %WS_EX_LEFT. The default extended style is used if both the primary and
extended parameters are omitted from the CONTROL ADD IMAGEX statement, in the
same manner as style& above.

The extended stretched image style value can be a combination of any values below,
combined together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned" properties.
This style has an effect only if the shell language
is Hebrew, Arabic, or another language that
supports reading order alignment.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is
not drawn differently. True transparency is
achieved by using Regions - see MSDN for more
information.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %

javascript:void(0);
http://msdn.microsoft.com

PowerBASIC Compiler for Windows Version 10

602 / 2126

WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

In general, when the control Callback Function processes a message, it should return
TRUE (non-zero) to prevent the message being passed unnecessarily to the dialog
callback (if one exists). The dialog callback should also return TRUE if the notification
message is processed by that Callback Function. Otherwise, the DDT engine processes
unhandled messages.

Remarks The bitmap or icon used in the image is resized to fit the control. If your control is 64
dialog units wide and your icon or bitmap is only 32, it will be stretched to cover the entire
control. For best results, icons should be 32x32 pixels.

An image control will only send notification messages to a callback if the %SS_NOTIFY
style is used. Notification messages are sent to the Callback Function with CB.MSG = %
WM_COMMAND, CB.CTL holding the ID (id&) of the control, and CB.CTLMSG holding
the following values:

%STN_CLICKED Sent when the user clicks a mouse button on the image
control (unless the image control has been disabled).

%STN_DBLCLK Sent when the user double-clicks on an image control
(unless the control has been disabled).

%STN_DISABLE Sent when an image control has been disabled.

%STN_ENABLE Sent when an image control has been enabled.

When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

Restrictions Under Windows 95/98/ME, an attempt to stretch an icon significantly above 64x64 may
fail due to internal limits that vary between those particular versions of Windows. Bitmaps
are not affected in this manner. Windows NT/2000/XP systems do not impose any
comparable limitations on either icons or bitmaps.

See also Dynamic Dialog Tools, CONTROL ADD GRAPHIC, CONTROL ADD IMAGE,
CONTROL ADD IMGBUTTON, CONTROL ADD IMGBUTTONX, CONTROL SET IMAGE,
CONTROL SET IMAGEX, CONTROL SET IMGBUTTON, CONTROL SET IMGBUTTONX

CONTROL ADD IMGBUTTON statement

CONTROL ADD IMGBUTTON statement
Purpose Add an image button to a dialog. Image buttons are often used to enhance the

appearance of a dialog.

Syntax CONTROL ADD IMGBUTTON, hDlg, id&, image$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the button will be created. The dialog will become the parent
of the control.

id& Unique identifier for the button in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %IconButton1 is more informative
than a literal value such as 497. Best practice suggests identifiers should start at 100 to
avoid conflict with any of the standard predefined identifiers.

However, it is typical for a dialog to include an OK and/or a Cancel button, represented by
the predefined equates %IDOK and %IDCANCEL respectively. A button with an ID of %
IDOK is triggered (clicked) when the ENTER key is pressed by the user, and a button
with the ID of %IDCANCEL is triggered when the ESCAPE key is pressed. These and
other predefined "standard" equates can be found in the WIN32API.INC and DDT.INC
files.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

603 / 2126

image$ Name of the bitmap or icon in the resource file. If the image resource uses an integral
identifier, image$ should begin with a Number symbol (#) followed by the identifier in an
ASCII format, e.g., "#998". Otherwise, use the text identifier name for the image.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 40 dialog
units.

yy Integral expression, variable, or numeric literal value, specifying the height of the control.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 14 dialog
units.

style& Primary style of the image button control. The default image button style is %
WS_TABSTOP. The default style is used only if both the primary and extended
parameters are omitted from the statement. For example:

CONTROL ADD IMGBUTTON, hDlg, id&, txt$, 100, 100, 150, 200, , , _
 CALL ImgButtonCallback() ' Use default styles

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary image button style value can be a combination of any values below,
combined together with the OR operator to form a bitmask:

%BS_DEFAULT Create the button with a heavy black border. The user
can select this button by pressing the ENTER key.
This style is useful for enabling the user to quickly
select the most likely option. There may only be one
Default button per dialog.

%BS_FLAT Create a flat button (without the raised 3D look).

%BS_NOTIFY Enable a button to send the %BN_KILLFOCUS and %
BN_SETFOCUS notification messages to the button
Callback Function.

%WS_DISABLED Create a control that is initially disabled. A disabled
control cannot receive input from the user. Use the
CONTROL ENABLE statement to re-enable the
button.

%WS_GROUP Define the start of a group of controls. The first control
in each group should also use %WS_TABSTOP style.
The next %WS_GROUP control in the tab order
defines the end of this group and the start of a new
group. Groups configured this way permit the arrow
keys to shift focus between the controls within the
group, and focus can jump from group to group with
the usual TAB and SHIFT+TAB keys. Both tab stops
and groups are permitted to wrap from the end of the
tab order back to the start.

%WS_TABSTOP Allow button control to receive keyboard focus when
the user presses the TAB and SHIFT+TAB keys. The
TAB key shifts keyboard focus to the next control with
the %WS_TABSTOP style, and SHIFT+TAB shifts
focus to the previous control with %WS_TABSTOP.
(default)

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

604 / 2126

exstyle& Extended style of the image button control. The default extended image button style
comprises %WS_EX_LEFT. The default extended style is only used if both the primary
and extended parameters are omitted from the CONTROL ADD IMGBUTTON statement,
in the same manner as style& above.

The extended image button style value can be a combination of any values below,
combined together with the OR operator to form a bitmask:

%WS_EX_LEFT The button has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The button has generic "right-aligned" properties.
This style has an effect only if the shell language is
Hebrew, Arabic, or another language that supports
reading order alignment; otherwise, the style is
ignored.

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

Generally speaking, if the Callback Function processes a message, it should return
TRUE (non-zero) to prevent the message being passed unnecessarily to the dialog
callback (if one exists). The dialog callback should also return TRUE if the notification
message is processed by that Callback Function. Otherwise, the DDT engine processes
unhandled messages.

Remarks The bitmap or icon used in the button is not resized to fit the button. If your button is 64
dialog units wide and your icon or bitmap is only 32, half of the button will be blank. For
best results, icons should be 32x32 pixels.

An image button is drawn on the dialog using a 3-dimensional look, unless the %
BS_FLAT style is specified. When the user clicks on the image button, a message is
sent to the button's Callback Function. If there is no Callback Function designated, the
message is sent to the callback for the dialog.

Notification messages are sent to the Callback Function with CB.MSG = %
WM_COMMAND, CB.CTL holding the ID (id&) of the control, and CB.CTLMSG holding
the following values:

%BN_CLICKED Sent when the user clicks a mouse button, or activates the
button with the hot-key (unless the button has been
disabled).

%BN_DISABLE Sent when a button is disabled.

%BN_KILLFOCUS Sent when a button loses the keyboard focus. The button
must include the %BS_NOTIFY style.

%BN_SETFOCUS Sent when a button receives the keyboard focus. The
button must include the %BS_NOTIFY style.

When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

See also Dynamic Dialog Tools, CONTROL ADD GRAPHIC, CONTROL ADD IMAGE,
CONTROL ADD IMAGEX, CONTROL ADD IMGBUTTONX, CONTROL SET IMAGE,
CONTROL SET IMAGEX, CONTROL SET IMGBUTTON, CONTROL SET IMGBUTTONX

http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

605 / 2126

CONTROL ADD IMGBUTTONX statement

CONTROL ADD IMGBUTTONX statement
Purpose Add a stretched image button to a dialog. Stretched image buttons are often used to

enhance the appearance of a dialog, with the image being automatically stretched or
condensed to fill the control.

Syntax CONTROL ADD IMGBUTTONX, hDlg, id&, image$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the button will be created. The dialog will become the parent
of the control.

id& Unique identifier for the button in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %IconButton2 is more informative
than a literal value such as 497. Best practice suggests identifiers should start at 100 to
avoid conflict with any of the standard predefined identifiers.

However, it is typical for a dialog to include an OK and/or a Cancel button, represented by
the predefined equates %IDOK and %IDCANCEL respectively. A button with an ID of %
IDOK is triggered (clicked) when the ENTER key is pressed by the user, and a button
with the ID of %IDCANCEL is triggered when the ESCAPE key is pressed. These and
other predefined "standard" equates can be found in the WIN32API.INC and DDT.INC
files.

image$ Name of the bitmap or icon in the resource file. If the image resource uses an integral
identifier, image$ should begin with a Number symbol (#) followed by the identifier in an
ASCII format, e.g., "#998". Otherwise, use the text identifier name for the image.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 40 dialog
units.

yy Integral expression, variable, or numeric literal value, specifying the height of the control.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 14 dialog
units.

style& Primary style of the stretched image button. The default image button style is %
WS_TABSTOP. The default style is used if both the primary and extended style
parameters are omitted from the statement. For example:

CONTROL ADD IMGBUTTONX, hDlg, id&, txt$, 100, 100, 150, 200, , , _
 CALL ImgButtonxCallback() ' Use default styles

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary stretched image button style value can be a combination of any values below,
combined together with the OR operator to form a bitmask:

%BS_DEFAULT Create the button with a heavy black border. The user
can select this button by pressing the ENTER key.
This style is useful for enabling the user to quickly
select the most likely option. There may only be one
Default button per dialog.

%BS_FLAT Create a flat button (without the raised 3D look).

javascript:void(0);
javascript:void(0);
javascript:void(0);
WIN32API_INC_Updates.htm
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

606 / 2126

%BS_NOTIFY Enable a button to send the %BN_KILLFOCUS and %
BN_SETFOCUS notification messages to the button
Callback Function.

%WS_DISABLED Create a control that is initially disabled. A disabled
control cannot receive input from the user. Use the
CONTROL ENABLE statement to re-enable the
button.

%WS_GROUP Define the start of a group of controls. The first control
in each group should also use %WS_TABSTOP style.
The next %WS_GROUP control in the tab order
defines the end of this group and the start of a new
group. Groups configured this way permit the arrow
keys to shift focus between the controls within the
group, and focus can jump from group to group with
the usual TAB and SHIFT+TAB keys. Both tab stops
and groups are permitted to wrap from the end of the
tab order back to the start.

%WS_TABSTOP Allow button control to receive keyboard focus when
the user presses the TAB and SHIFT+TAB keys. The
TAB key shifts keyboard focus to the next control with
the %WS_TABSTOP style, and SHIFT+TAB shifts
focus to the previous control with %WS_TABSTOP.
(default)

exstyle& Extended style of the stretched image button control. The default extended button style
comprises %WS_EX_LEFT. The default extended style is used if both the primary and
extended parameters are omitted from the CONTROL ADD IMGBUTTONX statement, in
the same manner as style& above.

The extended stretched image style value can be a combination of any values below,
combined together with the OR operator to form a bitmask:

%WS_EX_LEFT The button has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The button has generic "right-aligned" properties.
This style has an effect only if the shell language is
Hebrew, Arabic, or another language that supports
reading order alignment; otherwise, the style is
ignored.

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks The bitmap or icon used in the button is resized to fit the button. If your button is 64
dialog units wide and your icon or bitmap is only 32, it will be stretched to cover the entire
button. For best results, icons should be 32x32 pixels.

The image button is drawn on the dialog using a 3-dimensional look, unless the %
BS_FLAT style is specified. When the user clicks a button, a message is sent to the

javascript:void(0);
http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

607 / 2126

Callback Function designated for the button. If there is no Callback Function designated,
the message is sent to the callback for the dialog.

Notification messages are sent to the Callback Function with CB.MSG = %
WM_COMMAND, CB.CTL holding the ID (id&) of the control, and CB.CTLMSG holding
the following values:

%BN_CLICKED Sent when the user clicks a mouse button, or activates the
button with the hot-key (unless the button has been
disabled).

%BN_DISABLE Sent when a button is disabled.

%BN_KILLFOCUS Sent when a button loses the keyboard focus. The button
must include the %BS_NOTIFY style.

%BN_SETFOCUS Sent when a button receives the keyboard focus. The
button must include the %BS_NOTIFY style.

When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

See also Dynamic Dialog Tools, CONTROL ADD GRAPHIC, CONTROL ADD IMAGE,
CONTROL ADD IMAGEX, CONTROL ADD IMGBUTTON, CONTROL SET IMAGE,
CONTROL SET IMAGEX, CONTROL SET IMGBUTTON, CONTROL SET IMGBUTTONX

CONTROL ADD LABEL statement

CONTROL ADD LABEL statement
Purpose Add a text label to a dialog. A text label is similar to a conventional static control.

Syntax CONTROL ADD LABEL, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the label will be created. The dialog will become the parent
of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %BlockTitle is more informative
than a literal value such as 497. If you will not be changing the text in a line control after it
is created, you may use -1 for the id&; however, best practice suggests identifiers should
start at 100 to avoid conflict with any of the standard predefined identifiers.

txt$ Text to be displayed in text label. An ampersand (&) may be included in txt$ to specify a
hot-key. See the Remarks section below.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 40 dialog
units.

yy Integral expression, variable, or numeric literal value, specifying the height of the control.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 8 dialog
units.

style& Primary style of the label control. The default label style is %SS_LEFT. The default style
is used if both the primary and extended style parameters are omitted from the
statement. For example:

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

608 / 2126

CONTROL ADD LABEL, hDlg, id&, txt$, 100, 100, 150, 200, , , _
 CALL LabelCallback() ' Use default styles

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary label style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%SS_CENTER Horizontally center the caption text. The text is
formatted before it is displayed. Words that extend
past the end of a line are automatically wrapped to the
beginning of the next centered line.

%SS_CENTERIMAGE Vertically center the caption text. The text is not
wrapped even if it extends beyond the width of the
control.

%SS_ENDELLIPSIS Replace the end of the given

 with ellipsis as needed to fit the result in the
specified rectangle. Windows NT/2000/XP only.

%SS_ETCHEDFRAME Draw the frame of the control using an etched edge
style.

%SS_ETCHEDHORZ Draw the horizontal edges of the control using an
etched edge style.

%SS_ETCHEDVERT Draw the vertical edges of the control using an etched
edge style.

%SS_LEFT Left-align the given text. The text is formatted before it
is displayed. Words that extend past the end of a line
are automatically wrapped to the beginning of the next
left-aligned line. (default)

%SS_NOPREFIX Prevent interpretation of ampersand (&) characters in
the label text as control accelerator prefix characters.
These are normally displayed with the ampersand
removed and the next character in the string
underscored.

%SS_NOTIFY Send %STN_CLICKED and %STN_DBLCLK
notification messages to the Callback Function when
the user clicks or double-clicks the control.

%SS_NOWORDWRAP Left-align the given text. Tabs are expanded but words
are not wrapped. Text that extends past the end of a
line is clipped.

%SS_PATHELLIPSIS Replace the file path portion of the given string with
ellipsis as needed to fit the result in the specified
rectangle. Windows 2000/XP only.

%SS_RIGHT Right-align the given text. The text is formatted before
it is displayed. Words that extend past the end of a
line are automatically wrapped to the beginning of the
next right-aligned line.

%SS_SIMPLE The caption text is left-aligned. If the control is colored,
color is only applied to the region containing the
caption text, and the remainder of the control is drawn
in standard colors.

%SS_SUNKEN Draw a half-sunken border around the label control.

%SS_WORDELLIPSIS Truncate text that does not fit, adding ellipsis as
needed. Windows NT/2000/XP only

%WS_GROUP Define the start of a group of controls. The first control
in each group should also use %WS_TABSTOP style.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

609 / 2126

The next %WS_GROUP control in the tab order
defines the end of this group and the start of a new
group.

exstyle& Extended style of the label control. The default extended label style comprises %
WS_EX_LEFT. The default extended style is used if both the primary and extended
parameters are omitted from the CONTROL ADD LABEL statement, in the same manner
as style& above.

The extended label style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned" properties.
This style has an effect only if the shell language is
Hebrew, Arabic, or another language that supports
reading order alignment; otherwise, the style is
ignored.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks If the ampersand (&) character appears in the txt$ parameter, the letter that follows will be
displayed underscored. This adds a control accelerator (hot-key) to enable the user to
directly "click" the control that immediately follows in the Tab-Order after the Label
control, simply by pressing and holding the ALT key while pressing the specified hot-key.
For example, "Choose &Security Level" makes ALT+S the hot-key.

A label control will only send messages to a callback if the %SS_NOTIFY style is used.
The following notifications are sent to the Callback Function:

%STN_CLICKED Sent when the user clicks a mouse button, or activates the
button with the hot-key (unless the button has been
disabled).

%STN_DBLCLK Sent when the user double-clicks on a label control (unless
the control has been disabled).

%STN_DISABLE Sent when a button is disabled.

%STN_ENABLE Sent when a label control has been enabled.

Use the CONTROL SET TEXT statement to change the text in a label control and
CONTROL SET FONT to change the font used in a label control. This is only possible if
the label has a unique ID value (i.e., id& should not be -1).

When a Callback Function receives a %WM_COMMAND message, it should explicitly

http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

610 / 2126

test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

See also Dynamic Dialog Tools, CONTROL GET TEXT, CONTROL SET COLOR, CONTROL SET
FONT, CONTROL SET TEXT

CONTROL ADD LINE statement

CONTROL ADD LINE statement
Purpose Add a line control to a dialog. A line control may also be a rectangle (empty or filled).

Syntax CONTROL ADD LINE, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the line will be created. The dialog will become the parent of
the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %SeparatorLeft is more
informative than a literal value such as 497. If you will not be changing the size or location
of a line control after it is created, you may use -1 for the id. Otherwise, best practice
suggests identifiers should start at 100 to avoid conflict with any of the standard
predefined identifiers.

txt$ Text to associate with the line control. A line control does not display text, so it is
possible to use this string for your own purposes; however, an ampersand (&) may be
included in txt$ to specify a hot-key. See the Remarks section below.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 40 dialog
units.

yy Integral expression, variable, or numeric literal value, specifying the height of the control.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 1 dialog unit.

style& Primary style of the line control. The default line style is %SS_ETCHEDFRAME. The
default style is used if both the primary and extended style parameters are omitted from
the statement. For example:

CONTROL ADD LINE, hDlg, id&, "", 100, 100, 150, 1, , , CALL
LineCallback() ' Use default styles

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary line style value can be a combination of any values below, combined together
with the OR operator to form a bitmask:

%SS_BLACKFRAME Draw a box with the frame drawn in the same color as
the window frames. This color is black in the default
Windows color scheme.

%SS_BLACKRECT Draw a rectangle filled with the current window frame
color. This color is black in the default Windows color
scheme.

%SS_ETCHEDFRAME Draw the frame of the control using an etched edge

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

611 / 2126

style. (default)

%SS_ETCHEDHORZ Draw the horizontal edges of the control using an
etched edge style.

%SS_ETCHEDVERT Draw the vertical edges of the control using an etched
edge style.

%SS_GRAYFRAME Draw a box with the frame drawn with the same color
as the screen background (desktop). This color is gray
in the default Windows color scheme.

%SS_GRAYRECT Draw a rectangle filled with the current screen
background color. This color is gray in the default
Windows color scheme.

%SS_NOPREFIX Prevent interpretation of any ampersand (&) characters
in the control's text as a control accelerator prefix
characters. These normally are displayed with the
ampersand removed and the next character in the
string underscored.

%SS_NOTIFY Sends %STN_CLICKED and %STN_DBLCLK
notification messages to the line controls Callback
Function when the user clicks or double-clicks the line
control.

%SS_RIGHTJUST Force the bottom-right corner of the control to remain
fixed when the control is resized. Only the top and left
sides are adjusted to accommodate a new image.

%SS_WHITEFRAME Draw a box with the frame drawn with the same color
as the window backgrounds. This color is white in the
default Windows color scheme.

%SS_WHITERECT Draw a rectangle filled with the current window
background color. This color is white in the default
Windows color scheme.

exstyle& Extended style of the line control. The default extended line style comprises %
WS_EX_LEFT. The default extended style is used if both the primary and extended
parameters are omitted from the CONTROL ADD LINE statement, in the same manner as
style& above.

The extended line control style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned" properties.
This style has an effect only if the shell language is
Hebrew, Arabic, or another language that supports
reading order alignment; otherwise, the style is
ignored.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %

javascript:void(0);
http://msdn.microsoft.com

PowerBASIC Compiler for Windows Version 10

612 / 2126

WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control. The Callback
Function will only receive messages if the %SS_NOTIFY style is used.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks If the ampersand (&) character appears in the txt$ parameter, the letter that follows will be
displayed underscored. This adds a control accelerator (hot-key) to enable the user to
directly "click" the control that immediately follows in the Tab-Order after the Line control,
simply by pressing and holding the ALT key while pressing the specified hot-key. For
example, "&Test Suite " makes ALT+T the hot-key.

A line control will only send messages to a callback if the %SS_NOTIFY style is used.
The following notifications are sent to the Callback Function:

%STN_CLICKED Sent when the user clicks a line control (unless the control
has been disabled).

%STN_DBLCLK Sent when the user double-clicks a line control (unless the
control has been disabled).

%STN_DISABLE Sent when a line control has been disabled.

%STN_ENABLE Sent when a line control has been enabled.

When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

See also Dynamic Dialog Tools, CONTROL HANDLE, CONTROL SEND

CONTROL ADD LISTBOX statement

CONTROL ADD LISTBOX statement
Purpose Add a list box control to a dialog. A list box contains a set of predefined entries that

permit a user to select one or more items. A list box may contain

, images, or both. To put numbers in a list box, convert them to strings with the
FORMAT$, USING$, or STR$ functions.

Syntax CONTROL ADD LISTBOX, hDlg, id&, [items$()], x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the list box will be created. The dialog will become the
parent of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %PickList is more informative
than a literal value such as 497. Best practice suggests identifiers should start at 100 to
avoid conflict with any of the standard predefined identifiers.

items$() Optional dynamic (variable length) string array containing the initial items to be displayed
in the list box. Items are copied from the array to the list box, starting at the lowest
subscript of the array (LBOUND), continuing on toward the end of the array until an
empty string is encountered, or the highest subscript is reached. If an array with an
LBOUND of zero (the default) is specified, be sure that the 1st element (0) contains data.
Also see Restrictions below.

To create a list box that is initially empty, either omit this parameter, or specify an array
whose first element contains an empty string. If the list box uses the %LBS_SORT style,
the items are sorted alphanumerically as they are added to the list box.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

613 / 2126

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 100 dialog
units.

yy Integral expression, variable, or numeric literal value, specifying the height of the control.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 40 dialog
units.

style& Primary style of the list box control. The default list box style comprises %LBS_SORT,
%LBS_NOTIFY, %WS_TABSTOP, and %WS_VSCROLL (along with the %
WS_EX_CLIENTEDGE extended style). The default list box style is used if both the
primary and extended style parameters are omitted from the statement. For example:

CONTROL ADD LISTBOX, hDlg, id&, items$(), 100, 100, 150, 200, , , _
 CALL ListboxCallback() ' Use default styles

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary list box style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%
LBS_DISABLENO
SCROLL

Show a disabled vertical scroll bar in the list box when the box
does not contain enough items to scroll. Without this style, the
scroll bar is hidden when the list box does not contain enough
items. Used in conjunction with the %WS_VSCROLL style.

%
LBS_EXTENDED
SEL

Allow selection of multiple items in the list box by using the
SHIFT key with mouse and/or keyboard actions.

%
LBS_MULTICOLU
MN

List box has multiple columns, and can be scrolled
horizontally. To set the width, send the %
LB_SETCOLUMNWIDTH message to the list box control.

%
LBS_MULTIPLES
EL

Allow selection of multiple items in the list box (without needing
to use the SHIFT key) with mouse and/or keyboard actions.

%
LBS_NOINTEGRA
LHEIGHT

Force the size of the list box to be exactly the size specified
when the control is created. Otherwise, Windows may resize
the list box to ensure that items are not partially displayed
(clipped).

%LBS_NOSEL The list box can contain items that can be viewed but not
selected.

%LBS_NOTIFY Send the callback a message whenever the user clicks or
double-clicks a string in the list box.

%LBS_SORT Automatically sort strings added to the list box in alphanumeric
order.

%
LBS_STANDARD

Equivalent to the combination of %LBS_SORT, %
LBS_NOTIFY, %WS_VSCROLL and %WS_BORDER styles.

%
LBS_USETABST
OPS

Expand tab (TAB, CHR(9)) characters. The default tab
positions are for every 32 dialog units. To change the tab stop
positions, send the %LB_SETTABSTOPS message to the list
box control.

%WS_DISABLED Create a control that is initially disabled. A disabled control
cannot receive input from the user.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

614 / 2126

%WS_HSCROLL Allow the control to display a horizontal scroll bar. By default
this is disabled unless the controls horizontal scroll width has
been configured by sending a %LB_SETHORIZONTALEXTENT
message to the control. Use in conjunction with %
LBS_DISABLENOSCROLL to make the scroll bar(s) visible at
all times.

%WS_GROUP Define the start of a group of controls. The first control in each
group should also use %WS_TABSTOP style. The next %
WS_GROUP control in the tab order defines the end of this
group and the start of a new group.

%WS_TABSTOP Allow the control to receive keyboard focus when the user
presses the TAB and SHIFT+TAB keys. The TAB key shifts
keyboard focus to the next control with the %WS_TABSTOP
style, and SHIFT+TAB shifts focus to the previous control with
%WS_TABSTOP. (default)

%WS_VSCROLL Allow the control to display a vertical scroll bar if the list is
longer than the height of the list box. Use in conjunction with %
LBS_DISABLENOSCROLL to make the scroll bar(s) visible at
all times.

Do not intermix list box styles with similarly named combo box styles as the
numeric values of similar styles can produce unexpected results. For
example, %LBS_SORT =&H2 and %CBS_SORT = &H100. List box styles are
prefixed with %LBS.

exstyle& Extended style of the list box control. The default extended list box style comprises %
WS_EX_CLIENTEDGE, and %WS_EX_LEFT. The default extended style is used if both
the primary and extended parameters are omitted from the CONTROL ADD LISTBOX
statement, in the same manner as style& above.

The extended list box style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned" properties.
This style has an effect only if the shell language
is Hebrew, Arabic, or another language that
supports reading order alignment; otherwise, the
style is ignored.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to
choose which messages will be received. If a callback for the control is not designated,
you must create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
The dialog callback should also return TRUE if the notification message is processed by

javascript:void(0);
http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

615 / 2126

that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks The following notifications are sent to the Callback Function:

%LBN_DBLCLK Sent when the user double-clicks a string in the list portion
of a list box.

%LBN_ERRSPACE Sent when a list box cannot allocate enough memory to
meet a specific request.

%LBN_KILLFOCUS Sent when a list box loses the keyboard focus.

%LBN_SELCANCEL Sent when the user selects an item, but then selects
another control or closes the dialog box. It indicates the
user's initial selection is to be ignored.

%LBN_SELCHANGE Sent when the selection in the list box is about to be
changed as a result of the user either clicking in the list
box or changing the selection by using the arrow keys.

%LBN_SETFOCUS Sent when a list box receives the keyboard focus.

When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,736 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL SET COLOR, CONTROL SET FONT, LISTBOX

CONTROL ADD LISTVIEW statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CONTROL ADD LISTVIEW statement
Purpose Add a ListView control to a dialog. A ListView displays a set of predefined

 data items in one or more columns. The user may then view the items, selecting one
or more of them for use in the program at a later time.

Syntax CONTROL ADD LISTVIEW, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the ListView will be created. The dialog will become the
parent of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %PickList is more informative
than a literal value such as 497. Best practice suggests identifiers should start at 100 to
avoid conflict with any of the standard predefined identifiers.

txt$ Text to associate with the ListView control. A ListView control does not display this text,
so it is common to set this value to a null, empty string literal ("").

x,y expressions, variables, or numeric literal values specifying the location of the control

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

616 / 2126

inside the dialog client area. x is the horizontal position, and y is the vertical position.
 0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx,yy Integral expressions, variable, or numeric literal values, specifying the width and height of
the control. xx is the width and yy is the height, given in the same terms (pixels or dialog
units) as the parent dialog.

style& Primary style of the ListView control. The default ListView style comprises %
WS_TABSTOP, %LVS_REPORT, and %LVS_SHOWSELALWAYS. This default
ListView style is used if the style parameters are omitted from the statement, as in the
following example:

CONTROL ADD LISTVIEW, hDlg, id&, "", 100, 100, 150, 200, , , CALL
LVCallback()

If you include explicit style values, they replace the default values. That is, they are not
added to the default styles values - your code must specify all necessary primary and
extended style parameters.

The primary ListView style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%LVS_ALIGNLEFT Items are left-aligned in icon and small icon view.

%LVS_ALIGNTOP Items are aligned with the top of the control in
icon and small icon view.

%LVS_AUTOARRANGE Icons are automatically kept arranged.

%LVS_EDITLABELS Item text can be edited by the user. The parent
window must process notification messages.

%LVS_ICON This style specifies icon view.

%LVS_LIST This style specifies list view.

%LVS_NOCOLUMNHEADER In report view, there are no headers on the
columns.

%LVS_NOLABELWRAP Item text is displayed on a single line in icon view.

%LVS_NOSCROLL No scroll bars are provided. Incompatible with list
view and report view.

%LVS_NOSORTHEADER Report view column headers are flat, not like
buttons. User can not click on the header to
generate a column click notification.

%LVS_OWNERDATA This style specifies a virtual ListView control.

%LVS_OWNERDRAWFIXED The owner window can paint items in report view.

%LVS_REPORT This style specifies report view. The first column
is always left-aligned and columns have headers.

%LVS_SHAREIMAGELISTS The image list will not be deleted when the control
is destroyed.

%LVS_SHOWSELALWAYS Selections are always shown, even without the
focus.

%LVS_SINGLESEL Only one item at a time can be selected. By
default, multiple items may be selected.

%LVS_SMALLICON This style specifies small icon view.

%LVS_SORTASCENDING Item indexes are sorted as added in ascending
order.

%LVS_SORTDESCENDING Item indexes are sorted as added in descending
order.

%WS_DISABLED Create a control that is initially disabled. A
disabled control cannot receive input from the
user.

%WS_GROUP Define the start of a group of controls. The first

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

617 / 2126

control in each group should also use %
WS_TABSTOP style. The next %WS_GROUP
control in the tab order defines the end of this
group and the start of a new group.

%WS_TABSTOP Allow the control to receive keyboard focus when
the user presses the TAB and SHIFT+TAB keys.
 The TAB key shifts keyboard focus to the next
control with the %WS_TABSTOP style, and
SHIFT+TAB shifts focus to the previous control
with %WS_TABSTOP.

exstyle& Extended style of the ListView control. The default extended style is %WS_EX_LEFT.
 The default extended style is used if both the primary and extended parameters are
omitted from the CONTROL ADD LISTVIEW statement, in the same manner as style&
above.

The extended ListView style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned" properties.
This style has an effect only if the shell language is
Hebrew, Arabic, or another language that supports
reading order alignment; otherwise, the style is
ignored.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification messages.

See also Dynamic Dialog Tools, CONTROL SET COLOR, CONTROL SET FONT, HEADER,
LISTVIEW

CONTROL ADD OPTION statement

CONTROL ADD OPTION statement
Purpose Add an option button to a dialog. An option button is just like a conventional "radio button"

http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

618 / 2126

control.

Syntax CONTROL ADD OPTION, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the option button will be created. The dialog will become the
parent of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %DefCon5 is more informative
than a literal value such as 497. Best practice suggests identifiers should start at 100 to
avoid conflict with any of the standard predefined identifiers.

txt$ Text to be displayed next to the option button. An ampersand (&) may be included in txt$
to specify a hot-key. See the Remarks section below.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 40 dialog
units.

yy Integral expression, variable, or numeric literal value, specifying the height of the control.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 14 dialog
units.

style& Primary style of the option button control. The default option button styles are %
WS_TABSTOP, %BS_LEFT, and %BS_VCENTER. The default styles are used if both
the primary and extended style parameters are omitted from the statement. For example:

CONTROL ADD OPTION, hDlg, id&, txt$, 100, 100, 150, 200, , , _
 CALL OptionButtonCallback() ' Use default styles

Custom style values replace the default values. That is, they are not in addition to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary option button style value can be a combination of any values below,
combined together with the OR operator to form a bitmask:

%BS_BOTTOM Place the text at the bottom of the control.

%BS_CENTER Center the text horizontally in the control.

%BS_LEFT Place the text on the left side of the control. Also see %
BS_LEFTTEXT. (default)

%BS_LEFTTEXT Place the option button to the right of the text portion of
the control. Combine with %BS_RIGHT to right-align text
against the left side of the option button.

%BS_MULTILINE Wrap the caption text across multiple lines, if the text
string is too long to fit on a single line. To force a wrap,
insert a $CR (or $CRLF) into the caption text at the
desired wrap position.

%BS_NOTIFY Enable the %BN_KILLFOCUS and %BN_SETFOCUS
notification messages for the option button.

%BS_PUSHLIKE Button state alternates (toggles) between normal (raised)
and depressed (sunken) modes.

%BS_RIGHT Place the text on the right side of the control. Also see %
BS_LEFTTEXT.

%BS_TOP Place the text at the top of the control.

%BS_VCENTER Center the text vertically in the control. (default)

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

619 / 2126

%WS_DISABLED Create a control that is initially disabled. A disabled
control cannot receive input from the user.

%WS_GROUP Define the start of a group of controls. The first control in
each group should also use %WS_TABSTOP style. The
next %WS_GROUP control in the tab order defines the
end of this group and the start of a new group. Groups
configured this way permit the arrow keys to shift focus
between the controls within the group, and focus can jump
from group to group with the usual TAB and SHIFT+TAB
keys. Both tab stops and groups are permitted to wrap
from the end of the tab order back to the start.

%WS_TABSTOP Allow the option control to receive keyboard focus when
the user presses the TAB and SHIFT+TAB keys. The TAB
key shifts keyboard focus to the next control with the %
WS_TABSTOP style, and SHIFT+TAB shifts focus to the
previous control with %WS_TABSTOP. (default)

exstyle& Extended style of the option button control. The default extended option button style
comprises %WS_EX_LEFT. The default extended style is used if both the primary and
extended style parameters are omitted from the CONTROL ADD OPTION statement
completely, in the same manner as style& above.

The extended option button style value can be a combination of any values below,
combined together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned" properties.
This style has an effect only if the shell language is
Hebrew, Arabic, or another language that supports
reading order alignment; otherwise, the style is
ignored.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks Option buttons are used for presenting a list of choices, only one of which may be
selected. So, there is no point in having just a single option button. If what you want is to
allow turning a single item on or off, use a Checkbox instead.

When a group of option buttons are created, you should explicitly set the "selected" and
"unselected" state of all option buttons, using the CONTROL SET OPTION statement to
set the Check State of all the buttons in the group.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

620 / 2126

In addition, the first OPTION control in a group should have the style %WS_GROUP (to
mark the beginning of a group of buttons) and %WS_TABSTOP. The remainder of the
OPTION controls in the group should not have %WS_GROUP or %WS_TABSTOP styles.
However, the very next non-OPTION control to appear in the tab order after the group
should be given the %WS_GROUP and %WS_TABSTOP styles (the latter may depend
on the type of control it is). If there are no other controls after the group, add %
WS_GROUP to the first control in the dialog. This ensures that keyboard navigation with
the arrow keys will operate within the group of OPTION controls, and that the TAB and
SHIFT+TAB keys will switch focus between whole groups of controls (instead of individual
controls as is common when each group member has the %WS_TABSTOP style).

If the ampersand (&) character appears in the txt$ parameter, the letter that follows will be
displayed underscored. This adds a control accelerator (hot-key) to enable the user to
directly select the Option control, simply by pressing and holding the ALT key while
pressing the specified hot-key. For example, "Level &3" makes ALT+3 the hot-key.

When the user clicks an option button, a message is sent to the Callback Function
designated for the control. If there is no Callback Function designated then the message
is sent to the callback for the dialog.

The following notifications are sent to the Callback Function:

%BN_CLICKED Sent when the user clicks a mouse button, or activates the
button with the hot-key (unless the button has been
disabled).

%BN_KILLFOCUS Sent then the option button loses keyboard focus, provided
the button has the %BS_NOTIFY style.

%BN_SETFOCUS Sent when the option button receives keyboard focus,
provided the option button has the %BS_NOTIFY style.

When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

See also Dynamic Dialog Tools, CONTROL ADD CHECK3STATE, CONTROL ADD CHECKBOX,
CONTROL GET CHECK, CONTROL SET COLOR, CONTROL SET FONT,
CONTROL SET OPTION

Example Refer to the example in the CONTROL SET OPTION topic.

CONTROL ADD PROGRESSBAR statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CONTROL ADD PROGRESSBAR statement
Purpose Add a ProgressBar control to a dialog. A ProgressBar is a rectangle that is gradually

filled, left to right, as some work progresses.

Syntax CONTROL ADD PROGRESSBAR, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the ProgressBar will be created. The dialog will become the

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

621 / 2126

parent of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %PickList is more informative
than a literal value such as 497. Best practice suggests identifiers should start at 100 to
avoid conflict with any of the standard predefined identifiers.

txt$ Text to associate with the ProgressBar control. A ProgressBar control does not display
this text, so it is common to set this value to a null, empty string literal ("").

x,y expressions, variables, or numeric literal values specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
 0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx,yy Integral expressions, variable, or numeric literal values, specifying the width and height of
the control. xx is the width and yy is the height, given in the same terms (pixels or dialog
units) as the parent dialog.

style& Primary style of the ProgressBar control. The default ProgressBar style is %
WS_BORDER. This default style is used if both the primary and extended style
parameters are omitted from the statement, as in the following example:

CONTROL ADD PROGRESSBAR, hDlg, id&, "",90,90,90,20, , , CALL
PBCallback()

If you include explicit style values, they replace the default values. That is, they are not
added to the default styles values - your code must specify all necessary primary and
extended style parameters.

The primary style value can be a combination of the standard window values, and the
values specific to a ProgressBar (below), which are combined together with the OR
operator to form a bitmask:

%PBS_SMOOTH The bar is smooth rather than segmented.

%PBS_VERTICAL The control is advanced vertically.

exstyle& Extended style of the control. The value can be a combination of the values below,
combined together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification messages.

See also Dynamic Dialog Tools, CONTROL SET COLOR, PROGRESSBAR

CONTROL ADD SCROLLBAR statement

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

622 / 2126

CONTROL ADD SCROLLBAR statement
Purpose Add a scroll bar control to a dialog. A scroll bar allows the user to scroll information left

and right, or up and down. Your program, in response to notification messages from the
scroll bar control, must do the actual scrolling itself.

Syntax CONTROL ADD SCROLLBAR, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the scroll bar will be created. The dialog will become the
parent of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %ReportScrollUpDown is more
informative than a literal value such as 497. Best practice suggests identifiers should start
at 100 to avoid conflict with any of the standard predefined identifiers.

txt$ Text to associate with the scroll bar. A scroll bar control does not display text, so it is
possible to use this

 for your own purposes; however, an ampersand (&) may be included in txt$ to
specify a (hidden) hot-key. See the Remarks section below. Typically, this parameter
is specified as an empty string ("") or a $NUL string equate.

x, y expressions, variables, or numeric literal values, specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 10 dialog
units.

yy Integral expression, variable, or numeric literal value, specifying the height of the control.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 11 dialog
units.

style& Primary style of the scroll bar control. The default scroll bar style is %SBS_HORZ;
however, if the width is less than the height, the control is automatically switched to %
SBS_VERT, regardless of whether %SBS_HORZ is specified or not. If %SBS_VERT is
specified, the control will always be created as a vertical scroll bar regardless of the
dimensions of the control. The default style is used if both the primary and extended style
parameters are omitted from the statement. For example:

CONTROL ADD SCROLLBAR, hDlg, id&, txt$, 100, 100, 150, 14, , , _
 CALL Scrollbar1Callback() ' Use default styles

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary scroll bar style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%SBS_BOTTOMALIGN Align the bottom edge of the scroll bar with the bottom
edge of the dialog, and use the default height of system
scroll bars. Used with %SBS_HORZ.

%SBS_HORZ Make the control a horizontal scroll bar (default - see
style& above).

%SBS_LEFTALIGN Align the left edge of the scroll bar with the left edge of
the dialog, and use the default width of system scroll
bars. Used with %SBS_VERT.

%SBS_RIGHTALIGN Align the right edge of the scroll bar with the right edge of
the dialog, and use the default width of system scroll

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

623 / 2126

bars. Used with %SBS_VERT.

%SBS_TOPALIGN Align the top edge of the scroll bar with the top edge of
the window, and use the default height of system scroll
bars. Used with %SBS_HORZ.

%SBS_VERT Make the control a vertical scroll bar (see style& above).

%WS_DISABLED Create a control that is initially disabled. A disabled
control cannot receive input from the user.

%WS_GROUP Define the start of a group of controls. The first control in
each group should also use %WS_TABSTOP style. The
next %WS_GROUP control in the tab order defines the
end of this group and the start of a new group.

%WS_TABSTOP Allow the scrollbar control to receive keyboard focus
when the user presses the TAB and SHIFT+TAB keys.
The TAB key shifts keyboard focus to the next control
with the %WS_TABSTOP style, and SHIFT+TAB shifts
focus to the previous control with %WS_TABSTOP.

exstyle& Extended style of the scroll bar control. The default extended scroll bar style comprises
%WS_EX_LEFT. The default extended style is used if both the primary and extended
style parameters are omitted from the CONTROL ADD SCROLLBAR statement, in the
same manner as style& above.

The extended scroll bar style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned" properties.
This style has an effect only if the shell language is
Hebrew, Arabic, or another language that supports
reading order alignment; otherwise, the style is
ignored.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the control
(intended to be used for items that do not accept
user input).

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
The dialog callback should also return TRUE non-zero) if the notification message is
processed by that Callback Function. Otherwise, the DDT engine processes unhandled
messages automatically.

Remarks If the ampersand (&) character appears in the txt$ parameter, the letter that follows will
become a control accelerator (hot-key) to enable the user to directly select the scroll bar
control, simply by pressing and holding the ALT key while pressing the specified hot-key.
For example, "&9" makes ALT+9 the hot-key. The actual text in txt$ is not displayed in a
scroll bar control.

When the user clicks on a scroll bar, drags the thumb (also called the scroll box), or
initiates a scroll event with the keyboard, a message is sent to the Callback Function
designated for the control. If there is no Callback Function designated, the message is
sent to the callback for the dialog.

The following notifications are sent to the Callback Function:

%WM_HSCROLL Sent when the user adjusts a horizontal scroll bar.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

624 / 2126

%WM_VSCROLL Sent when the user adjusts a vertical scroll bar.

When a Callback Function receives a %WM_HSCROLL or %WM_VSCROLL message, it
should retrieve and set the scroll bar control settings through the GetScrollInfo API and
SCROLLBAR SET POS function calls. Be sure to use the %SB_CTL flag with these API
functions, rather than the %SB_HORZ or %SB_VERT flags.

See also Dynamic Dialog Tools, CONTROL HANDLE, CONTROL SEND, CONTROL SET COLOR,
SCROLLBAR

CONTROL ADD STATUSBAR statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CONTROL ADD STATUSBAR statement
Purpose Add a StatusBar control to a dialog. A StatusBar is a horizontal window, typically at the

bottom of a dialog client area, which displays various kinds of status information. It can
be divided into parts to display multiple items.

Syntax CONTROL ADD STATUSBAR, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the StatusBar will be created. The dialog will become the
parent of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %PickList is more informative
than a literal value such as 497. Best practice suggests identifiers should start at 100 to
avoid conflict with any of the standard predefined identifiers.

txt$ Text to initially display in the StatusBar control.

x,y expressions to specify control location. In the case of a StatusBar, location
parameters are ignored since the control is placed on the top or the bottom of the
dialog, based upon the chosen style. These location parameters are usually defined as
0, 0.

xx,yy Integral expressions to specify control size. In the case of a ToolBar, size parameters are
ignored since the control is created with a default size. These size parameters are
usually defined as 0, 0.

style& Primary style of the StatusBar control. The default StatusBar style is %CCS_BOTTOM.
 This default style is used if both the primary and extended style parameters are omitted
from the statement, as in the following example:

CONTROL ADD STATUSBAR, hDlg, id&, "", 5, 5, 5, 5, , , CALL SBCallback()

If you include explicit style values, they replace the default values. That is, they are not
added to the default styles values - your code must specify all necessary primary and
extended style parameters.

%CCS_TOP The StatusBar is placed at the top of the dialog.

%CCS_BOTTOM The StatusBar is placed at the bottom of the
dialog.

Glossary_Client_Area.htm
javascript:void(0);
javascript:void(0);
javascript:void(0);
Glossary_Style.htm

PowerBASIC Compiler for Windows Version 10

625 / 2126

%SBARS_SIZEGRIP A sizegrip is added to the StatusBar.

%SBARS_TOOLTIPS Use this style to enable tooltips.

exstyle& Extended style of the StatusBar control. The extended StatusBar style value can be a
combination of the values below, combined together with the OR operator to form a
bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification messages.

See also Dynamic Dialog Tools, CONTROL SET FONT, STATUSBAR

CONTROL ADD TAB statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CONTROL ADD TAB statement
Purpose Add a Tab Control to a dialog. A Tab Control is analogous to the dividers in a notebook. It

displays one particular page, selecting it from multiple pages, when the user chooses the
corresponding tab.

Syntax CONTROL ADD TAB, hDlg, id&, txt$, x, y, xx, yy [, [style&] [, [exstyle&]]]
[[,] CALL callback]

hDlg Handle of the dialog in which the Tab Control will be created. The dialog will become the
parent of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %PickList is more informative
than a literal value such as 497. Best practice suggests identifiers should start at 100 to
avoid conflict with any of the standard predefined identifiers.

txt$ Text to associate with the Tab Control. A Tab Control does not display this text, so it is
common to set this value to a null, empty string literal ("").

x,y expressions, variables, or numeric literal values specifying the location of the control

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

626 / 2126

inside the dialog client area. x is the horizontal position, and y is the vertical position.
 0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx,yy Integral expressions, variable, or numeric literal values, specifying the width and height of
the control. xx is the width and yy is the height, given in the same terms (pixels or dialog
units) as the parent dialog.

style& Primary style of the Tab control. The default Tab style is %WS_CHILD and %
WS_TABSTOP. This default style is used if both the primary and extended style
parameters are omitted from the statement, as in the following example:

CONTROL ADD TAB, hDlg, id&, "",90,90,200,90, , , CALL PBCallback()

If you include explicit style values, they replace the default values. That is, they are not
added to the default styles values - your code must specify all necessary primary and
extended style parameters.

The primary style value can be a combination of the standard window values, and the
values specific to a Tab Control (below), which are combined together with the OR
operator to form a bitmask:

%TCS_FORCEICONLEFT Icons are forced to the left

%TCS_FORCELABELLEFT Labels are forced to the left

%TCS_FIXEDWIDTH All tabs are the same size

%TCS_RAGGEDRIGHT Tabs are not stretched

%TCS_FOCUSONBUTTONDOWN Tabs receive the focus when clicked

%TCS_OWNERDRAWFIXED Parent window is responsible for drawing tabs

%TCS_TOOLTIPS A Tooltip control is associated with the control

%TCS_FOCUSNEVER Tab never receives the focus

exstyle& Extended style of the control. The value can be a combination of the values below,
combined together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification messages.

See also Dynamic Dialog Tools, CONTROL SET FONT, TAB

CONTROL ADD TEXTBOX statement

CONTROL ADD TEXTBOX statement
Purpose Add a text box control to a dialog. A text box is very similar to a conventional edit control,

and it is used to enter text into an application. Text boxes support single-line and
multiple-line input.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

627 / 2126

Syntax CONTROL ADD TEXTBOX, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the text box will be created. The dialog will become the
parent of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %CustomerName is more
informative than a literal value such as 497. Best practice suggests identifiers should start
at 100 to avoid conflict with any of the standard predefined identifiers.

txt$ Default text to be displayed in text box. txt$ may be a

, string equate, or string expression. txt$ can be empty if there is no default text.
x, y expressions, variables, or numeric literal values, specifying the location of the control

inside the dialog client area. x is the horizontal position, and y is the vertical position.
0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx Integral expression, variable, or numeric literal value, specifying the width of the control.
The width is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 100 dialog
units.

yy Integral expression, variable, or numeric literal value, specifying the height of the control.
The height is given in the same terms (pixels or dialog units) as the parent dialog. The
most common value used in the Microsoft Dialog Editor and Visual Studio is 12 dialog
units.

style& Primary style of the text box control. The default text box style comprises %
WS_TABSTOP, %WS_BORDER, %ES_LEFT, and %ES_AUTOHSCROLL. The default
style is used if both the primary and extended style parameters are omitted from the
statement. For example:

CONTROL ADD TEXTBOX, hDlg, id&, txt$, 100, 100, 150, 200, , , _
 CALL EditControlCallback() ' Use default styles

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary primary and extended style
parameters.

The primary text box style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%ES_AUTOHSCROLL Automatically scroll text to the right by 10 characters
when the user types a character at the end of the line.
When the user presses the ENTER key, scroll all text
back to position zero.

%ES_AUTOVSCROLL Automatically scroll text up one page when the user
presses the ENTER key on the last line. This must be
combined with the %ES_WANTRETURN and %
ES_MULTILINE styles. Also see %WS_VSCROLL.

%ES_CENTER Center text in a multi-line edit control.

%ES_LEFT Left-aligns text. (default)

%ES_LOWERCASE Convert all characters to lowercase as they are typed
into the edit control.

%ES_MULTILINE Allow the control to accept multiple lines of input. By
default, the ENTER key activates the default button on
the dialog. To use the ENTER key as a carriage return in
the text box control, include the %ES_WANTRETURN
style.
If the %ES_AUTOHSCROLL style is included, the control
automatically scrolls horizontally when the caret goes
past the right edge of the control. Otherwise, the control

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

628 / 2126

automatically wraps words to the beginning of the next
line when necessary. The control size determines the
position of the word wrap.

%ES_NOHIDESEL Negate the default behavior for a text box. The default
behavior hides the selection when the control loses the
input focus, and inverts the selection when the control
receives the input focus. If you specify %
ES_NOHIDESEL, the selected text is inverted, even if
the control does not have the focus.

%ES_NUMBER Allow only digits ("0123456789") instead of characters.
Although Windows does not consider the negation
symbol (-) or period symbol (.) to be digits, subclassing a
TextBox that does not use %ES_NUMBER and rejecting
"unwanted" keystrokes is common practice among
advanced programmers.

%ES_OEMCONVERT Text is converted from the windows character set to
OEM, then back to Windows, as it is entered.

%ES_PASSWORD Display an asterisk (*) for each character typed into the
control in order to obscure the password.

%ES_READONLY Prevent the user from typing or editing text in the control.
Text can still be selected and copied from the control to
the clipboard with the mouse.

%ES_RIGHT Right-align text in a multi-line text box.

%ES_UPPERCASE Convert all characters to uppercase as they are typed
into the control.

%ES_WANTRETURN Allow the ENTER key to insert a carriage return in a
multi-line text box. Otherwise, the ENTER key works as
the dialog box's default push button. This style has no
effect on a single-line text box.

%WS_BORDER Add a thin line border around the text box control.

%WS_HSCROLL Add a horizontal scroll bar to the edit control, when used
in conjunction to the %ES_AUTOHSCROLL style.

%WS_GROUP Define the start of a group of controls. The first control in
each group should also use %WS_TABSTOP style. The
next %WS_GROUP control in the tab order defines the
end of this group and the start of a new group.

%WS_TABSTOP Allow the textbox control to receive keyboard focus when
the user presses the TAB and SHIFT+TAB keys. The
TAB key shifts keyboard focus to the next control with
the %WS_TABSTOP style, and SHIFT+TAB shifts focus
to the previous control with %WS_TABSTOP. (default)

%WS_VSCROLL Add a vertical scroll bar to the edit control. This style
should be used in conjunction to the %ES_MULTILINE
and %ES_AUTOVSCROLL styles.

exstyle& Extended style of the text box control. The default extended text box style comprises %
WS_EX_CLIENTEDGE with %WS_EX_LEFT. The default extended style is used if both
the primary and extended parameters are omitted from the CONTROL ADD TEXTBOX
statement, in the same manner as style& above.

The extended text box style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_LEFT The control has generic "left-aligned" properties.
(default)

%WS_EX_RIGHT The control has generic "right-aligned" properties.
This style has an effect only if the shell language is

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

629 / 2126

Hebrew, Arabic, or another language that supports
reading order alignment; otherwise, the style is
ignored.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the control
(intended to be used for items that do not accept
user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks If you specify the %ES_AUTOHSCROLL style, the control automatically scrolls
horizontally when the caret goes past the right edge of the control. To start a new line, the
user must press the ENTER key.

If you do not specify %ES_AUTOHSCROLL, the control automatically wraps words to the
beginning of the next line when necessary. A new line is also started if the user presses
the ENTER key. The control size determines the position of the word wrap.

The following notifications are sent to the Callback Function:

%EN_CHANGE Sent when the user has taken an action that may have
altered text in the text box. Unlike the %EN_UPDATE
notification, this message is sent after Windows updates the
screen. Programmatically changing the text in a control also
triggers this message.

%EN_ERRSPACE Sent when the text box cannot allocate enough memory to
meet a specific request.

%EN_HSCROLL Sent when the user clicks a multi-line text box's horizontal
scroll bar. The callback is notified before the screen is
updated.

%EN_KILLFOCUS Sent when an edit control loses the keyboard focus.

%EN_MAXTEXT Sent when the current text insertion has exceeded the
specified number of characters for the text box. The text
insertion is truncated.

%EN_SETFOCUS Sent when an edit control receives the keyboard focus.

%EN_UPDATE Sent when a text box is about to display altered text. This
notification message is sent after the control has formatted
the text, but before it displays the text. Also see %
EN_CHANGE.

%EN_VSCROLL Sent when the user clicks a text box's vertical scroll bar. The
callback is notified before the screen is updated.

When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the notification message.

Use CONTROL GET TEXT to retrieve the text from a text box control, and use

http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

630 / 2126

CONTROL SET TEXT to change the text in a text box control. Changing the text in a text
box control (in response to a %EN_CHANGE or %EN_UPDATE message) will trigger a
second set of %EN_CHANGE and %EN_UPDATE messages. Unless this is
compensated for, these notifications can unwittingly cause an endless loop.

For example, the following is potentially fatal:

CALLBACK FUNCTION EditControlCallback()
 IF CB.CTL = %ID_EDITBOX1 AND CB.CTLMSG = %EN_CHANGE THEN
 CONTROL SET TEXT CB.HNDL, CB.CTL, "New Text"
 EXIT FUNCTION
 END IF
 [statements]

As CONTROL SET TEXT is a "blocking" statement (that is, the statement does not
complete until the text has been changed), it is a simple matter to block the endless loop
effect:

CALLBACK FUNCTION EditControlCallback()
 STATIC EditBusy&
 IF CB.CTL = %ID_EDITBOX1 AND CB.CTLMSG = %EN_CHANGE THEN
 IF EditBusy& THEN EXIT FUNCTION
 EditBusy& = -1
 CONTROL SET TEXT CB.HNDL, CB.CTL, "New Text"
 RESET EditBusy&
 EXIT FUNCTION
 END IF
 [statements]

See also Dynamic Dialog Tools, CONTROL GET TEXT, CONTROL SET COLOR, CONTROL SET
FONT, CONTROL SET TEXT

CONTROL ADD TOOLBAR statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CONTROL ADD TOOLBAR statement
Purpose Add a ToolBar control to a dialog. A ToolBar overlays part of a dialog's client area,

typically at the top.

Syntax CONTROL ADD TOOLBAR, hDlg, ID, Txt$, x, y, nWide, nHigh [,style]
[,exstyle&] [,CALL callback]

hDlg Handle of the dialog in which the ToolBar will be created. The dialog will become the
parent of the control.

ID Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %PickList is more informative
than a literal value such as 497. Best practice suggests identifiers should start at 100 to
avoid conflict with any of the standard predefined identifiers.

Txt$ Text to associate with the ToolBar control. A ToolBar control does not display this text,
so it is common to set this value to a null, empty string literal ("" or $NUL).

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

631 / 2126

x,y Integral expressions which specify the location of the control within the dialog client area.
 In the case of a ToolBar, size parameters are ignored since the control is created with a
default position. These size parameters are usually omitted.

nWide, nHigh Integral expressions which specify the overall width and height of the control. In the case
of a ToolBar, size parameters are ignored since the control is created with a default size.
 These size parameters are usually omitted.

style Optional primary style of the ToolBar control. The default ToolBar style is %WS_CHILD or
%WS_VISIBLE or %WS_BORDER or %CCS_TOP or %TBSTYLE_FLAT. This default
style is used if both the primary and extended style parameters are omitted from the
statement, as in the following example:

CONTROL ADD TOOLBAR, hDlg, id&, "", 1, 1, 1, 1, , , CALL TBCallback()

If you include explicit style values, they replace the default values. That is, they are not
added to the default styles values - your code must specify all necessary primary and
extended style parameters.

The primary ToolBar style value can be a combination of the values below, combined
together with the OR operator to form a bitmask:

%CCS_TOP The ToolBar is placed at the top of the dialog.

%CCS_BOTTOM The ToolBar is placed at the bottom of the dialog.

exstyle& Optional extended style of the ToolBar control. The extended ToolBar style value can be
a combination of the values below, combined together with the OR operator to form a
bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. Generally speaking, ToolBar command messages
result from clicking a ToolBar Button, so the message is sent to the callback specified in
TOOLBAR ADD BUTTON or the dialog callback specified in

. Message routing by button allows you to easily determine which button generated
the event, and eliminates virtually all %WM_COMMAND messages here. This
callback is primarily used to process %WM_NOTIFY messages.
If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks When a Callback Function receives a message, it should explicitly test the value of
CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to the notification
messages.

See also DIALOG SHOW MODAL, DIALOG SHOW MODELESS, Dynamic Dialog Tools,
CONTROL SET FONT, TOOLBAR

CONTROL ADD TREEVIEW statement

Keyword Template
Purpose

Syntax

Remarks

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

632 / 2126

See also

Example

CONTROL ADD TREEVIEW statement
Purpose Add a TreeView control to a dialog. A TreeView displays a set of

 data items with a parent-child relationship between the items. This creates a
hierarchical list of data which can have any number of levels. The user may view the
items, selecting them for use in the program at a later time.

Syntax CONTROL ADD TREEVIEW, hDlg, id&, txt$, x, y, xx, yy [, [style&] [,
[exstyle&]]] [[,] CALL callback]

hDlg Handle of the dialog in which the TreeView will be created. The dialog will become the
parent of the control.

id& Unique identifier for the control in the range 1 to 65535, frequently specified with numeric
equates for clarity of the code. For example, the equate %PickList is more informative
than a literal value such as 497. Best practice suggests identifiers should start at 100 to
avoid conflict with any of the standard predefined identifiers.

txt$ Text to associate with the TreeView control. A TreeView control does not display this
text, so it is common to set this value to a null, empty string literal ("").

x,y expressions, variables, or numeric literal values specifying the location of the control
inside the dialog client area. x is the horizontal position, and y is the vertical position.
 0,0 refers to the upper left corner of the dialog box client area. Coordinates are
specified in the same terms (pixels or dialog units) as the parent dialog.

xx,yy Integral expressions, variable, or numeric literal values, specifying the width and height of
the control. xx is the width and yy is the height, given in the same terms (pixels or dialog
units) as the parent dialog.

style& Primary style of the TreeView control. The default TreeView style comprises %
WS_TABSTOP, %TVS_HASBUTTONS, %TVS_LINESATROOT, %TVS_HASLINES, and
%TVS_SHOWSELALWAYS. This default TreeView style is used if the style parameters
are omitted from the statement, as in the following example:

CONTROL ADD TREEVIEW, hDlg, id&, "", 100, 100, 150, 200, , , CALL
TVCallback()

If you include explicit style values, they replace the default values. That is, they are not
added to the default styles values - your code must specify all necessary primary and
extended style parameters.

The primary TreeView style value can be a combination of the values below, combined
together with the OR operator to form a bitmask:

%TVS_HASBUTTONS Displays +- signs next to parent items so the
user can expand or collapse a list of child items.

%TVS_HASLINES Uses lines to show the hierarchy of data items.
%TVS_LINESATROOT Uses lines to link items at the root level.
%TVS_EDITLABELS Allows the user to edit the labels of the data

items.
%TVS_DISABLEDRAGDROP Prevents drag and drop
%TVS_SHOWSELALWAYS A selected item remains selected when the

control loses focus.
%TVS_NOTOOLTIPS Disables ToolTips.
%TVS_CHECKBOXES Enables check boxes for items with an image.
%TVS_TRACKSELECT Enables hot tracking.
%TVS_SINGLEEXPAND Only one item can be expanded at a time.
%TVS_INFOTIP Obtains ToolTip information.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

633 / 2126

%TVS_FULLROWSELECT The entire row of a selected item is highlighted.
%TVS_NOSCROLL Disables horizontal and vertical scrolling.
%TVS_NONEVENHEIGHT Sets the height of items to an odd height.
%TVS_NOHSCROLL Disables horizontal scrolling.
%WS_DISABLED Create a control that is initially disabled. A

disabled control cannot receive input from the
user.

%WS_GROUP Define the start of a group of controls. The first
 control in each group should also use %
WS_TABSTOP style. The next %WS_GROUP
control in the tab order defines the end of this
group and the start of a new group.

%WS_TABSTOP Allow the control to receive keyboard focus when
the user presses the TAB and SHIFT+TAB keys.
 The TAB key shifts keyboard focus to the next
control with the %WS_TABSTOP style, and
SHIFT+TAB shifts focus to the previous control
with %WS_TABSTOP.

exstyle& Extended style of the TreeView control. The default extended style is %WS_EX_LEFT.
 The default extended style is used if both the primary and extended parameters are
omitted from the CONTROL ADD TREEVIEW statement, in the same manner as style&
above.

The extended TreeView style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%WS_EX_CLIENTEDGE Apply a sunken edge border to the control.
%WS_EX_LEFT The control has generic "left-aligned" properties.

(default)
%WS_EX_RIGHT The control has generic "right-aligned" properties.

This style has an effect only if the shell language is
Hebrew, Arabic, or another language that supports
reading order alignment; otherwise, the style is
ignored.

%WS_EX_STATICEDGE Apply a three-dimensional border style to the
control (intended to be used for items that do not
accept user input).

%WS_EX_TRANSPARENT Controls/windows beneath the control are drawn
before the control is drawn. The control is deemed
transparent because elements behind the control
have already been painted - the control itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

%WS_EX_WINDOWEDGE Apply a raised edge border to the control.

callback Optional name of a Callback Function that receives all %WM_COMMAND and %
WM_NOTIFY messages for the control. See the #MESSAGES metastatement to choose
which messages will be received. If a callback for the control is not designated, you must
create a dialog Callback Function to process messages from your control.

If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

Remarks When a Callback Function receives a %WM_COMMAND message, it should explicitly
test the value of CB.CTL and CB.CTLMSG to guarantee it is responding appropriately to
the messages.

See also Dynamic Dialog Tools, CONTROL SET COLOR, CONTROL SET FONT, TREEVIEW

javascript:void(0);
http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

634 / 2126

CONTROL DISABLE statement

CONTROL DISABLE statement
Purpose Disable a control so that it no longer receives any messages or accepts user interaction.

Syntax CONTROL DISABLE hDlg, id&

Remarks hDlg refers to the dialog that owns the control. id& is the unique control identifier as
assigned to the control with a

 statement.
A disabled control will not receive any messages when clicked with the mouse or
selected with the keyboard. Most, but not all, controls will redraw themselves as "gray"
when disabled.

See also Dynamic Dialog Tools, CONTROL ENABLE, CONTROL KILL

CONTROL ENABLE statement

CONTROL ENABLE statement
Purpose Enable a control so that it can receive messages when the user interacts with it via the

mouse or keyboard.

Syntax CONTROL ENABLE hDlg, id&

Remarks hDlg refers to the dialog that owns the control. id& is the unique control identifier as
assigned to the control with a

 statement.
An enabled control will receive messages when clicked with the mouse or selected with
the keyboard.

See also Dynamic Dialog Tools, CONTROL DISABLE, CONTROL KILL

CONTROL GET CHECK statement

CONTROL GET CHECK statement
Purpose Get the Check State of a CHECK3STATE, CHECKBOX, or OPTION button.

Syntax CONTROL GET CHECK hDlg, id& TO lResult&

Remarks hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement.
lResult& receives the Check State of the control as follows:

lResult& Check State of control

0 (Zero) Button is unchecked (unset, or
cleared)

1 (One) Button is checked (set)

2 (Two) Button is indeterminate (grayed)
(CHECK3STATE only)

Note that a grayed (indeterminate) CHECK3STATE control does not mean the control is
disabled. Rather, the Check State of the control is both checked and unchecked.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

635 / 2126

See also Dynamic Dialog Tools, CONTROL ADD CHECK3STATE, CONTROL ADD CHECKBOX,
CONTROL ADD OPTION, CONTROL SET CHECK, CONTROL SET OPTION, TREEVIEW
GET CHECK, TREEVIEW SET CHECK

CONTROL GET CLIENT statement

CONTROL GET CLIENT statement
Purpose Return the client size of the specified child control.

Syntax CONTROL GET CLIENT hDlg, id& TO w&, h&

Remarks hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement.
The size of the control client area is placed in the w& (width) and h& (height) variables.
The size is specified in the same terms (pixels or dialog units) as the parent dialog.

See also Dynamic Dialog Tools, CONTROL GET LOC, CONTROL GET SIZE, CONTROL SET
CLIENT, CONTROL SET CLIENT, CONTROL SET LOC, CONTROL SET SIZE,
DIALOG UNITS, DIALOG PIXELS, GRAPHIC GET CLIENT

CONTROL GET LOC statement

CONTROL GET LOC statement
Purpose Get the location of the specified control in a dialog.

Syntax CONTROL GET LOC hDlg, id& TO x&, y&

Remarks hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement.
The location of the top left corner of the control is placed in the x& (horizontal location)
and y& (vertical location) variables. The location is relative to the upper-left corner of the
client area in the parent dialog. The coordinates are specified in the same terms (pixels or
dialog units) as the parent dialog.

See also Dynamic Dialog Tools, CONTROL GET CLIENT, CONTROL GET SIZE,
CONTROL SET LOC, CONTROL SET SIZE

CONTROL GET SIZE statement

CONTROL GET SIZE statement
Purpose Get the size of a control in the specified dialog.

Syntax CONTROL GET SIZE hDlg, id& TO nWide&, nHigh&

Remarks hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement.
The width is placed in the nWide& and the height is placed in nHigh& variables. The
coordinates are specified in the same terms (pixels or dialog units) as the parent dialog.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

636 / 2126

See also Dynamic Dialog Tools, CONTROL GET CLIENT, CONTROL GET LOC,
CONTROL SET LOC, CONTROL SET SIZE

CONTROL GET TEXT statement

CONTROL GET TEXT statement
Purpose Get the text from a control.

Syntax CONTROL GET TEXT hDlg, id& TO txt$

Remarks hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement. Any text in the control is placed into the txt$ variable.
With combo boxes, CONTROL GET TEXT returns the text entered in the edit portion of
the control. To retrieve the selected text from the list portion of a combo box or a list box
control, use the COMBOBOX GET TEXT statement or LISTBOX GET TEXT statement
respectively.

See also Dynamic Dialog Tools, COMBOBOX GET TEXT, CONTROL SET TEXT,
LISTBOX GET TEXT, LISTVIEW GET TEXT, TREEVIEW GET TEXT

CONTROL GET USER statement

CONTROL GET USER statement
Purpose Retrieve a value from the user data area of a DDT control.

Syntax CONTROL GET USER hDlg, id&, index& TO retvar&

Remarks Each DDT control has a user data area consisting of eight Long-integer values which may
be used at the programmer's discretion to save relevant data. CONTROL GET USER
allows one of the values to be retrieved, based upon the index parameter value (1 through
8).

hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement.
index& is the index number of the user data value to retrieve, in the range 1 to 8 inclusive.

retvar& receives the Long-integer data value store in the nominated user data index.

Restrictions Data in the user data area is lost when the control is destroyed. The data area is
completely separate from the %GWL_USERDATA area maintained by Windows.

See also Dynamic Dialog Tools, COMBOBOX GET USER, COMBOBOX SET USER,
CONTROL SET USER, DIALOG GET USER, DIALOG SET USER, LISTBOX GET USER,
LISTBOX SET USER, LISTVIEW GET USER, LISTVIEW SET USER, TREEVIEW GET
USER, TREEVIEW SET USER

CONTROL HANDLE statement

CONTROL HANDLE statement
Purpose Return a window handle for the specified control ID.

Syntax CONTROL HANDLE hDlg, id& TO hCtl&

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

637 / 2126

Remarks hDlg refers to the dialog that owns the control. id& is the unique control identifier as
assigned to the control with a

 statement.
The returned value is a window handle for the control, assigned by Windows when the
control was initially created, uniquely identifying the control from all other controls. Some
API functions require a window handle value rather than a control ID value.

See also Dynamic Dialog Tools, CONTROL SEND, WINDOW GET ID, WINDOW GET PARENT

CONTROL HIDE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CONTROL HIDE statement
Purpose Make a

 invisible.
Syntax CONTROL HIDE HDlg, ID&

Remarks The Control identified by the HDlg/ID& combination is made invisible.

HDlg is the handle of the dialog which owns the control. ID& is the unique control
identifier assigned to the control with CONTROL ADD.

See Also CONTROL NORMALIZE, CONTROL SET SIZE, DIALOG HIDE, DIALOG NORMALIZE

CONTROL KILL statement

CONTROL KILL statement
Purpose Remove a control from a dialog.

Syntax CONTROL KILL hDlg, id&

Remarks hDlg refers to the dialog that owns the control. id& is the unique control identifier as
assigned to the control with a

 statement.
The control is destroyed and removed from the dialog. The Callback Function for the
control or dialog will no longer receive messages for the control.

Restrictions A control should not be destroyed while processing a notification message from the same
control, but it is permissible to kill a different control in the notification handler. If is
absolutely necessary to kill a control while processing one of its notification messages,
use the PostMessage API function (or the DIALOG POST or CONTROL POST
statements) to post a user-defined message to the dialog callback, and kill the control
when processing the user-defined message.

See also Dynamic Dialog Tools, CONTROL DISABLE, CONTROL ENABLE

Example ' How to avoid "suicide" conditions

Glossary_Control_ID.htm
Glossary_Control_ID.htm
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

638 / 2126

CALLBACK FUNCTION DlgCallBack() AS LONG
 SELECT CASE CB.MSG
 CASE %WM_COMMAND
 IF CB.CTLMSG = %BN_CLICKED AND CB.CTL = %MyBtn THEN
 DIALOG POST CB.HNDL, %WM_USER + 999&, 0, 0
 END IF
 CASE %WM_USER + 999&
 CONTROL KILL CB.HNDL, %MyBtn
 FUNCTION = 1
 END SELECT
END FUNCTION

CONTROL NORMALIZE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CONTROL NORMALIZE statement
Purpose Make a

 visible.
Syntax CONTROL NORMALIZE HDlg, ID&

Remarks The Control identified by the HDlg/ID& combination is made visible.

HDlg is the handle of the dialog which owns the control. ID& is the unique control
identifier assigned to the control with CONTROL ADD.

See also CONTROL HIDE, CONTROL SET SIZE, DIALOG HIDE, DIALOG NORMALIZE

CONTROL POST statement

CONTROL POST statement
Purpose Place a message in the message queue to be processed at the leisure of the target

control.

Syntax CONTROL POST hDlg, id&, Msg&, wParam&, lParam&

Remarks CONTROL POST places the message in the message queue and returns immediately.
The message is processed by the control at a later time, when it reads the message from
the queue.

This behavior is quite different to the CONTROL SEND statement, which forces the
control to process the message immediately before returning. Since CONTROL POST is
an asynchronous operation, it is not possible to retrieve a return code from the message.

hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement.

Glossary_Control_ID.htm
Glossary_Control_ID.htm
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

639 / 2126

Msg& is the message you want to post to the control.

wParam& is the first message parameter. lParam& is the second message parameter.
The values of wParam& and lParam& are message-dependent. By Default, PowerBASIC
passes these parameters BYVAL. If the target control is expected to alter the values held
by variables passed in the wParam& and lParam& parameters, pass them using
VARPTR() or the changes will likely be discarded.

Note that the address of the data must remain valid until after the control has processed
the message and accessed the data. In this case, using STATIC or GLOBAL variables
can be very important or a General Protection Fault (GPF) may occur (that is, if the
variables have gone out of scope by the time the message is processed).

An example of posting the addresses of variables to a control:

' Retrieve an Edit controls Current Selection
' Sel1& and Sel2& must be STATIC or GLOBAL
CONTROL POST CB.HNDL, %ID_EDIT6, %EM_GETSEL, VARPTR(Sel1&),
VARPTR(Sel2&)

CONTROL POST returns immediately after the placing the message in the queue.

Restrictions To post a custom message to a control, use a message value in the range of (%
WM_USER + 500) to (%WM_USER + &H07FFF), or use the RegisterWindowMessage
API to obtain a unique message value from the operating system. Using messages with a
numeric value of less then %WM_USER + 500 may conflict with Windows Common
Control messages.

See also Dynamic Dialog Tools, CONTROL HANDLE, CONTROL SEND, DIALOG POST,
DIALOG SEND

Example ' Programmatically post a click message to a button:
CONTROL POST hDlg, %ID_BTN1, %BM_CLICK, 0, 0

CONTROL REDRAW statement

CONTROL REDRAW statement
Purpose Schedule a designated control to be redrawn.

Syntax CONTROL REDRAW hDlg, id&

Remarks CONTROL REDRAW invalidates the target control and schedules a redraw event to
occur.

hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement.
Restrictions Redrawing of individual controls is considered a low priority event, and a control redraw

may not happen instantly if there are pending messages in the message queue. That is,
pending messages in the message queue may need to be processed before the
scheduled redraw event occurs.

It is not advisable to use CONTROL REDRAW or DIALOG REDRAW within the %
WM_PAINT and associated message handling code, or an infinite redraw loop could
occur.

See also Dynamic Dialog Tools, CONTROL SET COLOR, DIALOG SET COLOR,
DIALOG REDRAW

Example CONTROL REDRAW hDlg, %ID_LABEL1

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

640 / 2126

CONTROL SEND statement

CONTROL SEND statement
Purpose Send a message to a control.

Syntax CONTROL SEND hDlg, id&, Msg&, wParam&, lParam& [TO lResult&]

Remarks hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement.
Msg& is the message you want to send the control.

wParam& is the first message parameter. lParam& is the second message parameter.
The values of wParam& and lParam& are message-dependent. By default, PowerBASIC
passes these parameters BYVAL. If the target control is expected to return or alter the
values passed in the wParam& and lParam& parameters, pass them using VARPTR or
the return values will be discarded. For example:

' Retrieve an Edit control's Current Selection
CONTROL SEND CB.HNDL, %ID_EDIT1, %EM_GETSEL, VARPTR(Sel1&),
VARPTR(Sel2&)

CONTROL SEND does not return from execution until the control's callback has
processed the message. This synchronous behavior is quite different to the behavior of
CONTROL POST, which simply places the message in the control's message queue (for
processing at a later time) and immediately returns. On this basis, CONTROL SEND can
receive a return value from the message, but CONTROL POST cannot.

TO The return value from the message can optionally be assigned to lResult&.

If CONTROL SEND sends a message that arrives back in the same callback as the
message originated, care should be exercised to ensure that critical STATIC and
GLOBAL variables are not unexpectedly altered by the second message processing code
in the callback. This is known as re-entrant code design.

Restrictions To send a custom message to a dialog, use a message value in the range of (%
WM_USER + 500) to (%WM_USER + &H07FFF), or use the RegisterWindowMessage
API to obtain a unique message value from the operating system. Using messages with a
numeric value of less then %WM_USER + 500 may conflict with Windows Common
Control messages.

See also Dynamic Dialog Tools, CONTROL HANDLE, CONTROL POST, DIALOG POST,
DIALOG SEND

Example ' Programmatically click a button:
CONTROL SEND hDlg, %ID_BTN1, %BM_CLICK, 0, 0

CONTROL SET CHECK statement

CONTROL SET CHECK statement
Purpose Set the Check State for a CHECK3STATE or CHECKBOX control.

Syntax CONTROL SET CHECK hDlg, id&, checkstate&

Remarks With a checkbox control, the Check State is set (checked) when an 'X' symbol is shown
in the check box. The Check State is deemed unset (unchecked or cleared) when the
check box is empty.

A CHECK3STATE control supports a third state, known as indeterminate. In this state,
the check box is grayed.

hDlg refers to the dialog that owns the control.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

641 / 2126

id& is the unique control identifier as assigned to the button control with a

 statement.
For CHECKBOX controls, set checkstate& to zero (0) to uncheck (unset or clear) the
Check State of the control, or one (1) to check (set) the Check State of the control.

For CHECK3STATE controls, set checkstate& to zero (0) to uncheck (unset or clear) the
Check State of the control, one (1) to check (set) the Check State (display an 'X' symbol
in the box), or two (2) to set the indeterminate state (display a grayed check box).

To set the Check State of OPTION controls, use the CONTROL SET OPTION
statement.

See also Dynamic Dialog Tools, CONTROL ADD CHECK3STATE, CONTROL ADD CHECKBOX,
CONTROL ADD OPTION, CONTROL GET CHECK, CONTROL SET OPTION, TREEVIEW
GET CHECK, TREEVIEW SET CHECK

CONTROL SET CLIENT statement

CONTROL SET CLIENT statement
Purpose Change the size of a control to a specific client area size.

Syntax CONTROL SET CLIENT hDlg, id&, nWide&, nHigh&

Remarks Client size may be smaller than total size, depending on the type of borders used. The
client area is the part inside the borders of a control, which varies depending upon the
style and exstyle at creation. In a control without borders, the client size and total size is
the same. As an alternate example, a control with the %WS_BORDER style will typically
have a client area a few pixels smaller than the total size.

hDlg Handle of the dialog that owns the control.

id& The unique control identifier, assigned to the control with the

 statement.
nWide&, nHigh& Integral expressions, variables, or numeric literal values, specifying the desired size of the

client area. Width and height are specified in pixels or dialog units, depending upon the
system used when the parent dialog was created.

Graphic
Controls

Beginning with this version of PowerBASIC, GRAPHIC CONTROLS may be resized with
CONTROL SET CLIENT, GRAPHIC SET CLIENT, CONTROL SET SIZE, and GRAPHIC
SET SIZE.

When you change the size of a graphic control, the original bitmap is copied, pixel for
pixel, to the newly resized control. Any expanded area is filled with the current
background color. Your program draws to it in the normal fashion for a bitmap of the new
size.

If a clip area had been established to create margins, it is reset. If scaled coordinates
had been established, they are also reset, as neither would be appropriate for the altered
size. You can enable these attributes again with GRAPHIC SCALE or GRAPHIC SET
CLIP, based upon the new size of the drawing area.

See also Dynamic Dialog Tools, CONTROL GET CLIENT, CONTROL GET LOC,
CONTROL GET SIZE, CONTROL SET LOC, CONTROL SET SIZE, GRAPHIC SET
CLIENT, GRAPHIC SET SIZE

CONTROL SET COLOR statement

CONTROL SET COLOR statement

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

642 / 2126

Purpose Set the color of a control to a specific RGB foreground and background color.

Syntax CONTROL SET COLOR hDlg, id&, foreclr&, backclr&

Remarks hDlg identifies the controlʼs parent dialog, and id& is the unique control identifier as
assigned to the control with a

 statement.
Color values of foreclr& and backclr& must be in the range of &H0 to &H00FFFFFF. RGB
can be a useful function to derive a 32-bit color value from discrete Red, Green and Blue
values:

foreclr& The foreground color parameter foreclr& is used to set the color of the text displayed in
the control. If foreclr& = -1&, the default foreground text color is used.

backclr& The backclr& parameter specifies the color of the background behind the text in the
control. If backclr& = -1&, the default background text color is used. If backclr& = -2&,
the text background is not painted, allowing the background to show "through" the text.
The non-visible background style may produce undesirable side effects with some
controls. For example, on a FRAME control, the caption text will appear superimposed
over an unbroken frame.

In 16-bit or greater color-depth mode, the specified RGB color is used when the
background of the control is drawn. However, in 8-bit (256-color) mode, the color system
works quite differently. Behind the scenes in Windows, the base system palette usually
contains 20 solid colors that are not dithered when drawn on the controls background.
These solid-colors are ideal for control background colors with DDT dialogs in 256-color
mode.

Conversely, when using a non-solid RGB color value, Windows will dither (approximate)
the color to draw the control, using combinations of two or more colors. This usually
produces an undesirable pattern effect.

To avoid these problems when in 256-color mode, controls should be colored with one of
the 20 standard (solid) system colors, or the default color should be used instead.
PowerBASIC includes the following 10 built-in equates for help with the selection of a
standard solid color:

%RGB_BLACK %RGB_BLUE %RGB_GREEN %RGB_CYAN %RGB_RED
%RGB_MAGENTA %RGB_YELLOW %RGB_WHITE %RGB_GRAY %RGB_LIGHTGRAY

Many non standard colors are also built into the compiler, see the Built In RGB Color
Equates topic for a complete list.

If you prefer to disable color in 256-color mode, the number of colors can be easily tested
with the following code:

' Determine number of colors
LOCAL hDC AS DWORD, iColors AS LONG

hDC = GetWindowDC(GetDeskTopWindow())
iColors = 2& ^ (GetDeviceCaps(hDC, %BITSPIXEL) * GetDeviceCaps(hDC, %
PLANES))
ReleaseDC GetDeskTopWindow(), hDC
IF iColors > 256 THEN _
 CONTROL SET COLOR hDlg, idctl&, -1, RGB(0,255,100)

In 256-color mode on most computers, the values of the standard 20 system colors can
be found by requesting the first and last 10 (0 to 9, and 246 to 255 inclusive) entries from
the GetSystemPaletteEntries API function, as follows:

' Fill array with solid colors
DIM hDC AS DWORD, Cols AS LONG, x AS LONG

hDC = GetWindowDC(GetDesktopWindow)
Cols = GetDeviceCaps(hDC, %NUMRESERVED)
REDIM lp(1 TO Cols) AS LONG
x& = GetSystemPaletteEntries(hDC, 0, Cols \ 2, BYVAL VARPTR(lp(1)))

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

643 / 2126

x& = GetSystemPaletteEntries(hDC, 256 - x&, Cols - x&, BYVAL
VARPTR(lp(x& + 1)))
ReleaseDC GetDesktopWindow, hDC
' Array lp() now contains the solid color table

For more information on working with palettes in 256-color mode, please consult
WIN32.HLP or visit http://msdn.microsoft.com.

Restrictions Windows does not permit the color of standard push button controls, line controls, image
controls, image buttons, and most common controls to be altered by the standard
CONTROL SET COLOR techniques.

To create a colored push button or colored region on a dialog, the preferred solution is to
use an IMGBUTTON/IMAGEBUTTONX or IMAGE/IMAGEX control, with a suitably colored
bitmap. Some common controls offer specific ways to set their color. For example, the
background color of a List View control can be set with the %LVM_SETBKCOLOR
message.

When dynamically changing colors of a control from within a callback (i.e., after the
DIALOG SHOW statement), a CONTROL SET COLOR statement should be immediately
followed by an explicit CONTROL REDRAW statement.

Without this forced control redraw, the control background color change may not become
evident to the user until the control is eventually repainted in the normal course of user
interaction. For example, a normal repaint may only occur if the control becomes
obscured and then uncovered by another window. Ensuring a timely repaint of the control
will guarantee the control maintains an up-to-date appearance at all times.

When updating the colors of multiple controls at the same time, a DIALOG REDRAW is
usually more efficient than multiple CONTROL REDRAW statements.

See also Built In RGB Color Equates, Dynamic Dialog Tools, CONTROL GET CLIENT,
CONTROL GET SIZE, CONTROL REDRAW, CONTROL SET FONT, DIALOG REDRAW,
DIALOG SET COLOR

Example ' Set the color with discrete RGB values
CONTROL SET COLOR hDlg, idBtn&, RGB(255,255,255), RGB(0,0,255)

' Or we could use the built-in equates:
CONTROL SET COLOR hDlg, idBtn&, %RGB_WHITE, %RGB_BLUE

CONTROL SET FOCUS statement

CONTROL SET FOCUS statement
Purpose Set the keyboard focus to the specified control.

Syntax CONTROL SET FOCUS hDlg, id&

Remarks hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement.
The control that owns the focus will receive all keyboard messages. Many controls
change their appearance when they receive (and lose) keyboard focus, usually by the
display of a "focus rectangle" around or on the control that has keyboard focus. Only one
control can have keyboard focus at any moment, and situations can arise where no
controls have focus.

Controls that include a "notify" style (i.e., %BS_NOTIFY) will receive a notification
message when focus is gained or lost. That is, when one such control loses focus, it
receives a message to that effect and the control gaining focus may also receive an
appropriate focus notification message.

When a control gains focus the parent dialog will also be set as the foreground window.

http://msdn.microsoft.com
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

644 / 2126

Windows does not guarantee the order in which focus notification messages
are dispatched to the control losing focus and the control gaining focus.
Applications should not rely on the order in which these types of messages
are received.

Restrictions CONTROL SET FOCUS cannot be used to set the focus of a control in a separate thread.

See also Dynamic Dialog Tools

CONTROL SET FONT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

CONTROL SET FONT statement
Purpose Select a font to be used for a particular Windows Control.

Syntax CONTROL SET FONT hDlg, id&, FontHndl&

hDlg Handle of the dialog in which owns the control.

id& Unique identifier for the control which was assigned with a

 statement.
FontHndl& The numeric handle returned by the FONT NEW statement when the font was created.

Remarks The font specified by FontHndl& is selected to be used by this particular control, until or
unless it is changed with another CONTROL SET FONT statement. If you specify a
FontHndl& of zero, the font is changed back to the original default font chosen by
PowerBASIC.

You can predefine virtually any number of fonts and attributes by executing FONT NEW
statements for each of them. That makes them ready for immediate use when selected
by CONTROL SET FONT, GRAPHIC SET FONT, and XPRINT SET FONT.

See also DIALOG DEFAULT FONT, FONT END, FONT NEW, GRAPHIC SET FONT, XPRINT SET
FONT

CONTROL SET IMAGE statement

CONTROL SET IMAGE statement
Purpose Change the icon or bitmap displayed in an IMAGE control. The new image is not re-sized

to fit the size of the control.

Syntax CONTROL SET IMAGE hDlg, id&, newimage$

Remarks hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with the
CONTROL ADD IMAGE statement.

newimage$ specifies the name of the bitmap or icon in the resource file. If the image
resource uses an

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

645 / 2126

 identifier, newimage$ should begin with a Number symbol (#), followed by the
integer identifier in ASCII format. For example, "#998". Otherwise, the text identifier
name should be used.

Restrictions Images can only be exchanged with images of the same type. That is, if the control is
displaying a bitmap then the replacement image must also be a bitmap. If the control is
displaying an icon, the replacement image must also be an icon. For best results, icons
should be 32x32 pixels.

When an image is changed, CONTROL SET IMAGE automatically releases the
old image from memory. Previous versions of PowerBASIC placed the onus
on the programmer to release the old image handle.

See also Dynamic Dialog Tools, CONTROL ADD GRAPHIC, CONTROL ADD IMAGE,
CONTROL ADD IMAGEX, CONTROL ADD IMGBUTTON, CONTROL ADD IMGBUTTONX,
CONTROL GET CLIENT, CONTROL GET SIZE, CONTROL SET IMAGEX,
CONTROL SET IMGBUTTON, CONTROL SET IMGBUTTONX

CONTROL SET IMAGEX statement

CONTROL SET IMAGEX statement
Purpose Change the icon or bitmap displayed in an IMAGEX control. The new image is re-sized to

fit the size of the control.

Syntax CONTROL SET IMAGEX hDlg, id&, newimage$

Remarks hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with the
CONTROL ADD IMAGEX statement.

newimage$ specifies the name of the bitmap or icon in the resource file. If the image
resource uses an

 identifier, newimage$ should begin with a Number symbol (#), followed by the
integer identifier in ASCII format. For example, "#998". Otherwise, the text identifier
name should be used.

Restrictions Images can only be exchanged with images of the same type. That is, if the control is
displaying a bitmap then the replacement image must also be a bitmap. If the control is
displaying an icon, the replacement image must also be an icon. For best results, icons
should be 32x32 pixels.

When an image is changed, CONTROL SET IMAGEX automatically releases
the old image from memory. Previous versions of PowerBASIC placed the
onus on the programmer to release the old image handle.

See also Dynamic Dialog Tools, CONTROL ADD GRAPHIC, CONTROL ADD IMAGE,
CONTROL ADD IMAGEX, CONTROL ADD IMGBUTTON, CONTROL ADD IMGBUTTONX,
CONTROL SET IMAGE, CONTROL SET IMGBUTTON, CONTROL SET IMGBUTTONX

CONTROL SET IMGBUTTON statement

CONTROL SET IMGBUTTON statement
Purpose Change the icon or bitmap displayed in an IMAGE control. The new image is not re-sized

to fit the size of the control.

Syntax CONTROL SET IMGBUTTON hDlg, id&, newimage$

Remarks hDlg refers to the dialog that owns the control.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

646 / 2126

id& is the unique control identifier as assigned to the control with the
CONTROL ADD IMGBUTTON statement.

newimage$ specifies the name of the bitmap or icon in the resource file. If the image
resource uses an

 identifier, newimage$ should begin with a Number symbol (#), followed by the
integer identifier in ASCII format. For example, "#998". Otherwise, the text identifier
name should be used.

Restrictions Images can only be exchanged with images of the same type. That is, if the control is
displaying a bitmap then the replacement image must also be a bitmap. If the control is
displaying an icon, the replacement image must also be an icon. For best results, icons
should be 32x32 pixels.

When an image is changed, CONTROL SET IMGBUTTON automatically
releases the old image from memory. Previous versions of PowerBASIC
placed the onus on the programmer to release the old image handle.

See also Dynamic Dialog Tools, CONTROL ADD GRAPHIC, CONTROL ADD IMAGE,
CONTROL ADD IMAGEX, CONTROL ADD IMGBUTTON, CONTROL ADD IMGBUTTONX,
CONTROL SET IMAGE, CONTROL SET IMAGEX, CONTROL SET IMGBUTTONX

CONTROL SET IMGBUTTONX statement

CONTROL SET IMGBUTTONX statement
Purpose Change the icon or bitmap displayed in an IMAGEX control. The new image is re-sized to

fit the size of the control.

Syntax CONTROL SET IMGBUTTONX hDlg, id&, newimage$

Remarks hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with the
CONTROL ADD IMGBUTTONX statements.

newimage$ specifies the name of the bitmap or icon in the resource file. If the image
resource uses an

 identifier, newimage$ should begin with a Number symbol (#), followed by the
integer identifier in ASCII format. For example, "#998". Otherwise, the text identifier
name should be used.

Restrictions Images can only be exchanged with images of the same type. That is, if the control is
displaying a bitmap then the replacement image must also be a bitmap. If the control is
displaying an icon, the replacement image must also be an icon. For best results, icons
should be 32x32 pixels.

When an image is changed, CONTROL SET IMGBUTTONX automatically
releases the old image from memory. Previous versions of PowerBASIC
placed the onus on the programmer to release the old image handle.

See also Dynamic Dialog Tools, CONTROL ADD GRAPHIC, CONTROL ADD IMAGE,
CONTROL ADD IMAGEX, CONTROL ADD IMGBUTTON, CONTROL ADD IMGBUTTONX,
CONTROL SET IMAGE, CONTROL SET IMAGEX, CONTROL SET IMGBUTTON

CONTROL SET LOC statement

CONTROL SET LOC statement
Purpose Move the control to a new location in the dialog.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

647 / 2126

Syntax CONTROL SET LOC hDlg, id&, x&, y&

Remarks hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement.
x& and y& specify the new location for the upper left corner of the control. These
coordinates are relative to the upper left corner of the client area of the parent dialog (0,0),
and are specified in the same terms (pixels or dialog units) as the parent dialog.

The location coordinates may be negative or larger than the width of the parent dialog's
client area, causing the control to be clipped (partially displayed) or completely hidden.

This technique is often employed to capture the ENTER key, by creating a default button
(%BS_DEFAULT) and positioning the control outside of the client area of the dialog - even
though the control is not visible, it is still active and can respond to control accelerator
keystrokes, etc.

See also Dynamic Dialog Tools, CONTROL GET CLIENT, CONTROL GET LOC,
CONTROL GET SIZE, CONTROL SET SIZE

CONTROL SET OPTION statement

CONTROL SET OPTION statement
Purpose Set the Check State for an OPTION (radio) control, and unset the Check State for other

OPTION buttons in a group.

Syntax CONTROL SET OPTION hDlg, id&, minid&, maxid&

Remarks The Check State is deemed set (checked) when the check box is selected, and unset
(unchecked or clear) if the check box is empty. Only one OPTION control in a group of
OPTION controls should ever have its Check State set at any given time. OPTION
controls in a group should be assigned unique sequential identifier numbers.

hDlg refers to the dialog that owns the OPTION controls.

id& is the unique control identifier as assigned to the button control with a
CONTROL ADD OPTION statement. CONTROL SET OPTION sets the Check State for
this control, and unsets the Check State for all of the remaining OPTION controls whose
identifiers are included in the range minid& through maxid&, inclusive.

The first OPTION control in a group should have the style %WS_GROUP to mark the
beginning of a group of buttons, and the first non-OPTION control after the group should
also have this style set. If there are no other controls after the group, add %WS_GROUP
to the first control in the dialog. This ensures keyboard navigation with the arrow buttons
will operate within the group of OPTION controls.

See also Dynamic Dialog Tools, CONTROL ADD OPTION, CONTROL GET CHECK

Example #INCLUDE "DDT.INC"
%OPT1 = 101
%OPT2 = 102
%OPT3 = 103
%OPT4 = 104
%OPT5 = 105

FUNCTION PBMAIN
 DIM hDlg AS DWORD
 DIALOG NEW 0, "OPTION control test", , ,100, 100, _
 %WS_SYSMENU OR %WS_CAPTION TO hDlg
 CONTROL ADD OPTION, hDlg, %OPT1, "Option 1", 10, 6, 50, 14, _
 %WS_GROUP OR %WS_TABSTOP
 CONTROL ADD OPTION, hDlg, %OPT2, "Option 2", 10, 20, 50, 14

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

648 / 2126

 CONTROL ADD OPTION, hDlg, %OPT3, "Option 3", 10, 34, 50, 14
 CONTROL ADD OPTION, hDlg, %OPT4, "Option 4", 10, 48, 50, 14
 CONTROL ADD OPTION, hDlg, %OPT5, "Option 5", 10, 62, 50, 14
 CONTROL ADD BUTTON, hDlg, %IDOK, "OK", 25, 80, 50, 14, _
 %WS_GROUP OR %WS_TABSTOP

 ' Set the initial state to OPTION button 3
 CONTROL SET OPTION hDlg, %OPT3, %OPT1, %OPT5

 DIALOG SHOW MODAL hDlg
END FUNCTION

CONTROL SET SIZE statement

CONTROL SET SIZE statement
Purpose Change the size of a

.
Syntax CONTROL SET SIZE hDlg, id&, nWide&, nHigh&

Remarks Overall size may be larger than client size, depending on the type of borders used. The
client area is the part inside the borders of a control, which varies depending upon the
style and exstyle at creation. Overall size includes the borders. In a control without
borders, the client size and total size is the same. However, a control with the %
WS_BORDER style will typically have a client area a few pixels smaller than the total
size.

hDlg Handle of the dialog that owns the control.

nWide&, nHigh& Integral numeric expressions which specify the desired size of the overall area. Width
and height are specified in pixels or dialog units, depending upon the system used when
the parent dialog was created.

Graphic
Controls

Beginning with this version of PowerBASIC, GRAPHIC CONTROLS may be resized with
CONTROL SET CLIENT, GRAPHIC SET CLIENT, CONTROL SET SIZE, and GRAPHIC
SET SIZE.

When you change the size of a graphic control, the original bitmap is copied, pixel for
pixel, to the newly resized control. Any expanded area is filled with the current
background color. Your program draws to it in the normal fashion for a bitmap of the new
size.

If a clip area had been established to create margins, it is reset. If scaled coordinates had
been established, they are also reset, as neither would be appropriate for the altered size.
 You can enable these attributes again with GRAPHIC SCALE or GRAPHIC SET CLIP,
based upon the new size of the drawing area.

See also Dynamic Dialog Tools, CONTROL GET CLIENT, CONTROL GET LOC,
CONTROL GET SIZE, CONTROL SET LOC, GRAPHIC SET CLIENT, GRAPHIC SET
SIZE

CONTROL SET TEXT statement

CONTROL SET TEXT statement
Purpose Change the text in a control.

Syntax CONTROL SET TEXT hDlg, id&, txt$

Remarks hDlg refers to the dialog that owns the control.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

649 / 2126

id& is the unique control identifier as assigned to the control with a

 statement.
txt$ is the new text for the control. Any existing text in the control is replaced with the
new text.

See also Dynamic Dialog Tools, CONTROL GET TEXT

CONTROL SET USER statement

CONTROL SET USER statement
Purpose Set a value in the user data area of a DDT control.

Syntax CONTROL SET USER hDlg, id&, index&, usrval&

Remarks Each DDT control has a user data area consisting of eight Long-integer values which may
be used at the programmer's discretion to save relevant data. CONTROL SET USER
allows one of the values to be set, based upon the index parameter value (1 through 8).

hDlg refers to the dialog that owns the control.

id& is the unique control identifier as assigned to the control with a

 statement.
index& is the index number of the user data value to set, in the range 1 to 8 inclusive.

usrval& is the Long-integer data value to store in the user data area.

Restrictions Data in the user data area is lost when the control is destroyed. The data area is
completely separate from the %GWL_USERDATA area maintained by Windows.

See also Dynamic Dialog Tools, COMBOBOX GET USER, COMBOBOX SET USER,
CONTROL GET USER, DIALOG GET USER, DIALOG SET USER, LISTBOX GET USER,
LISTBOX SET USER, LISTVIEW GET USER, LISTVIEW SET USER, TREEVIEW GET
USER, TREEVIEW SET USER

CONTROL SHOW STATE statement

CONTROL SHOW STATE statement
Purpose Change the visible state of a control.

Syntax CONTROL SHOW STATE hDlg, id&, showstate& [TO lResult&]

Remarks CONTROL SHOW STATE is used to alter the state and/or appearance of the specified
control, identified by the parent dialog handle hDlg, and control id& unique identifier
combination.

showstate& can be one of the following (with a value in the range from 0 to 10) as defined
in the WIN32API.INC file):

%SW_HIDE Hide the control.

%SW_MAXIMIZE Maximize the specified control.

%SW_MINIMIZE Minimize the specified control.

%SW_RESTORE Activate and display the control. If the control is
minimized or maximized, Windows restores it to its
original size and position. An application should specify
this flag when restoring a minimized control.

%SW_SHOW Activate the control and display it in its current size and
position.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

650 / 2126

%
SW_SHOWMAXIMIZED

Synonym of %SW_MAXIMIZE.

%
SW_SHOWMINIMIZED

Activate the control and minimize it.

%SW_SHOWNA Display the control in its current state without activating
it. The currently active window/control remains active.

%
SW_SHOWNOACTIVAT
E

Display the control in its most recent size and position
without activating it. The currently active window/control
remains active.

%SW_SHOWNORMAL Activate and display the control. If the control is
minimized or maximized, it is restored it to its original
size and position.

If the optional TO clause is included, the lResult& variable is assigned the value zero if the
control was previously not visible, or non-zero if it was previously visible.

See also Dynamic Dialog Tools, CONTROL DISABLE, CONTROL ENABLE,
DIALOG SHOW STATE

COS function

COS function
Purpose Return the cosine of an angle.

Syntax y = COS(numeric_expression)

Remarks numeric_expression is an angle specified in radians. To convert radians to degrees,
multiply by 57.29577951308232##. To convert degrees to radians, multiply by
0.0174532925199433##. For more information on radians, see the ATN function.

COS returns an Extended-precision value that always ranges between -1 and +1 inclusive.

The Inverse Cosine (ARCCOS) of a value can be calculated as follows:

pi## = 3.141592653589793##
ArcCos = pi## / 2 - ATN(Value / SQR(1 - Value * Value))

The Hyperbolic Cosine (COSH) of a value can also be calculated:

CosH = (EXP(Value) + EXP(-Value)) / 2

The Inverse Hyperbolic Cosine (ARCCOSH) of a value can also be calculated:

ArcCosH = LOG(Value + SQR(Value * Value - 1))

' Useful Macro functions
MACRO Pi = 3.141592653589793##
MACRO DegreesToRadians(dpDegrees) = (dpDegrees*0.0174532925199433##)
MACRO RadiansToDegrees(dpRadians) = (dpRadians*57.29577951308232##)

See also ATN, SIN, TAN

Example pi## = 3.141592653589793##
' we could also use pi## = ATN(1) * 4
FOR I& = 0 TO 360 STEP 45
 x$ = "Cosine of " + FORMAT$(I&, "* 0") + _
 " degrees = " + FORMAT$(COS(pi## / 180 * _
 I&), "* 0.00")
NEXT I&

Result Cosine of 0 degrees = 1.00
Cosine of 45 degrees = 0.71
Cosine of 90 degrees = 0.00
Cosine of 135 degrees = -0.71
Cosine of 180 degrees = -1.00

PowerBASIC Compiler for Windows Version 10

651 / 2126

Cosine of 225 degrees = -0.71
Cosine of 270 degrees = 0.00
Cosine of 315 degrees = 0.71
Cosine of 360 degrees = 1.00

CQUD function

CBYT, CCUR, CCUX, CDBL, CDWD, CEXT,
CINT, CLNG, CQUD, CSNG, and CWRD
functions
Purpose Convert a value to specific variable type.

Syntax bytevar? = CBYT(numeric_expression)
currencyvar@ = CCUR(numeric_expression)
currencyextvar@@ = CCUX(numeric_expression)
doublevar# = CDBL(numeric_expression)
doublewordvar??? = CDWD(numeric_expression)
extendedvar## = CEXT(numeric_expression)
integervar% = CINT(numeric_expression)
longintvar& = CLNG(numeric_expression)
quadintvar&& = CQUD(numeric_expression)
singlevar! = CSNG(numeric_expression)
wordvar?? = CWRD(numeric_expression)

Remarks Each of these functions converts a

 expression to a particular variable type. In each case, numeric_expression must be
within the legal range for the result type. The numeric_expression will be rounded if
necessary.

Function Result type
CBYT Byte
CCUR Currency
CCUX Extended-currency
CDBL Double-precision floating-point
CDWD Double-word
CEXT Extended-precision floating-point
CINT Integer
CLNG Long-integer
CQUD Quad-integer
CSNG Single-precision floating-point
CWRD Word

These conversion functions are rarely needed as PowerBASIC automatically performs any
necessary conversions when executing an assignment statement or passing parameters.
For example:

e% = f#

is equivalent to:

e% = CINT(f#)

In the case of the functions that convert to

 values, the fractional part of the number is rounded. If the fractional part is exactly .5
then it rounds to the nearest even integral value. For example, CINT(1.5) returns 2,
CINT(.5) returns 0, and CLNG(-0.6) returns -1.

Restrictions CSNG limit string display to 7 significant digits.

PowerBASIC Compiler for Windows Version 10

652 / 2126

See also CEIL, CVI and associated functions, FIX, INT, MKI$ and associated functions

Example ' Calculate CINT for a series of values
FOR I! = 2.4! TO 2.65! STEP 0.05!
 x$ = FORMAT$(I!, "0.00") + " is" + STR$(CINT(I!))
NEXT I!

Result 2.40 is 2
2.45 is 2
2.50 is 2
2.55 is 3
2.60 is 3
2.65 is 3

CSET statement

CSET statement
Purpose Center a

 within the space of another string or User-Defined Type.
Syntax CSET [ABS] result_var = string_expression [USING string_expression]

Remarks CSET centers a string into the space of another string or variable of a User-Defined Type.

ABS If ABS is specified, or ustring_expression is null (empty), CSET leaves the padding
positions unchanged from their original content, rather than replacing them with spaces.

USING If string_expression is shorter then result_var, CSET centers string_expression within
result_var, padding both sides with the first character in ustring_expression, or spaces if
not specified.

If string_expression is longer than result_var, CSET truncates string_expression from the
right until it fits in result_var.

CSET can be used to assign the content of a User-Defined Type to a User-Defined Type
variable of a different class, or assign a dynamic string to a User-Defined Type. For
example:

CSET MyType = MyType2
CSET MyType = a$

LSET and RSET work similarly, but performs left and right-justification respectively.

See also CSET$, GET, LET, LET (With Types), LSET, LSET$, PUT, RESET, RSET, RSET$,
STRINSERT$, TYPE SET

Example a$ = RTRIM$(REPEAT$(5,"COOL "))
CSET ABS a$ = "..PowerBASIC.."
' result: "COOL ..PowerBASIC.. COOL"
CSET a$ = "PowerBASIC" USING "*"
' result: "*******PowerBASIC*******"

CSET$ function

CSET$ function
Purpose Return a

 containing a centered (padded) string.

Syntax result_var = CSET$(string_expression, strlen& [USING ustring_expression])

Remarks CSET$ centers the string string_expression into a string of strlen& characters.

PowerBASIC Compiler for Windows Version 10

653 / 2126

USING If ustring_expression is null (empty) or is not specified, CSET$ pads string_expression
with space characters. Otherwise, CSET$ pads the string with the first character of
ustring_expression.

If string_expression is shorter then strlen&, CSET$ centers string_expression within
result_var, padding both sides as described above; otherwise, CSET$ returns the left-
most strlen& bytes of string_expression.

See also CSET, GET, LET, LSET, LSET$, PUT, RESET, RSET, RSET$, STRINSERT$, TYPE
SET

Example a$ = CSET$("PowerBASIC", 20)
' result: " PowerBASIC "

a$ = CSET$("PowerBASIC",20 USING "*")
' result: "*****PowerBASIC*****"

CSNG function

CBYT, CCUR, CCUX, CDBL, CDWD, CEXT,
CINT, CLNG, CQUD, CSNG, and CWRD
functions
Purpose Convert a value to specific variable type.

Syntax bytevar? = CBYT(numeric_expression)
currencyvar@ = CCUR(numeric_expression)
currencyextvar@@ = CCUX(numeric_expression)
doublevar# = CDBL(numeric_expression)
doublewordvar??? = CDWD(numeric_expression)
extendedvar## = CEXT(numeric_expression)
integervar% = CINT(numeric_expression)
longintvar& = CLNG(numeric_expression)
quadintvar&& = CQUD(numeric_expression)
singlevar! = CSNG(numeric_expression)
wordvar?? = CWRD(numeric_expression)

Remarks Each of these functions converts a

 expression to a particular variable type. In each case, numeric_expression must be
within the legal range for the result type. The numeric_expression will be rounded if
necessary.

Function Result type
CBYT Byte
CCUR Currency
CCUX Extended-currency
CDBL Double-precision floating-point
CDWD Double-word
CEXT Extended-precision floating-point
CINT Integer
CLNG Long-integer
CQUD Quad-integer
CSNG Single-precision floating-point
CWRD Word

These conversion functions are rarely needed as PowerBASIC automatically performs any
necessary conversions when executing an assignment statement or passing parameters.
For example:

e% = f#

PowerBASIC Compiler for Windows Version 10

654 / 2126

is equivalent to:

e% = CINT(f#)

In the case of the functions that convert to

 values, the fractional part of the number is rounded. If the fractional part is exactly .5
then it rounds to the nearest even integral value. For example, CINT(1.5) returns 2,
CINT(.5) returns 0, and CLNG(-0.6) returns -1.

Restrictions CSNG limit string display to 7 significant digits.

See also CEIL, CVI and associated functions, FIX, INT, MKI$ and associated functions

Example ' Calculate CINT for a series of values
FOR I! = 2.4! TO 2.65! STEP 0.05!
 x$ = FORMAT$(I!, "0.00") + " is" + STR$(CINT(I!))
NEXT I!

Result 2.40 is 2
2.45 is 2
2.50 is 2
2.55 is 3
2.60 is 3
2.65 is 3

CURDIR$ function

CURDIR$ function
Purpose Return the current directory path for the specified drive.

Syntax s$ = CURDIR$[(drive$)]

Remarks drive$ is an optional string expression, containing the drive letter of the target disk drive. If
drive$ is not specified or is an empty

, the current directory path is returned for the default drive.
See also CHDRIVE, CHDIR

Example FUNCTION PBMAIN
 LOCAL FullCurrentPath$
 LOCAL CurrentDrive$
 FullCurrentPath$ = CURDIR$
 IF MID$(CURDIR$,2,1) = ":" THEN
 CurrentDrive$ = LEFT$(CURDIR$,2)
 END IF
END FUNCTION

CVBYT function

CVBYT, CVCUR, CVCUX, CVD, CVDWD, CVE,
CVI, CVL, CVQ, CVS and CVWRD functions
Purpose Extracts

 data from an ANSI .
Syntax bytevar? = CVBYT(stringexpr [, offset])

curvar@ = CVCUR(stringexpr [, offset])
cuxvar@@ = CVCUX(stringexpr [, offset])
doublevar# = CVD (stringexpr [, offset])
doublewordvar??? = CVDWD(stringexpr [, offset])

PowerBASIC Compiler for Windows Version 10

655 / 2126

extendedvar## = CVE (stringexpr [, offset])
integervar% = CVI (stringexpr [, offset])
longintvar& = CVL (stringexpr [, offset])
quadintvar&& = CVQ (stringexpr [, offset])
singlevar! = CVS (stringexpr [, offset])
wordvar?? = CVWRD(stringexpr [, offset])

Remarks The CVx functions return a number corresponding to a binary pattern stored in a ANSI
string value. The binary pattern is the internal format used by PowerBASIC to store these
values in memory. This format follows the IEEE standard wherever it applies. The MKx$
functions are complementary to the CVx functions. Do not confuse these functions with
the VAL function, which converts a number stored as a printable text string (such as
"123.45") into a numeric expression.

In all but the most extreme cases, StringExpr must be an ANSI string or UDT which
consists of single bytes. WIDE (Unicode) strings consist of a series of 2-byte words
which will generally yield undefined results.

The CVx functions allow you to retrieve values beyond the first byte of the StringExpr. In
this case, the optional offset parameter tells the byte position where the conversion
should begin. This is the byte position, not the character position, even with a WIDE
StringExpr. If Offset is not given, it is presumed to be one (1).

For example: "Value& = CVL(x$, 3)" would extract the 3rd through 6th bytes of x$ and
convert these 4 bytes to the corresponding Long-integer value. In this example, x$ must
be at least 6 bytes long.

Function Variable Converts to

CVBYT 1-byte string Byte

CVCUR 8-byte string Currency

CVCUX 8-byte string Extended-currency

CVD 8-byte string Double-precision float

CVDWD 4-byte string Double-word

CVE 10-byte string Extended-precision
float

CVI 2-byte string Integer

CVL 4-byte string Long-integer

CVQ 8-byte string Quad-integer

CVS 4-byte string Single-precision float

CVWRD 2-byte string Word

Restrictions Expressions involving Numeric Equates and conditional compilation (#IF) may also
include the CVQ function. This allows you to easily assign numeric values to an equate,
based upon a meaningful mnemonic. In this context, the CVQ expression is limited to a
length of eight bytes. For example:

%Mode = CVQ("DEBUG")
%Style = CVQ("Cool")

CVS limits string display to seven significant digits.

See also MKBYT$ and associated functions

CVCUR function

CVBYT, CVCUR, CVCUX, CVD, CVDWD, CVE,
CVI, CVL, CVQ, CVS and CVWRD functions

PowerBASIC Compiler for Windows Version 10

656 / 2126

Purpose Extracts

 data from an ANSI .
Syntax bytevar? = CVBYT(stringexpr [, offset])

curvar@ = CVCUR(stringexpr [, offset])
cuxvar@@ = CVCUX(stringexpr [, offset])
doublevar# = CVD (stringexpr [, offset])
doublewordvar??? = CVDWD(stringexpr [, offset])
extendedvar## = CVE (stringexpr [, offset])
integervar% = CVI (stringexpr [, offset])
longintvar& = CVL (stringexpr [, offset])
quadintvar&& = CVQ (stringexpr [, offset])
singlevar! = CVS (stringexpr [, offset])
wordvar?? = CVWRD(stringexpr [, offset])

Remarks The CVx functions return a number corresponding to a binary pattern stored in a ANSI
string value. The binary pattern is the internal format used by PowerBASIC to store these
values in memory. This format follows the IEEE standard wherever it applies. The MKx$
functions are complementary to the CVx functions. Do not confuse these functions with
the VAL function, which converts a number stored as a printable text string (such as
"123.45") into a numeric expression.

In all but the most extreme cases, StringExpr must be an ANSI string or UDT which
consists of single bytes. WIDE (Unicode) strings consist of a series of 2-byte words
which will generally yield undefined results.

The CVx functions allow you to retrieve values beyond the first byte of the StringExpr. In
this case, the optional offset parameter tells the byte position where the conversion
should begin. This is the byte position, not the character position, even with a WIDE
StringExpr. If Offset is not given, it is presumed to be one (1).

For example: "Value& = CVL(x$, 3)" would extract the 3rd through 6th bytes of x$ and
convert these 4 bytes to the corresponding Long-integer value. In this example, x$ must
be at least 6 bytes long.

Function Variable Converts to

CVBYT 1-byte string Byte

CVCUR 8-byte string Currency

CVCUX 8-byte string Extended-currency

CVD 8-byte string Double-precision float

CVDWD 4-byte string Double-word

CVE 10-byte string Extended-precision
float

CVI 2-byte string Integer

CVL 4-byte string Long-integer

CVQ 8-byte string Quad-integer

CVS 4-byte string Single-precision float

CVWRD 2-byte string Word

Restrictions Expressions involving Numeric Equates and conditional compilation (#IF) may also
include the CVQ function. This allows you to easily assign numeric values to an equate,
based upon a meaningful mnemonic. In this context, the CVQ expression is limited to a
length of eight bytes. For example:

%Mode = CVQ("DEBUG")
%Style = CVQ("Cool")

CVS limits string display to seven significant digits.

See also MKBYT$ and associated functions

PowerBASIC Compiler for Windows Version 10

657 / 2126

CVCUX function

CVBYT, CVCUR, CVCUX, CVD, CVDWD, CVE,
CVI, CVL, CVQ, CVS and CVWRD functions
Purpose Extracts

 data from an ANSI .
Syntax bytevar? = CVBYT(stringexpr [, offset])

curvar@ = CVCUR(stringexpr [, offset])
cuxvar@@ = CVCUX(stringexpr [, offset])
doublevar# = CVD (stringexpr [, offset])
doublewordvar??? = CVDWD(stringexpr [, offset])
extendedvar## = CVE (stringexpr [, offset])
integervar% = CVI (stringexpr [, offset])
longintvar& = CVL (stringexpr [, offset])
quadintvar&& = CVQ (stringexpr [, offset])
singlevar! = CVS (stringexpr [, offset])
wordvar?? = CVWRD(stringexpr [, offset])

Remarks The CVx functions return a number corresponding to a binary pattern stored in a ANSI
string value. The binary pattern is the internal format used by PowerBASIC to store these
values in memory. This format follows the IEEE standard wherever it applies. The MKx$
functions are complementary to the CVx functions. Do not confuse these functions with
the VAL function, which converts a number stored as a printable text string (such as
"123.45") into a numeric expression.

In all but the most extreme cases, StringExpr must be an ANSI string or UDT which
consists of single bytes. WIDE (Unicode) strings consist of a series of 2-byte words
which will generally yield undefined results.

The CVx functions allow you to retrieve values beyond the first byte of the StringExpr. In
this case, the optional offset parameter tells the byte position where the conversion
should begin. This is the byte position, not the character position, even with a WIDE
StringExpr. If Offset is not given, it is presumed to be one (1).

For example: "Value& = CVL(x$, 3)" would extract the 3rd through 6th bytes of x$ and
convert these 4 bytes to the corresponding Long-integer value. In this example, x$ must
be at least 6 bytes long.

Function Variable Converts to

CVBYT 1-byte string Byte

CVCUR 8-byte string Currency

CVCUX 8-byte string Extended-currency

CVD 8-byte string Double-precision float

CVDWD 4-byte string Double-word

CVE 10-byte string Extended-precision
float

CVI 2-byte string Integer

CVL 4-byte string Long-integer

CVQ 8-byte string Quad-integer

CVS 4-byte string Single-precision float

CVWRD 2-byte string Word

Restrictions Expressions involving Numeric Equates and conditional compilation (#IF) may also
include the CVQ function. This allows you to easily assign numeric values to an equate,

PowerBASIC Compiler for Windows Version 10

658 / 2126

based upon a meaningful mnemonic. In this context, the CVQ expression is limited to a
length of eight bytes. For example:

%Mode = CVQ("DEBUG")
%Style = CVQ("Cool")

CVS limits string display to seven significant digits.

See also MKBYT$ and associated functions

CVD function

CVBYT, CVCUR, CVCUX, CVD, CVDWD, CVE,
CVI, CVL, CVQ, CVS and CVWRD functions
Purpose Extracts

 data from an ANSI .
Syntax bytevar? = CVBYT(stringexpr [, offset])

curvar@ = CVCUR(stringexpr [, offset])
cuxvar@@ = CVCUX(stringexpr [, offset])
doublevar# = CVD (stringexpr [, offset])
doublewordvar??? = CVDWD(stringexpr [, offset])
extendedvar## = CVE (stringexpr [, offset])
integervar% = CVI (stringexpr [, offset])
longintvar& = CVL (stringexpr [, offset])
quadintvar&& = CVQ (stringexpr [, offset])
singlevar! = CVS (stringexpr [, offset])
wordvar?? = CVWRD(stringexpr [, offset])

Remarks The CVx functions return a number corresponding to a binary pattern stored in a ANSI
string value. The binary pattern is the internal format used by PowerBASIC to store these
values in memory. This format follows the IEEE standard wherever it applies. The MKx$
functions are complementary to the CVx functions. Do not confuse these functions with
the VAL function, which converts a number stored as a printable text string (such as
"123.45") into a numeric expression.

In all but the most extreme cases, StringExpr must be an ANSI string or UDT which
consists of single bytes. WIDE (Unicode) strings consist of a series of 2-byte words
which will generally yield undefined results.

The CVx functions allow you to retrieve values beyond the first byte of the StringExpr. In
this case, the optional offset parameter tells the byte position where the conversion
should begin. This is the byte position, not the character position, even with a WIDE
StringExpr. If Offset is not given, it is presumed to be one (1).

For example: "Value& = CVL(x$, 3)" would extract the 3rd through 6th bytes of x$ and
convert these 4 bytes to the corresponding Long-integer value. In this example, x$ must
be at least 6 bytes long.

Function Variable Converts to

CVBYT 1-byte string Byte

CVCUR 8-byte string Currency

CVCUX 8-byte string Extended-currency

CVD 8-byte string Double-precision float

CVDWD 4-byte string Double-word

CVE 10-byte string Extended-precision
float

CVI 2-byte string Integer

PowerBASIC Compiler for Windows Version 10

659 / 2126

CVL 4-byte string Long-integer

CVQ 8-byte string Quad-integer

CVS 4-byte string Single-precision float

CVWRD 2-byte string Word

Restrictions Expressions involving Numeric Equates and conditional compilation (#IF) may also
include the CVQ function. This allows you to easily assign numeric values to an equate,
based upon a meaningful mnemonic. In this context, the CVQ expression is limited to a
length of eight bytes. For example:

%Mode = CVQ("DEBUG")
%Style = CVQ("Cool")

CVS limits string display to seven significant digits.

See also MKBYT$ and associated functions

CVDWD function

CVBYT, CVCUR, CVCUX, CVD, CVDWD, CVE,
CVI, CVL, CVQ, CVS and CVWRD functions
Purpose Extracts

 data from an ANSI .
Syntax bytevar? = CVBYT(stringexpr [, offset])

curvar@ = CVCUR(stringexpr [, offset])
cuxvar@@ = CVCUX(stringexpr [, offset])
doublevar# = CVD (stringexpr [, offset])
doublewordvar??? = CVDWD(stringexpr [, offset])
extendedvar## = CVE (stringexpr [, offset])
integervar% = CVI (stringexpr [, offset])
longintvar& = CVL (stringexpr [, offset])
quadintvar&& = CVQ (stringexpr [, offset])
singlevar! = CVS (stringexpr [, offset])
wordvar?? = CVWRD(stringexpr [, offset])

Remarks The CVx functions return a number corresponding to a binary pattern stored in a ANSI
string value. The binary pattern is the internal format used by PowerBASIC to store these
values in memory. This format follows the IEEE standard wherever it applies. The MKx$
functions are complementary to the CVx functions. Do not confuse these functions with
the VAL function, which converts a number stored as a printable text string (such as
"123.45") into a numeric expression.

In all but the most extreme cases, StringExpr must be an ANSI string or UDT which
consists of single bytes. WIDE (Unicode) strings consist of a series of 2-byte words
which will generally yield undefined results.

The CVx functions allow you to retrieve values beyond the first byte of the StringExpr. In
this case, the optional offset parameter tells the byte position where the conversion
should begin. This is the byte position, not the character position, even with a WIDE
StringExpr. If Offset is not given, it is presumed to be one (1).

For example: "Value& = CVL(x$, 3)" would extract the 3rd through 6th bytes of x$ and
convert these 4 bytes to the corresponding Long-integer value. In this example, x$ must
be at least 6 bytes long.

Function Variable Converts to

CVBYT 1-byte string Byte

CVCUR 8-byte string Currency

PowerBASIC Compiler for Windows Version 10

660 / 2126

CVCUX 8-byte string Extended-currency

CVD 8-byte string Double-precision float

CVDWD 4-byte string Double-word

CVE 10-byte string Extended-precision
float

CVI 2-byte string Integer

CVL 4-byte string Long-integer

CVQ 8-byte string Quad-integer

CVS 4-byte string Single-precision float

CVWRD 2-byte string Word

Restrictions Expressions involving Numeric Equates and conditional compilation (#IF) may also
include the CVQ function. This allows you to easily assign numeric values to an equate,
based upon a meaningful mnemonic. In this context, the CVQ expression is limited to a
length of eight bytes. For example:

%Mode = CVQ("DEBUG")
%Style = CVQ("Cool")

CVS limits string display to seven significant digits.

See also MKBYT$ and associated functions

CVE function

CVBYT, CVCUR, CVCUX, CVD, CVDWD, CVE,
CVI, CVL, CVQ, CVS and CVWRD functions
Purpose Extracts

 data from an ANSI .
Syntax bytevar? = CVBYT(stringexpr [, offset])

curvar@ = CVCUR(stringexpr [, offset])
cuxvar@@ = CVCUX(stringexpr [, offset])
doublevar# = CVD (stringexpr [, offset])
doublewordvar??? = CVDWD(stringexpr [, offset])
extendedvar## = CVE (stringexpr [, offset])
integervar% = CVI (stringexpr [, offset])
longintvar& = CVL (stringexpr [, offset])
quadintvar&& = CVQ (stringexpr [, offset])
singlevar! = CVS (stringexpr [, offset])
wordvar?? = CVWRD(stringexpr [, offset])

Remarks The CVx functions return a number corresponding to a binary pattern stored in a ANSI
string value. The binary pattern is the internal format used by PowerBASIC to store these
values in memory. This format follows the IEEE standard wherever it applies. The MKx$
functions are complementary to the CVx functions. Do not confuse these functions with
the VAL function, which converts a number stored as a printable text string (such as
"123.45") into a numeric expression.

In all but the most extreme cases, StringExpr must be an ANSI string or UDT which
consists of single bytes. WIDE (Unicode) strings consist of a series of 2-byte words
which will generally yield undefined results.

The CVx functions allow you to retrieve values beyond the first byte of the StringExpr. In
this case, the optional offset parameter tells the byte position where the conversion
should begin. This is the byte position, not the character position, even with a WIDE
StringExpr. If Offset is not given, it is presumed to be one (1).

PowerBASIC Compiler for Windows Version 10

661 / 2126

For example: "Value& = CVL(x$, 3)" would extract the 3rd through 6th bytes of x$ and
convert these 4 bytes to the corresponding Long-integer value. In this example, x$ must
be at least 6 bytes long.

Function Variable Converts to

CVBYT 1-byte string Byte

CVCUR 8-byte string Currency

CVCUX 8-byte string Extended-currency

CVD 8-byte string Double-precision float

CVDWD 4-byte string Double-word

CVE 10-byte string Extended-precision
float

CVI 2-byte string Integer

CVL 4-byte string Long-integer

CVQ 8-byte string Quad-integer

CVS 4-byte string Single-precision float

CVWRD 2-byte string Word

Restrictions Expressions involving Numeric Equates and conditional compilation (#IF) may also
include the CVQ function. This allows you to easily assign numeric values to an equate,
based upon a meaningful mnemonic. In this context, the CVQ expression is limited to a
length of eight bytes. For example:

%Mode = CVQ("DEBUG")
%Style = CVQ("Cool")

CVS limits string display to seven significant digits.

See also MKBYT$ and associated functions

CVI function

CVBYT, CVCUR, CVCUX, CVD, CVDWD, CVE,
CVI, CVL, CVQ, CVS and CVWRD functions
Purpose Extracts

 data from an ANSI .
Syntax bytevar? = CVBYT(stringexpr [, offset])

curvar@ = CVCUR(stringexpr [, offset])
cuxvar@@ = CVCUX(stringexpr [, offset])
doublevar# = CVD (stringexpr [, offset])
doublewordvar??? = CVDWD(stringexpr [, offset])
extendedvar## = CVE (stringexpr [, offset])
integervar% = CVI (stringexpr [, offset])
longintvar& = CVL (stringexpr [, offset])
quadintvar&& = CVQ (stringexpr [, offset])
singlevar! = CVS (stringexpr [, offset])
wordvar?? = CVWRD(stringexpr [, offset])

Remarks The CVx functions return a number corresponding to a binary pattern stored in a ANSI
string value. The binary pattern is the internal format used by PowerBASIC to store these
values in memory. This format follows the IEEE standard wherever it applies. The MKx$
functions are complementary to the CVx functions. Do not confuse these functions with
the VAL function, which converts a number stored as a printable text string (such as
"123.45") into a numeric expression.

PowerBASIC Compiler for Windows Version 10

662 / 2126

In all but the most extreme cases, StringExpr must be an ANSI string or UDT which
consists of single bytes. WIDE (Unicode) strings consist of a series of 2-byte words
which will generally yield undefined results.

The CVx functions allow you to retrieve values beyond the first byte of the StringExpr. In
this case, the optional offset parameter tells the byte position where the conversion
should begin. This is the byte position, not the character position, even with a WIDE
StringExpr. If Offset is not given, it is presumed to be one (1).

For example: "Value& = CVL(x$, 3)" would extract the 3rd through 6th bytes of x$ and
convert these 4 bytes to the corresponding Long-integer value. In this example, x$ must
be at least 6 bytes long.

Function Variable Converts to

CVBYT 1-byte string Byte

CVCUR 8-byte string Currency

CVCUX 8-byte string Extended-currency

CVD 8-byte string Double-precision float

CVDWD 4-byte string Double-word

CVE 10-byte string Extended-precision
float

CVI 2-byte string Integer

CVL 4-byte string Long-integer

CVQ 8-byte string Quad-integer

CVS 4-byte string Single-precision float

CVWRD 2-byte string Word

Restrictions Expressions involving Numeric Equates and conditional compilation (#IF) may also
include the CVQ function. This allows you to easily assign numeric values to an equate,
based upon a meaningful mnemonic. In this context, the CVQ expression is limited to a
length of eight bytes. For example:

%Mode = CVQ("DEBUG")
%Style = CVQ("Cool")

CVS limits string display to seven significant digits.

See also MKBYT$ and associated functions

CVL function

CVBYT, CVCUR, CVCUX, CVD, CVDWD, CVE,
CVI, CVL, CVQ, CVS and CVWRD functions
Purpose Extracts

 data from an ANSI .
Syntax bytevar? = CVBYT(stringexpr [, offset])

curvar@ = CVCUR(stringexpr [, offset])
cuxvar@@ = CVCUX(stringexpr [, offset])
doublevar# = CVD (stringexpr [, offset])
doublewordvar??? = CVDWD(stringexpr [, offset])
extendedvar## = CVE (stringexpr [, offset])
integervar% = CVI (stringexpr [, offset])
longintvar& = CVL (stringexpr [, offset])
quadintvar&& = CVQ (stringexpr [, offset])
singlevar! = CVS (stringexpr [, offset])

PowerBASIC Compiler for Windows Version 10

663 / 2126

wordvar?? = CVWRD(stringexpr [, offset])

Remarks The CVx functions return a number corresponding to a binary pattern stored in a ANSI
string value. The binary pattern is the internal format used by PowerBASIC to store these
values in memory. This format follows the IEEE standard wherever it applies. The MKx$
functions are complementary to the CVx functions. Do not confuse these functions with
the VAL function, which converts a number stored as a printable text string (such as
"123.45") into a numeric expression.

In all but the most extreme cases, StringExpr must be an ANSI string or UDT which
consists of single bytes. WIDE (Unicode) strings consist of a series of 2-byte words
which will generally yield undefined results.

The CVx functions allow you to retrieve values beyond the first byte of the StringExpr. In
this case, the optional offset parameter tells the byte position where the conversion
should begin. This is the byte position, not the character position, even with a WIDE
StringExpr. If Offset is not given, it is presumed to be one (1).

For example: "Value& = CVL(x$, 3)" would extract the 3rd through 6th bytes of x$ and
convert these 4 bytes to the corresponding Long-integer value. In this example, x$ must
be at least 6 bytes long.

Function Variable Converts to

CVBYT 1-byte string Byte

CVCUR 8-byte string Currency

CVCUX 8-byte string Extended-currency

CVD 8-byte string Double-precision float

CVDWD 4-byte string Double-word

CVE 10-byte string Extended-precision
float

CVI 2-byte string Integer

CVL 4-byte string Long-integer

CVQ 8-byte string Quad-integer

CVS 4-byte string Single-precision float

CVWRD 2-byte string Word

Restrictions Expressions involving Numeric Equates and conditional compilation (#IF) may also
include the CVQ function. This allows you to easily assign numeric values to an equate,
based upon a meaningful mnemonic. In this context, the CVQ expression is limited to a
length of eight bytes. For example:

%Mode = CVQ("DEBUG")
%Style = CVQ("Cool")

CVS limits string display to seven significant digits.

See also MKBYT$ and associated functions

CVQ function

CVBYT, CVCUR, CVCUX, CVD, CVDWD, CVE,
CVI, CVL, CVQ, CVS and CVWRD functions
Purpose Extracts

 data from an ANSI .
Syntax bytevar? = CVBYT(stringexpr [, offset])

curvar@ = CVCUR(stringexpr [, offset])
cuxvar@@ = CVCUX(stringexpr [, offset])

PowerBASIC Compiler for Windows Version 10

664 / 2126

doublevar# = CVD (stringexpr [, offset])
doublewordvar??? = CVDWD(stringexpr [, offset])
extendedvar## = CVE (stringexpr [, offset])
integervar% = CVI (stringexpr [, offset])
longintvar& = CVL (stringexpr [, offset])
quadintvar&& = CVQ (stringexpr [, offset])
singlevar! = CVS (stringexpr [, offset])
wordvar?? = CVWRD(stringexpr [, offset])

Remarks The CVx functions return a number corresponding to a binary pattern stored in a ANSI
string value. The binary pattern is the internal format used by PowerBASIC to store these
values in memory. This format follows the IEEE standard wherever it applies. The MKx$
functions are complementary to the CVx functions. Do not confuse these functions with
the VAL function, which converts a number stored as a printable text string (such as
"123.45") into a numeric expression.

In all but the most extreme cases, StringExpr must be an ANSI string or UDT which
consists of single bytes. WIDE (Unicode) strings consist of a series of 2-byte words
which will generally yield undefined results.

The CVx functions allow you to retrieve values beyond the first byte of the StringExpr. In
this case, the optional offset parameter tells the byte position where the conversion
should begin. This is the byte position, not the character position, even with a WIDE
StringExpr. If Offset is not given, it is presumed to be one (1).

For example: "Value& = CVL(x$, 3)" would extract the 3rd through 6th bytes of x$ and
convert these 4 bytes to the corresponding Long-integer value. In this example, x$ must
be at least 6 bytes long.

Function Variable Converts to

CVBYT 1-byte string Byte

CVCUR 8-byte string Currency

CVCUX 8-byte string Extended-currency

CVD 8-byte string Double-precision float

CVDWD 4-byte string Double-word

CVE 10-byte string Extended-precision
float

CVI 2-byte string Integer

CVL 4-byte string Long-integer

CVQ 8-byte string Quad-integer

CVS 4-byte string Single-precision float

CVWRD 2-byte string Word

Restrictions Expressions involving Numeric Equates and conditional compilation (#IF) may also
include the CVQ function. This allows you to easily assign numeric values to an equate,
based upon a meaningful mnemonic. In this context, the CVQ expression is limited to a
length of eight bytes. For example:

%Mode = CVQ("DEBUG")
%Style = CVQ("Cool")

CVS limits string display to seven significant digits.

See also MKBYT$ and associated functions

CVS function

CVBYT, CVCUR, CVCUX, CVD, CVDWD, CVE,

PowerBASIC Compiler for Windows Version 10

665 / 2126

CVI, CVL, CVQ, CVS and CVWRD functions
Purpose Extracts

 data from an ANSI .
Syntax bytevar? = CVBYT(stringexpr [, offset])

curvar@ = CVCUR(stringexpr [, offset])
cuxvar@@ = CVCUX(stringexpr [, offset])
doublevar# = CVD (stringexpr [, offset])
doublewordvar??? = CVDWD(stringexpr [, offset])
extendedvar## = CVE (stringexpr [, offset])
integervar% = CVI (stringexpr [, offset])
longintvar& = CVL (stringexpr [, offset])
quadintvar&& = CVQ (stringexpr [, offset])
singlevar! = CVS (stringexpr [, offset])
wordvar?? = CVWRD(stringexpr [, offset])

Remarks The CVx functions return a number corresponding to a binary pattern stored in a ANSI
string value. The binary pattern is the internal format used by PowerBASIC to store these
values in memory. This format follows the IEEE standard wherever it applies. The MKx$
functions are complementary to the CVx functions. Do not confuse these functions with
the VAL function, which converts a number stored as a printable text string (such as
"123.45") into a numeric expression.

In all but the most extreme cases, StringExpr must be an ANSI string or UDT which
consists of single bytes. WIDE (Unicode) strings consist of a series of 2-byte words
which will generally yield undefined results.

The CVx functions allow you to retrieve values beyond the first byte of the StringExpr. In
this case, the optional offset parameter tells the byte position where the conversion
should begin. This is the byte position, not the character position, even with a WIDE
StringExpr. If Offset is not given, it is presumed to be one (1).

For example: "Value& = CVL(x$, 3)" would extract the 3rd through 6th bytes of x$ and
convert these 4 bytes to the corresponding Long-integer value. In this example, x$ must
be at least 6 bytes long.

Function Variable Converts to

CVBYT 1-byte string Byte

CVCUR 8-byte string Currency

CVCUX 8-byte string Extended-currency

CVD 8-byte string Double-precision float

CVDWD 4-byte string Double-word

CVE 10-byte string Extended-precision
float

CVI 2-byte string Integer

CVL 4-byte string Long-integer

CVQ 8-byte string Quad-integer

CVS 4-byte string Single-precision float

CVWRD 2-byte string Word

Restrictions Expressions involving Numeric Equates and conditional compilation (#IF) may also
include the CVQ function. This allows you to easily assign numeric values to an equate,
based upon a meaningful mnemonic. In this context, the CVQ expression is limited to a
length of eight bytes. For example:

%Mode = CVQ("DEBUG")
%Style = CVQ("Cool")

CVS limits string display to seven significant digits.

PowerBASIC Compiler for Windows Version 10

666 / 2126

See also MKBYT$ and associated functions

CVWRD function

CVBYT, CVCUR, CVCUX, CVD, CVDWD, CVE,
CVI, CVL, CVQ, CVS and CVWRD functions
Purpose Extracts

 data from an ANSI .
Syntax bytevar? = CVBYT(stringexpr [, offset])

curvar@ = CVCUR(stringexpr [, offset])
cuxvar@@ = CVCUX(stringexpr [, offset])
doublevar# = CVD (stringexpr [, offset])
doublewordvar??? = CVDWD(stringexpr [, offset])
extendedvar## = CVE (stringexpr [, offset])
integervar% = CVI (stringexpr [, offset])
longintvar& = CVL (stringexpr [, offset])
quadintvar&& = CVQ (stringexpr [, offset])
singlevar! = CVS (stringexpr [, offset])
wordvar?? = CVWRD(stringexpr [, offset])

Remarks The CVx functions return a number corresponding to a binary pattern stored in a ANSI
string value. The binary pattern is the internal format used by PowerBASIC to store these
values in memory. This format follows the IEEE standard wherever it applies. The MKx$
functions are complementary to the CVx functions. Do not confuse these functions with
the VAL function, which converts a number stored as a printable text string (such as
"123.45") into a numeric expression.

In all but the most extreme cases, StringExpr must be an ANSI string or UDT which
consists of single bytes. WIDE (Unicode) strings consist of a series of 2-byte words
which will generally yield undefined results.

The CVx functions allow you to retrieve values beyond the first byte of the StringExpr. In
this case, the optional offset parameter tells the byte position where the conversion
should begin. This is the byte position, not the character position, even with a WIDE
StringExpr. If Offset is not given, it is presumed to be one (1).

For example: "Value& = CVL(x$, 3)" would extract the 3rd through 6th bytes of x$ and
convert these 4 bytes to the corresponding Long-integer value. In this example, x$ must
be at least 6 bytes long.

Function Variable Converts to

CVBYT 1-byte string Byte

CVCUR 8-byte string Currency

CVCUX 8-byte string Extended-currency

CVD 8-byte string Double-precision float

CVDWD 4-byte string Double-word

CVE 10-byte string Extended-precision
float

CVI 2-byte string Integer

CVL 4-byte string Long-integer

CVQ 8-byte string Quad-integer

CVS 4-byte string Single-precision float

CVWRD 2-byte string Word

PowerBASIC Compiler for Windows Version 10

667 / 2126

Restrictions Expressions involving Numeric Equates and conditional compilation (#IF) may also
include the CVQ function. This allows you to easily assign numeric values to an equate,
based upon a meaningful mnemonic. In this context, the CVQ expression is limited to a
length of eight bytes. For example:

%Mode = CVQ("DEBUG")
%Style = CVQ("Cool")

CVS limits string display to seven significant digits.

See also MKBYT$ and associated functions

CWRD function

CBYT, CCUR, CCUX, CDBL, CDWD, CEXT,
CINT, CLNG, CQUD, CSNG, and CWRD
functions
Purpose Convert a value to specific variable type.

Syntax bytevar? = CBYT(numeric_expression)
currencyvar@ = CCUR(numeric_expression)
currencyextvar@@ = CCUX(numeric_expression)
doublevar# = CDBL(numeric_expression)
doublewordvar??? = CDWD(numeric_expression)
extendedvar## = CEXT(numeric_expression)
integervar% = CINT(numeric_expression)
longintvar& = CLNG(numeric_expression)
quadintvar&& = CQUD(numeric_expression)
singlevar! = CSNG(numeric_expression)
wordvar?? = CWRD(numeric_expression)

Remarks Each of these functions converts a

 expression to a particular variable type. In each case, numeric_expression must be
within the legal range for the result type. The numeric_expression will be rounded if
necessary.

Function Result type
CBYT Byte
CCUR Currency
CCUX Extended-currency
CDBL Double-precision floating-point
CDWD Double-word
CEXT Extended-precision floating-point
CINT Integer
CLNG Long-integer
CQUD Quad-integer
CSNG Single-precision floating-point
CWRD Word

These conversion functions are rarely needed as PowerBASIC automatically performs any
necessary conversions when executing an assignment statement or passing parameters.
For example:

e% = f#

is equivalent to:

e% = CINT(f#)

In the case of the functions that convert to

PowerBASIC Compiler for Windows Version 10

668 / 2126

 values, the fractional part of the number is rounded. If the fractional part is exactly .5
then it rounds to the nearest even integral value. For example, CINT(1.5) returns 2,
CINT(.5) returns 0, and CLNG(-0.6) returns -1.

Restrictions CSNG limit string display to 7 significant digits.

See also CEIL, CVI and associated functions, FIX, INT, MKI$ and associated functions

Example ' Calculate CINT for a series of values
FOR I! = 2.4! TO 2.65! STEP 0.05!
 x$ = FORMAT$(I!, "0.00") + " is" + STR$(CINT(I!))
NEXT I!

Result 2.40 is 2
2.45 is 2
2.50 is 2
2.55 is 3
2.60 is 3
2.65 is 3

DATA statement

DATA statement
Purpose Declare string constants within the source code to be read by READ$ function.

Syntax DATA ["]item["] [[, ["]item["]] ...]

Remarks DATA statements may only appear inside of Subs, Functions, Method, or Properties, and
are visible only to the code in the procedure in which they appear. Each procedure may
therefore have its own private data.

Data may consist of virtually any text characters. Data items may be enclosed in quotes
to preserve leading/trailing spaces, which are otherwise stripped during compilation.

Restrictions There is a limit of 64 Kilobytes and 16384 separate data items per procedure. Previous
versions of PowerBASIC ignored plain text located immediately after a quoted literal up to
the next comma or end-of-line; however, this is no longer acceptable and generates an
Error 477 ("Syntax error").

DATA statements cannot extend across more than one physical source code line using
line continuation characters. Special care should be used when formatting DATA
statements, especially if the data is to contain underscore and/or colon characters. The
following examples highlight data items in blue:

If an underscore appears after a comma, it is treated as the start of a quoted
data string, rather than a line continuation character:

' Three data items exist in this line:
DATA "Tom", "Dick", _Harry

The colon (statement separator) character, when used within unquoted string
data, performs as a regular statement separator:

' Two data items and a separate statement
DATA "Tom","Dick" : Harry& = 1

However, if a colon character appears within a quoted data string, it is treated as part of
the data string:

' 3 data items
DATA "Tom",Dick,":Harry& = 1"

See also DATACOUNT, READ$, VAL

Example DATA "Abc", Bob, "Sally", 123
DATA 456.78, " leading space"
DATA embedded "quotes within data"

PowerBASIC Compiler for Windows Version 10

669 / 2126

DATACOUNT function

DATACOUNT function
Purpose Return the total count of the number of local DATA items that can be read with the READ$

function.

Syntax Count% = DATACOUNT

Remarks DATACOUNT only returns the number of DATA items in the Sub, Function, Method, or
Property in which it appears (i.e., local DATA statements). While it is not possible to
directly read data from outside of the scope of current procedure, global data can be
emulated easily by placing it inside a procedure returns data to the calling code. There is
a limit of 64 Kilobytes and 16384 separate data items per procedure.

See also DATA, READ$

Example FUNCTION GetCategories(Category() AS STRING) AS LONG
 LOCAL x AS INTEGER
 REDIM Category(1 TO DATACOUNT) AS STRING
 FOR x = 1 TO DATACOUNT
 Category(x) = READ$(x)
 NEXT x
 FUNCTION = DATACOUNT
 DATA Animal, Mineral, Vegetable, Alien
END FUNCTION

DATE$ system variable

DATE$ system variable
Purpose Set or retrieve the system date.

Syntax DATE$ = s$ ' sets system date according to s$
s$ = DATE$ ' s$ now contains system date

Remarks Assigning a properly formatted

 value to DATE$ sets the system date. You can also assign DATE$ to a string
variable, which stores 10 characters in the form "mm-dd-yyyy", where mm represents
the month, dd the day, and yyyy the year.
To change the date, your date string must be formatted in one of the following ways:

mm-dd-yy
mm/dd/yy
mm-dd-yyyy
mm/dd/yyyy

For example, DATE$ = "11-09-84" sets the system date to November 9, 1984.

Restrictions The year assigned to the DATE$ system variable must be within the range 1980 to 2099.
DATE$ never returns locale-specific date formats. When assigning a two digit year, any
value less than 81 will be assumed to be in the 2000's and any value greater than 80 will
be assumed to be in the 1900's.

See also DAYNAME$, MONTHNAME$, POWERTIME, TIME$

DAYNAME$ function

PowerBASIC Compiler for Windows Version 10

670 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

DAYNAME$ function
Purpose Converts a Day-of-Week number to the associated name.

Syntax s$ = DAYNAME$(DayNumber&)

Remarks The DAYNAME$ function converts a Day-of-Weeek number into a

 representing its associated name. The argument must be in the range of 0 through 6,
representing the names Sunday, Monday, etc.

See also DATE$, MONTHNAME$, POWERTIME

DEC$ function

DEC$ function
Purpose Convert an integral value to a decimal

.
Syntax s$ = DEC$(IntVal [, Digits, LeadSpaces, TrailSpaces])

Remarks IntVal is a

 expression in the range of a 64-bit Quad Integer (-9223372036854775808 to
+9223372036854775807). Any fractional part of the value is rounded. If the value
is negative, the leading minus sign occupies one digit position. The result string is
always formatted as an integral number using all the significant digits in IntVal. It is
never expressed in scientific notation.
If Digits is 0 (or not given), no leading characters will be added to the numeric field. If
Digits is a positive number greater than 0, the result string will be prepended with leading
zeros to achieve the desired length. If Digits is a negative number, leading spaces are
added to reach the absolute length. Digits may be in the range of -20 to +20.

LeadSpaces specifies additional leading spaces to be prepended, regardless of the length
of the numeric portion of the string.

TrailSpaces specifies additional trailing spaces to be appended to the end of the string.

See also BIN$, FORMAT$, HEX$, OCT$, STR$, TRIM$, USING$, VAL

DECLARE statement

DECLARE statement
Purpose Explicitly declare a Sub or Function.

Syntax DECLARE SUB ProcName [ALIAS "AliasName"] [(arguments)] <Descriptors>
DECLARE FUNCTION ProcName [ALIAS "AliasName"] [(arguments)] <Descriptors>
AS RetType

PowerBASIC Compiler for Windows Version 10

671 / 2126

DECLARE CALLBACK FUNCTION ProcName [[()] AS LONG]
DECLARE THREAD FUNCTION ProcName (BYVAL var AS (LONG | DWORD}) AS {LONG |
DWORD}

Remarks The DECLARE statement has the following parts:

ProcName The name of the Sub or Function to be declared. For Functions, a type-specifier may be
appended (just like an ordinary variable name) to specify the

 of the Function's return value, in place of the [AS RetType] clause.
Future versions of PowerBASIC will not support type-specifier symbols for the
Function return type. Specify the return data type with an explicit AS RetType
clause in all DECLARE and FUNCTION definitions to ensure future
compatibility.

ALIAS An alias clause may be used to specify an alternate name to be used for imported or
exported procedures. This allows you to interact with outside modules (DLL or EXE)
using a different procedure name. The alias name must be specified by a string literal
which provides the name and capitalization of the procedure in the external DLL.

This option is particularly useful if you want to abbreviate a long name, or if the original
name of a function contains characters that are illegal in PowerBASIC. The alias name is
the actual name used in the other module, while the ProcName is the word you use in
your PowerBASIC program. For example:

DECLARE SUB ShortName ALIAS "VeryLongProcName"()
DECLARE FUNCTION LegalName ALIAS "Illegal$Name"()

Although a ProcName must be unique, you may use the same AliasName in multiple
declarations. This is particularly useful for avoiding AS ANY in cases where a procedure
is designed to receive several different types of parameters.

DECLARE FUNCTION AddAtom LIB "KERNEL32.DLL" ALIAS
"AddAtomA" (lpString AS STRINGZ) AS WORD
DECLARE FUNCTION AddIntAtom LIB "KERNEL32.DLL" ALIAS "AddAtomA" (BYVAL
lpString AS DWORD) AS WORD

The ALIAS clause is very important when importing or exporting Subs and
Functions from DLLs. Omitting the ALIAS clause or incorrectly capitalizing the
alias name are common causes of DLL load failure problems. Please refer to
the SUB and FUNCTION sections for more information.

 Descriptors

 You may optionally add one or more descriptor words (Import, Export, Common, Private,
ThreadSafe, BDecl, CDecl, SDecl) to provide specific functionality. They may be added to
the DECLARE as a comma delimited list. You should note that some of them are
mutually exclusive.

IMPORT A string literal or equate that specifies the name of the module in which an imported
procedure is located. This allows you to call Subs or Functions that reside in DLLs. The
legacy word LIB may be substituted for IMPORT.

EXPORT This descriptor identifies a Sub or Function which may be accessed between Dynamic
Link Libraries (DLLs), and/or the main executable which links them. If a procedure is not
marked EXPORT, it is hidden from these other modules. The EXPORT attribute may be
added to a Sub/Function defined elsewhere, by specifying EXPORT in a DECLARE
statement. EXPORT can even be added to a Sub/Function in an SLL with a DECLARE in
the host module.

COMMON A COMMON Sub/Function is one which may be called between linked unit modules (Host
or SLL). If the Common Sub/Function is not present in this module, it is presumed to be
found in a separate linked module (Host or SLL). It is not necessary to DECLARE a
COMMON Sub or Function in the Host Module. If you choose to do so, it is generally
advisable to omit the COMMON descriptor, as its presence will force the SLL to be linked,
whether needed or not.

PRIVATE A PRIVATE Sub/Function is one which may only be accessed from within the current
PowerBASIC program or library. Even if not specified, this is the default mode of

PowerBASIC Compiler for Windows Version 10

672 / 2126

operation.

THREADSAFE With the THREADSAFE option, PowerBASIC automatically establishes a semaphore
which allows only one thread to execute the Sub/Function at a time. Other callers must
wait until the first thread exits the THREADSAFE procedure before they are allowed to
begin.

BDECL Specifies that the declared procedure uses the legacy BASIC/Pascal calling convention.
 Parameters are pushed on the stack from left to right, and the called procedure is
responsible for removing them. BDECL should only be used when necessary to match
outside modules.

CDECL Specifies that the declared procedure uses the C calling convention. Parameters are
pushed on the stack from right to left, and the calling code is responsible for removing
them. CDECL should only be used when necessary to match outside modules.

When a procedure is imported or exported, PowerBASIC automatically creates a
lowercase ALIAS, prefixed with an underscore. The following two declarations are
equivalent, indicating how the default ALIAS name would be created by PowerBASIC:

DECLARE SUB C_Function CDECL ()
DECLARE SUB C_Function CDECL ALIAS "_c_function" ()

SDECL This is the default convention, and should be used whenever possible. SDECL (and its
synonym STDCALL), specifies the "Standard Calling Convention" for Windows.
 Parameters are pushed on the stack from right to left, and the called procedure is
responsible for removing them.

CALLBACK Callback Functions are reserved for use with Dynamic Dialog Tools (DDT) functions. No
parameters should be specified, as data is retrieved with the CALLBACK (CB) functions.
 Parentheses and the AS LONG return type may be added for clarity.

THREAD Thread functions are reserved for use with the THREAD CREATE statement. It must take
exactly one Long Integer parameter by value (BYVAL LONG), and must return a Long
Integer value (AS LONG). It is permissible to substitute DWORD for both of these items.

 Passing parameters

Arguments Contains the name(s) or the type of each parameter, in the order they are passed, for up
to 32 parameters. If you wish to call a SUB or FUNCTION in a DLL, you must describe
the target SUB or FUNCTION with an explicit DECLARE statement. The DECLARE must
physically precede any reference to the target procedure.

Previous versions of PowerBASIC required that you create an explicit
DECLARE statement if you wished to execute a SUB or function which did not
physically precede the reference to it. This extra work is no longer required,
as PowerBASIC resolves all forward references to internal procedures
automatically.

The complete arguments list must be specified for each routine. Each parameter may be
defined in one of three ways:

· List only its type name (INTEGER, DOUBLE, etc.)

· List a variable name with a type-specifier appended (count%, txt$)

· Use the AS clause to specify the type (count AS INTEGER, text AS STRING *
100, etc.).

Legal type names for arguments include ANY, ASCIIZ, BYTE, CUR, CUX, DOUBLE,
DWORD, EXT, INTEGER, LONG, PTR, QUAD, SINGLE, STRING, STRINGZ, WORD,
WSTRING, WSTRINGZ and ARRAY. The ARRAY keyword is used in conjunction with
one of the other types to specify an entire array of that type. For example:

DECLARE SUB KerPlunk(INTEGER ARRAY, DOUBLE)

declares a procedure called KerPlunk , which takes an entire Integer array and a Double-
precision variable as parameters. You can also name the parameters using the AS
keyword:

DECLARE SUB KerPlunk(iArray() AS INTEGER, dVar AS DOUBLE)

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

673 / 2126

The following four declare statements are equivalent:

DECLARE SUB KerPlunk(x) ' if DEFINT A-Z is in effect
DECLARE SUB KerPlunk(x%)
DECLARE SUB Plunk(x AS INTEGER)
DECLARE SUB KerPlunk(INTEGER)

When parameters are passed by reference (BYREF), the address of the variable passed
to the routine is placed on the stack. When they are passed by value (BYVAL), the
actual data is placed on the stack. You can use the BYVAL or BYREF keywords to
specify that a parameter should always be passed in a known format.

Using ANY disables type checking for a particular parameter, and passes the address of
the variable on the stack. Since the internal format of variables differ greatly by type, you
must use caution to be certain your code knows the data type in each invocation.
 Normally, a second parameter is used to specify the actual type of the ANY parameter.

When a Sub/Function definition specifies either a BYREF parameter or a pointer variable
parameter, the calling code may freely pass a BYVAL DWORD or a pointer instead.
While the use of the explicit BYVAL override in the calling code is optional, it is
recommended for clarity. It is necessary to explicitly declare all pointer parameters as
BYVAL (BYVAL x AS BYTE PTR). Failure to do so will generate compile-time Error 549
("BYVAL required with pointers").

Additional information on BYVAL/BYREF/BYCOPY parameter passing can be
found in the CALL statement topic.

 Using OPTIONAL/OPT

DECLARE statements may specify one or more parameters as optional by preceding the
parameter with either the keyword OPTIONAL (or the abbreviation OPT). Optional
parameters are only allowed with CDECL or SDECL calling conventions, not BDECL.

When a parameter is declared optional, all subsequent parameters in the declaration are
optional as well, whether or not they specify an explicit OPTIONAL or OPT directive. The
following two lines are equivalent, with both second and third parameters being optional:

DECLARE SUB sABC(a&, OPTIONAL BYVAL b&, OPTIONAL BYVAL c&) AS LONG
DECLARE SUB sABC(a&, OPT BYVAL b&, BYVAL c&) AS LONG

VARIANT variables are particularly well suited for use as an optional parameter. If the
calling code omits an optional VARIANT parameter, (BYVAL or BYREF), PowerBASIC
(and most other compilers) substitute a variant of type %VT_ERROR which contains an
error value of %DISP_E_PARAMNOTFOUND (&H80020004). In this case, you can check
for this value directly, or use the ISMISSING() function to determine whether the
parameter was physically passed or not.

When optional parameters (other than VARIANT) are omitted in the calling code, the
stack area normally reserved for those parameters is zero-filled.

If the parameter is defined as a BYVAL parameter, it will have the value zero. For TYPE
or UNION variables passed BYVAL, the compiler will pass a string of binary zeroes of
length SIZEOF(Type_or_union_var).

If the parameter is defined as a BYREF parameter, VARPTR (Varname) will equal zero;
when this is true, any attempt to use Varname in your code will result in a General
Protection Fault or memory corruption. You should use the ISMISSING() function first to
determine whether it is safe to access the parameter.

AS type You may specify the type of data returned by a Function to the calling code. If you do not
specify a type, PowerBASIC assumes that the Function returns the data type specified
by a DEFtype statement. However, if no DEFtype or AS type has been specified, a
compile-time error is generated.

Therefore, there are two ways to specify the return type of a Function:

· Include a type-specifier character at the end of ProcName

· Include the AS type clause as the last part of the DECLARE statement (this is the

PowerBASIC Compiler for Windows Version 10

674 / 2126

recommended syntax to ensure compatibility with future versions of PowerBASIC).

For example, the following statements are equivalent:

DECLARE FUNCTION aFunction?()
DECLARE FUNCTION aFunction() AS BYTE

While most FUNCTION calling conventions are fairly well defined throughout
the industry, there are a few exceptions. In the case of functions which return
a Quad Integer value, some programming languages (including PowerBASIC)
return the quad value in the FPU, while others return it in EDX:EAX.
 PowerBASIC automatically detects the method used by imported functions
and adjusts accordingly for you, but that's not a feature found in other
compilers. Therefore, we recommend that you do not EXPORT QUAD
FUNCTIONS unless they will only be accessed by PowerBASIC programs. A
simple equivalent functionality would be to return the quad-integer value to
the caller in a BYREF QUAD parameter.

Restrictions A Sub/Function may be imported and exported within the same module. That is, a
function in the module may be stated as EXPORT, while a DECLARE in the same module
specifies it as an imported function by the option LIB "filename.dll", as long as
FILENAME.DLL is the name of the module. This may be particularly valuable when you
wish to build an #INCLUDE file with all of the DECLARE statements for a project.

See also #EXPORT, #LINK, CALL, CALL DWORD, FASTPROC, FUNCTION/END FUNCTION,
IMPORT, ISMISSING, SUB/END SUB, THREAD CREATE

Example ' Main program
DECLARE SUB Calculate LIB "A.DLL" (EXT, CUR, QUAD, INTEGER)
…
CALL Calculate(w##, x@, y&&, z%)

DECR statement

DECR statement
Purpose Decrement a variable by 1; Decrement a pointer by the size of its target; or decrement the

target of a numeric pointer by 1.

Syntax DECR variable

Remarks variable can be a

 variable or a pointer variable. When DECR is used with a numeric variable, 1 is
subtracted from the numeric variable.
If DECR is used on the target of a numeric pointer variable (i.e., DECR @IntPtr), the target
numeric variable is decremented by one. However, when using DECR on a pointer
variable, the value of the pointer variable is decremented by the size of its target.

For example, given a pointer to element 1000 of an Integer array, DECR of the pointer
variable itself would result in a decrement of 2, which should point to the previous element
in the array (element 999). This is because an Integer is two bytes wide, so the pointer
value is reduced by 2 bytes.

See also INCR, LET

Example DIM x&, LongPtr AS LONG POINTER
DECR x&
DECR LongPtr
DECR @LongPtr

DEFBYT statement

PowerBASIC Compiler for Windows Version 10

675 / 2126

DEFBYT, DEFCUR, DEFCUX, DEFDBL,
DEFDWD, DEFEXT, DEFINT, DEFLNG,
DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),
QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-
currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of
letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement
overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X
FUNCTION PBMAIN
 A = 1 ' A is Integer
 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DEFCUR statement

DEFBYT, DEFCUR, DEFCUX, DEFDBL,
DEFDWD, DEFEXT, DEFINT, DEFLNG,
DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),

PowerBASIC Compiler for Windows Version 10

676 / 2126

QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-
currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of
letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement
overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X
FUNCTION PBMAIN
 A = 1 ' A is Integer
 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DEFCUX statement

DEFBYT, DEFCUR, DEFCUX, DEFDBL,
DEFDWD, DEFEXT, DEFINT, DEFLNG,
DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),
QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-
currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of
letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

PowerBASIC Compiler for Windows Version 10

677 / 2126

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement
overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X
FUNCTION PBMAIN
 A = 1 ' A is Integer
 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DEFDBL statement

DEFBYT, DEFCUR, DEFCUX, DEFDBL,
DEFDWD, DEFEXT, DEFINT, DEFLNG,
DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),
QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-
currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of
letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement
overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X

PowerBASIC Compiler for Windows Version 10

678 / 2126

FUNCTION PBMAIN
 A = 1 ' A is Integer
 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DEFDWD statement

DEFBYT, DEFCUR, DEFCUX, DEFDBL,
DEFDWD, DEFEXT, DEFINT, DEFLNG,
DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),
QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-
currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of
letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement
overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X
FUNCTION PBMAIN
 A = 1 ' A is Integer
 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DEFEXT statement

DEFBYT, DEFCUR, DEFCUX, DEFDBL,

PowerBASIC Compiler for Windows Version 10

679 / 2126

DEFDWD, DEFEXT, DEFINT, DEFLNG,
DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),
QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-
currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of
letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement
overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X
FUNCTION PBMAIN
 A = 1 ' A is Integer
 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DEFINT statement

DEFBYT, DEFCUR, DEFCUX, DEFDBL,
DEFDWD, DEFEXT, DEFINT, DEFLNG,
DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),
QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-

PowerBASIC Compiler for Windows Version 10

680 / 2126

currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of
letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement
overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X
FUNCTION PBMAIN
 A = 1 ' A is Integer
 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DEFLNG statement

DEFBYT, DEFCUR, DEFCUX, DEFDBL,
DEFDWD, DEFEXT, DEFINT, DEFLNG,
DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),
QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-
currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of
letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement

PowerBASIC Compiler for Windows Version 10

681 / 2126

overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X
FUNCTION PBMAIN
 A = 1 ' A is Integer
 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DEFQUD statement

DEFBYT, DEFCUR, DEFCUX, DEFDBL,
DEFDWD, DEFEXT, DEFINT, DEFLNG,
DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),
QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-
currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of
letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement
overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X
FUNCTION PBMAIN
 A = 1 ' A is Integer

PowerBASIC Compiler for Windows Version 10

682 / 2126

 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DEFSNG statement

DEFBYT, DEFCUR, DEFCUX, DEFDBL,
DEFDWD, DEFEXT, DEFINT, DEFLNG,
DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),
QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-
currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of
letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement
overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X
FUNCTION PBMAIN
 A = 1 ' A is Integer
 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DEFSTR statement

DEFBYT, DEFCUR, DEFCUX, DEFDBL,
DEFDWD, DEFEXT, DEFINT, DEFLNG,

PowerBASIC Compiler for Windows Version 10

683 / 2126

DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),
QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-
currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of
letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement
overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X
FUNCTION PBMAIN
 A = 1 ' A is Integer
 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DEFWRD statement

DEFBYT, DEFCUR, DEFCUX, DEFDBL,
DEFDWD, DEFEXT, DEFINT, DEFLNG,
DEFQUD, DEFSNG, DEFSTR and DEFWRD
statements
Purpose Declare the default type for variable identifiers that begin with specified letters.

Syntax DEFtype letter_range [, letter_range] [, ...]

Remarks type represents one of PowerBASIC's variable types: INT (Integer), LNG (Long-integer),
QUD (Quad-integer), SNG (Single-precision floating-point), DBL (Double-precision floating-
point), EXT (Extended-precision floating-point), CUR (Currency), CUX (Extended-
currency), STR (String), BYT (Byte), WRD (Word), and DWD (Double-word).

letter_range is either a single alphabetic character (A through Z, case insignificant), or a range of

PowerBASIC Compiler for Windows Version 10

684 / 2126

letters (two letters separated by a hyphen, for example, A-M).

DEFtype Tells the compiler that variables and user-defined functions, whose names begin with the
specified letter or range of letters, are of the specified type.

Normally, when the compiler finds a variable name without a type specifier, a compile-time
error is generated. If however, there was a preceding DEFtype statement such as DEFINT
A-Z, the variable would default to that type (in this case, an Integer variable).

You may use multiple DEFtype statements. If there is overlap between two DEFtype
statements, no error is generated; but the definition of the latter DEFtype statement
overrides the former where the two overlap.

The DEFtype statement may not be supported in future editions of PowerBASIC,
so we recommend explicit variable declarations, using DIM, INSTANCE, LOCAL,
STATIC, THREADED, or GLOBAL.

Restrictions Deftype only applies to implicitly-defined variables. It has no effect on variables that are
defined explicitly. If a #DIM ALL statement exists in the application then Deftype
statements will have no effect, #DIM ALL requires all variables to be defined explicitly

Example DEFINT A-E, G, Q, Y-Z
DEFCUX B, F, H-P, R-X
FUNCTION PBMAIN
 A = 1 ' A is Integer
 B = 2 ' B is Extended-currency.
 [statements]
END FUNCTION

See Also #DIM ALL, DIM, INSTANCE, LOCAL, STATIC, THREADED, GLOBAL

DESKTOP GET CLIENT statement

DESKTOP GET CLIENT statement
Purpose Retrieve the size of the client area of the desktop, in pixels.

Syntax DESKTOP GET CLIENT TO ncWidth&, ncHeight&

Remarks The desktop client size is the part of the screen that is not obscured by the system tray.

This can be used in combination with DESKTOP GET LOC or DESKTOP GET SIZE for
exact positioning of windows on the desktop.

See also Dynamic Dialog Tools, DESKTOP GET LOC, DESKTOP GET SIZE

DESKTOP GET LOC statement

DESKTOP GET LOC statement
Purpose Retrieve the location of the top, left corner of the client area of the desktop, in pixels.

Syntax DESKTOP GET LOC TO x&, y&

Remarks The desktop client area is the part of the screen that is not obscured by the system tray.
The system tray's position on the screen determines the upper, left position of the client
area. If the tray is located at the bottom of the screen (default), left and top coordinates
are 0,0. If the tray is located on the right side of the screen, left and top coordinates are
0,0. If the tray is located on the left side of the screen, left and top coordinates are
TrayWidth,0. If the tray is located at the top of the screen, left and top coordinates are
0,TrayHeight.

This can be used in combination with DESKTOP GET CLIENT or DESKTOP GET SIZE for

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

685 / 2126

exact positioning of windows on the desktop.

See also DESKTOP GET CLIENT, DESKTOP GET SIZE

DESKTOP GET SIZE statement

DESKTOP GET SIZE statement
Purpose Retrieve the size of the entire desktop, in pixels.

Syntax DESKTOP GET SIZE TO ncWidth&, ncHeight&

Remarks The desktop size includes the space taken up by the system tray and is same as the
screen size. This can be used in combination with DESKTOP GET CLIENT or DESKTOP
GET LOC for exact positioning of windows on the desktop.

See also DESKTOP GET CLIENT, DESKTOP GET LOC

DIALOG DEFAULT FONT statement

DIALOG DEFAULT FONT statement
Purpose Specify the default DDT font information.

Syntax DIALOG DEFAULT FONT fontname$ [,points&, style&, charset&]

Legacy syntax:
DIALOG FONT [DEFAULT] fontname$ [,points&, style&, charset&]

fontname$ Name of the font.

points& Size of the font, in points.

style& Font style attribute.

0 Normal
2 Italic

charset& CharSet identifier.

0 ANSI CharSet 162 Turkish CharSet
1 Default CharSet 177 Hebrew CharSet
2 Symbol CharSet 178 Arabic CharSet

77 Mac CharSet 186 Baltic CharSet
128 Shiftjis CharSet 204 Russian CharSet
129 Hangeul CharSet 222 Thai CharSet
130 Johab CharSet 238 East Europe CharSet
136 Chinese CharSet 255 OEM CharSet
161 Greek CharSet

Remarks The DIALOG DEFAULT FONT statement specifies the font which will be used for all
subsequent dialogs created with DIALOG NEW, until another DIALOG DEFAULT FONT
statement is executed. When a DIALOG NEW statement is executed, the selected
default font is associated with it, and its

, for the lifetime of the dialog.
The default font is particularly important when creating new dialogs which use dialog units
(rather than pixels) as the unit of measurement. When sizing in dialog units, Windows
calculates the physical size of the window based upon the font size, among other factors.
 Changing the font size later will not update the window size.

You may use the value zero (0) for any of the numeric parameters to designate that the
compiler should use the default for that item. If parameter(s) are missing, the compiler
substitutes the default value for all remaining parameters. If no DIALOG DEFAULT FONT

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

686 / 2126

statement is executed, PowerBASIC will select MS Sans Serif, 8 point, with no style
attributes.

When specifying a font, care should be exercised to use a standard font that is available
in all versions of Windows, such as "Times New Roman", "Arial", "Courier", "MS Sans
Serif", etc. Specifying a font name that is not available forces Windows to substitute a
font that may not be visually appealing, and may also alter the relative size of the dialog.

DIALOG DEFAULT FONT is module-specific. That is, it only affects subsequent dialogs
created by code in the same EXE or DLL. For example, a DIALOG DEFAULT FONT
statement in a DLL, will not affect dialogs created in the calling EXE or other DLLs loaded
by the EXE.

See also CONTROL SET FONT, Dynamic Dialog Tools, DIALOG NEW, DIALOG SET COLOR,
FONT END, FONT NEW, GRAPHIC SET FONT, XPRINT SET FONT

DIALOG DISABLE statement

DIALOG DISABLE statement
Purpose Disable a dialog so that it no longer receives any mouse or keyboard messages.

Syntax DIALOG DISABLE hDlg

Remarks hDlg refers to the dialog you want to disable. A disabled dialog will not receive any
messages when it is clicked with the mouse or selected with the keyboard. Disabling a
dialog that is already disabled has no effect.

If the dialog has a Callback Function, a %WM_ENABLE message is sent to the Callback
Function before DIALOG DISABLE finishes.

See also Dynamic Dialog Tools, DIALOG ENABLE, DIALOG HIDE, DIALOG NORMALIZE,
DIALOG SHOW MODAL, DIALOG SHOW MODELESS, DIALOG SHOW STATE

DIALOG DOEVENTS statement

DIALOG DOEVENTS statement
Purpose Process pending window or dialog messages for MODELESS dialogs. If there are no

pending messages, DIALOG DOEVENTS pauses execution of the current thread for a
length of time specified by the programmer.

Syntax DIALOG DOEVENTS [sleep&] [TO count&]

Remarks DIALOG DOEVENTS is usually used to create a "message pump" for modeless dialog
boxes.

If a window message is pending, it is processed appropriately. If no messages are
pending, execution of the current

 is paused for the time specified by the sleep& parameter. If sleep& is zero (0), the
remainder of the current time slice is relinquished to other threads or processes. If
sleep& is greater than zero, the current thread is paused for that number of
milliseconds to allow other threads or processes to continue. If sleep& is not
specified, it defaults to a value of one (1). During the sleep period, all time-slices for
the current thread are given to other threads and processes. If there are no other
threads of equal priority, execution continues immediately. The time-slice duration
(also known as the Quantum) can vary from version to version of Windows, ranging
from 20 mSec to 120 mSec. If the optional TO clause is included, the number of
active dialogs is returned in the count& variable, once all of the pending messages

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

687 / 2126

have been processed.
Restrictions The DIALOG DOEVENTS loop must run for the duration of the modeless dialog(s), or they

will not respond or be redrawn correctly.

See also Dynamic Dialog Tools, DIALOG NEW, DIALOG SHOW MODELESS, SLEEP

Example ' Single modeless dialog message pump example.
' (Assume dialog already created with DIALOG NEW)
DIALOG SHOW MODELESS hDlg CALL DlgCallback
DO
 DIALOG DOEVENTS 0 TO Count&
LOOP WHILE Count&
' Application code continues here...

' Multiple modeless dialog message pump example.
' In some applications, the number of modeless dialogs can vary at any
given moment,
' we want to break the message loop when the 'main' dialog is closed.
' (Assume dialogs already created with DIALOG NEW)
DIALOG SHOW MODELESS hMainDlg& CALL DlgCallback
DIALOG SHOW MODELESS hChildDlg1&
DIALOG SHOW MODELESS hChildDlg2&
[statements]
DO
 DIALOG DOEVENTS
LOOP WHILE ISWIN(hMainDlg&)
' Application code continues here...

DIALOG ENABLE statement

DIALOG ENABLE statement
Purpose Enable a dialog so that it can receive messages when the user interacts with it via the

mouse or keyboard.

Syntax DIALOG ENABLE hDlg

Remarks hDlg refers to the dialog you want to enable. An enabled dialog will receive messages
when it is clicked with the mouse or selected with the keyboard. Enabling a dialog has no
effect if the dialog is already enabled.

If the dialog has a Callback Function, a %WM_ENABLE message is sent to the Callback
Function before DIALOG ENABLE finishes.

See also Dynamic Dialog Tools, DIALOG DISABLE, DIALOG HIDE, DIALOG NORMALIZE,
DIALOG SHOW MODAL, DIALOG SHOW MODELESS, DIALOG SHOW STATE

DIALOG END statement

DIALOG END statement
Purpose Close and destroy the specified dialog.

Syntax DIALOG END hDlg [, lResult&]

Remarks The dialog specified by the hDlg variable is destroyed.

lResult& optionally specifies a value to return to the DIALOG SHOW MODAL or DIALOG
SHOW MODELESS statement that activated the dialog initially.

Restrictions DIALOG END cannot close or destroy a dialog in a separate thread. In this case, send or

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

688 / 2126

post a message to the dialog to signal it to close, and respond to the message in the
callback for the specified dialog. For example:

' Trigger a DIALOG END in a separate thread
DIALOG SEND hDlg, %WM_SYSCOMMAND, %SC_CLOSE, 0

DIALOG END cannot be used during processing of the %WM_INITDIALOG message. If
this effect is necessary, the solution is to post a user-defined message to the dialog and
use DIALOG END at that point. For example:

CALLBACK FUNCTION MyDialogCallback
 SELECT CASE CB.MSG
 CASE %WM_INITDIALOG
 IF gMustEnd& THEN _ ' We have to stop!
 DIALOG POST CB.HNDL, %WM_USER+999&, 0, 0

 CASE %WM_USER + 999&
 DIALOG END CB.HNDL
 FUNCTION = 1
 END SELECT
END FUNCTION

See also Dynamic Dialog Tools, DIALOG NEW, DIALOG SHOW MODELESS, THREAD CREATE

DIALOG GET CLIENT statement

DIALOG GET CLIENT statement
Purpose Return the client size of the specified dialog.

Syntax DIALOG GET CLIENT hDlg TO nWide&, nHigh&

Remarks hDlg refers to the dialog to examine. The size of the dialog client area is placed in the
nWide& (width) and nHigh& (height) variables. The size is specified in the same terms
(pixels or dialog units) as the parent dialog.

See also Dynamic Dialog Tools, CONTROL GET CLIENT, DIALOG GET LOC, DIALOG GET SIZE,
DIALOG PIXELS, DIALOG SET CLIENT, DIALOG SET LOC, DIALOG SET SIZE,
DIALOG UNITS

DIALOG GET LOC statement

DIALOG GET LOC statement
Purpose Return the location of the specified dialog.

Syntax DIALOG GET LOC hDlg TO x&, y&

Remarks hDlg refers to the dialog to examine. The location of the dialog is placed in the x&
(horizontal position) and y& (vertical position) variables as a relative location. If the dialog
was created with the PIXELS option in the DIALOG NEW statement, the values are
returned in pixel units. If the UNITS option was used (or no scaling option was specified),
the values are returned in dialog units.

If the parent of the dialog is zero (or %HWND_DESKTOP), the location is relative to the
upper-left corner of the display. Otherwise, it is relative to the upper-left corner of client
area of the parent window.

See also Dynamic Dialog Tools, DIALOG GET CLIENT, DIALOG GET SIZE, DIALOG PIXELS,
DIALOG SET LOC, DIALOG SET SIZE, DIALOG UNITS

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

689 / 2126

DIALOG GET SIZE statement

DIALOG GET SIZE statement
Purpose Return the size of the specified dialog.

Syntax DIALOG GET SIZE hDlg TO x&, y&

Remarks hDlg refers to the dialog to examine. The total size of the dialog is placed in the x&
(width) and y& (height) variables. If the dialog was created with the PIXELS option in the
DIALOG NEW statement, the values are returned in pixel units. If the UNITS option was
used (or no scaling option was specified), the values are returned in dialog units.

See also Dynamic Dialog Tools, DIALOG GET CLIENT, DIALOG GET LOC, DIALOG PIXELS,
DIALOG SET LOC, DIALOG SET SIZE, DIALOG UNITS

DIALOG GET TEXT statement

DIALOG GET TEXT statement
Purpose Retrieve the text in a dialog or window caption.

Syntax DIALOG GET TEXT hDlg TO titletext$

Remarks The text of the dialog or window caption specified by hDlg. For DDT dialogs, hDlg is the
dialog handle returned by the DIALOG NEW statement. In a dialog Callback Function, the
CB.HNDL function will return the parent dialog handle and this can also be used with
DIALOG GET TEXT.

titletext$ The text is returned and placed into the

 variable titletext$. If the window or dialog is invalid, titletext$ will be set to an
empty string.

Restrictions hDlg is a dialog or window handle, so DIALOG GET TEXT works with both DDT dialogs
and conventional windows and dialogs.

See also CB Callback functions, CONTROL GET TEXT, CONTROL SET TEXT, DIALOG NEW,
DIALOG SET TEXT

Example DIALOG GET TEXT hDlg1& TO a$

Result Variable a$ contains the caption text of the dialog referenced by hDlg

DIALOG GET USER statement

DIALOG GET USER statement
Purpose Retrieve a value from the user data area of a DDT dialog.

Syntax DIALOG GET USER hDlg, index& TO retvar&

Remarks Each DDT dialog has a user data area consisting of eight Long-integer values which may
be used at the programmer's discretion to save relevant data. DIALOG GET USER allows
one of the values to be retrieved, based upon the index parameter value (1 through 8).

hDlg refers to the dialog that contains the user data.

index& is the index number of the user data value to retrieve, in the range 1 to 8 inclusive.

retvar& receives the Long-integer data value stored in the nominated user data index.

Restrictions Data in the user data area is lost when the dialog is destroyed. The data area is
completely separate from the %GWL_USERDATA area maintained by Windows.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

690 / 2126

See also Dynamic Dialog Tools, COMBOBOX SET USER, CONTROL GET USER,
CONTROL SET USER, DIALOG SET USER, LISTBOX GET USER, LISTBOX SET USER,
LISTVIEW GET USER, LISTVIEW SET USER, TREEVIEW GET USER, TREEVIEW SET
USER

DIALOG HIDE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

DIALOG HIDE statement
Purpose Make a Dialog invisible.

Syntax DIALOG HIDE hDlg

Remarks The Dialog identified by the handle hDlg is made invisible.

See also CONTROL HIDE, CONTROL NORMALIZE, DIALOG MAXIMIZE, DIALOG MINIMIZE,
DIALOG NORMALIZE

DIALOG MAXIMIZE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

DIALOG MAXIMIZE statement
Purpose Maximize a Dialog.

Syntax DIALOG MAXIMIZE hDlg

Remarks The Dialog identified by the handle hDlg is maximized. You can restore the Dialog to its
normal state with DIALOG NORMALIZE.

See also CONTROL HIDE, CONTROL NORMALIZE, CONTROL SET SIZE, DIALOG MINIMIZE,
DIALOG NORMALIZE, DIALOG SET SIZE

DIALOG MINIMIZE statement

DIALOG MINIMIZE statement

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

691 / 2126

Purpose Minimize a Dialog.

Syntax DIALOG MINIMIZE hDlg

Remarks The Dialog identified by the handle hDlg is minimized. You can restore the Dialog to its
normal state with DIALOG NORMALIZE.

See also CONTROL HIDE, CONTROL NORMALIZE, CONTROL SET SIZE, DIALOG MAXIMIZE,
DIALOG NORMALIZE, DIALOG SET SIZE

DIALOG NEW statement

DIALOG NEW statement
Purpose Create a new dialog in memory, ready for display.

Syntax DIALOG NEW [PIXELS, | UNITS,] hParent, title$, [x&], [y&], xx&, yy& [,
[style&] [, [exstyle&]]] [,] TO hDlg

Remarks A new empty dialog is created, but not yet displayed. Once the dialog has been created
and all of the desired controls have been added with

 statements, the dialog can be displayed with the DIALOG SHOW MODELESS, or
DIALOG SHOW MODAL statements.
If a modeless dialog is created, the application must create a DIALOG DOEVENTS
message pump for the duration of the dialog. Failure to provide a message pump can
result in disruptions to the display of the dialog, or the inability of the dialog to respond to
messages such as button clicks, etc. Modal dialogs do not require a message pump.

To change the displayed state of a dialog (i.e., hidden, minimized, etc) after the dialog
has been created, use the DIALOG SHOW STATE statement.

If a dialog does not have either %WS_CHILD or %WS_POPUP styles, Windows may
enforce a minimum dialog width of some 60-70 dialog units.

PIXELS If the PIXELS keyword is specified, all size and position parameters are specified in
pixels. In this case, related statements such as DIALOG GET LOC will also return values
in Pixels.

UNITS If UNITS is specified (or no scaling option is specified), all size and position parameters
are specified in Dialog Units. (default)

 DIALOG NEW takes the following parameters.

hParent Handle of the parent window or dialog. If there is no parent, use zero (0) or %
HWND_DESKTOP. If the dialog is MODAL, the parent window/dialog will be disabled
while this "child" dialog is running.

title$ The text displayed in the title or caption bar of the dialog.

x&, y& Optional location of the top-left corner for the dialog. The location is specified in the same
terms (pixels or dialog units) as specified in the DIALOG NEW statement. If neither x&
and y& are specified, the dialog is centered on the screen.

If %CW_USEDEFAULT (&H080000000) is specified, the default Windows position is used
(cascading from the upper-left corner).

xx&, yy& The width and height of the dialog. The size is specified in the same terms (pixels or
dialog units) as specified in the DIALOG NEW statement.

If the default dialog style (or any other dialog style that includes the %WS_CAPTION
style) is used, the width and height parameters specify the client size only, and this does
not include any caption and border dimensions.

If the style does not include %WS_CAPTION, the width and height specify the overall
dialog size, including the caption and border, if any.

Note that %WS_CAPTION is a combination of the %WS_BORDER and %

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

692 / 2126

WS_DLGFRAME styles. The default dialog style includes %WS_BORDER and %
WS_DLGFRAME styles, so it implicitly includes the %WS_CAPTION style.

style& An optional bitmask describing how the dialog should be displayed. default style of
&H084C000D4& is made up %DS_3DLOOK, %DS_SETFONT, %DS_MODALFRAME, %
DS_NOFAILCREATE, %WS_BORDER, %WS_CLIPSIBLINGS, %WS_DLGFRAME and
%WS_POPUP. used if parameter omitted from statement completely. For example:

DIALOG NEW 0, "Dialog Title",,, 100, 200,, TO hDlg

Custom style values replace the default values. That is, they are not additional to the
default style values - your code must specify all necessary style parameters (with the
exception of %DS_NOFAILCREATE, %DS_SETFONT and %DS_3DLOOK, which are
automatically added into the style& parameter by PowerBASIC).

This also applies to the extended styles parameter - if your code specifies a custom
primary style, the default extended style will no longer be in effect either. In this case, an
explicit extended style may also need to be added to the DIALOG NEW statement if an
explicit primary style is specified.

The primary style& value can be a combination of any values below, combined together
with the OR operator to form a bitmask:

%DS_3DLOOK Give the dialog box a non-bold font, and draw three-dimensional borders
around controls in the dialog box. The %DS_3DLOOK style is not required by
applications marked with #OPTION VERSION4 or #OPTION VERSION5; as Windows
automatically applies the 3D appearance. DDT dialogs are always created with this style.
(default)

%DS_3DLOOK Give the dialog box a non-bold font, and draw three-
dimensional borders around controls in the dialog
box. The %DS_3DLOOK style is not required by
applications marked with #OPTION VERSION4 or
#OPTION VERSION5; as Windows automatically
applies the 3D appearance. DDT dialogs are always
created with this style. (default)

%DS_ABSALIGN Indicate that the coordinates of the dialog box are
screen coordinates; otherwise, Windows assumes
they are client coordinates.

%DS_CENTER Center the dialog box in the working area (the area
not obscured by the task bar and system tray). This
is the default if x& and y& are not specified.

%DS_CENTERMOUSE Center the mouse cursor in the dialog box when the
dialog is initially created.

%DS_CONTEXTHELP Include a question mark in the title bar of the dialog
box. When the user clicks the question mark, the
cursor changes to a question mark with a pointer. If
the user then clicks a control in the dialog box, the
dialog callback receives a %WM_HELP message.
This style cannot be used with the %
WS_MAXIMIZEBOX and %WS_MINIMIZEBOX
styles. Also see %WS_EX_CONTEXTHELP.

%DS_CONTROL Create a dialog that works as a child control of
another dialog, smoothing the keyboard focus
interface across the two dialogs when the TAB key
or control accelerators are used. Typically used for
dialogs that form the "pages" for tab controls and
property-sheets.

%DS_MODALFRAME Create a dialog box with a modal dialog-box frame
that can be combined with a title bar and System
menu by specifying the %WS_CAPTION and %
WS_SYSMENU styles. (default)

PowerBASIC Compiler for Windows Version 10

693 / 2126

%DS_NOFAILCREATE The dialog is created regardless of any errors that
may occur during the creation phase. DDT dialogs
are always created with this style. (default)

%DS_SETFONT The font to be used by a DDT dialog and its controls
can be predetermined with the DIALOG DEFAULT
FONT statement. If the DIALOG DEFAULT FONT
statement is not used, the default font (MS Sans
Serif, 8 point) is used. The size of the dialog font
proportionately affects the conversion of dialog units
values into pixels, so an increase in default font size
will automatically create a larger dialog, even through
the dialog dimensions have remained constant. As
child controls are added to a %DS_SETFONT
dialog, they will be sent a %WM_SETFONT
message to ensure they also make use of the
specified dialog font. DDT dialogs are always created
with this style. (default)

%DS_SETFOREGROUND Bring the dialog box to the foreground. Internally,
Windows calls the SetForegroundWindow API
function for the dialog box.

%DS_SYSMODAL Create a system-modal dialog box. This style
causes the dialog box to have the %
WS_EX_TOPMOST style, but otherwise has no
effect on the dialog box or the behavior of other
applications and windows when the dialog box is
displayed.

%WS_BORDER Create a dialog that has a thin-line border.

%WS_CAPTION Create a dialog that has a title bar. Includes the %
WS_BORDER and %WS_DLGFRAME styles.
When this style is used, the xx& and yy&
parameters specify the size of the client area of the
dialog; otherwise, they specify the outer dimensions
of the dialog. (default)

%WS_CHILD Create a child dialog. Cannot be used with the %
WS_POPUP style. Typically used with %
DS_CONTROL for tab control and property sheet
"pages".

%WS_CLIPCHILDREN Exclude the area occupied by child controls when
drawing occurs on the dialog background. FRAME
and LINE controls on a dialog with this style usually
use the extended style %WS_EX_TRANSPARENT
so the background of those controls is drawn by the
dialog before the controls are drawn. %
WS_CLIPCHILDREN is commonly used to reduce
redraw flicker when a %WS_THICKFRAME style
dialog is being resized.

%WS_CLIPSIBLINGS Child controls are clipped (not overdrawn) by one
another when the dialog window is repainted.
(default)

%WS_DISABLED Create a dialog that is initially disabled. A disabled
dialog cannot receive input from the user.

%WS_DLGFRAME Create a window that has a border of the style
typically used with dialog boxes. (default)

%WS_HSCROLL Dialog contains a horizontal scroll bar.

%WS_ICONIC Create a dialog that is initially minimized, the same
as the %WS_MINIMIZE style.

PowerBASIC Compiler for Windows Version 10

694 / 2126

%WS_MAXIMIZE Create a dialog that is initially maximized.

%WS_MAXIMIZEBOX Create a dialog that has a Maximize button. Use
with the %WS_SYSMENU style.

%WS_MINIMIZE Create a dialog that is initially minimized, the same
as the %WS_ICONIC style.

%WS_MINIMIZEBOX Create a dialog that has a Minimize button. Use with
the %WS_SYSMENU style.

%WS_OVERLAPPED Create an overlapped window. An overlapped window
has a title bar (caption) and a border. Synonym of
the obsolete style %WS_TILED.

%
WS_OVERLAPPEDWINDO
W

Combination style producing an overlapping dialog.
Comprises %WS_CAPTION, %WS_SYSMENU, %
WS_THICKFRAME, %WS_MINIMIZEBOX, %
WS_MAXIMIZEBOX, and %WS_OVERLAPPED
styles.

%WS_POPUP Create a popup dialog. When used by itself, a flat
dialog is created with no caption or borders.
Combine with %DS_MODALFRAME to create a 3D
border. A popup dialog can overlap another window
or dialog. (default)

%WS_POPUPWINDOW Create a popup dialog but with a border and system
menu. Comprises %WS_BORDER, %WS_POPUP
and %WS_SYSMENU. Combine %
WS_POPUPWINDOW with %WS_CAPTION to
make the Window menu visible.

%WS_SYSMENU Create a dialog that has a System-menu box in its
title bar. Must be used with the %WS_CAPTION
style.

%WS_THICKFRAME Create a dialog that has a sizing border. That is, the
dialog will be resizable.

%WS_VSCROLL Dialog contains a vertical scroll bar. Also see %
WS_EX_LEFTSCROLLBAR.

exstyle& An optional extended style bitmask describing how the dialog should be displayed. The
default extended dialog style comprises %WS_EX_LEFT with %WS_EX_LTRREADING
and %WS_EX_RIGHTSCROLLBAR. The default extended style is used only if there are
no explicit primary or extended styles parameters in the DIALOG NEW statement.

An explicit extended style value can be a combination of any values below, combined
together with the OR operator to form a bitmask:

%WS_EX_ACCEPTFILES The dialog accepts drag+drop files. The dialog
Callback Function receives a %WM_DROPFILES
message when files have been dropped onto the
dialog.

%WS_EX_APPWINDOW Force a top-level dialog onto the application taskbar
when the window is minimized.

%WS_EX_CLIENTEDGE Dialog has a border with a sunken edge.

%WS_EX_CONTEXTHELP Include a question mark in the title bar of the dialog.
When the user clicks the question mark, the cursor
changes to a question mark with a pointer. If the
user then clicks a child window, the child receives a
%WM_HELP message. Also see %
DS_CONTEXTHELP.

%
WS_EX_CONTROLPARENT

The user may navigate among the child dialogs of
the window by using the TAB key. See %
DS_CONTROL.

%WS_EX_LEFT Dialog has generic "left-aligned" properties. (default)

PowerBASIC Compiler for Windows Version 10

695 / 2126

%WS_EX_LEFTSCROLLBAR If present, the vertical scroll bar is positioned to the
left of the client area. Also see %WS_VSCROLL.

%WS_EX_LTRREADING Display the dialog text using Left to Right reading-
order properties. (default)

%
WS_EX_NOPARENTNOTIFY

Suppress %WM_PARENTNOTIFY messages when
dialog is created or destroyed.

%
WS_EX_OVERLAPPEDWIN
DOW

Comprised of the %WS_EX_CLIENTEDGE and %
WS_EX_WINDOWEDGE styles.

%
WS_EX_PALETTEWINDOW

Comprised of the %WS_EX_WINDOWEDGE, %
WS_EX_TOOLWINDOW and %WS_EX_TOPMOST
styles.

%WS_EX_RIGHT Dialog has generic "right-aligned" properties that
depend on the window class. This style has an effect
only if the shell language is Hebrew, Arabic, or
another language that supports reading order
alignment. Otherwise, the style is ignored.

%
WS_EX_RIGHTSCROLLBAR

If present, the vertical scroll bar is positioned to the
right of the client area. See %WS_VSCROLL.
(default)

%WS_EX_RTLREADING If the shell language is Hebrew, Arabic, or another
language that supports reading order alignment, the
dialog text is displayed using Right to Left reading-
order properties. For other languages, the style is
ignored.

%WS_EX_STATICEDGE Dialog has a 3D border. Primarily used for dialogs
that do not require user-input.

%WS_EX_TOOLWINDOW Create a tool window (a window intended to be used
as a floating toolbar). A tool window has a shorter
than normal caption area and the dialog caption is
drawn using a smaller font. A tool window does not
appear in the task bar, or in the window that appears
when the user presses ALT+TAB. The hybrid
versions of Windows (95/98/ME) may require this
extended style to be added after creation, using the
SetWindowLong API function.

%WS_EX_TOPMOST Place dialog above all non-topmost windows and
keep it above them, even while the dialog is
deactivated.

%WS_EX_TRANSPARENT Controls/windows beneath the dialog are drawn
before the dialog is drawn. The dialog is deemed
transparent because elements behind the dialog
have already been painted - the dialog itself is not
drawn differently. True transparency is achieved by
using Regions - see MSDN for more information.

%WS_EX_WINDOWEDGE Dialog has a border with a raised edge.

hDlg Long-integer Variable where the Windows window handle of the dialog is stored after it
has been created and assigned by Windows. This handle should be used with
subsequent

 and statements, and may be directly used with Windows API calls.
If the dialog could not be created (i.e., due to low Windows resources), zero is returned.

See also Dynamic Dialog Tools, CONTROL ADD, DIALOG DOEVENTS, DIALOG END, DIALOG
HIDE, DIALOG MAXIMIZE, DIALOG MINIMIZE, DIALOG NONSTABLE, DIALOG
NORMALIZE, DIALOG SET COLOR, DIALOG SHOW MODAL,
DIALOG SHOW MODELESS, DIALOG STABILIZE, DIALOG SHOW STATE, TXT pseudo-

http://msdn.microsoft.com

PowerBASIC Compiler for Windows Version 10

696 / 2126

object

DIALOG NONSTABLE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

DIALOG NONSTABLE statement
Purpose Make a Dialog non-stable (closeable).

Syntax DIALOG NONSTABLE hDlg

Remarks The Dialog identified by the handle hDlg is made non-stable, meaning that it can be
closed by the user. If there is a system menu, the close option and the close box are
enabled. The ALT-F4 close key is also enabled. This is the default mode of operation.

See also DIALOG STABILIZE

DIALOG NORMALIZE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

DIALOG NORMALIZE statement
Purpose Make a Dialog visible.

Syntax DIALOG NORMALIZE hDlg

Remarks The Dialog identified by the handle hDlg is made visible at its normal size and position.

See also DIALOG HIDE, DIALOG MAXIMIZE, DIALOG MINIMIZE, DIALOG SHOW STATE

DIALOG PIXELS statement

DIALOG PIXELS statement
Purpose Convert pixels (device units) into dialog units.

Syntax DIALOG PIXELS hDlg, x&, y& TO UNITS xx&, yy&

Remarks The pixel values specified in the x& and y& variables are converted into dialog units,

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

697 / 2126

based on the default font of the dialog specified by hDlg. The resulting value in dialog units
is stored in the xx& and yy& variables.

See also Dynamic Dialog Tools, CONTROL GET CLIENT, DIALOG GET CLIENT,
DIALOG GET LOC, DIALOG GET SIZE, DIALOG SET LOC, DIALOG SET SIZE,
DIALOG UNITS

DIALOG POST statement

DIALOG POST statement
Purpose Place a message in the message queue to be processed at the leisure of the target dialog.

Syntax DIALOG POST hDlg, Msg&, wParam&, lParam&

Remarks DIALOG POST places the message in the message queue and returns immediately. The
message is processed by the dialog at a later time, when it reads the message from the
queue.

This behavior is quite different to the DIALOG SEND statement, which forces the control to
process the message immediately before returning. Since DIALOG POST is an
asynchronous operation, it is not possible to retrieve a return code from the message.

hDlg refers to the target dialog.

Msg& is the message you want to post to the dialog.

wParam& is the first message parameter. lParam& is the second message parameter. The
values of wParam& and lParam& are message-dependent. By Default, PowerBASIC passes
these parameters BYVAL. If the target dialog is expected to alter the values held by
variables passed in the wParam& and lParam& parameters, pass them using VARPTR() or
the changes will likely be discarded.

Note that the address of the data must remain valid until after the dialog has processed the
message and accessed the data. In this case, using STATIC or GLOBAL variables can be
very important or a General Protection Fault (GPF) may occur (that is, if the variables have
gone out of scope by the time the message is processed).

An example of posting the addresses of variables to a dialog:

' Sel1& and Sel2& must be STATIC or GLOBAL
DIALOG POST CB.HNDL, %WM_USER + 999&, VARPTR(Sel1&), VARPTR(Sel2&)

DIALOG POST returns immediately after the placing the message in the queue.

 To post a custom message to a dialog, use a message value in the range of (%WM_USER
+ 500) to (%WM_USER + &H07FFF), or use the RegisterWindowMessage API to obtain a
unique message value from the operating system. Using messages with a numeric value of
less then %WM_USER + 500 may conflict with Windows Common Control messages.

See also Dynamic Dialog Tools, CB Callback functions, CONTROL POST, CONTROL SEND,
DIALOG SEND

Example ' Programmatically post a message to a dialog:
DIALOG POST hDlg, %WM_CLOSE, 0, 0

DIALOG REDRAW statement

DIALOG REDRAW statement
Purpose Signal a designated dialog and all child

 to be redrawn immediately.
Syntax DIALOG REDRAW hDlg

Glossary_Message.htm

PowerBASIC Compiler for Windows Version 10

698 / 2126

Remarks DIALOG REDRAW invalidates the target dialog area, and signals a redraw/repaint to
occur immediately, even if there are pending messages in the message queue.

hDlg refers to the dialog that is to be redrawn.

Restrictions It is not advisable to use DIALOG REDRAW or CONTROL REDRAW statements within
the %WM_PAINT and associated message handling code, or an infinite redraw loop could
occur.

See also Dynamic Dialog Tools, CONTROL REDRAW, CONTROL SET COLOR,
DIALOG SET COLOR

Example DIALOG REDRAW hDlg

DIALOG SEND statement

DIALOG SEND statement
Purpose Send a message to a dialog, then wait until the message has been processed before

continuing.

Syntax DIALOG SEND hDlg, msg&, wParam&, lParam& [TO lResult&]

Remarks hDlg identifies the dialog which should receive the message specified by msg&. wParam&
is the first message parameter, and lParam& is the second message parameter.

By default, PowerBASIC passes these parameters BYVAL. If the target dialog is
expected to return or alter the values passed in the wParam& and lParam& parameters,
pass them using VARPTR() or the return values will be discarded. For example:

DIALOG SEND CB.HNDL, %WM_USER, VARPTR(Param1&), VARPTR(Param2&)

TO The return value may be returned and stored in the variable lResult& after the message
was processed by the dialog.

Restrictions If the target dialog was not created by the same thread, the DIALOG SEND statement
becomes blocked until the thread processes the message. The InSendMessage API
function will return TRUE (non-zero) if the callback code is currently processing a
message from a separate thread.

To send a custom message to a dialog, use a message value in the range of (%
WM_USER + 500) to (%WM_USER + &H07FFF), or use the RegisterWindowMessage
API to obtain a unique message value from the operating system.

A dialog callback can send a message to its own dialog, but care should be taken not to
create an infinite loop. Also, if DIALOG SEND sends a message that arrives back in the
same callback as the message originated, care should be exercised to ensure that
critical STATIC and GLOBAL variables are not unexpectedly altered by the second
message processing code in the callback. This is known as re-entrant code design.

See also Dynamic Dialog Tools, CONTROL SEND

DIALOG SET CLIENT Statement

DIALOG SET CLIENT statement
Purpose Change the size of a dialog to a specific client area size.

Syntax DIALOG SET CLIENT hDlg, x&, y&

Remarks hDlg refers to the handle of the dialog to change. x& and y& specify the new width and
height of the dialog client area. x& and y& are specified in dialog units or pixels,
depending upon the system used when the dialog was created.

The dialog client size may be smaller than total size, depending on the type of borders

Glossary_Message.htm
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

699 / 2126

used. The client area is the part below the dialog caption, and an eventual menu, where
controls can be placed.

See also Dynamic Dialog Tools, DIALOG NEW, DIALOG PIXELS, DIALOG UNITS, DIALOG GET
CLIENT, DIALOG GET LOC, DIALOG GET SIZE, DIALOG SET LOC, DIALOG SET SIZE

Example LOCAL hDlg, hMnu, hSubMenu AS DWORD, h, w AS LONG

DIALOG NEW 0, "My Dialog",,, 400, 300, %WS_CAPTION OR %WS_SYSMENU, 0 TO
hDlg
' Retrieve dialog client area
DIALOG GET CLIENT hDlg TO w, h
MENU NEW BAR TO hMnu
MENU NEW POPUP TO hSubMenu
MENU ADD POPUP, hMnu, "&File", hSubMenu, %MF_ENABLED
MENU ADD STRING, hSubMenu, "E&Xit", %IDCANCEL, %MF_ENABLED
MENU ATTACH hMnu, hDlg

' Restore client area to desired size
DIALOG SET CLIENT hDlg, w, h

DIALOG SET COLOR statement

DIALOG SET COLOR statement
Purpose Set the background color of a dialog to a specific RGB color.

Syntax DIALOG SET COLOR hDlg, foreclr&, backclr&

Remarks hDlg identifies the dialog to colorize.

Color values foreclr& and backclr& must be in the range of &H0 to &H00FFFFFF, while
the value -1& is used to specify the system default color. RGB can be a useful function to
derive a 32-bit color value from discrete Red, Green and Blue values.

foreclr& In the current implementation of PowerBASIC, the dialog foreground color parameter
foreclr& is not used, but the syntax is retained for future implementation. It is
recommended that the foreground color parameter be set to -1&.

backclr& In 16-bit or greater color-depth mode, the RGB color specified is used when the
background of the dialog is drawn. If backclr& = -1&, the default dialog background color
is used. If backclr& = -2&, the dialog background is not painted, allowing the content
behind the dialog to become visible through the dialog.

In 16-bit or greater color-depth mode, the specified RGB color is used when the
background of the dialog is drawn. However, in 8-bit (256-color) mode, the color system
works quite differently. Behind the scenes in Windows, the base system palette usually
contains 20 solid colors that are not dithered when drawn on a dialog background. These
solid-colors are ideal for background colors with DDT dialogs in 256-color mode.

Conversely, when using a non-solid RGB color value, Windows will dither (approximate)
the color to draw the dialog, using combinations of two or more colors. This usually
produces an undesirable pattern effect.

To avoid these problems when in 256-color mode, dialogs should either be colored with
one of the 20 standard (solid) system colors, or the default color should be used instead.
PowerBASIC includes the following 10 built-in equates for help with the selection of a
standard solid color:

%RGB_BLACK %RGB_BLUE %RGB_GREEN %RGB_CYAN %RGB_RED
%RGB_MAGENTA %RGB_YELLOW %RGB_WHITE %RGB_GRAY %RGB_LIGHTGRAY

Many non standard colors are also built into the compiler, see the Built In RGB Color
Equates topic for a complete list.

PowerBASIC Compiler for Windows Version 10

700 / 2126

If you prefer to disable color in 256-color mode, the number of colors can be easily tested
with the following code:

' Determine number of colors
LOCAL hDC AS DWORD, iColors AS LONG

hDC = GetWindowDC(GetDeskTopWindow())
iColors = 2& ^ (GetDeviceCaps(hDC, %BITSPIXEL) * GetDeviceCaps(hDC, %
PLANES))
ReleaseDC GetDeskTopWindow(), hDC
IF iColors > 256 THEN _
DIALOG SET COLOR hDlg, -1, RGB(0,100,192)

In 256-color mode on most computers, the values of the standard 20 system colors can
be found by requesting the first and last 10 (0 to 9, and 246 to 255 inclusive) entries from
the GetSystemPaletteEntries API function, as follows:

' Fill array with solid colors
DIM hDC AS DWORD, Cols AS LONG, x AS LONG

hDC = GetWindowDC(GetDesktopWindow)
Cols = GetDeviceCaps(hDC, %NUMRESERVED)
REDIM lp(1 TO Cols) AS LONG
x& = GetSystemPaletteEntries(hDC, 0, Cols \ 2, BYVAL VARPTR(lp(1)))
x& = GetSystemPaletteEntries(hDC, 256 - x&, Cols - x&, BYVAL
VARPTR(lp(x& + 1)))
ReleaseDc GetDesktopWindow, hDC
' Array lp() now contains the solid color table

For more information on working with palettes in 256-color mode, please consult
WIN32.HLP or visit http://msdn.microsoft.com.

When dynamically changing colors of a dialog from within a callback (i.e., after the

statement), a DIALOG SET COLOR statement should be immediately followed by
an explicit DIALOG REDRAW statement.
Without a forced dialog redraw, the dialog background color change may not become
evident to the user until the dialog is eventually repainted in the normal course of user
interaction. For example, a normal repaint may only occur if the dialog becomes obscured
and then uncovered by another window. Ensuring a timely repaint of the dialog will
guarantee the dialog maintains an up-to-date appearance at all times.

See also Built In RGB Color Equates, Dynamic Dialog Tools, CONTROL REDRAW,
DIALOG REDRAW, CONTROL SET COLOR, DIALOG SET ICON

Example DIALOG NEW 0, "Dialog",,, 160, 120, TO hDlg

' Set the color with an RGB value
DIALOG SET COLOR hDlg, -1, RGB(0,0,255)

' Or we could use the built-in %BLUE equate:
DIALOG SET COLOR hDlg, -1, %BLUE

DIALOG SET ICON statement

DIALOG SET ICON statement
Purpose Change both the dialog icon in the caption, and the icon shown in the ALT+TAB task list.

Syntax DIALOG SET ICON hDlg, newicon$

Remarks DIALOG SET ICON changes both the small icon (as used in the dialog caption bar), and
the large icon (visible in the icon task list presented during ALT+TAB task switching).

http://msdn.microsoft.com
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

701 / 2126

hDlg Handle of the dialog that is to have its icon changed.

newicon$ A string expression which specifies the name of the icon in the resource file. If the icon
resource uses an integral identifier, newicon$ should begin with a Number symbol (#),
followed by the integral identifier in ASCII format. For example, "#998". Otherwise, the text
identifier name should be used.

Restrictions DIALOG SET ICON cannot use bitmap files. 32x32 pixel icons produce the most visually
pleasing results.

See also Dynamic Dialog Tools, CONTROL ADD IMAGE, CONTROL ADD IMAGEX,
CONTROL ADD IMGBUTTON, CONTROL ADD IMGBUTTONX, CONTROL SET IMAGEX,
CONTROL SET IMGBUTTON, CONTROL SET IMGBUTTONX, DIALOG SET TEXT

DIALOG SET LOC statement

DIALOG SET LOC statement
Purpose Change the position of a dialog.

Syntax DIALOG SET LOC hDlg, x&, y&

Remarks hDlg identifies the dialog to reposition. x& and y& specify the new coordinates of the
upper-left corner of the target dialog. x& and y& are the horizontal and vertical coordinates
respectively. If the dialog was created with the PIXELS option in the DIALOG NEW
statement, the values are returned in pixel units. If the UNITS option was used (or no
scaling option was specified), the values are returned in dialog units.

If the dialog has a parent, the coordinates are relative to the upper-left corner of the parent
dialog client area. Otherwise, the coordinates are relative to the upper-left corner of the
desktop workspace.

See also Dynamic Dialog Tools, DIALOG GET CLIENT, DIALOG GET LOC, DIALOG GET SIZE,
DIALOG PIXELS, DIALOG SET SIZE, DIALOG UNITS

DIALOG SET SIZE statement

DIALOG SET SIZE statement
Purpose Change the size of a dialog.

Syntax DIALOG SET SIZE hDlg, nWide&, nHigh&

Remarks hDlg identifies the dialog to resize. nwide& and nhigh& specify the new width and height,
in dialog units, for the dialog. If the dialog was created with the PIXELS option in the
DIALOG NEW statement, the values are set in pixel units. If the UNITS option was used
(or no scaling option was specified), the values are set in dialog units.

See also Dynamic Dialog Tools, DIALOG GET CLIENT, DIALOG GET LOC, DIALOG GET SIZE,
DIALOG PIXELS, DIALOG SET CLIENT, DIALOG SET LOC, DIALOG UNITS

DIALOG SET TEXT statement

DIALOG SET TEXT statement
Purpose Set the text in a dialog or window caption.

Syntax DIALOG SET TEXT hDlg, titletext$

Remarks The caption of the dialog or window specified by hDlg is set with the DIALOG SET TEXT

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

702 / 2126

statement. For DDT dialogs, hDlg is the dialog handle returned by the DIALOG NEW
statement. In a dialog Callback Function, the CB.HNDL function will return the parent
dialog handle and this can also be used with DIALOG SET TEXT.

titletext$ The caption text is specified in titletext$. If the window or dialog is invalid, the operation is
ignored.

Restrictions hDlg is a dialog or window handle, so DIALOG SET TEXT works with both DDT dialogs
and conventional windows and dialogs.

See also Dynamic Dialog Tools, CB Callback functions, CONTROL GET TEXT,
CONTROL SET TEXT, DIALOG GET TEXT, DIALOG NEW, DIALOG SET ICON

Example DIALOG SET TEXT hDlgMine, "This is my dialog!"

DIALOG SET USER statement

DIALOG SET USER statement
Purpose Set a value in the user data area of a DDT dialog.

Syntax DIALOG SET USER hDlg, index&, usrval&

Remarks Each DDT dialog has a user data area consisting of eight Long-integer values which may
be used at the programmer's discretion to save relevant data. DIALOG SET USER allows
one of the values to be set, based upon the index parameter value (1 through 8).

hDlg refers to the dialog that owns the user data area.

index& is the index number of the user data value to set, in the range 1 to 8 inclusive.

usrval& is the Long-integer data value to store in the user data area.

Restrictions Data in the user data area is lost when the dialog is destroyed. The data area is
completely separate from the %GWL_USERDATA area maintained by Windows.

See also Dynamic Dialog Tools, COMBOBOX SET USER, CONTROL GET USER,
CONTROL SET USER, DIALOG GET USER, LISTBOX GET USER, LISTBOX SET
USER, LISTVIEW GET USER, LISTVIEW SET USER, TREEVIEW GET USER,
TREEVIEW SET USER

DIALOG SHOW MODAL statement

DIALOG SHOW MODAL statement
Purpose Display and activate a dialog, allowing it to receive user input and messages. The

DIALOG SHOW MODAL statement blocks (halts) until the dialog is destroyed with
DIALOG END.

Syntax DIALOG SHOW MODAL hDlg [[,] CALL callback] [TO lResult&]

Remarks hDlg identifies a dialog created using DIALOG NEW. You can specify a Callback Function
for all dialog messages using the CALL keyword, followed by the name of the Callback
Function.

When a modal dialog is displayed, the DIALOG SHOW MODAL statement is blocked
until the dialog is destroyed with DIALOG END. During the duration of the dialog, the
Callback Function code is executed in response to messages for the dialog.

If a parent was specified in the DIALOG NEW statement, the parent window is disabled
until the modal dialog is destroyed.

callback If specified, dialog messages are routed to the nominated Callback Function.

Just before a dialog is initially displayed, the dialog Callback Function is sent a %

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

703 / 2126

WM_INITDIALOG message. By processing this message within the dialog callback, an
application can take the opportunity to load controls with data before the controls become
visible to the user. For example, a list box control could be loaded with a list of items so
that the control appears populated with data when initially displayed.

The nominated callback function name must be a CALLBACK FUNCTION or a compile-
time Error 547 ("Callback function required") will occur.

lResult& When the modal dialog is destroyed using the DIALOG END statement, the resulting
value is assigned to the lResult& variable, if specified. lResult& is excluded from
becoming a Register variable by the compiler, since this value can be assigned from
outside of the function containing the DIALOG SHOW MODAL statement, and this may
only be performed with a memory variable. However, if the target variable is explicitly
declared as a register variable, PowerBASIC raises a compile-time Error 491 ("Invalid
register variable").

See also Dynamic Dialog Tools, DIALOG END, DIALOG NEW, DIALOG SHOW MODELESS

DIALOG SHOW MODELESS statement

DIALOG SHOW MODELESS statement
Purpose Display and activate a dialog, allowing it to receive user input and messages. Execution

of the code continues at the same time as the dialog is displayed. Modeless dialogs
require a message pump to be running for the duration of the dialog.

Syntax DIALOG SHOW MODELESS hDlg [[,] CALL callback] [TO lResult&]

Remarks hDlg identifies a dialog created using DIALOG NEW. You can specify a Callback Function
for all dialog messages, using the CALL keyword followed by the name of the Callback
Function.

Once a modeless dialog is displayed, the DIALOG SHOW MODELESS statement
completes, and execution of the code continues. At the same time, the dialog can receive
messages and process them via the Callback Function. A DIALOG SHOW MODELESS
statement is usually followed by a message pump loop. For more information, please
refer to the examples under DIALOG DOEVENTS.

callback If specified, dialog messages are routed to the nominated Callback Function.

The nominated callback function name must be a CALLBACK FUNCTION or a compile-
time Error 547 ("Callback function required") will occur.

lResult& When the modeless dialog is destroyed using the DIALOG END statement, the resulting
value is assigned to the lResult& variable, if specified. lResult& is excluded from
becoming a Register variable by the compiler, since this value can be assigned from
outside of the function containing the DIALOG SHOW MODELESS statement, and this
may only be performed with a memory variable. However, if the target variable is explicitly
declared as a register variable, PowerBASIC raises a compile-time Error 491 ("Invalid
register variable").

See also Dynamic Dialog Tools, DIALOG DOEVENTS, DIALOG END, DIALOG NEW,
DIALOG SHOW MODAL

DIALOG SHOW STATE statement

DIALOG SHOW STATE statement
Purpose Change the visible state of a dialog.

Syntax DIALOG SHOW STATE hDlg, showstate& [TO lResult&]

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

704 / 2126

Remarks DIALOG SHOW STATE changes the visible state of the dialog identified by hDlg.

showstate& can be one of the following values:

%SW_HIDE Hide the dialog.

%SW_MAXIMIZE Maximize the specified dialog.

%SW_MINIMIZE Minimize the specified dialog.

%SW_RESTORE Activate and display the dialog. If the dialog is
minimized or maximized, Windows restores it to its
original size and position. An application should specify
this flag when restoring a minimized dialog.

%SW_SHOW Activate the dialog and displays it in its current size and
position.

%SW_SHOWMAXIMIZED Synonym of %SW_MAXIMIZE.

%SW_SHOWMINIMIZED Activate the dialog and minimize it.

%SW_SHOWNA Display the dialog in its current state without activating
it. The currently active window remains active.

%
SW_SHOWNOACTIVATE

Display the dialog in its most recent size and position
without activating it. The currently active window remains
active.

%SW_SHOWNORMAL Activate and display the dialog. If the dialog is
minimized or maximized, Windows restores it to its
original size and position.

If the optional lResult& parameter is used, it will contain the previous visibility state. If
lResult& is set to TRUE (non-zero), the dialog was visible. If the dialog was previously
hidden, lResult& is set to FALSE (zero).

Restrictions In previous versions of PowerBASIC, the DIALOG SHOW STATE was not permitted to be
executed before a DIALOG SHOW MODAL or DIALOG SHOW MODELESS statement
had been executed for that specific dialog. Starting with this version of PowerBASIC,
DIALOG SHOW STATE may be executed before or after the dialog is activated with
DIALOG SHOW MODAL or DIALOG SHOW MODELESS statement.

When utilized prior to dialog activation, the attributes %SW_HIDE, %SW_MAXIMIZE, and
%SW_MINIMIZE are remembered for use when activated. All other possible attributes are
translated to the standard %SW_SHOW. Generally speaking, it is unwise to use %
SW_HIDE with a modal dialog.

DIALOG SHOW STATE can be used to show a dialog before the message pump for a
modeless dialog begins operating (i.e., after the DIALOG SHOW MODELESS statement,
etc). However, until the message pump begins its operation, the dialog may not be drawn
or displayed completely.

For more information on message pumps, see DIALOG DOEVENTS and
DIALOG SHOW MODELESS.

See also Dynamic Dialog Tools, CONTROL SHOW STATE, DIALOG DOEVENTS, DIALOG HIDE,
DIALOG MAXIMIZE, DIALOG MINIMIZE, DIALOG NONSTABLE, DIALOG NORMALIZE,
DIALOG SHOW MODAL, DIALOG SHOW MODELESS, DIALOG STABILIZE

DIALOG STABILIZE statement

Keyword Template
Purpose

Syntax

Remarks

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

705 / 2126

See also

Example

DIALOG STABILIZE statement
Purpose Make a Dialog stabilized (non-closeable).

Syntax DIALOG STABILIZE hDlg

Remarks The Dialog identified by the handle hDlg is stabilized, meaning that it cannot be closed
by the user. If there is a system menu, the close option and the close box are grayed.
 The ALT-F4 close key is disabled. This allows you to be certain that your operations on
the dialog can be completed. When a dialog is stabilized, only DIALOG END or program
termination will close it.

See also DIALOG END, DIALOG NONSTABLE

DIALOG UNITS statement

DIALOG UNITS statement
Purpose Convert dialog units into pixels.

Syntax DIALOG UNITS hDlg, x&, y& TO PIXELS xx&, yy&

Remarks The dialog units specified in the x& and y& variables are converted into pixels, based on
the default font of the dialog specified by hDlg. The resultant pixel values are stored in the
xx& and yy& variables.

See also Dynamic Dialog Tools, CONTROL GET CLIENT, DIALOG GET CLIENT,
DIALOG GET LOC, DIALOG GET SIZE, DIALOG PIXELS, DIALOG SET LOC,
DIALOG SET SIZE

DIM statement

DIM statement
Purpose Declare and dimension arrays, scalar variables, and pointers.

Syntax Arrays:

DIM var[(subscripts)] [AS [GLOBAL | INSTANCE | LOCAL | STATIC |
THREADED]type] [PTR | POINTER] [AT address] [, ...]
DIM var[(subscripts)] ' var may include a type-specifier

Scalar variables:

DIM var AS [GLOBAL | INSTANCE | LOCAL | STATIC | THREADED] type
[PTR |POINTER] [, ...]
DIM var ' var must include a type-specifier

Remarks DIM declares var to be a variable or array whose type is specified by appending a
type-specifier to the name or by using the AS type keyword. If the AS clause is
used, the variable name cannot end with a type-specifier character.

DIM can only be used inside a SUB, FUNCTION, METHOD, or PROPERTY.
Outside of Subs, Functions, Methods, or Properties, use GLOBAL or INSTANCE
to declare variables and arrays.

DIM can also be used to dimension an "absolute array" - one that occupies a
specific location in memory. This can be useful to dynamically "superimpose"

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

706 / 2126

one type of array directly over the top of an existing block of memory (which
could be another type of array, or data structure). This would form a Union-like
overlay structure. See below.

In addition, it is possible to create an array of pointers with the DIM statement,
and it is also possible to do so at a specific location in memory. This is termed
an "absolute pointer array".

Dimensioning arrays

subscripts may take one of the following forms for each array dimensioned:

(a) A comma-delimited list of one or more Long-integer expressions, each
defining a dimension of the array. This form is used to declare arrays whose
subscript (index) range starts at 0. For example, the following lines are
equivalent ways of dimensioning the same array:

DIM lArray(20) AS LONG ' With an AS type clause
or

DIM lArray&(20) ' With a type-specifier

Both lines above define a one dimension Long-integer array that has 21
elements, from lArray(0) to lArray(20) inclusive. The second line uses a type-
specifier symbol to specify the

, and this uses a simplified syntax (trailing clauses/keywords are not
permitted). The simplified syntax is only valid for data types that have a type-
specifier symbol ($, !, @, @@, #, ##, %, &, &&, ?, ??, ???), or the
specifier can be omitted if there is a DEFtype statement in effect. The
specifier must be omitted if #DIM ALL is in effect.
Declarations of multiple-dimension arrays take the following forms:

DIM sArray(20,40,2) AS STRING
or

DIM sArray$(20,40,2)

These two lines of code define a dynamic string array with three dimensions, 21
elements by 41 elements by 3 elements, totaling 2583 string elements. As
before, the second line uses the simplified syntax form.

(b) A comma-delimited list where both the upper and lower subscript
bounds are explicitly declared for each dimension of the array. For each
dimension, the lower bound is listed first, followed by the TO keyword, followed
by the upper bound. For example:

DIM MyArray(1 TO 20) AS LONG

…defines an array of one dimension that has 20 elements, from MyArray(1) to
MyArray(20). The lower bound does not have to be zero or one; for example:

DIM SalesByYear(1980 TO 2000) AS INTEGER
or

DIM SalesByYear%(1980 TO 2000)

Each array can access elements in the range of -2,147,483,648 to
2,147,483,647. It is recommended that an explicit variable scope clause
(GLOBAL/LOCAL/STATIC) be added to each DIM statement that uses an explicit
type clause. See Restrictions below.

Array Initialization and Absolute Arrays

PowerBASIC generates an error message when it encounters an array that
hasn't been dimensioned. If the array has already been dimensioned, the DIM
statement is ignored. A new array is not created and a run-time error is not
generated.

When a program is first executed, PowerBASIC sets each element of a numeric
array to zero, and sets each element of regular string arrays to a null string
(length zero). However, when an absolute array is Dimensioned (at a specific

PowerBASIC Compiler for Windows Version 10

707 / 2126

location in memory using the AT address syntax), PowerBASIC does not
initialize the memory occupied by the array. Further, when an absolute array is
erased, the memory is not released either. This provides a powerful mechanism
to create Union-like overlay structures in memory.

The most common use of an absolute array is when manipulating Visual Basic
arrays directly from a DLL. This involves obtaining a pointer to the array, the
element size, and the number of elements. With this information, an absolute
array can be dimensioned in PowerBASIC and the array memory manipulated
directly. Another common use involves using a large dynamic or fixed-length
string memory block, overlaid with an absolute numeric array.

Care must be exercised when using absolute arrays, since the contents of an
absolute array can only be valid for the scope of the memory the array
references. If an absolute array references memory that is LOCAL to the
procedure, the array contents become invalidated if the target memory block is
released. For example, by either explicitly deallocating the memory block, or
exiting the procedure itself. Attempting to access absolute array memory that
has been deallocated will likely trigger a General Protection Fault (GPF). On
this basis, absolute arrays should be LOCAL to the procedure in which they are
to be used.

While PowerBASIC supports LBOUND values that are non-zero, PowerBASIC
generates the most efficient code if the LBOUND parameter is omitted (i.e., the
array uses the default LBOUND of zero). You should also avoid specifying an
explicit LBOUND of zero, since this imposes a small efficiency penalty with no
meaningful benefits

Declaring scalar (non-array) variables

If you have specified #DIM ALL or OPTION EXPLICIT, you have to declare all
variables used in your programs. PowerBASIC provides a variation of the DIM
statement for this job, because of the reduced level of syntax required for scalar
variables. The following is a simplified syntax for DIM that just applies to scalar
variables:

DIM var AS [GLOBAL | INSTANCE | LOCAL | STATIC | THREADED] type
[PTR | POINTER] [, ...]
DIM var ' var must include a type-specifier

Here are some sample variable declarations:

DIM a AS LOCAL INTEGER
DIM b AS STATIC WORD
DIM c AS GLOBAL DOUBLE POINTER
DIM d AS STRINGZ * 255
DIM e AS THREADED STRING
DIM f AS INSTANCE SINGLE

AS type Type
BYTE Byte
WORD Word
INTEGER Integer
DWORD Double-word
LONG Long-integer
QUAD Quad-integer
SINGLE Single-precision floating-point
DOUBLE Double-precision floating-point
EXT Extended-precision floating-point
EXTENDED Extended-precision floating-point
CUR Currency
CURRENCY Currency
CUX Extended-currency

PowerBASIC Compiler for Windows Version 10

708 / 2126

CURRENCYX Extended-currency
STRING Dynamic (variable-length) string
WSTRING Unicode Dynamic string
STRING * x Fixed-length string
ASCIIZ * x Nul-terminated string
ASCIZ * x Nul-terminated string
STRINGZ * x Nul-terminated string
WSTRINGZ * x Unicode Nul-Terminated string
Pointer Pointer
Ptr Pointer
VARIANT Variant
IAUTOMATION Automation Interface
IDISPATCH Dispatch Interface
IUNKNOWN Direct Interface
GUID 16-byte GUID string
FIELD Field string

Restrictions LOCAL ASCIIZ, LOCAL fixed-length strings, and LOCAL UDTs are created on the
stack frame of the Sub/Function/Method/Property in which they are declared.
You must therefore use caution so that the combined local variable size does not
exceed the allocated stack size. Unless you declare otherwise, PowerBASIC
sets a default stack size of 1MB. If more stack space is required, you can
allocate it with the #STACK metastament. There are no such limitations with
GLOBAL, INSTANCE, THREADED, or STATIC variables.

When a DIM statement is used (without an explicit scope clause), to declare a
variable in a procedure, and an identical variable has already been declared as
GLOBAL, the variable in the procedure will be given GLOBAL scope. For
example:

GLOBAL xyz AS LONG
...
SUB MySub
 DIM xyz AS LONG
 ' Here, xyz is a GLOBAL variable
END SUB

To ensure that the variable scope is LOCAL to the
Sub/Function/Method/Property, use a LOCAL statement rather than a DIM
statement. Alternatively, add an explicit scope clause to the DIM statement.
For example:

GLOBAL xyz AS LONG
[statements]
SUB MySub
 DIM xyz AS LOCAL LONG
 ' Here, xyz is a LOCAL variable
END SUB

Declaring pointer variables

A pointer must be declared before it can be used. You use the DIM statement to
declare pointers, and describe the type of data to which they point. When a
pointer is declared, it is automatically initialized to a value of zero. This is known
as a null-pointer. You must remember to initialize it to a valid address, or you
will get a General Protection Fault (GPF). The syntax for declaring pointer
variables is similar to that of regular variables:

DIM var[(subscripts)] AS [GLOBAL | INSTANCE | LOCAL | STATIC |
THREADED] type [PTR | POINTER] [, ...]

Here are some examples of pointer variable declarations:

DIM a AS BYTE PTR
DIM b AS INTEGER POINTER
DIM c AS STRING PTR * 25

PowerBASIC Compiler for Windows Version 10

709 / 2126

DIM d AS MyType POINTER
DIM e(500) AS INTEGER PTR

Pointers themselves are stored as DWORD values.

Options The scope of a variable or array is set using the GLOBAL, INSTANCE, LOCAL,
STATIC, or THREADED keywords.

Restrictions When returning a pointer to a calling Sub, Function, Method, or Property, make
sure the pointer target remains valid when the current routine terminates. For
example, returning a pointer to a LOCAL variable is certain to trigger a GPF,
since local storage is released when the routine ends. In this case, the pointers
target should be STATIC, GLOBAL, or INSTANCE, or be valid within the scope of
the calling code.

IAUTOMATION, IDISPATCH, IUNKNOWN, VARIANT and GUID variables have
special uses with COM.

See also #DIM, ARRAYATTR, ERASE, GLOBAL, INSTANCE, Just what is COM?,
LOCAL, REDIM, RESET, STATIC, THREADED, Variables, Variable Scope, What
is an object, anyway?

DIR$ function

DIR$ function
Purpose Return a filename and/or directory entry that matches a file name mask and an optional

attribute.

Syntax file$ = DIR$(mask$ [, [ONLY] attribute&, TO DirDataVar])
file$ = DIR$([NEXT] [TO DirDataVar])

Remarks There are two forms to the DIR$() function. The first form, which includes a mask

 and optional attribute, is used to find the first filename which matches. The second form,
without those parameters, returns subsequent matching filenames. When the returned string
is null (zero-length), there are no further matching filenames.
The second form may optionally specify the key-word NEXT to aid in self-documentation of the
source code.

mask$ specifies a filename or path which can include a drive name and system wildcard
characters (* and ?). If the numeric attribute parameter is zero (or not specified), DIR$ returns
only "Normal" files. If mask$ is a null (zero-length) string, the function call is equivalent to the
second form of the function to find subsequent matching filenames. In that case, an optional
attribute is ignored.

If an attribute& is specified, it must use a standard operating system numeric attribute code.
 This causes DIR$ to include filenames with specific attributes in the search, in addition to
normal files. "Normal" files are those which are not hidden or system files, nor are they a
directory or a volume label.

Attribut
e

Description Equate

 0 Normal %NORMAL

 2 Hidden %HIDDEN

 4 System %SYSTEM

 8 Volume Label %VLABEL

16 Directory %SUBDIR

You can search for filenames with multiple attributes set by adding the attribute codes together.

PowerBASIC Compiler for Windows Version 10

710 / 2126

 For example, to search for hidden and system files, you'd add those codes together (2 and 4)
to get 6. All other attribute codes (except for volume label) are normally inclusive. For example,
specifying both hidden and system results in DIR$ returning all hidden files, system files,
normal files, and files that are both hidden and system.

If the ONLY option is included, normal files are excluded from the file search. For example:
DIR$(mask$, ONLY 16) just the directory entries which match mask$ are returned. Another
useful search attribute is 6, which returns normal, hidden, and system file, but no directories.

An attribute of 8 will return the volume label, if one exists. In this case, mask$ must reference
the drive letter of the target drive, and additional path information is ignored. Additionally, you
may specify a UNC name for a shared drive (subject to operating system restrictions), and
retrieve the volume label, if one exists, and you have suitable access rights. You can also
obtain the volume label for a 'hidden' share with NT/2000/XP by appending a trailing dollar
symbol to the share name.

' Retrieve volume for share \\server\drive0
A$ = DIR$("\\server\drive0", 8)

' Retrieve volume for hidden share D: (\d$)
A$ = DIR$("\\server\d$", %VLABEL)

The DIR$ function may optionally assign the complete directory entry to an appropriate UDT
variable if you include the TO clause as a parameter. The complete directory entry contains 592
bytes of data, corresponding to the following TYPE definition. This definition (DIRDATA) is built
into PowerBASIC, and need not necessarily be included in your source code. The DirData UDT
is identical to the Unicode version of the Win32_Find_Data structure used by the Windows API
for this purpose.

TYPE DirData
 FileAttributes AS DWORD
 CreationTime AS QUAD
 LastAccessTime AS QUAD
 LastWriteTime AS QUAD
 FileSizeHigh AS DWORD
 FileSizeLow AS DWORD
 Reserved0 AS DWORD
 Reserved1 AS DWORD
 FileName AS WSTRINGZ * 260
 ShortName AS WSTRINGZ * 14
END TYPE

You can declare a variable as DIRDATA for this purpose, or use any other user-defined type of at
least 592 data bytes. The additional data may be used for any other purpose in your program.

CreationTime, LastAccessTime, and LastWriteTime members of the DIRDATA can be assigned
to a PowerTime object to convert the QUAD integer (FILETIME) values for easy calculations and
conversions.

LOCAL f AS STRING
LOCAL d AS DIRDATA
LOCAL t AS IPOWERTIME

t = CLASS "PowerTime"
...
f = DIR$("c:*.*" TO d)
t.FileTime = d.CreationTime ' t contains the file creation time in a
localized format.

Previous versions of PowerBASIC used an ANSI version of DirData which was only
318 bytes in size. However, if you utilized the built-in form of DirData, your program
should execute correctly under this version with no changes needed.

Restrictio
ns

PowerBASIC performs file matching with both the long (LFN) and short (SFN) filename versions
of filenames. This means that DIR$ will also return filenames that start with the specified

PowerBASIC Compiler for Windows Version 10

711 / 2126

extension (as per standard Windows operating system behavior).

For example, A$ = DIR$("*.htm") will match filenames such as "Index.htm", "Default.html",
"Homepages.htmb", "cgilib.htmlpages", etc. Similarly, A$ = DIR$("*.h??") and DIR$("*.ht*") will
match the same filenames.

DIR$ is thread-safe, so DIR$ operations in one thread do not interfere with DIR$ operations in
another thread. However, you should be aware that specifying a new mask$ parameter always
starts an entirely new DIR$ search loop.

See also CURDIR$, DIR$ CLOSE, DISPLAY BROWSE, DISPLAY OPENFILE, FILEATTR, GETATTR,
ISFILE, PATHNAME$, PATHSCAN$, SETATTR

Example The following code shows a typical method of retrieving filenames from a directory:

DIM Listing(1000) AS DirData
DIM x&, temp$
temp$ = DIR$("*.*", TO Listing(x&))
WHILE LEN(temp$) AND x& < 1000 ' max = 1000
 INCR x&
 temp$ = DIR$(NEXT, TO Listing(x&))
WEND

DIR$ CLOSE statement

DIR$ CLOSE statement
Purpose Force the release of the operating system FindNext handle.

Syntax DIR$ CLOSE

Remarks DIR$ CLOSE will cause the operating system FindNext handle to be closed. Each time a
new DIR$() sequence is initiated within a thread, or DIR$() returns an empty

, PowerBASIC automatically closes the FindNext handle to avoid overuse of system
resources.
However, in unusual circumstances (such as a recursive directory scan with delete or
rename), it may be necessary to close the FindNext handle sooner, through the use of
this explicit statement, so that a directory can be removed or renamed.

Restrictions It is never necessary to execute DIR$ CLOSE to simply avoid a "System Handle Leak".

See also DIR$

DISKFREE function

DISKFREE function
Purpose Return the amount of available space on a disk, in bytes.

Syntax bytes&& = DISKFREE(drive$)

Remarks drive$ specifies the drive letter or UNC share name (subject to operating system
restrictions) of the disk to examine. If drive$ is an empty

, information on the default drive is returned.
Restrictions With Windows 95 versions before OSR2, and Windows NT versions before 4.0,

DISKFREE may return a negative or inaccurate value for drives larger than 2 GB.

See also DISKSIZE

Example DisplayText "Free bytes on C: " + FORMAT$(DISKFREE("C"), "#,###")

PowerBASIC Compiler for Windows Version 10

712 / 2126

DISKSIZE function

DISKSIZE function
Purpose Return the total amount of space on a disk, in bytes.

Syntax bytes&& = DISKSIZE(drive$)

Remarks drive$ specifies the drive letter or UNC share name (subject to operating system
restrictions) of the disk to examine. If drive$ is an empty

, information on the default drive is returned.
Restrictions With Windows 95 versions before OSR2, and Windows NT versions before 4.0, DISKSIZE

may return a negative or inaccurate value for drives larger than 2 GB.

See also DISKFREE

Example DisplayText "Total bytes on C: " + FORMAT$(DISKSIZE("C"), "#,###")

DISPLAY BROWSE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

DISPLAY BROWSE statement
Purpose Display a folder selection dialog to return the user's choice.

Syntax DISPLAY BROWSE [hParent], [xpos&], [ypos&], title$, start$, flags& TO
folder$

hParent Handle of the parent window or dialog. If there is no parent, use zero (0) or %
HWND_DESKTOP.

xpos& Horizontal position, in pixels, relative to the parent window. If omitted, PowerBASIC
selects the position (offset from the parent, or centered if no parent).

ypos& Vertical position, in pixels, relative to the parent window. If missing, PowerBASIC selects
the position (offset from the parent, or centered if no parent).

title$ The caption to be displayed below the caption bar of the dialog box. If this parameter is a
null string, the title "Open" is displayed.

start$ A

 which specifies the starting path to be used as the initial default folder. This may be
disabled by passing a nul, zero-length string ("").

flags& The style attributes of the BROWSE Dialog. The following values may be used alone or
combined, and are predefined in the PowerBASIC compiler:

%
BIF_BROWSEINCLUDEF
ILES (4.71)

The dialog box will display both files and folders.

%
BIF_BROWSEINCLUDEU
RLS

The dialog box can display URL's if %BIF_USENEWUI
and %BIF_BROWSEINCLUDEFILES are also set.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

713 / 2126

%
BIF_DONTGOBELOWDO
MAIN

Does not include network folders below the domain level
in the treeview control.

%BIF_EDITBOX Includes an edit control in the dialog box that allows the
user to type the name of an item.

%
BIF_NEWDIALOGSTYLE
(5.0)

Provides the new user interface, a larger dialog box that
can be resized. It also offers drag-and-drop capability
within the dialog box, reordering, shortcut menus, new
folders, delete, and other shortcut menu commands.
This is the default style implemented by PowerBASIC.

%
BIF_NONEWFOLDERBU
TTON (6.0)

Do not include the "New Folder" button in the dialog box.

%
BIF_NOTRANSLATETAR
GETS (6.0)

When the selected item is a shortcut, return the PIDL of
the shortcut itself rather than its target.

%
BIF_RETURNFSANCEST
ORS

Only returns file system ancestors. With any other
selection, the OK button is grayed.

%
BIF_RETURNONLYFSDI
RS

Only returns file system directories. With any other
selection, the OK button is grayed.

%BIF_SHAREABLE (5.0) The dialog box can display shareable resources on
remote systems. It is intended for applications that want
to expose remote shares on a local system. The %
BIF_NEWDIALOGSTYLE flag must also be set.

%BIF_UAHINT (6.0) When this flag is combined with %
BIF_NEWDIALOGSTYLE, adds a usage hint to the
dialog box in place of the edit box.

%BIF_USENEWUI (5.0) Use the new user interface, plus an edit box.

folder$ Contains the drive letter and path to the folder the user selected. If an error occurs or the
user clicks the cancel button, this variable is set to a nul, zero-length string.

See also DISPLAY COLOR, DISPLAY FONT, DISPLAY OPENFILE, DISPLAY SAVEFILE

DISPLAY COLOR statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

DISPLAY COLOR statement
Purpose Display a color selection dialog to return the user's choice.

Syntax DISPLAY COLOR [hParent], [xpos&], [ypos&], firstcolor&, custcolors, flags&
TO colorval&

hParent Handle of the parent window or dialog. If there is no parent, use zero (0) or %
HWND_DESKTOP.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

714 / 2126

xpos& Horizontal position, in pixels, relative to the parent window. If omitted, PowerBASIC
selects the position (offset from the parent, or centered if no parent).

ypos& Vertical position, in pixels, relative to the parent window. If missing, PowerBASIC selects
the position (offset from the parent, or centered if no parent).

firstcolor& Specifies the RGB color which is initially selected when the dialog box is created.

custcolors User-Defined Type variable which is used to initialize and return 16 custom colors on the
dialog. The UDT must have 16 members, each of which is a long integer or dword. They
may be scalar members, or a member array.

flags& The style attributes of the COLOR Dialog. The following values may be used alone or
combined, and are predefined in the PowerBASIC compiler:

%CC_FULLOPEN Causes the entire dialog box to appear when created,
including the section which allows the user to create
custom colors.

%
CC_PREVENTFULLOPEN

Disables the "Define Custom Colors" button,
preventing the creation of custom colors.

%CC_SHOWHELP Causes the Help Button to be displayed. The hParent
parameter must not be zero or %HWND_DESKTOP.

colorval& The RGB value of the selected color. If the user fails to make a color selection, or
chooses CANCEL, the value -1 is assigned to the colorval& variable.

Remarks If you offer the user the ability to create custom colors, it is suggested you retain the
custcolors& UDT variable without change. It may then be used again on a later invocation
of DISPLAY COLOR with the user's custom colors intact.

See also Built In RGB Color Equates, DISPLAY BROWSE, DISPLAY FONT, DISPLAY OPENFILE,
DISPLAY SAVEFILE, RGB

DISPLAY FONT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

DISPLAY FONT statement
Purpose Display a

 selection dialog to return user choices.
Syntax DISPLAY FONT [hParent], [xpos&], [ypos&], defname$, defpoints&, defstyle&,

flags& _
TO fontname$, points&, style& [,colorval&, charset&]

hParent Handle of the parent window or dialog. If there is no parent, use zero (0) or %
HWND_DESKTOP.

xpos Horizontal position, in pixels, relative to the parent window. If omitted, PowerBASIC
selects the position (offset from the parent, or centered if no parent).

ypos Vertical position, in pixels, relative to the parent window. If missing, PowerBASIC selects
the position (offset from the parent, or centered if no parent).

defname$ The name of the default, pre-selected font which will be initially highlighted when the font

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

715 / 2126

dialog is displayed. A default font may be disabled by passing a nul, zero-length

 ("").
defpoints& The point size of the default, pre-selected font.

defstyle& The style attribute of the default, pre-selected font. See the specific definition of style&
below.

flags& The style attributes of the FONT Dialog. The following values may be used alone or
combined, and are predefined in the PowerBASIC compiler:

%CF_BOTH Causes the dialog box to list both screen and printer
fonts.

%CF_TTONLY Specifies that Font selection dialog should only
enumerate and allow the selection of TrueType fonts.

%CF_EFFECTS Specifies that Font selection dialog should enable
strikeout, underline, and color effect choices.

%
CF_FIXEDPITCHONLY

Specifies that Font selection dialog should select only
fixed-pitch fonts.

%
CF_FORCEFONTEXIST

Specifies that Font selection dialog should indicate an
error condition if the user attempts to select a font or style
that does not exist.

%CF_NOSTYLESEL Specifies that Font selection dialog should not make an
initial style selection.

%CF_NOSIZESEL Specifies that Font selection dialog should not make an
initial size selection.

%CF_NOSIMULATIONS Specifies that Font selection dialog should not allow
graphics device interface (GDI) font simulations.

%
CF_NOVECTORFONTS

Specifies that Font selection dialog should not allow
vector font selections.

%CF_PRINTERFONTS Causes the Font selection dialog box to list only the fonts
supported by the printer.

%CF_SCALABLEONLY Specifies that Font selection dialog should allow only the
selection of scalable fonts. (Scalable fonts include vector
fonts, scalable printer fonts, TrueType fonts, and fonts
scaled by other technologies.)

%CF_SCREENFONTS Causes the Font selection dialog box to list only the
screen fonts supported by the system.

%CF_WYSIWYG Specifies that the Font selection dialog should allow only
the selection of fonts available on both the printer and the
display. If this flag is specified, the %CF_BOTH and %
CF_SCALABLEONLY flags should also be specified.

fontname$ The name of the font selected by the user

points& The point size of the font selected by the user.

style& The style attribute of the selected font. Any of the following values can be combined or
used alone:

0 Normal
1 Bold
2 Italic
4 Underline
8 Strikeout

For example, if a style& value of 3 is returned, it specifies that a combination of both bold
and italic attributes was selected by the user.

colorval& The RGB value of the selected color.

charset& The chosen character set - 0 if a standard U.S. charset.

See also CONTROL SET FONT, DIALOG DEFAULT FONT, DISPLAY BROWSE, DISPLAY

PowerBASIC Compiler for Windows Version 10

716 / 2126

COLOR, DISPLAY OPENFILE, DISPLAY SAVEFILE, FONT END, FONT NEW,
GRAPHIC SET FONT, XPRINT SET FONT

DISPLAY OPENFILE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

DISPLAY OPENFILE statement
Purpose Display an OpenFile selection dialog to return user choices.

Syntax DISPLAY OPENFILE [hParent], [xpos&], [ypos&], title$, folder$, filter$, _
 start$, defextn$, flags& TO filevar$ [,countvar&]

hParent Handle of the parent window or dialog. If there is no parent, use zero (0) or %
HWND_DESKTOP.

xpos& Horizontal position, in pixels, relative to the parent window. If omitted, PowerBASIC
selects the position (offset from the parent, or centered if no parent).

ypos& Vertical position, in pixels, relative to the parent window. If missing, PowerBASIC selects
the position (offset from the parent, or centered if no parent).

title$ The title to be displayed in the title bar of the dialog box. If this parameter is a null

, the title "Open" is displayed.
folder$ The name of the initial file directory to be displayed. If this parameter is a null string, the

current directory is used. Future invocations remember and use the ending directory,
rather than honoring a null string for the current directory.

filter$ A string expression containing pairs of null-terminated filter strings. The first string in
each pair describes the filter, and the second the filter pattern. For example, if you wish
to display BASIC source files, you might use an expression like:

"BASIC" + CHR$(0) + "*.BAS" + CHR$(0)

A simpler method using the unique characteristics of the CHR$() function in PowerBASIC
to achieve the same result:

CHR$("BASIC", 0, "*.BAS", 0)

Multiple filters can be designated for a single item by separating filter pattern strings with
a semicolon:

CHR$("BASIC", 0, "*.BAS;*.INC;*.BAK", 0)

start$ A string which specifies the starting file name to be used as the initial file selection. This
may be disabled by passing a null, zero-length string ("").

defextn$ A default extension to be appended to the selected file name if the user does not enter it.
 This may be disabled by passing a null, zero-length string ("").

flags& The style attributes of the OPENFILE Dialog. The following values may be used alone or
combined, and are predefined in the PowerBASIC compiler:

%OFN_ALLOWMULTISELECT Multiple selections are allowed. If the user
chooses multiple items, the return value consists
of multiple file names which are null-terminated.

%OFN_CREATEPROMPT The user may specify a file which does not exist.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

717 / 2126

%OFN_ENABLESIZING The dialog may be resized by the user, but future
invocations remember and use the ending size and
screen location, rather than honoring xpos and
ypos parameter values. The position parameters
are ignored.

%OFN_EXPLORER The dialog uses the Explorer style interface. This
is the default condition, even if the flag is not set.

%OFN_FILEMUSTEXIST The user may not specify a file which does not
exist.

%
OFN_NODEREFERENCELINK
S

The dialog returns the name of the selected
shortcut (.LNK) file. If this value is not given, the
name of the file referenced by the shortcut is
returned.

%OFN_NONETWORKBUTTON Hides and disables the network button.
%OFN_NOTESTFILECREATE The file is not created before the dialog is closed.
%OFN_NOVALIDATE The file name is not validated for invalid characters.
%OFN_PATHMUSTEXIST The user may type only valid paths and filenames.
%OFN_SHAREAWARE If the dialog fails because of a network sharing

violation, the error is ignored and the selected
filename is returned.

%OFN_SHOWHELP The help button is displayed.

Return Values

filevar$ If the user selects one file, this variable receives the drive, path, and name of that file,
followed by a $NUL terminator. If the user selects no files, an error occurs, or
cancel/close is chosen, this variable is set to a null, zero-length string.

If the user selects multiple files, and specified the flag %OFN_ALLOWMULTISELECT, the
returned string consists of the path name (which applies to all selected files), followed by
each of the file names of the selected files. Each of these text items are delimited in the
returned string by a nul - CHR$(0). You can extract each of the multiple names with the
PARSE$() function or the PARSE statement.

Windows imposes a text limit of 32K (32,768 bytes) for the returned string value. If it is
exceeded, a nul, zero-length string is returned.

countvar& If this optional long integer variable is included, it receives a count of the number of file
names which were selected by the user.

Remarks The current default directory is never altered by this statement, even if the user changes
the directory while searching for files.

See also DISPLAY BROWSE, DISPLAY COLOR, DISPLAY FONT, DISPLAY SAVEFILE

DISPLAY SAVEFILE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

DISPLAY SAVEFILE statement
Purpose Display a SaveFile selection dialog to return user choices.

PowerBASIC Compiler for Windows Version 10

718 / 2126

Syntax DISPLAY SAVEFILE [hParent], [xpos&], [ypos&], title$, folder$, filter$, _
 start$, defext$, flags& TO filevar$ [,countvar&]

hParent Handle of the parent window or dialog. If there is no parent, use zero (0) or %
HWND_DESKTOP.

xpos& Horizontal position, in pixels, relative to the parent window. If omitted, PowerBASIC
selects the position (offset from the parent, or centered if no parent).

ypos& Vertical position, in pixels, relative to the parent window. If missing, PowerBASIC selects
the position (offset from the parent, or centered if no parent).

title$ The title to be displayed in the title bar of the dialog box. If this parameter is a null

, the title "Save As" is displayed.
folder$ The name of the initial file directory to be displayed. If this parameter is a null string, the

current directory is used.

filter$ A string expression containing pairs of null-terminated filter strings. The first string in
each pair describes the filter, and the second the filter pattern. For example, if you wish
to display BASIC source files, you might use an expression like:

"BASIC" + CHR$(0) + "*.BAS" + CHR$(0)

A simpler method using the unique characteristics of the CHR$() function in PowerBASIC
to achieve the same result:

CHR$("BASIC", 0, "*.BAS", 0)

Multiple filters can be designated for a single item by separating filter pattern strings with
a semicolon:

CHR$("BASIC", 0, "*.BAS;*.INC;*.BAK", 0)

start$ A string which specifies the starting file name to be used as the initial file selection. This
may be disabled by passing a nul, zero-length string ("").

defext$ A default extension to be appended to the selected file name if the user does not enter it.
 This may be disabled by passing a nul, zero-length string ("").

flags& The style attributes of the SAVEFILE Dialog. The following values may be used alone or
combined, and are predefined in the PowerBASIC compiler:

%OFN_ALLOWMULTISELECT Multiple selections are allowed. If the user
chooses multiple items, the return value consists
of multiple file names which are null-terminated.

%OFN_CREATEPROMPT The user may specify a file which does not exist.
%OFN_ENABLESIZING The dialog may be resized by the user, but future

invocations remember and use the ending size and
screen location, rather than honoring xpos and
ypos parameter values. The position parameters
are ignored.

%OFN_EXPLORER The dialog uses the Explorer style interface. This
is the default condition, even if the flag is not set.

%OFN_FILEMUSTEXIST The user may not specify a file which does not
exist.

%
OFN_NODEREFERENCELINK
S

The dialog returns the name of the selected
shortcut (.LNK) file. If this value is not given, the
name of the file referenced by the shortcut is
returned.

%OFN_NONETWORKBUTTON Hides and disables the network button.
%OFN_NOTESTFILECREATE The file is not created before the dialog is closed.
%OFN_NOVALIDATE The file name is not validated for invalid characters.
%OFN_PATHMUSTEXIST The user may type only valid paths and filenames.
%OFN_OVERWRITEPROMPT The user may select a filename that already

exists.
%OFN_SHAREAWARE If the dialog fails because of a network sharing

violation, the error is ignored and the selected

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

719 / 2126

filename is returned.
%OFN_SHOWHELP The help button is displayed.

Return Values

filevar$ If the user selects one file, this variable receives the drive, path, and name of that file. If
the user selects no files, an error occurs, or cancel/close is chosen, this variable is set to
a nul, zero-length string.

If the user selects multiple files, and specified the flag %OFN_ALLOWMULTISELECT, the
returned string consists of the path name (which applies all selected files), followed by
each of the file names of the selected files. Each of these text items are delimited in the
returned string by a nul - CHR$(0). You can extract each of the multiple names with the
PARSE$() function or the PARSE statement.

Windows imposes a text limit of 32K (32,768 bytes) for the returned string value. If it is
exceeded, a nul, zero-length string is returned.

countvar& If this optional long integer variable is included, it receives a count of the number of file
names which were selected by the user.

Remarks The current default directory is never altered by this statement, even if the user changes
the directory while searching for files.

See also DISPLAY BROWSE, DISPLAY COLOR, DISPLAY FONT, DISPLAY OPENFILE

DLLMAIN function

LIBMAIN function
Purpose LIBMAIN (or its synonym DLLMAIN) is an optional user-defined function called by

Windows each time a DLL is loaded into, and unloaded from, memory. The PBLIBMAIN
function performs a similar task to LIBMAIN, but takes no parameters.

Syntax FUNCTION { LIBMAIN | DLLMAIN } (_
 BYVAL hInstance AS DWORD, _
 BYVAL lReason AS LONG, _
 BYVAL lReserved AS LONG) AS LONG

In 32-bit Windows, LIBMAIN is called by Windows each time a DLL is loaded
or unloaded by an application or process, and (usually) when a thread is
started and stopped. Your code should never call LIBMAIN.

Remarks The LIBMAIN / DLLMAIN function provides the following parameters:

hInstance The unique instance handle of the DLL. This handle is used by the calling application to
identify the DLL. The instance handle value is commonly used to load resources
embedded within the DLL, and to obtain the actual file name of the DLL (via the
GetModuleFilename API function). In these cases, it is common to copy the hInstance
value to a global variable, allowing the instance handle value to be utilized elsewhere in
the DLL.

lReason This flag indicates why the DLL entry-point is being called. It can be one of the following
values (as defined in WIN32API.INC):

%
DLL_PROCESS_ATTACH

Indicates that the DLL is being loaded by a process
(another DLL or EXE is loading the DLL). DLLs can use
this opportunity to initialize any instance or global data,
such as arrays. lReserved is zero if the DLL is being
loaded explicitly (run-time linking) using LoadLibrary(), or
non-zero if the DLL is being loaded implicitly (load-time
linking) during process initialization.

%
DLL_PROCESS_DETACH

Indicates that the DLL is being cleanly unloaded or
detached from the calling application. DLLs can take
this opportunity to clean up all resources for all threads

WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

720 / 2126

attached and known to the DLL. This is functionally
equivalent to the WEP function in 16-bit DLLs.
lReserved is zero if LIBMAIN was executed via the
FreeLibrary API and the DLLs reference count reached
zero (no further instances of the DLL are loaded), or non-
zero if LIBMAIN is executed during process termination.
A %DLL_PROCESS_DETACH does not generate %
DLL_THREAD_DETACH for active threads.

%DLL_THREAD_ATTACH Indicates that the DLL is being loaded by a new thread
in the calling application. DLLs can use this opportunity
to initialize any Thread Local Storage (TLS). This
execution occurs in the context of the new thread.

%DLL_THREAD_DETACH Indicates that the thread is exiting cleanly. If the DLL
has allocated any thread-specific storage (Thread Local
Storage or TLS), it should be released. This may occur
even if there was no matching %DLL_THREAD_ATTACH
call. A %DLL_PROCESS_DETACH does not generate
%DLL_THREAD_DETACH for active threads.

lReserved The lReserved parameter specifies further aspects of the DLL initialization and cleanup. If
lReason is %DLL_PROCESS_ATTACH, lReserved is zero (0) for explicit (dynamic) loads
and non-zero for implicit loads. If lReason is %DLL_PROCESS_DETACH, lReserved is
zero if LIBMAIN has been called by using the FreeLibrary API call, and non-zero if
LIBMAIN has been called during process termination.

Return value If LIBMAIN is called with %DLL_PROCESS_ATTACH, your LIBMAIN function should
return a zero (0) if any part of your initialization process fails, or a one (1) if no errors were
encountered. If a zero is returned, Windows will abort and unload the DLL from memory.
When LIBMAIN is called with any other value than %DLL_PROCESS_ATTACH, the return
value is ignored.

Restrictions Note that Windows does not guarantee that LIBMAIN will be called in a "balanced"
manner. For example, a %DLL_PROCESS_ATTACH is not followed by a %
DLL_THREAD_ATTACH for the primary thread. In some conditions, %
DLL_THREAD_DETACH may not occur at all. Further discussion on these Windows traits
are beyond the scope of this documentation; however, an excellent source of information
can be found in "Win32 Programming", Rector/Newcomer, ISBN 0-201-63492-9.

At the point where a DLL is loaded into memory during process startup, Windows only
guarantees that the KERNEL32.DLL system library will be loaded in memory. On this
basis, API calls made from within LIBMAIN must be restricted to the range of API
functions present in KERNEL32.DLL, with the exception of the LoadLibrary,
LoadLibraryEx, and FreeLibrary API functions.

In addition, code within LIBMAIN must not call API functions in any other DLL (for
example, USER32.DLL, SHELL32.DLL, ADVAPU32.DLL, GDI32.DLL, etc), because
some API functions in those DLLs may attempt to load other libraries via LoadLibrary, etc.
For example, never call the MessageBox API function from within LIBMAIN, nor use the
related MSGBOX function or MSGBOX statement.

Failure to observe these restrictions will result in Access Violation or General Protection
Faults (GPFs), typically caused by the execution of code in DLLs that has yet to be
initialized.

See also DLLMAIN, PBLIBMAIN, PBMAIN, THREAD CREATE, WINMAIN

Example #DIM ALL
#COMPILE DLL "LIBTEST.DLL"
#INCLUDE "WIN32API.INC"

GLOBAL gNumOfTimes AS DWORD

FUNCTION LIBMAIN(BYVAL hInstance AS DWORD, _
 BYVAL lReason AS LONG, _

PowerBASIC Compiler for Windows Version 10

721 / 2126

 BYVAL lReserved AS LONG) AS LONG

 INCR gNumOfTimes

 SELECT CASE AS LONG lReason

 CASE %DLL_PROCESS_ATTACH
 ' This DLL has been mapped into the memory context of
 ' the calling program, and can be initialized as required.
 ' Here we return a non-zero LIBMAIN result to indicate success.
 LIBMAIN = 1
 EXIT FUNCTION

 CASE %DLL_PROCESS_DETACH
 ' This DLL is about to be unloaded
 EXIT FUNCTION

 CASE %DLL_THREAD_ATTACH
 ' A [New] thread is starting (see THREADID)
 EXIT FUNCTION

 CASE %DLL_THREAD_DETACH
 ' This thread is closing (see THREADID)
 EXIT FUNCTION

 END SELECT

 ' Theoretically execution should never get to this point.
 ' However, if the DLL is being implicitly linked then return
 ' Zero (0) and the process (program) will fail to start
 ' running. For Explicit linking, returning Zero (0) will
 ' simply cause the LoadLibrary/LoadLibraryEx API call to fail.
 LIBMAIN = 0 ' Indicate failure to initialize the DLL!
END FUNCTION

SUB TestIt ALIAS "TestIt" () EXPORT
 MSGBOX "TestIt" + $CRLF + _"gNumOfTimes =" + STR$(gNumOfTimes)
END SUB

DO/LOOP statements

DO/LOOP statements
Purpose Define a group of program statements that are executed repetitively as long as a certain

condition is met.

Syntax DO [{WHILE | UNTIL} expression]
 [statements]
 [EXIT LOOP]
 [statements]
 [ITERATE LOOP]
 [statements]
LOOP [{WHILE | UNTIL} expression]

Remarks expression is a numeric expression, in which non-zero values represent logical TRUE, and
zero values represent logical FALSE. If a string expression is used (i.e., A$ <> ""),
PowerBASIC returns TRUE if the length of result of the string expression is greater than
zero.

DO/LOOP statements are extremely flexible. They can be used to create loops for

PowerBASIC Compiler for Windows Version 10

722 / 2126

almost any imaginable programming situation. They allow you to create loops with the
test for the terminating condition at the top of the loop, the bottom of the loop, both
places, or none of the above.

A DO statement must always be paired with a matching LOOP statement at the bottom of
the loop. Failure to match each DO with a LOOP results in either a compile-time
Error 448 ("DO loop expected") or an Error 456 ("LOOP/WEND expected").

The WHILE and UNTIL keywords are used to add tests to a DO/LOOP. Use the WHILE if
the loop should be repeated if expression is TRUE, and terminated if expression is
FALSE. UNTIL has the opposite effect; that is, the loop will be terminated if expression is
TRUE, and repeated if FALSE.

For example:

DO WHILE a = 13
 [statements]
LOOP

executes the statements between DO and LOOP as long as a is 13. If a is not 13
initially, the statements in the loop are never executed. Conversely:

DO UNTIL a = 13
 [statements]
LOOP

executes the statements between DO and LOOP as long as a is not 13. If a equals 13
initially, the loop is never executed.

At any point in a DO/LOOP, you can include an EXIT LOOP or ITERATE LOOP
statement. EXIT LOOP causes the loop to terminate, so that execution continues after
the terminating loop statement. ITERATE LOOP causes the loop to continue at the
terminating loop statement.

The WHILE/WEND statements can be used in many cases to perform the same functions
as DO/LOOP. For example, this DO/LOOP:

DO WHILE a < b
 [statements]
LOOP

has the same effect as this WHILE/WEND loop:

WHILE a < b
 [statements]
WEND

When using nested loops, be careful that inner loops do not modify variables that are
used by the outer loop's terminating condition test. For example, the following code was
intended to get all 20 elements of a 10x2 array (dimensioned arry(9,1)):

Count1 = 0
DO WHILE Count1 < 10
 FOR Count2 = 0 TO 1
 x = arry(Count1,Count2)
 Count1 = Count1 + 1
 NEXT Count2
LOOP

Because Count1 is incremented within the inner loop, which executes twice for each pass
through the outer loop, this code would not get all the array values, but would only get the
values for arry(0,0), arry(1,1), arry(2,0), arry(3,1) and so on. By moving the Count1 =
Count1 + 1 statement to just below the NEXT Count2 statement, the code functions as
intended.

If an EXIT LOOP statement is used within nested loops, it exits only the current loop, not
the entire nest. Similarly, an ITERATE within nested loops iterates the current loop. For
advice on exiting nested block structures, please refer to the EXIT statement. The
PowerBASIC

PowerBASIC Compiler for Windows Version 10

723 / 2126

 can be used to construct multiple test conditions for loop control. For example:
DO WHILE x < 10 AND y < 10
 [statements]
LOOP

is executed only as long as both x and y are less than 10. Similarly, the loop:

DO UNTIL X > 10 OR Y > 10
 [statements]
LOOP

is executed until either x or y (or both) is (are) greater than 10. See the

 and Arithmetic Operators topics for more information about using logical operators.
Although the compiler doesn't care about such things, it is a good idea when writing your
source code to indent the statements between DO and LOOP. The same is true of
FOR/NEXT loops, WHILE/WEND loops, and multi-line IF statements. Such indenting
makes the appearance of your source code reflect the logical structure of your program,
resulting in greater readability. Indenting is particularly valuable when nesting multiple
loops of the same type, since it makes it easier to see which LOOP goes with which DO.

Also see the discussion on the IF statement for notes on PowerBASIC's Short-circuit
evaluation and its possible side effects.

See also #OPTIMIZE, EXIT, FOR EACH/NEXT, FOR/NEXT,

, ITERATE, WHILE/WEND

ENUM/END ENUM statements

Keyword Template
Purpose

Syntax

Remarks

See also

Example

ENUM/END ENUM statements
Purpose Creates a group of logically related numeric equates.

Syntax ENUM Name [SINGULAR] [BITS] [AS COM]
 EquateName [= value]
 EquateName [= value]
 ...
END ENUM

Remarks PowerBASIC allows you to refer to integral numeric constants by name. These names
are called equates, and are visible throughout your program. If you need a set of equates
which are logically related, you can define them as a group in an enumeration. This
provides meaningful names for the enumeration, its members, and therefore the name by
which it is referenced.

When an equate is created in an enumeration, its name is composed of a leading percent
sign (%), the enumeration name, a period (.), and then the member name. For example:

ENUM abc
 count = 7
END ENUM

In the above example, the equate is referenced as %abc.count, and returns the value

PowerBASIC Compiler for Windows Version 10

724 / 2126

seven (7).

Each member of an enumeration may be assigned a specific integral value (in the range
of a 64-bit quad integer) by using the optional [=value] syntax. In this case, only a
constant value (or a simple constant/literal expression) may be assigned to it. If an
expression is used, all of the terms in the expression must be constants; numeric
equates; bitwise operators like AND, OR, NOT; arithmetic operators +, -, *, /, \; the
relational operators >, <, >=, <=, <>, =; and the CVQ function.

If the [=value] option is omitted, each member of the enumeration is assigned an integral
value in sequence beginning with the value 0. If one or more equates are assigned an
explicit value, equates which follow are assigned the next value in the sequence. For
example:

ENUM abc
 direction
 count = 8
 scope
END ENUM

In the above example, %abc.direction = 0, %abc.count = 8, and %abc.scope = 9.

BITS If the BITS option is included, the members are auto-assigned values suitable for use as a
bit mask, increasing as integral powers of two. The first member is auto-assigned the
value 0, the next is 1, then 2, 4, 8, 16, etc. If one or more are assigned an explicit value,
equates which follow are assigned the next value in the sequence. For example:

ENUM abc BITS
 direction = 1
 count = 8
 scope
END ENUM

In the above example, %abc.direction = 1, %abc.count = 8, and %abc.scope = 16.

SINGULAR If the SINGULAR option is included, the member name is the complete name, without the
ENUM name or the period. The equate is referenced by just the member name with a
percent (%) prepended. For example:

ENUM abc SINGULAR
 count = 7
END ENUM

In the above example, the equate would normally be referenced by the compound name
%abc.count. However, since it includes the SINGULAR option, it is referenced by the
simplified name %count.

AS COM If you are using a version of PowerBASIC which creates COM servers, you can easily
include these equates in your type library; just append the words AS COM to the ENUM
definition.

END statement

END statement
Purpose Terminate program immediately.

Syntax END [nErrorLevel&]

Remarks Normally, PowerBASIC programs are terminated when you exit the PBMAIN or
WINMAIN() function. It should always be your goal to end programs in this fashion, so
that the compiler and the operating system can do everything possible to leave things in
an orderly state.

The END statement is an alternative termination method which should only be used in
limited circumstances. It may be helpful in emergency situations, such as a fatal error

PowerBASIC Compiler for Windows Version 10

725 / 2126

like "out of memory". It's also useful (temporarily) in the conversion of DOS programs,
just for the sake of compatibility. However, once conversion is complete, you should
eliminate it as soon as possible.

The optional nErrorLevel& value has an effective range of 0 to 255. Batch files may act
on the result through the IF [NOT] ERRORLEVEL batch command.

Restrictions END may not be used in a DLL. END is intended only for temporary use in converting
DOS programs to Windows. You should convert it to the standard EXIT FUNCTION
method as soon as possible. It should be avoided while any COM objects are active.

See also EXIT, PBMAIN, WINMAIN

ENVIRON statement

ENVIRON statement
Purpose Modify the current program's environment table.

Syntax ENVIRON envstring$

Remarks Modify the environment table for the current program and any subsequent child programs
that are launched. A single string expression parameter sets both the name of the
environment variable and its value, delimited by an equal ("=") sign. If a value is not
specified, the variable is removed from the environment table.

See also ENVIRON$

Example ENVIRON "SETMODE=YES" ' SETMODE = "YES"
ENVIRON "SETMODE=" ' Removes SETMODE

ENVIRON$ function

ENVIRON$ function
Purpose Retrieve information from the current program's environment table.

Syntax s$ = ENVIRON$({parameter_string | n})

Remarks parameter_string is a string expression denoting which environment parameter is to be
retrieved. n is an

 expression, starting at 1.
If a

 argument is used, ENVIRON$ returns the text that follows parameter_string (after
the equal sign) in the environment table. If parameter_string is not found, or no text
follows the equal sign in the environment string table, an empty string is returned.
If the numeric argument is used, it acts as an index into the environment table.
ENVIRON$ returns a string containing the nth parameter from the start of the table. If
there is no nth parameter, an empty string is returned. If the index is negative, private
Windows variables are returned.

When launching a program from within the IDE, PowerBASIC sets the "PBIDE"
environment variable with the IDE name and version number. For example, "CCEDIT 5.00"
or "PBEDIT 9.00". Similarly, when running in the debugger, the "PBDEBUG" environment
string will return the IDE name and version.

Programs can use these environment strings to detect their "mode" of operation, for
example, to signal a program to save internal data to a disk file, and when to display
helpful debugging information. DLLs created with PB/Win can also examine these
environment strings and adapt behavior accordingly. This will be of particular interest to

http://www.powerbasic.com/products/pbdll32/

PowerBASIC Compiler for Windows Version 10

726 / 2126

3rd-party DLL programmers who create libraries and add-ons for other PowerBASIC
programmers.

Restrictions When a program (process) starts, it is given its own local environment table, which is
typically a copy of the parent program's environment table. ENVIRON$ works with this
local table, not the parent's table.

See also ENVIRON

Example ' Retrieve the PATH environment variable
Path$ = ENVIRON$("PATH")

IF LEN(ENVIRON$("PBDEBUG")) THEN _
 CALL DisplayMyDebugData()

' Enumerate all Environment strings
RESET x&
DO
 INCR x&
 a$ = ENVIRON$(x&)
 ' process a$ here
LOOP WHILE LEN(a$)

EOF function

EOF function
Purpose Return the end-of-file status of an opened file or TCP/UDP transmission.

Syntax y = EOF([#] filenum&)

Remarks Use EOF to determine when the end of a file has been reached while reading its data.
filenum& is the file number specified when the file was Opened. EOF returns -1 (TRUE) if
the end of the specified file has been reached, or if an error occurs trying to check for the
end of the file. Otherwise, EOF returns 0 (FALSE).

If filenum& is not a valid, open file, a run-time Error 53 will occur ("File not found"). If
filenum& is for a binary file, EOF returns TRUE only if the most recent file operation was a
read operation, and that operation could not read the requested number of bytes.

The EOF function may also be used with the COMM LINE and TCP LINE statements to
detect that an incomplete line was received. Normally, these statements read data until a
$CRLF character pair is found, and in that case, EOF will return 0 (FALSE). However,
even if no $CRLF has been found, the statements will end when no additional data is
available. In that case, they will return whatever data has already been accumulated, and
set EOF to -1 (TRUE).

In many cases, it would be prudent to test EOF after every COMM LINE and TCP LINE to
verify that a full line has been received. In some cases, you may wish to execute the
statement one or more additional times, combining the data, in order to obtain a full line of
text.

See also COMM LINE, LOC, LOF, OPEN, TCP LINE

Example ' Open an ASCII text file and read it
hFile = FREEFILE
OPEN "TEXTFILE.TXT" FOR INPUT AS hFile
WHILE ISFALSE EOF(hFile)
 LINE INPUT# hFile, x$
WEND
CLOSE hFile

PowerBASIC Compiler for Windows Version 10

727 / 2126

EQV operator

EQV operator
Purpose The EQV operator works as both a logical and a bitwise arithmetic operator.

Syntax p EQV q

Remarks Using EQV as a logical operator

EQV returns TRUE (non-zero) if at least one bit in one operand contains the same value
as the identical bit position in the other operand. Further, EQV will return zero if and only
if there are no matching bit values between the two operands. This can occur when one
operand is equal to the bitwise NOT value of the other operand. For example:

IF x EQV y = 0 THEN statement

…is equivalent to:

IF x = NOT y THEN statement

The EQV operator can be used for comparing signed and unsigned values of the same bit
size, such as Long-integer and Double-word. This use of EQV is similar to using the
BITS functions; however, care must be exercised to test the return value of EQV correctly,
since EQV will return an unsigned value with all bits set only if the bit patterns of the two
operands are an exact match.

The EQV truth table looks like this:

Truth table
x y x EQV y
T T T
T F F
F T F
F F T

Using EQV as a bitwise arithmetic operator

The EQV operator is seldom used as a bitwise arithmetic operator, but here is an
example:

See also Arithmetic Operators, AND, IMP, ISFALSE, ISTRUE, LET, NOT, OR, XOR

Example IF (Var1& EQV Var2???) = BITS???(-1&) THEN ...
IF (Val1% EQV Var2??) = &H0FFFF?? THEN ...
IF -1& EQV BITS???(-1&) = &H0FFFFFFFF THEN ...
IF -1% EQV BITS??(-1%) = &H0FFFF THEN ...

ERASE statement

ERASE statement
Purpose Deallocate array memory and release it from memory.

Syntax ERASE array[()] [, array[()]] ...

Remarks Any memory assigned to the individual elements (if they are dynamic strings, Objects,
Variants, etc.) is also released. ERASE deallocates all the memory for LOCAL, STATIC,
and GLOBAL arrays. After an array is erased, attempting to access the array may
produce a General Protection Fault (GPF). Local arrays are implicitly erased upon exit
from the Sub/Function/Method/Property that created them.

PowerBASIC Compiler for Windows Version 10

728 / 2126

array The name of the array to deallocate. Parentheses are optional, but are recommended for
clarity of the source code.

One method to check if an array has been dimensioned without triggering a GPF is to use
the LBOUND and UBOUND functions, as follows:

IF UBOUND(array) - LBOUND(array) = -1 THEN
 ' array() is not allocated
END IF

ERASE can deallocate an array that was passed as a parameter to a procedure, but only
if the array was passed by reference (BYREF). To clear the contents of an array back to
its initialized state, use REDIM or RESET.

Restrictions Absolute arrays (those created by DIM...AT) are handled differently by ERASE. An
explicit ERASE will release the individual elements of an absolute array, if needed, but the
full data block is left as-is because no assumptions can be made as to its origin. It is the
programmer's responsibility to ensure that the memory block overlaid by the absolute
array is handled correctly. In an implied ERASE (Sub/Function/Method/Property exit) of a
LOCAL absolute array, the internal array descriptor is deactivated, but no changes of any
kind are made to the individual data elements or the full block. RESET may be used to
set arrays to zeroes or empty strings without releasing the data block.

See also ARRAYATTR, DIM, REDIM, RESET

Example ERASE Array1$(), MyArray%()

ERL system variable

ERL system variable
Purpose Return the last line number encountered before the most recent error.

Syntax nline = ERL

Remarks Return the last (most recent) line number that was encountered before the most recent
run-time error, within the current Sub, Function, Method, or Property. With ERL, line
numbers are of the traditional-basic line numbering variety, not the physical source code
line.

See also ERL$, ERR, ERRCLEAR, ERROR, ERROR$, Error Overview, Error Trapping, ON
ERROR

Example 10 ERRCLEAR
20 NAME "a nonexisting filename.txt" AS "abc.txt"
30 IF ERR THEN lErrLine = ERL ' lErrLine = 20

ERL$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

ERL$ function

PowerBASIC Compiler for Windows Version 10

729 / 2126

Purpose Return the last label, line number, or

 name executed prior to the most recent error.
Syntax position$ = ERL$

Remarks Return a

 containing the name of the last (most recent) label, line number, or procedure that was
executed prior to the most recent run-time error, within the current Sub, Function,
Method, or Property. In order to maintain high efficiency levels, the returned name is
limited to the first 8 characters of the actual name.

See also ERL, ERR, ERRCLEAR, ERROR, ERROR$, Error Overview, Error Trapping, ON ERROR

Example MyLabel:
ERRCLEAR
NAME "a nonexisting filename.txt" AS "abc.txt"
IF ERR THEN Position$ = ERL$

ERR system variable

ERR and ERRCLEAR system variables
Purpose Return the error code of the most recent PowerBASIC run-time error.

Syntax y = ERR
ERR = ErrNum
y = ERRCLEAR
ERRCLEAR

Remarks ERR and ERRCLEAR return the error code of the most recent run-time error in the current
Sub, Function, Method, or Property. This number can be tested after any critical
operation, so that appropriate error-handling code can be executed.

You can also assign a value to ERR. This is similar to executing an ERROR statement,
except that no branch to an error trap routine is generated. Instead, subsequent tests of
ERR and ERRCLEAR reflect ErrNum.

ERRCLEAR returns the error code of the most recent run-time error. In addition, it resets
PowerBASIC's internal error code variable ERR to zero after you reference it. Finally, it
emulates RESUME FLUSH so that no RESUME execution is needed or allowed. This
ensures that the next time you test ERR or ERRCLEAR, you are guaranteed to get a
zero, unless a new error has actually occurred in the interim.

ERRCLEAR can also be used as a statement to reset ERR to zero.

IMPORTANT: Be sure to study the Errors and Error Trapping.

Restrictions Valid run-time error values are in the range 0 through 255. A value of 0 indicates no error.
 Attempting to set an error value (with the ERROR statement) outside of that range will
convert the value to a run-time Error 5 ("Illegal function call").

See also ERROR, ERROR$, Error Overview, Error Trapping, ON ERROR

Example y = ERR ' sets y = ERR
ERR = 6 ' sets ERR to 6
y = ERRCLEAR ' sets y = ERR and ERR = 0
ERRCLEAR ' sets ERR = 0

ERRCLEAR system variable

ERR and ERRCLEAR system variables
Purpose Return the error code of the most recent PowerBASIC run-time error.

PowerBASIC Compiler for Windows Version 10

730 / 2126

Syntax y = ERR
ERR = ErrNum
y = ERRCLEAR
ERRCLEAR

Remarks ERR and ERRCLEAR return the error code of the most recent run-time error in the current
Sub, Function, Method, or Property. This number can be tested after any critical
operation, so that appropriate error-handling code can be executed.

You can also assign a value to ERR. This is similar to executing an ERROR statement,
except that no branch to an error trap routine is generated. Instead, subsequent tests of
ERR and ERRCLEAR reflect ErrNum.

ERRCLEAR returns the error code of the most recent run-time error. In addition, it resets
PowerBASIC's internal error code variable ERR to zero after you reference it. Finally, it
emulates RESUME FLUSH so that no RESUME execution is needed or allowed. This
ensures that the next time you test ERR or ERRCLEAR, you are guaranteed to get a
zero, unless a new error has actually occurred in the interim.

ERRCLEAR can also be used as a statement to reset ERR to zero.

IMPORTANT: Be sure to study the Errors and Error Trapping.

Restrictions Valid run-time error values are in the range 0 through 255. A value of 0 indicates no error.
 Attempting to set an error value (with the ERROR statement) outside of that range will
convert the value to a run-time Error 5 ("Illegal function call").

See also ERROR, ERROR$, Error Overview, Error Trapping, ON ERROR

Example y = ERR ' sets y = ERR
ERR = 6 ' sets ERR to 6
y = ERRCLEAR ' sets y = ERR and ERR = 0
ERRCLEAR ' sets ERR = 0

ERROR statement

ERROR statement
Purpose Cause a run-time error to be generated and sets ERR to the specified error number.

Syntax ERROR ErrNum

Remarks ERROR ErrNum causes a run-time error to be generated and sets ERR to the specified
number. Run-time errors are only caught (through the branch to your error trap routine) if
you have an active ON ERROR GOTO or a TRY/END TRY block in your code.

Valid errors are in the range 1 through 255. Attempting to set an error value outside of
that range will convert the value to a run-time Error 5 ("Illegal function call").

The compiler reserves codes 0 through 150, and 241 through 255 for run-time errors. You
may freely use error codes 151 through 240 for your own purposes.

See also #DEBUG DISPLAY, ERL, ERR, ERRCLEAR, ERROR$, Error
Overview, Error Trapping, ON ERROR

Example ERROR 5 ' generates error 5 "Illegal Function Call"

ERROR$ function

ERROR$ function
Purpose Return a

 containing the descriptive name of a specified PowerBASIC run-time error code.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

731 / 2126

Syntax msg$ = ERROR$[(ErrNum)]

Remarks ERROR$ returns the verbose text title of a PowerBASIC run-time error identified by
ErrNum.

ErrNum must be in the range 1 to 255 inclusive. Values outside of this range return "No
error". If ErrNum is not specified, ERROR$ returns the description of the current value of
ERR.

See also #DEBUG DISPLAY, ERL, ERR, ERRCLEAR, ERROR, Error Overview, Error Trapping, ON
ERROR

Example a$ = ERROR$(5) ' Returns "Illegal function call"

EVENT SOURCE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

EVENT SOURCE statement
Purpose Declare an event interface within a Class definition

Syntax EVENT SOURCE InterfaceName

Remarks With objects, normally a client module calls a server module to perform specific
operations as they are needed. However, in many situations, it's convenient and efficient
for a server to notify its client of a condition or event immediately, without forcing the client
to inquire about the status. At the appropriate time, the server calls back to a client
method, passing information via the method parameters. This is the exact opposite of
normal communication, because the server module is now calling the client module. In
effect, the client is acting as a server for the purpose of handling these events. In the
world of objects, a server which can call such "Event Methods" is said to offer a
"Connection Point". A Connection Point can be used with COM objects or internal
objects. Further, it may use either a direct interface or the DISPATCH interface. Event
methods may take parameters, but may not return a result.

Each server class created by PowerBASIC may offer up to four event interfaces. A client
module may subscribe to any or all of these event interfaces. When it's time for the
server object to notify the client of an event, the RAISEEVENT statement is used. For
the Dispatch interface, OBJECT RAISEEVENT is used instead. RAISEEVENT may only
appear within a class which declares the Event Source interface.

The client must initiate a connection to the server with EVENTS FROM statement, and
disconnect when done with EVENTS END statement.

A Connection Point may be attached to one Event Method, multiple Event Methods, or no
Event Method at all. Whenever a RAISEEVENT statement or OBJECT RAISEEVENT
statement is executed, all Event Methods attached to the source object are called, one
after another. There is no guarantee of the sequence of the calls, and you must consider
the possibility that RAISEEVENT with a ByRef parameter could change the value of a
parameter variable before any particular Event Method is executed.

InterfaceName Specifies the "Event Source" Interface name. If InterfaceName is DISPATCH, you can
reference it with the OBJECT RAISEEVENT statement -- otherwise, regular Method
references are used.

PowerBASIC Compiler for Windows Version 10

732 / 2126

See also EVENTS, INTERFACE (Direct), INTERFACE (IDBind), Just what is COM?, METHOD,
OBJECT RAISEEVENT, RAISEEVENT, What are Connection Points?

Example ' Direct Interface Example
#COMPILE EXE
#DIM ALL
CLASS EvClass AS EVENT
 INTERFACE IStatus AS EVENT
 INHERIT IUNKNOWN
 METHOD Done
 ? "Done!"
 END METHOD
 END INTERFACE
END CLASS

CLASS MyClass
 INTERFACE IMath
 INHERIT IUNKNOWN
 METHOD DoMath
 ? "Calculating..." ' Do some math calculations here
 RAISEEVENT IStatus.Done()
 END METHOD
 END INTERFACE
 EVENT SOURCE IStatus
END CLASS

FUNCTION PBMAIN()
 LOCAL oMath AS IMath
 LOCAL oStatus AS IStatus

 oMath = CLASS "MyClass"
 oStatus = CLASS "EvClass"

 EVENTS FROM oMath CALL oStatus

 oMath.DoMath

 EVENTS END oStatus
END FUNCTION

' Dispatch Interface Example
#COMPILE EXE
#DIM ALL
CLASS EvClass AS EVENT
 INTERFACE IStatus AS EVENT
 INHERIT IDISPATCH
 METHOD Done
 ? "Done!"
 END METHOD
 END INTERFACE
END CLASS

CLASS MyClass
 INTERFACE IMath
 INHERIT IDISPATCH
 METHOD DoMath
 ? "Calculating..." ' Do some math calculations here
 OBJECT RAISEEVENT IStatus.Done()
 END METHOD
 END INTERFACE

PowerBASIC Compiler for Windows Version 10

733 / 2126

 EVENT SOURCE DISPATCH
END CLASS

FUNCTION PBMAIN()
 LOCAL oMath AS IMath
 LOCAL oStatus AS DISPATCH

 oMath = CLASS "MyClass"
 oStatus = CLASS "EvClass"

 EVENTS FROM oMath CALL oStatus

 oMath.DoMath

 EVENTS END oStatus
END FUNCTION

EVENTS statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

EVENTS statement
Purpose Attach or detach an event handler to/from an event source.

Syntax DIM oSource AS InterfaceName
DIM oEvent AS EventInterface
LET oSource = NEWCOM CLSID $ClassId
LET oEvent = CLASS "EventClass"
EVENTS FROM oSource CALL oEvent
[statements]
EVENTS END oEvent

Remarks In the above source code sample, oEvent is an object variable which references an event
handler object, and oSource is an object variable which references an event source object
which generates events.

The EVENTS FROM statement attaches event handler code to an event source object
variable. The object variable oEvent must be declared as a supported event interface,
while “EventClass" specifies the class which implements the event handler code. The
object variable oSource specifies the event source. EVENTS END detaches the event
handler from the event source.

Generally speaking, a server object "sources" events, and a client object "handles" events
by supplying a METHOD which is called by the server to perform a user-defined
notification. This event handler is code in the client object, which is sometimes referred
to as an "event sink" (analogous to the electrical engineering terms source/sink).

One or more clients may choose to "subscribe" to events from a server object by
executing the EVENTS FROM statement. The subscription is terminated by execution of
the EVENTS END statement. When the server executes RAISEEVENT or OBJECT
RAISEEVENT, all clients which have unsubscribed to these events are called.

PowerBASIC Compiler for Windows Version 10

734 / 2126

 PowerBASIC servers support up to 32 concurrent client subscribers per server object.

Event sources and event handlers may be used within a single module, or through COM
services supplied by the Windows operating system.

See also CLASS, EVENT SOURCE, INTERFACE (Direct), INTERFACE (IDBind), Just what is
COM?, OBJECT RAISEEVENT, RAISEEVENT, What is an object, anyway?, What are
Connection Points?

Example #COMPILE EXE

CLASS EvClass AS EVENT
 INTERFACE EvStatus AS EVENT
 INHERIT IUNKNOWN

 METHOD Done
 MSGBOX "Done!"
 END METHOD
 END INTERFACE
END CLASS

CLASS MyClass
 INTERFACE MyMath
 INHERIT IUNKNOWN

 METHOD DoMath
 MSGBOX "Calculating..." ' Do some math calculations here
 RAISEEVENT EvStatus.Done()
 END METHOD
 END INTERFACE

 EVENT SOURCE EvStatus
END CLASS

FUNCTION PBMAIN()
 DIM oMath AS MyMath
 DIM oStatus AS EvStatus

 LET oMath = CLASS "MyClass"
 LET oStatus = CLASS "EvClass"

 EVENTS FROM oMath CALL oStatus

 oMath.DoMath

 EVENTS END oStatus
END FUNCTION

EXE.Inst member

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

735 / 2126

EXE read-only user defined type
Purpose Return information about the executing program.

Syntax h& = EXE.Inst
f$ = EXE.Extn$
f$ = EXE.Full$
f$ = EXE.Name$
f$ = EXE.Namex$
f$ = EXE.Path$

Remarks You can use EXE to retrieve information about the executing program, including the
complete path and file name, or just a selected part of it. If the reference is physically
located within a DLL, the returned data describes the executable program which loaded it.

EXE.Inst This returns the instance handle (a DWord) of the program which is
currently executing.

EXE.Extn$ This returns the extension (with a leading period) of the program which
is currently executing.

EXE.Full$ This returns the complete drive, path, file name, and extension of the
program which is currently executing.

EXE.Name
$

This returns just the file name of the program which is currently
executing.

EXE.Name
x$

This returns the file name and the extension of the program which is
currently executing.

EXE.Path$ This returns the complete drive and path of the program which is
currently executing.

See also COMMAND$, PATHNAME$, PATHSCAN$

EXE.Extn$ member

Keyword Template
Purpose

Syntax

Remarks

See also

Example

EXE read-only user defined type
Purpose Return information about the executing program.

Syntax h& = EXE.Inst
f$ = EXE.Extn$
f$ = EXE.Full$
f$ = EXE.Name$
f$ = EXE.Namex$
f$ = EXE.Path$

Remarks You can use EXE to retrieve information about the executing program, including the
complete path and file name, or just a selected part of it. If the reference is physically
located within a DLL, the returned data describes the executable program which loaded it.

EXE.Inst This returns the instance handle (a DWord) of the program which is
currently executing.

PowerBASIC Compiler for Windows Version 10

736 / 2126

EXE.Extn$ This returns the extension (with a leading period) of the program which
is currently executing.

EXE.Full$ This returns the complete drive, path, file name, and extension of the
program which is currently executing.

EXE.Name
$

This returns just the file name of the program which is currently
executing.

EXE.Name
x$

This returns the file name and the extension of the program which is
currently executing.

EXE.Path$ This returns the complete drive and path of the program which is
currently executing.

See also COMMAND$, PATHNAME$, PATHSCAN$

EXE.Full$ member

Keyword Template
Purpose

Syntax

Remarks

See also

Example

EXE read-only user defined type
Purpose Return information about the executing program.

Syntax h& = EXE.Inst
f$ = EXE.Extn$
f$ = EXE.Full$
f$ = EXE.Name$
f$ = EXE.Namex$
f$ = EXE.Path$

Remarks You can use EXE to retrieve information about the executing program, including the
complete path and file name, or just a selected part of it. If the reference is physically
located within a DLL, the returned data describes the executable program which loaded it.

EXE.Inst This returns the instance handle (a DWord) of the program which is
currently executing.

EXE.Extn$ This returns the extension (with a leading period) of the program which
is currently executing.

EXE.Full$ This returns the complete drive, path, file name, and extension of the
program which is currently executing.

EXE.Name
$

This returns just the file name of the program which is currently
executing.

EXE.Name
x$

This returns the file name and the extension of the program which is
currently executing.

EXE.Path$ This returns the complete drive and path of the program which is
currently executing.

See also COMMAND$, PATHNAME$, PATHSCAN$

EXE.Name$ member

PowerBASIC Compiler for Windows Version 10

737 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

EXE read-only user defined type
Purpose Return information about the executing program.

Syntax h& = EXE.Inst
f$ = EXE.Extn$
f$ = EXE.Full$
f$ = EXE.Name$
f$ = EXE.Namex$
f$ = EXE.Path$

Remarks You can use EXE to retrieve information about the executing program, including the
complete path and file name, or just a selected part of it. If the reference is physically
located within a DLL, the returned data describes the executable program which loaded it.

EXE.Inst This returns the instance handle (a DWord) of the program which is
currently executing.

EXE.Extn$ This returns the extension (with a leading period) of the program which
is currently executing.

EXE.Full$ This returns the complete drive, path, file name, and extension of the
program which is currently executing.

EXE.Name
$

This returns just the file name of the program which is currently
executing.

EXE.Name
x$

This returns the file name and the extension of the program which is
currently executing.

EXE.Path$ This returns the complete drive and path of the program which is
currently executing.

See also COMMAND$, PATHNAME$, PATHSCAN$

EXE.Namex$ member

Keyword Template
Purpose

Syntax

Remarks

See also

Example

EXE read-only user defined type
Purpose Return information about the executing program.

Syntax h& = EXE.Inst
f$ = EXE.Extn$

PowerBASIC Compiler for Windows Version 10

738 / 2126

f$ = EXE.Full$
f$ = EXE.Name$
f$ = EXE.Namex$
f$ = EXE.Path$

Remarks You can use EXE to retrieve information about the executing program, including the
complete path and file name, or just a selected part of it. If the reference is physically
located within a DLL, the returned data describes the executable program which loaded it.

EXE.Inst This returns the instance handle (a DWord) of the program which is
currently executing.

EXE.Extn$ This returns the extension (with a leading period) of the program which
is currently executing.

EXE.Full$ This returns the complete drive, path, file name, and extension of the
program which is currently executing.

EXE.Name
$

This returns just the file name of the program which is currently
executing.

EXE.Name
x$

This returns the file name and the extension of the program which is
currently executing.

EXE.Path$ This returns the complete drive and path of the program which is
currently executing.

See also COMMAND$, PATHNAME$, PATHSCAN$

EXE.Path$ member

Keyword Template
Purpose

Syntax

Remarks

See also

Example

EXE read-only user defined type
Purpose Return information about the executing program.

Syntax h& = EXE.Inst
f$ = EXE.Extn$
f$ = EXE.Full$
f$ = EXE.Name$
f$ = EXE.Namex$
f$ = EXE.Path$

Remarks You can use EXE to retrieve information about the executing program, including the
complete path and file name, or just a selected part of it. If the reference is physically
located within a DLL, the returned data describes the executable program which loaded it.

EXE.Inst This returns the instance handle (a DWord) of the program which is
currently executing.

EXE.Extn$ This returns the extension (with a leading period) of the program which
is currently executing.

EXE.Full$ This returns the complete drive, path, file name, and extension of the
program which is currently executing.

EXE.Name
$

This returns just the file name of the program which is currently
executing.

PowerBASIC Compiler for Windows Version 10

739 / 2126

EXE.Name
x$

This returns the file name and the extension of the program which is
currently executing.

EXE.Path$ This returns the complete drive and path of the program which is
currently executing.

See also COMMAND$, PATHNAME$, PATHSCAN$

EXIT statement

EXIT statement
Purpose Transfer program execution out of a block structure.

Syntax EXIT FASTPROC ' FastProc / End FastProc
EXIT FOR ' For / Next Loop
EXIT FUNCTION ' Function / End Function
EXIT IF ' If / End If
EXIT DO ' Do / Loop or While / Wend
EXIT LOOP ' Do / Loop or While / Wend
EXIT MACRO ' Macro / End Macro
EXIT METHOD ' Method / End Method
EXIT PROPERTY ' Property / End Property
EXIT SELECT ' Select / End Select
EXIT SUB ' Sub / End Sub
EXIT TRY ' Try / End Try
EXIT [,ITERATE] ' Exit one loop and immediately iterate another
EXIT [,EXIT...] ' The nearest enclosing block structure

Remarks The EXIT statement allows you to leave a code section block immediately. Using EXIT by
itself will leave the most recently executed structure, but not an outer block. EXIT, EXIT
will leave two block structures, and EXIT, EXIT, EXIT will leave three levels. For example:

FOR ix = 1 TO 10
 DO UNTIL x > 10
 EXIT FOR' will exit from the DO LOOP
 LOOP
NEXT

EXIT is preferred over GOTO for this purpose. If you want to exit a structure other than the
one most recently executed, you may include the type of structure, or you can use
multiple EXIT's. The following two examples are functionally identical:

FOR ix = 1 TO 10
 DO UNTIL x > 10
 EXIT FOR ' will exit DO and FOR NEXT loop
 LOOP
NEXT

FOR ix = 1 TO 10
 DO UNTIL x > 10
 EXIT, EXIT ' will exit DO and FOR NEXT loop
 LOOP
NEXT

You can also exit one loop and immediately iterate another:

FOR x = 1 TO 10
 DO
 EXIT, ITERATE
 LOOP
NEXT

See also DO/LOOP, FASTPROC, FOR EACH/NEXT, FOR/NEXT, FUNCTION/END FUNCTION,
IF/END IF block, ITERATE, MACRO/END MACRO, METHOD, PROPERTY, SELECT,

PowerBASIC Compiler for Windows Version 10

740 / 2126

SUB/END SUB, TRY/END TRY, WHILE/WEND

EXP function

EXP, EXP2 and EXP10 functions
Purpose Return a base number raised to a power. The base is e for EXP, 2 for EXP2, and 10 for

EXP10.

Syntax y = EXP(n)
y = EXP2(n)
y = EXP10(n)

Remarks EXP returns e to the nth power, where n is a numeric variable or expression and e is the
base for natural logarithms, approximately 2.718282. Among other uses, this provides a
simple way to obtain the value of e itself:

e = EXP(1)

EXP2(n) returns 2 to the nth power, where n is a numeric variable or expression.

EXP10(n) returns 10 to the nth power, where n is a numeric variable or expression.

The EXP functions provide a convenient alternative to the ̂operator, which works with any
base. The EXP functions return results in Extended-precision.

See also LOG, LOG2, LOG10, SQR, Arithmetic Operators

EXP2 function

EXP, EXP2 and EXP10 functions
Purpose Return a base number raised to a power. The base is e for EXP, 2 for EXP2, and 10 for

EXP10.

Syntax y = EXP(n)
y = EXP2(n)
y = EXP10(n)

Remarks EXP returns e to the nth power, where n is a numeric variable or expression and e is the
base for natural logarithms, approximately 2.718282. Among other uses, this provides a
simple way to obtain the value of e itself:

e = EXP(1)

EXP2(n) returns 2 to the nth power, where n is a numeric variable or expression.

EXP10(n) returns 10 to the nth power, where n is a numeric variable or expression.

The EXP functions provide a convenient alternative to the ̂operator, which works with any
base. The EXP functions return results in Extended-precision.

See also LOG, LOG2, LOG10, SQR, Arithmetic Operators

EXP10 function

EXP, EXP2 and EXP10 functions
Purpose Return a base number raised to a power. The base is e for EXP, 2 for EXP2, and 10 for

EXP10.

Syntax y = EXP(n)
y = EXP2(n)
y = EXP10(n)

PowerBASIC Compiler for Windows Version 10

741 / 2126

Remarks EXP returns e to the nth power, where n is a numeric variable or expression and e is the
base for natural logarithms, approximately 2.718282. Among other uses, this provides a
simple way to obtain the value of e itself:

e = EXP(1)

EXP2(n) returns 2 to the nth power, where n is a numeric variable or expression.

EXP10(n) returns 10 to the nth power, where n is a numeric variable or expression.

The EXP functions provide a convenient alternative to the ̂operator, which works with any
base. The EXP functions return results in Extended-precision.

See also LOG, LOG2, LOG10, SQR, Arithmetic Operators

EXTRACT$ function

EXTRACT$ function
Purpose Extract characters from a

 up to a character or group of characters.
Syntax x$ = EXTRACT$([start,] MainStr, [ANY] MatchStr)

Remarks EXTRACT$ returns a sub-string of MainStr, starting with its first character (or the
character specified by start) and up to (but not including) the first occurrence of MatchStr.
 If MatchStr is not present in MainStr, or either string parameter is nul, all of MainStr is
returned.

start is the optional starting position to begin extracting. If start is not specified, it will
start at position 1. If start is zero, or beyond the length of MainStr, a nul string is
returned. If start is negative, the starting position is counted from right to left: if -1, the
search begins at the last character; if -2, the second to last, and so forth.

MainStr is the string expression from which to extract. MatchStr is the string expression
to extract up to. EXTRACT$ is case-sensitive.

If the ANY keyword is included, MatchStr specifies a list of single characters to be
searched for individually, a match on any one of which will cause the extract operation to
be performed up to that character.

EXTRACT$ is especially useful when parsing a string containing arguments to a program,
or when manipulating nul-terminated or delimited strings received from a routine written in
another language.

The complementary function to EXTRACT$ is REMAIN$, which returns the part of the
string that EXTRACT$ leaves behind. A similar function to EXTRACT$ is PARSE$, which
extracts delimited substrings from a string.

See also CLIP$, INSTR, JOIN$, LEFT$, LTRIM$, MID$, PARSE, PARSE$, PARSECOUNT,
REMAIN$, REMOVE$, RETAIN$, RIGHT$, RTRIM$, TALLY, TRIM$, UNWRAP$, VERIFY

Example ' x$ = first command-line argument, assuming spaces,

' commas, periods, and tabs are valid delimiters
x$ = EXTRACT$(COMMAND$, ANY " ,."+CHR$(9))

' the following line returns "aba" (match on "cad")
x$ = EXTRACT$("abacadabra","cad")

' the following line returns nothing (match on first character "a")
x$ = EXTRACT$("abacadabra", ANY "cad")

FASTPROC/END FASTPROC statements

PowerBASIC Compiler for Windows Version 10

742 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

FASTPROC/END FASTPROC statements
Purpose Define a FastProc code section.

Syntax FASTPROC ProcName [([arguments])] [THREADSAFE] [AS LONG]
 [statements...]
END FASTPROC [= ReturnValue]

Remarks A Fast Procedure (FASTPROC) is a highly simplified form of SUB or FUNCTION which
executes much faster than its fully-featured counterparts. It allows a maximum of two

 LONG arguments, and may optionally return a LONG result. The arguments are
always processed as register variables for maximum execution speed. No stack frame
is ever created, so there are other limitations detailed below. The programmer may
then decide when it is appropriate to accept these trade-offs in exchange for maximum
efficiency.
All executable code must reside in a Sub, Function, Method, FastProc, or Property
block. You cannot define a procedure inside another procedure. A FASTPROC is a
subroutine-like block of statements which is invoked with the CALL statement. A
FASTPROC may also be invoked without the word CALL, which is then implied. If the
CALL word is omitted, the parentheses around the argument list must also be omitted.

ProcName must be unique: no variable, Function, Sub, Method, FastProc, Property or
label can share the same name.

THREADSAFE If you include the option THREADSAFE, PowerBASIC automatically establishes a
semaphore which allows only one thread to execute it at a time. Others must wait until
the first thread exits the THREADSAFE procedure before they are allowed to begin.

Restrictions Most of the restrictions of a FASTPROC stem from the fact that no stack frame is
created.

· A maximum of two parameters are allowed, and they must be defined as BYVAL
LONG integers. An optional return value, if used, must be defined as LONG
integer.

· LOCAL variables are not available because there is no stack frame. This includes
Register variables, which are by definition, Local variables. Instead, one or two
parameters are automatically given status as Register Variables. By default, all
new variables are assigned STATIC scope.

· ON ERROR GOTO, RESUME, and TRY blocks are not available. You should
explicitly test for errors with IF ERR THEN...

· DATA and READ$ are not available.

· FUNCNAME$ is not available.

· COMMON, IMPORT, and EXPORT options are not available.

See also DECLARE, EXIT, FUNCNAME$, GLOBAL, INSTANCE, ISMISSING, LOCAL, METHOD,
PROPERTY, STATIC, SUB, THREAD CREATE, THREADID, THREASAFE

THREADSAFE_option_descriptor.htm

PowerBASIC Compiler for Windows Version 10

743 / 2126

FIELD statement

FIELD statement
Purpose Bind a field string variable to a random file buffer or a dynamic string variable.

Syntax FIELD # filenum, nSize AS fieldvar, [FROM] nStart TO nEnd AS fieldvar
[, ...]
FIELD DynamicStr, nSize AS fieldvar, [FROM] nStart TO nEnd AS fieldvar
[, ...]
FIELD RESET fieldvar [, ...]
FIELD STRING fieldvar [, ...]

Remarks A field variable is a special form of

 variable which may be used just like a standard dynamic string variable, or it may be
declared to reference a particular sub-section of a random file buffer or a dynamic
string variable. Because of the added capabilities, it requires 12 bytes more storage
space (16 vs 4) than a standard string variable. A field variable may not be used as a
member of a User-Defined TYPE or UNION.
By default, a field variable mimics a dynamic string variable, and may be considered a
virtual replacement. Then, at any time, the FIELD statement can be used to declare that
the field variable now refers to a specific portion of a random file buffer or a dynamic string.
 FIELD RESET is used to change it back to a nul (zero-length) dynamic string. FIELD
STRING also changes it back to a dynamic string, but first assigns the current sub-
section data to it. This last action is particularly useful in the case where the sub-section
data might be lost when the bound random file is closed.

In the first form, FIELD binds a field string variable to a specific sub-section of a random-
access file buffer. In the second form, FIELD binds a field string variable to a specific sub-
section of a dynamic string variable .If the sub-section extends beyond the actual size of
the file buffer or string, that portion of the FIELD is empty. Otherwise, it represents a fixed
size string, and may be referenced as any other string variable.

When used with a file:

A random-access file buffer is automatically created for use when GET or PUT are used
without a target variable. In this case, the file data is read or written using this buffer,
which is accessed with one or many field variables.

If a field is defined by a single field (size) parameter, it represents the length of the field in
characters, with the start position implied by the preceding field within the statement. If
two parameters are used, they represent the start (nStart) and end (nEnd) positions in
characters, indexed to one.

If a string value shorter than the declared size is assigned to a field string, it is padded
with blank spaces as it is placed into the file buffer. There is no requirement to use LSET
for assignment.

Finally, it should be noted that FIELD statements are tied to an open file, i.e. they are
valid only as long as the file is open. Once the file is closed, any field strings that had
been defined for the file will return nul (empty), not a string of the previously specified
length.

LOCAL sFirst AS FIELD, sSecond AS FIELD
OPEN "ABC.TXT" FOR RANDOM AS #1 LEN=20
FIELD #1, 10 AS sFirst, 10 AS sSecond
sFirst = "0123456789"
sSecond = "9876543210"
Put #1 ' creates a record of: 01234567899876543210

When used with a dynamic string:

PowerBASIC Compiler for Windows Version 10

744 / 2126

A field variable bound to a dynamic string works very much like a pointer, so the
programmer must use care in field variable selection. For example, if you bind a GLOBAL
FIELD variable to a LOCAL string variable, then attempt to reference the global string after
the local is destroyed (i.e., released when the owning Sub/Function/Method/Property
exits), a fatal exception error (GPF) is likely to occur. The same could happen after an
array has been erased, or a REDIM is used to change the memory allocation.

To avoid problems with scope, it is suggested that field variables be bound only with
strings within the same scope (LOCAL, GLOBAL, etc.).

LOCAL x$, sFirst AS FIELD, sSecond AS FIELD
FIELD x$, 3 AS sFirst, 3 AS sSecond
x$ = SPACE$(6) ' Allocate the space for the field
SFirst = "111"
sSecond = "222"
? x$ ' Displays 111222
x$ = "abcd"
? sFirst ' Displays abc
? sSecond ' Displays d

Restrictions Field string variables must be explicitly declared using DIM, INSTANCE, LOCAL, STATIC,
GLOBAL, or THREADED. Attempting to bind a variable other than a declared field
variable results in a compile-time Error 544 ("Field variable expected"). Field strings
cannot be used in UDT or UNION structures. Attempting to do so results in a compile-
time Error 485 ("Dynamic/Field strings not allowed").

See also Field Strings, GET, PUT, TYPE/END TYPE, User-Defined Types, Unions, UNION/END
UNION

FILEATTR function

FILEATTR function
Purpose Return information about an open file.

Syntax lResult& = FILEATTR([#] filenum&, fattr)

Remarks filenum& is the handle of a currently open file. fattr is an integer between -3 and 3 that
specifies the type of information required, according to the following table:

fattr Definition
-3 The device type. Returns 1 for a file, 2 for a device. COMM, TCP and UDP are

classified as devices.
-2 Logical first byte (base) position of a disk file. By default, PowerBASIC opens

files with a default first location of 1, but this can be overridden via the BASE=
clause of the OPEN statement. This function can be useful when the base is not
known or when performing SEEK operations.

-1 The minimum amount of data that can be read or written at one time. For
RANDOM files, it is the record length. For INPUT files, it is the input buffer
length (set with LEN= in the OPEN statement). For BINARY, OUTPUT and
APPEND, there is no buffering, so it always returns 1 (1 byte).

 0 The open state. TRUE (non-zero) if open, FALSE (zero) if closed.
 1 The file mode (which may be a combination of the following):
 result& File mode

 1 Input
 2 Output
 4 Random
 8 Append
 16 Serial Communications (COMM)
 32 Binary
 64 TCP Winsock

PowerBASIC Compiler for Windows Version 10

745 / 2126

 128 UDP Winsock
(for example, an APPEND file will return 8 + 2 = 10).

 2 The operating system file handle for the file. This handle can be used with
particular Windows API calls files to manipulate files opened with PowerBASIC,
and with the OPEN HANDLE statement.

 3 Enumerates existing file numbers. This mode enumerates existing file numbers,
in the range of 1 to 32767. FILEATTR(1,3) returns the first located file number,
FILEATTR(2,3) the second, and so on until -1 is returned to indicate that there
are no more file numbers active. The file numbers returned are not guaranteed to
be returned in any particular sequence, nor be open. You can use
FILEATTR(#filenum,0) to determine whether a given file number is open or closed.
The number symbol [#] is optional, but recommended for clarity.

See also COMM OPEN, EOF, FILENAME$, GETATTR, LOF, OPEN,
SEEK function, SEEK statement, SETATTR, TCP OPEN, UDP OPEN

Example OPEN "TEST.DOC" FOR OUTPUT AS #1 LEN = 28
x& = FILEATTR(#1,1)
Result x& = 2

FILECOPY statement

FILECOPY statement
Purpose Copy a file.

Syntax FILECOPY sourcefile, destfile

Remarks Copy the file sourcefile to the file destfile. Both sourcefile and destfile must be filenames,
not merely drives or directories (although it's OK to include drive and directory
specifications along with the filenames). Wildcards are not supported. If you attempt to
copy a file that is read locked (preventing read access), a run-time Error 70 will occur
("Permission denied").

If the destination file already exists, it will be overwritten. If it is not possible to overwrite
the existing destination file (for example, it is marked as read-only or in use by another
program), the result will be a run-time Error 70 ("Permission denied").

The attributes of the source file are inherited by the destination file, with the exception of
the Archive attribute, which is always set ON for the destination file. File attributes may
be examined or modified with the GETATTR and SETATTR statements.

See also FILEATTR, GETATTR, SETATTR

Example FILECOPY "C:\AUTOEXEC.BAT", "C:\AUTOEXEC.BAK"

FILENAME$ function

FILENAME$ function
Purpose Return the file-system name of an open file.

Syntax a$ = FILENAME$(filenum&)

Remarks a$ receives the name of the open file identified by the file number filenum&. This function
is not valid with a file opened using OPEN HANDLE, COMM OPEN, TCP OPEN, or UDP
OPEN.

See also CLOSE, FILEATTR, FREEFILE, GETATTR, OPEN, SETATTR

Example OPEN "MYFILE.TXT" FOR INPUT AS #1
a$ = FILENAME$(1)
CLOSE #1

PowerBASIC Compiler for Windows Version 10

746 / 2126

FILESCAN statement

FILESCAN statement
Purpose Rapidly scan a file opened for INPUT or BINARY mode, in order to obtain size information

about variable length string data.

Syntax FILESCAN [#] fnum&, RECORDS TO y& [, WIDTH TO x&]

Remarks FILESCAN assigns a count of the lines/records/strings to y&, and if the WIDTH clause is
specified, the length of the longest string to x&.

In INPUT mode, it is assumed the data is standard text, with lines delimited by a CR/LF
($CRLF) pair. FILESCAN stops reading the file if it encounters an "end of file" (EOF)
marker byte (CHR$(26) or $EOF). Text that occurs after the last CR/LF but before the
EOF is considered the last record of the file. Use the LINE INPUT# statement to read a
complete text file into an array.

In BINARY mode, it is assumed the file was written in the PowerBASIC and/or VB packed
string format using PUT of an entire string array. If a string is shorter than 65535 bytes, a
2-byte length WORD is followed by the string data. If a string is equal to or longer than
65535 bytes, a 2-byte value of 65535 is followed by a length DWORD value, then finally
the string data.

Use the GET statement to read a complete binary file into an array.

Restrictions If FILESCAN is applied to other file formats, the results are undefined.

See also GET, GET$, GET$$, LINE INPUT#, PUT, PUT$, PUT$$

Example OPEN "datafile.dat" FOR INPUT AS #1
FILESCAN #1, RECORDS TO count&
DIM TheData(1 TO count&) AS STRING
LINE INPUT #1, TheData() TO count&
CLOSE #1

Result The entire text file comprising y& lines is read into the string array.

FIX function

FIX function
Purpose Truncate a

 number to an .
Syntax y = FIX(numeric_expression)

Remarks FIX strips off the fractional part of its argument, and returns the integer part. Unlike CINT
and INT, FIX does not perform any form of rounding or scaling.

See also CEIL, CINT, INT, FRAC, ROUND

Example x$ = "The integer part of 50.67 is" + STR$(FIX(50.67))
y$ = STR$(FIX(-1.1)) & ", " & STR$(INT(-1.1)) & ", " & STR$(CINT(-1.1))
Output The integer part of 50.67 is 50
-1, -2, -1

FLUSH statement

FLUSH statement

PowerBASIC Compiler for Windows Version 10

747 / 2126

Purpose Flush file buffers to disk, to ensure that the disk information is up-to-date.

Syntax FLUSH [[#] filenum& [, [#] filenum&] ...]

Remarks FLUSH ensures that all data you have written to disk files has actually been written to
disk. The CLOSE statement also flushes the buffers, but FLUSH has the advantage of
leaving the files open.

filenum& The file number of an OPEN file. If filenum& is specified, only the data for that file is
flushed. Otherwise, data for all open files is flushed. The Number (#) symbol is optional,
but recommended for the purposes of clarity.

See also CLOSE, OPEN

FONT END statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

FONT END statement
Purpose Destroy a font when it is no longer needed.

Syntax FONT END fonthndl&

fonthndl& Handle of the font to be destroyed.

Remarks When you have no further need for a font originally created with FONT NEW, you can
destroy it and reclaim the memory space which was originally allocated for it.

If the specified font is still in use by a

, a Graphic Control, a Graphic Window, or an XPrint page, an error 5 (Illegal
Function Call) will be generated. To avoid this error, you may restore the original
default font with CONTROL/GRAPHIC/XPRINT SET FONT using a handle
number of zero (0).
When your program ends, any existing fonts are automatically destroyed by
PowerBASIC.

See also CONTROL SET FONT, FONT NEW, GRAPHIC PRINT, GRAPHIC SET FONT, XPRINT,
XPRINT SET FONT

FONT NEW statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

748 / 2126

FONT NEW statement
Purpose Create a new font for use with

, GRAPHIC PRINT, XPRINT, etc.
Syntax FONT NEW fontname$ [,points!, style&, charset&, pitch&, escapement&] TO

fhndl

fontname$ Name of the font.

points! Size of the font, in points. This may be specified as a

 value for fractional point sizes.
style& Font style attribute. Any of the following values can be combined or used alone:

0 Normal 4 Underline
1 Bold 8 Strikeout
2 Italic 16 Leading

Some fonts specify "external leading" in their definition. In some cases, it only applies to
certain point sizes of a font. External Leading specifies that one or more blank pixels are
added to the bottom of each character when displayed. This has an impact on character
position and should be considered when creating a font. Normally, the font is created
without regard to external leading. That is, it's created so that the visible character face
fills the requested point size. However, if the Leading Option is used, the font will be
created so that the visible character face plus the external leading (if any) fills the point
size. In these cases, the character may appear slightly smaller.

charset& CharSet identifier.

0 ANSI CharSet 162 Turkish CharSet
1 Default

CharSet
177 Hebrew CharSet

2 Symbol
CharSet

178 Arabic CharSet

77 Mac CharSet 186 Baltic CharSet
12
8

Shiftjis
CharSet

204 Russian CharSet

12
9

Hangeul
CharSet

222 Thai CharSet

13
0

Johab
CharSet

238 East Europe CharSet

13
6

Chinese
CharSet

255 OEM CharSet

16
1

Greek
CharSet

pitch& Pitch and Font Family attribute. One of each group of values can be combined or used
alone:

0 Default 3
2

Swiss font (Helvetica, Swiss...)

1 Fixed width font 4
8

Modern font (Pica, Courier...)

2 Variable width font 6
4

Script font (Cursive...)

16 Roman font (Times Roman...) 8
0

Decorative (OldEnglish...)

escapement& Specifies the angle, in tenths of degrees, between the character base line and the x axis.
 Allows printing of text on an angle.

fhndl Upon successful creation of a new font, a unique PowerBASIC handle is assigned to this

PowerBASIC Compiler for Windows Version 10

749 / 2126

Long Integer or DWord variable. This handle is used with other statements and functions
to specify the created font. If the font creation fails, the value zero (0) is assigned to fhndl.

Remarks This is the preferred method of creating and specifying fonts in PowerBASIC. Using
FONT NEW, you can create a group of fonts, in advance, and switch between them easily
using CONTROL SET FONT, GRAPHIC SET FONT, and XPRINT SET FONT.

If the requested font is not available on the computer, Windows will search for a substitute
font, which is similar to the attributes specified (CharSet, Font Family, etc.).

You may use the value zero (0) for any of the numeric parameters to designate that the
compiler should use the default for that item. If parameters are missing, the compiler
substitutes the default value for all remaining parameters.

See also CONTROL SET FONT, FONT END, GRAPHIC PRINT, GRAPHIC SET FONT, XPRINT,
XPRINT SET FONT

FOR EACH/NEXT statements

Keyword Template
Purpose

Syntax

Remarks

See also

Example

FOR EACH/NEXT statements
Purpose Define a loop of program statements which can sequentially examine and act upon each

member of a PowerCollection or LinkListCollection.

Syntax FOR EACH VariantVar IN CollectionObjectVar
 [statements]
NEXT

VariantVar A simple scalar variant variable (Local, Static, Global) which receives successive
collection items at the beginning of each loop iteration.

CollectionObject
Var

A simple scalar object variable which contains a PowerCollection or a LinkListCollection.

Remarks The FOR EACH loop allows you to examine each member of a collection in sequence, to
perform needed operations with that data. If there are no member items in the collection,
the loop is skipped.

When the loop begins, the first member variant in the collection is assigned to the
VariantVar. Statements in the loop can act upon or with that data to perform whatever
functions are needed. When the NEXT statement is reached, the next member item is
assigned to the VariantVar, and the loop is repeated. This repetition continues until there
are no more member items.

VariantVar contains a copy of the variant in the collection. You can alter the value of
VariantVar, but these changes do not affect the member variant in the collection.

See also EXIT FOR, FOR/NEXT, ITERATE FOR, LINKLISTCOLLECTION, POWERCOLLECTION

FOR/NEXT statements

PowerBASIC Compiler for Windows Version 10

750 / 2126

FOR/NEXT statements
Purpose Define a loop of program statements whose execution is controlled by an automatically

incrementing or decrementing counter.

Syntax FOR Counter = start TO stop [STEP increment]
 [statements]
 [EXIT FOR]
 [statements]
 [ITERATE FOR]
 [statements]
NEXT [Counter]

Remarks Counter is a numeric variable serving as the loop counter.

start is a numeric expression specifying the value initially assigned to Counter.

stop is a numeric expression giving the value that Counter must reach for the loop to be
terminated.

increment is an optional numeric expression defining the amount by which Counter is
incremented with each loop execution. If not specified, increment defaults to 1.

Note that increment must be the same data type or in the same range as Counter. For
example:

FOR x?? = 50 TO 1 STEP -1

will fail because -1 is not within the range of an unsigned Word variable.

When a FOR statement is encountered, start is assigned to Counter, and Counter is
tested to see if it is greater than (or, for negative increment, less than) stop. If not, the
statements within the FOR/NEXT loop are executed, increment is added to Counter, and
Counter again tested against stop. The statements in the loop are executed repeatedly
until the test fails, at which time control passes to the statement immediately following
the NEXT.

If increment is equal to the maximum value of a variable class (255 for a byte, 32767 for
an Integer, 65535 for a Word, etc), the compiler will generate an error. If step is zero, an
infinite loop can be created.

When using

 values with FOR/NEXT, be sure to allow for round-off errors when mixing numbers
of different precision. Using constants or variables of the same type throughout will
help solve this problem:

FOR n# = 1.0 TO 1.5 STEP 0.1
 x$ = STR$(n#)
NEXT n#

executes 5 times and returns:

1
1.10000000149012
1.20000000298023
1.30000000447035
1.40000000596046

while:

FOR n@ = 1.0@ TO 1.5@ STEP 0.1@
 x$ = STR$(n@)
NEXT n@

executes 6 times and returns:

1
1.1
1.2
1.3

PowerBASIC Compiler for Windows Version 10

751 / 2126

1.4
1.5

FOR/NEXT loops run fastest when Counter is a Long-integer variable, and start and
increment are Long-integer constants. The value of Counter is available like any other
variable within the loop. It is wise to avoid explicitly modifying the value of Counter within
the loop. If you need to exit the loop prematurely, use an EXIT FOR statement. Keep
range considerations in mind. For example, if Counter is an Integer variable, you may not
use the maximum value for an Integer for stop, as Counter would be incremented outside
the Integer range at the end of the loop.

The body of the loop is skipped altogether if the initial value of Counter is greater than stop
(or, for a negative increment, if Counter is less than stop).

FOR/NEXT loops can be nested within other FOR/NEXT loops. Be sure to use unique
counter variables. Note that PowerBASIC allows the Counter in the NEXT keyword simply
as a comment, which is ignored. For example, the following will compile, even though the
counter variables are "crossed":

FOR n = 1 TO 10
 FOR m = 1 TO 20
 .
 .
 .
 NEXT n
NEXT m

You can omit the counter variable in the NEXT statement altogether. For example:

FOR n = 1 TO 10
 .
 .
 .
NEXT

If a NEXT is encountered without a corresponding FOR (or vice versa), a compile-time
error is generated.

Previous version of PowerBASIC supported a single NEXT statement used with
multiple nested FOR/NEXT loops, such as NEXT c, b, a. This is no longer
supported and you will need to update your code to use multiple NEXT
statements.

In certain situations, previous versions of PowerBASIC optimized FOR/NEXT loops to
count down instead of up for improved execution speed. This optimization could cause
the counter variable to contain a value which was not expected when execution of the loop
was complete. This optimization has been improved so that the counter variable value is
always correct upon loop completion, even if EXIT FOR was used to force an early
termination.

Although the compiler does not care about such things, it is considered good
programming practice to indent the statements between FOR and NEXT by two or three
spaces to set off the structure of the loop.

For additional performance, use a REGISTER variable for the loop counter variable.

Restrictions The counter variable must be a simple numeric scalar variable, such as LOCAL, STATIC,
GLOBAL, or REGISTER. This aids in maintaining high performance levels for a simple
loop structure. Variables which require multiple operations to access are specifically
disallowed: THREADED, INSTANCE,

 Parameters, POINTER Targets, and ARRAY.
See also #OPTIMIZE, #REGISTER, DO/LOOP, EXIT, FOR EACH/NEXT, ITERATE, WHILE/WEND,

REGISTER

PowerBASIC Compiler for Windows Version 10

752 / 2126

FORMAT$ function

FORMAT$ function
Purpose Format

 data according to instructions contained in a format expression.
Syntax x$ = FORMAT$(num_expression [, [digits& | fmt$]])

Remarks FORMAT$ has the following parts:

num_expression The numeric expression, variable, or literal value to be formatted. This argument is
converted to full (Extended) precision before formatting commences.

digits& The maximum number of significant digits, in the range of 1 to 18. If not included,
PowerBASIC supplies a default value of 7 for single precision values, or 16 for more
precise values. This form of the function is very similar to the STR$() function, except that
it never supplies any leading or trailing spaces. Use care that digits& is large enough to
contain the whole part of a number, or scientific notation must be used to estimate it. For
example, FORMAT$(123.456, 2) returns the

 "1.2E+2", while FORMAT$(123.456, 5) returns the string "123.45".
fmt$ Format characters that will determine how the numeric expression should be formatted.

This expression is termed the mask . There may be up to 18 digit-formatting digits on
either side of the decimal point. The mask may not contain literal characters unless each
character is preceded with a backslash (\) escape character, or the literal characters are
enclosed in quotes.

fmt$ may contain one, two or three formatting masks, separated by semicolon (;)
characters:

One mask If fmt$ contains just one format mask, the mask is used to format all
possible values of num_expression. For example:

 x$ = FORMAT$(z!, "000.00")

Two masks If fmt$ contains two format masks, the first mask is used for positive
values (=> 0), and the second mask is used for negative values (< 0). For
example:

 x$ = FORMAT$(-100, "+00000.00;-000")

Three masks If fmt$ contains three masks, the first mask is used for positive values (>
0), the second mask for negative values (< 0), and the third mask is used
if num_expression is zero (0). For example:

 FOR y! = -0.5! TO 0.5! STEP 0.5!

 x$ = FORMAT$(y!, "+.0;-.0; .0")

NEXT y!

Digit placeholders in a mask do not have to be contiguous. This allows you to format a
single number into multiple displayed parts. For example:

A$ = FORMAT$(123456, "00\:00\:00") ' 12:34:56

The following table shows the characters you can use to create the user-defined format
strings (masks) and the definition of each formatting character:

Character Definition
Empty string [null string] No formatting takes place. The number is converted to

Extended-precision and formatted similarly to STR$, but without the
leading space that STR$ applies to non-negative numbers.
A$=FORMAT$(0.2) ' .200000002980232

A$=FORMAT$(0.2!, "") ' .200000002980232

A$=FORMAT$(0.2#) ' .2

A$=FORMAT$(0.2#, "") ' .2

0 [zero] Digit placeholder. PowerBASIC will insert a digit or 0 in that
position.
If there is a digit in num_expression in the position where the 0 appears in

PowerBASIC Compiler for Windows Version 10

753 / 2126

the format string, return that digit. Otherwise, return "0". If the number
being formatted has fewer digits than there are zeros (on either side of the
decimal point) in the format expression, leading or trailing zeros are
added. If the number has more digits to the right of the decimal point
than there are zeros to the right of the decimal point in the format
expression, the number is rounded to as many decimal places as there
are zeros in the mask.
If the number has more digits to the left of the decimal point than there
are zeros to the left of the decimal point in the format expression, the
extra digits are displayed without truncation. If the numeric value is
negative, the negation symbol will be treated as a decimal digit.
Therefore, care should be exercised when displaying negative values with
this placeholder style. In such cases, it is recommended that multiple
masks be used.
' Numeric padded with leading zero characters

A$ = FORMAT$(999%, "00000000") ' 00000999

[Number symbol] Digit placeholder. If there is a digit for this position,
PowerBASIC replaces this placeholder with a digit, nothing, or a user-
specified character.

 Unlike the 0 digit placeholder, if the numeric value has the fewer digits
than there are # characters on either side of the decimal placeholder,
PowerBASIC will either:
a) Omit this character position from the final formatted string; or
Substitute a user-specified replacement character if one has been defined
(see the asterisk (*) character for more information). To specify leading
spaces, prefix the mask with "* " (asterisk and a space character).
For example:
' No leading spaces and trailing spaces

A$ = FORMAT$(0.75!, "####.###") ' 0.75

' Up to 3 Leading spaces before decimal

A$ = FORMAT$(0.75!, "* ##.###") ' 0.75

' Using asterisks for padding characters

A$ = FORMAT$(0.75!, "*=##.###") ' ===0.75=

FORMAT$ may also return a string that is larger than the number of
characters in the mask:
A$ = FORMAT$(999999.9, "#.#") ' 999999.9

. [period] Decimal placeholder. Determines the position of the decimal
point in the resultant formatted string.
If any numeric field is specified to the left of the decimal point, at least
one digit will always result, even if only a zero. The zero is not
considered to be a "leading" zero if it is the only digit to the left of the
decimal. Placing more than one period character in the fmt$ string will
produce undefined results.

% [percent] Percentage placeholder. PowerBASIC multiplies
num_expression by 100, and adds a trailing percent symbol. For
example:
x$ = FORMAT$(1 / 5!, "0.0%") ' 20.0%

, [comma] Thousand separator. Used to separate thousands from
hundreds within a number that has four or more digits to the left of the
decimal point. In order to be recognized as a format character, the
comma must be placed immediately after a digit placeholder character
(also see Restrictions below).
A$ = FORMAT$(1234567@, "#,") ' 1,234,567

A$ = FORMAT$(12345@, "#,.00") ' 12,345.00

A$ = FORMAT$(12345@, "#.00,") ' 12,345.00

A$ = FORMAT$(1212.46, "$00,000.00") ' $01,212.46

A$ = FORMAT$(1000%, """#""#,") ' #1,000

PowerBASIC Compiler for Windows Version 10

754 / 2126

A$ = FORMAT$(1234567@, "0,") ' 1,234,567

*x [asterisk] Digit placeholder and fill-character. Instructs PowerBASIC to
insert a digit or character "x" in that position. If there is a digit in
num_expression at the position where the * appears in the format string,
that digit is used; otherwise, the "x" character is used (where "x"
represents your own choice of character). The *x specifier acts as two
digit (#) fields.
A$ = FORMAT$(9999.9@,"$**####,.00")' $**9,999.90

A$ = FORMAT$(0@,"$*=###0,.00#") ' $=====0.00=

A$ = FORMAT$(0@,"$* ####0,.00") ' $ 0.00

E- e- E+ e+ [e] Scientific format. PowerBASIC will use scientific notation in the
formatted output. Use E- or e- to place a minus sign in front of negative
exponents. Use E+ or e+ to place a minus sign in front of negative
exponents and a plus sign in front of non-negative exponents.
In order to be recognized as a format sequence, the E-, e-, E+, or e+
must be placed between two digit placeholder characters. For example:
A$ = FORMAT$(99.999, "0.0E-##") ' 1.0E2

A$ = FORMAT$(-99.999, "0.0E-##") ' -1.0E2

A$ = FORMAT$(99.999, "0.0E+##") ' 1.0E+2

A$ = FORMAT$(-99.999, "0.0E+##") ' -1.0E+2

A$ = FORMAT$(0.1!, "0.0e+##") ' 1.0e-1

" [double-quote] Quoted string. PowerBASIC treats all characters up to
the next quotation mark as-is, without interpreting them as digit
placeholders or format characters. Also see backslash. For example:
A$ = FORMAT$(12, $DQ+"##"+$DQ+"##") ' ##12

A$ = FORMAT$(5.55, """XYZ=""#.##\#") ' XYZ=5.55#

A$ = FORMAT$(25, """x=""#") ' x=25

A$ = FORMAT$(999, """Total ""#") ' Total 999

A$ = FORMAT$(5, $DQ+"x="+$DQ+"#") ' x=5

\x [backslash] Escaped character prefix. PowerBASIC treats the character
"x" immediately following the backslash (\) as a literal character rather
than a digit placeholder or a formatting character. Many characters in a
mask have a special meaning and cannot be used as literal characters
unless they are preceded by a backslash.
The backslash itself is not copied. To display a backslash, use two
backslashes (\\). To display a literal double-quote, use two double-quote
characters.
To simplify the mask string for common numeric formats, FORMAT$
permits the dollar symbol, the left and right parenthesis symbols, the plus
and minus symbols, and the space character ("$()+- ") to pass through
from the mask string into the formatted output string, without requiring an
escape (\) prefix character.
A$ = FORMAT$(23, "(* 0\%)") ' (23%)

A$ = FORMAT$(99999, "#\#") ' 99999#

A$ = FORMAT$(5, "\"+$DQ+$DQ+"x="+$DQ+ _

 "#\"+$DQ) ' "x=5"

A$ = FORMAT$(5, "\""""x=""#\""") ' "x=5"

A$ = FORMAT$(1000%, """#####,""") ' "#####,"

Restrictions You cannot pass a string expression or string variable in num_expression. Do not place
more than one decimal point in the mask.

FORMAT$ can return the maximum possible number of digits (up to 4932 for Extended-
precision); however, the resulting digits will be meaningless beyond the actual precision of
num_expression. Consequently, the value of num_expression may produce formatted
strings that are wider than the length of fmt$, for example:

A$ = FORMAT$(3e30!, "#,###") ' returns 41 characters

PowerBASIC Compiler for Windows Version 10

755 / 2126

Rounding, if necessary, is implemented by the "banker's rounding" principle: if the
fractional digit being rounded off is exactly five, with no trailing digits, the number is
rounded to the nearest even number. This provides better results, on average, and follows
the IEEE standard. For example:

A$ = FORMAT$(0.5##, "0") ' 0
A$ = FORMAT$(1.5##, "0") ' 2
A$ = FORMAT$(2.5##, "0") ' 2
A$ = FORMAT$(2.51##, "0") ' 3

Semicolon characters, being mask delimiters, should not be used for other purposes in
mask strings unless prefixed with an escaped character symbol (\).

FORMAT$, when used with some formatting characters such as the thousands separator
(comma), may not produce a "right-justified" formatted string. The simple solution is to
apply separate justification with the RSET statement or the RSET$ function. For
example:

A$ = SPACE$(12)
RSET A$ = FORMAT$(1,"#,###.00") ' 1.00
RSET A$ = FORMAT$(1000, "#,.00") ' 1,000.00
RSET A$ = FORMAT$(1000000,"#,###.00")' 1,000,000.00
B$ = RSET$(FORMAT$(1e6, "#,"),10) ' " 1,000,000"

One further enhancement would be to combine this into a MACRO function, for example:

MACRO mMoney1(d,l) = "$"+RSET$(FORMAT$(d,"#,"),l-1)
MACRO mMoney2(d,l) = RSET$(FORMAT$(d,"$#,"),l)
' code here
A$ = mMoney1(1000,10) ' "$ 1,000"
B$ = mMoney2(1000,10) ' " $1,000"

See also BIN$, GRAPHIC PRINT, GUID$, HEX$, OCT$, REPEAT$, SPACE$, STR$, STRING$,
USING$, VAL, XPRINT

FRAC function

FRAC function
Purpose Return the fractional part of a

 number.
Syntax h = FRAC(float_expression)

Remarks FRAC returns the number after the decimal point of a floating-point number or
expression. FRAC rounds the result of fit the precision of the target h, as per IEEE
specifications.

See also CEIL, CINT, FIX, INT, ROUND

Example h# = FRAC(10.25#) ' = 0.25# (Double-precision)

FREEFILE function

FREEFILE function
Purpose Return the next available PowerBASIC file number.

Syntax x% = FREEFILE

Remarks FREEFILE returns an Integer value in the range 1 to 32767, which dictates the next
available file number that may be used to OPEN a file or device. Using FREEFILE, your
program can open files and devices without the need to keep track of which file numbers
are already in use.

PowerBASIC Compiler for Windows Version 10

756 / 2126

FREEFILE is thread-safe, returning a new file number with each invocation. This means
that two or more consecutive calls to FREEFILE will return different file numbers
regardless of whether they were used to open a file or not. This behavior differs from
previous versions of PowerBASIC, where FREEFILE returned the same file number
consistently until the file number was actually used to open a file or device.

FREEFILE is vastly superior to using hard-coded file numbers because it eliminates the
possibility of a file number being used more than once in a module at any given moment.

A file number returned by FREEFILE can be used with the COMM OPEN, TCP OPEN and
UDP OPEN statements, as well as standard file I/O OPEN and OPEN HANDLE
statements.

Use FILENAME$ to return the name of the open file that corresponds to a given file
number.

Restrictions FREEFILE returns file numbers within a predictable and convenient range of values.
PowerBASIC file numbers are also specific (private) to the PowerBASIC module in which
they are used to OPEN a file or device. This means that a file number in use in one
module will have no definition or meaning if passed to another module or API function.

However, it can sometimes be necessary for a different module or even an API function to
access a file that is already open. In this case, it is necessary to use the FILEATTR
function to obtain the operating system file handle, and this value can be passed to other
modules or API functions. These modules would use the OPEN HANDLE statement to
gain access into the already-open file.

See also COMM OPEN, FILEATTR, FILENAME$, OPEN, TCP OPEN, UDP OPEN

Example x%= FREEFILE
OPEN MyFileName$ FOR OUTPUT AS #x%

FUNCNAME$ function

FUNCNAME$ function
Purpose Return the name of the current Sub/Function/Method/Property.

Syntax f$ = FUNCNAME$

Remarks FUNCNAME$ returns the name of the procedure in which it is located. If an

 is specified, FUNCNAME$ returns the ALIAS name; otherwise, it returns the
primary name capitalized. Returning the ALIAS name provides a mechanism to
disguise sensitive internal procedure names even when reporting error conditions to a
user.
FUNCNAME$ can be useful as a debugging tool, or in situations where an error handler in
a procedure passes error information on to a "central" procedure for logging and handling.
FUNCNAME$ does not require #TOOLS ON.

See also #TOOLS, CALLSTK, CALLSTK$, CALLSTKCOUNT, FILENAME$, FUNCTION, METHOD,
 PROFILE, PROPERTY, SUB, TRACE

Example SUB SecretEncryptionSub ALIAS "MySub" (sData$)
 x$ = FUNCNAME$ ' Returns "MySub"
END SUB
[statements]
SUB SecretDecryptionSub (sData$)
 x$ = FUNCNAME$ ' Returns "SECRETDECRYPTIONSUB"
END SUB

FUNCTION/END FUNCTION statements

PowerBASIC Compiler for Windows Version 10

757 / 2126

FUNCTION/END FUNCTION statements
Purpose Define a Function block.

Syntax FUNCTION ProcName [ALIAS "AliasName"] [(arguments)] <Descriptors> AS Type
 [statements]
 [{FuncName | FUNCTION} = ReturnValue]
END FUNCTION
CALLBACK FUNCTION ProcName [AS LONG]...
THREAD FUNCTION ProcName (BYVAL var AS LONG) AS LONG...

Remarks All executable code must reside in a Sub, Function, Method, Property, or FastProc
block. Functions may not be nested. That is, you cannot define a code block (Sub,
Function, Method, Property) inside another code block.

Previous versions of PowerBASIC required that you create an explicit
DECLARE statement if you wished to execute a SUB or FUNCTION which did
not physically precede the reference to it. This extra work is no longer
required, as PowerBASIC resolves all forward references to internal
procedures automatically.

DECLARE statements for a Sub/Function imported from a DLL must still
precede any reference to the procedure.

FuncName The name of the Function. A type-specifier may be appended (just like an ordinary
variable name) to specify the data type of the Function's return value, in place of the [AS
type] clause. FuncName must be unique: no other variable, Function, Sub, Method,
Property, or label can share it. Also see ALIAS below.

Future versions of PowerBASIC will not support type-specifier symbols for the
Function return type, so specify the return data type with an explicit AS type
clause in all DECLARE and FUNCTION definitions, to ensure future
compatibility.

ALIAS String literal that identifies an case-sensitive alternative name for the function. This lets
you export a Function by a different unique name. This can be useful if you want to
abbreviate a long name, provide a more descriptive name, or if the exported name needs
to contain characters that are illegal in PowerBASIC. AliasName is the routine's actual
name as it appears in the export table, and FuncName is the title that you can use in
PowerBASIC. For example:

FUNCTION ShortName ALIAS "LongFuncName"() EXPORT STATIC AS LONG

The ALIAS clause is very important when exporting procedures. Omitting the ALIAS
clause or incorrectly capitalizing the alias name are common causes of "Missing Export"
errors. Please refer to the DECLARE topic for more information.

 Descriptors

EXPORT This descriptor identifies a Sub or Function which may be accessed between Dynamic
Link Libraries (DLLs), and/or the main executable which links them. If a procedure is not
marked EXPORT, it is hidden from these other modules. The EXPORT attribute may be
added to a Sub/Function defined elsewhere, by specifying EXPORT in a DECLARE
statement. EXPORT can even be added to a Sub/Function in an SLL with a DECLARE in
the host module.

COMMON A COMMON Sub/Function is one which may be referenced by and between linked unit
modules (Host or SLL). If you DECLARE a Common Sub or Function which is not
present in this module, it is presumed to be found in a separate linked module (Host or
SLL).

PRIVATE A PRIVATE Sub/Function is one which may only be accessed from within the current
PowerBASIC program or library. Even if not specified, this is the default mode of
operation.

THREADSAFE With the THREADSAFE option, PowerBASIC automatically establishes a semaphore
which allows only one thread to execute the Sub/Function at a time. Other callers must

PowerBASIC Compiler for Windows Version 10

758 / 2126

wait until the first thread exits the THREADSAFE procedure before they are allowed to
begin.

LOCAL This descriptor specifies that all undeclared variables in a function are LOCAL. This is the
default condition if neither LOCAL nor STATIC is specified.

Local variables and arrays variables are automatically deallocated when the procedure
terminates. LOCAL scalar variables (except dynamic strings) are stored on the stack,
and visible only within the function.

STATIC This descriptor specifies that all undeclared variables in a function are STATIC. Static
variables retain their values as long as the program is running. They are visible only within
the function.

BDECL Specifies that the declared procedure uses the legacy BASIC/Pascal calling convention.
 Parameters are pushed on the stack from left to right, and the called procedure is
responsible for removing them. BDECL should only be used when necessary to match
outside modules.

CDECL Specifies that the declared procedure uses the C calling convention. Parameters are
pushed on the stack from right to left, and the calling code is responsible for removing
them. CDECL should only be used when necessary to match outside modules.

SDECL This is the default convention, and should be used whenever possible. SDECL (and its
synonym STDCALL), specifies the "Standard Calling Convention" for Windows.
 Parameters are pushed on the stack from right to left, and the called procedure is
responsible for removing them.

CALLBACK Specifies that this is a callback function, which is used only to receive messages from the
operating system. It may never be called directly from your code. Details about the
message sent to the callback are retrieved using the CB group of PowerBASIC functions.
Callback functions may not include parameters, and always return a long integer result.
 For example:

CALLBACK FUNCTION DlgProc AS LONG
 ' Callback code goes here
END FUNCTION

Callback functions have the unique ability to optionally return two distinct values when
necessary for certain Windows messages. This allows them to return the value zero (0)
as a function result, while still specifying that the message has been processed. See the
section CALLBACK RETURN VALUE (below) and the CALLBACKS page for more details.

THREAD Specifies that this is a thread function, which is the point where execution of a new thread
begins. It may never be called directly from your code. Thread functions must take
exactly one long-integer or double-word parameter by value (BYVAL), and must return
either a long-integer or double-word result. For example:

THREAD FUNCTION MyThreadFunction(BYVAL x AS LONG) AS LONG
 ' Thread code goes here
END FUNCTION

The THREAD CREATE statement creates and begins execution of a new thread Function.

 Passing parameters

arguments An optional, comma-delimited sequence of formal parameters. The parameters used in
the arguments list serve only to define the Function; they have no relationship to other
variables in the calling code with the same name.

Normally, PowerBASIC passes parameters to a Function either by reference (BYREF) or
by value (BYVAL). If you do not need to modify the parameters (true in many cases), you
can speed up your calls by passing the parameters by value using the BYVAL keyword.
 You can clarify that a parameter is passed by reference by using the optional BYREF
keyword.

The type of the parameter is specified either by appending a type-specifier character to
the name or by using an AS clause. For example:

FUNCTION Test&(A AS INTEGER) 'integer passed by ref

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

759 / 2126

FUNCTION Test&(A%) 'integer passed by ref
FUNCTION Test&(BYREF A%) 'integer passed by ref
FUNCTION Test&(BYVAL A%) 'integer passed by val

 Parameter restrictions

 PowerBASIC compilers have a limit of 32 parameters per FUNCTION. To pass more than
32 parameters to a FUNCTION, construct a User-Defined Type (UDT) and pass the UDT
by reference (BYREF) instead.

Fixed-length strings, Nul-Terminated Strings, and User-Defined Types/Unions may also be
passed as BYVAL or OPTIONAL parameters. Try to avoid passing large items BYVAL, as
itʼs terribly inefficient, and there is a maximum size limit of 64 Kb for a given parameter
list.

PowerBASIC Functions cannot return an array or Variant variable as a Function return
value. Pass these variable types as BYREF parameters instead. For example:

lResult& = ProcessData(TheArray&(), iSize%)
[statements]
FUNCTION ProcessData(lArr() AS LONG, iSize%) AS LONG
 REDIM lArr(iSize%) AS LONG
 lArr(iSize%) = 1&
 FUNCTION = -1&
END FUNCTION

 Pointer parameters

 When a Function definition specifies either a BYREF parameter or a pointer variable
parameter, the calling code may freely pass a BYVAL DWORD or a Pointer instead.
Pointer variable parameters must always be declared as BYVAL parameters.

' Integer Pointer (passed by value)
FUNCTION Test(BYVAL A AS INTEGER PTR) AS LONG
 @A = 56
END FUNCTION

Additional information on BYVAL/BYREF/BYCOPY parameter passing can be found in
the CALL statement topic.

 Optional parameters

 PowerBASIC supports two syntax formats for optional parameters: the classic optional
parameter syntax using brackets "[..]", and the new syntax using the OPTIONAL (or OPT)
keyword. We'll discuss each one in turn.

 Using OPTIONAL/OPT

 FUNCTION statements may specify one or more parameters as optional by preceding the
parameter with either the keyword OPTIONAL or OPT. Optional parameters are only
allowed with CDECL or SDECL calling conventions, not BDECL.

When a parameter is declared optional, all subsequent parameters in the declaration are
optional as well, whether or not they specify an explicit OPTIONAL or OPT directive. The
following two lines are equivalent, with both second and third parameters being optional:

FUNCTION sABC(a&, OPTIONAL BYVAL b&, OPTIONAL BYVAL c&) AS LONG
FUNCTION sABC(a&, OPT BYVAL b&, BYVAL c&) AS LONG

VARIANT variables are particularly well suited for use as an optional parameter. If the
calling code omits an optional VARIANT parameter, (BYVAL or BYREF), PowerBASIC
(and most other compilers) substitute a variant of type VT_ERROR which contains an
error value of %DISP_E_PARAMNOTFOUND (&H80020004). In this case, you can check
for this value directly, or use the ISMISSING() function to determine whether the
parameter was physically passed or not.

When optional parameters (other than a VARIANT) are omitted in the calling code, the
stack area normally reserved for those parameters is zero-filled. This allows you to test if
an optional parameter was passed or not:

PowerBASIC Compiler for Windows Version 10

760 / 2126

If the parameter is defined as a BYVAL parameter, it will have the value zero. For TYPE
or UNION variables passed BYVAL, the compiler will pass a string of binary zeroes of
length SIZEOF(Type_or_union_var).

If the parameter is defined as a BYREF parameter, VARPTR (varname) will equal zero;
when this is true, any attempt to use Var_name in your code will result in Error #9 (null
pointer); failure to detect this error using error-trapping may result in a General Protection
Fault or memory corruption. You should use the ISMISSING() function first to determine
whether it is safe to access the parameter.

Because the FUNCTION, SUB, FASTPROC, METHOD, or PROPERTY being called does
not know how many parameters are being passed at the time it is called, you should pass
the number of parameters as one of the required parameters in the list.

AS type Function blocks are constructed very much like Subs (see SUB/END SUB statement).
 However, Functions differ from Subs in that they always return a result, so they can be
used in assignments and expressions. Therefore, there are two ways to specify the return
type of a Function:

You may specify the type of data returned by a Function to the calling code. If you do not
specify a type, PowerBASIC assumes that the Function returns the data type specified
by a DEFtype statement. However, if no DEFtype or AS type has been specified, a
compile-time error is generated.

Therefore, there are two ways to specify the return type of a Function:

· Include a type-specifier character at the end of FuncName

· Include the AS type clause as the last part of the FUNCTION statement (this is the
recommended syntax to ensure future compatibility).

For example, the following statements are equivalent:

FUNCTION aFunction?()
FUNCTION aFunction() AS BYTE

While most FUNCTION calling conventions are fairly well defined throughout
the industry, there are a few exceptions. In the case of functions which return
a Quad Integer value, some programming languages (including PowerBASIC)
return the quad value in the FPU, while others return it in EDX:EAX.
 PowerBASIC automatically detects the method used by imported functions
and adjusts accordingly for you, but that's not a feature found in other
compilers. Therefore, we recommend that you do not EXPORT QUAD
FUNCTIONS unless they will only be accessed by PowerBASIC programs. A
simple equivalent functionality would be to return the quad-integer value to
the caller in a BYREF QUAD parameter.

 Assigning a return value

 You can specify the return value of the Function by explicitly setting the value, either by
assigning a value to the FUNCTION keyword, or by assigning a value to the function
name. For example, the two lines within the following Function block are equivalent:

FUNCTION AddData() AS LONG
 [statements]
 AddData = 123& ' Assign value to function name
 FUNCTION = 123& ' Assign value to the function
END FUNCTION

 Default return value

 If the code within the Function does not explicitly set a return value, the default return
value will be zero if the function returns a numeric data type, or an empty string if the
function returns a string. For example:

FUNCTION AddData() AS LONG
 [statements]
 IF condition THEN

PowerBASIC Compiler for Windows Version 10

761 / 2126

 EXIT FUNCTION ' No assignment, will return 0&
 ELSE
 FUNCTION = -1& ' An explicit return value
 END IF
END FUNCTION

PowerBASIC Functions cannot return an array as a Function return value. Pass the array
as a parameter instead. For example:

lResult& = CheckTheData(InTheArray&())
[statements]
FUNCTION CheckTheData(lArr() AS LONG) AS LONG
 [statements]
END FUNCTION

 CALLBACK Return Value

 Callback functions always return a long integer result. The primary purpose of this return
value is to tell the PowerBASIC DDT engine and the Windows operating system whether
your Callback Function has processed this particular message. If you return the value
TRUE (any non-zero value), you are asserting that the message was processed and no
further handling is needed. If you return the value FALSE (zero), the PowerBASIC DDT
engine will manage the message for you, using the default message procedures in
Windows. If you do not specify a return value in the function, PowerBASIC chooses the
value FALSE (zero) for you.

The term "process a message" may have many meanings. If it's a simple notification of a
change in focus or style, which has no impact on your program, you may decide to
consider it processed, yet do nothing. In other cases, your reaction could be quite
complex and involved. As the programmer, that's your decision to make. But, regardless
of your reaction, you should consider a message "processed" (returning a true value)
whenever no further handling of the message (by DDT or Windows) is needed.

In some cases, especially when dealing with Common Controls and custom controls, you
may be required to return a second result value through a special Windows data area
named DWL_MSGRESULT. When you complete a Callback Function, PowerBASIC
automatically copies any non-zero return value to DWL_MSGRESULT, if you haven't done
so already. Therefore, it's generally safe to ignore this requirement in your code.

In most cases, when you process a message, you'll return a generic value for TRUE, such
as: FUNCTION = 1. However, some messages require that you return a special value for
TRUE, such as a graphical brush handle. As long as the value is non-zero, you can
return it in the normal manner (with FUNCTION = n), since any non-zero value
automatically implies that the message was processed.

That said, there are a few unique messages which may require special handling. Luckily,
they're rare, but some just "break all the rules" listed above. For example, you might find
one which requires a zero result, even when you have processed the message. You may
find another which requires the return value be different from DWL_MSGRESULT. For
these very special cases, you can simply specify two return values:

FUNCTION = 1, BrushHandle&

In this form, the first numeric expression specifies the value to be returned from the
Callback Function. The second numeric expression tells the value to be assigned to
DWL_MSGRESULT. When you use this double parameter assignment, the results are
absolute. PowerBASIC assumes you have processed the message, regardless of the
values given. PowerBASIC makes no other assumptions of any kind about these values. A
double parameter function assignment is only allowed in a Callback Function.

Previous versions of PowerBASIC did not offer a double parameter form of
function return. This caused some difficulty with a few Windows messages
which required a special return value of zero. If you return a value of zero (0)
with the single parameter form, it implies the message was not processed at
all by the Callback. This issue is totally circumvented by the double parameter
form.

PowerBASIC Compiler for Windows Version 10

762 / 2126

 Variables within functions

 LOCAL variables are created within the procedures stack frame. If a LOCAL variable
exceeds the amount of stack space available, it may become necessary to use a STATIC
or GLOBAL variable instead. For example, creating a LOCAL Nul-Terminated string or
LOCAL fixed-length string that is very large (say, approaching 1 MB) can trigger a General
Protection Fault (GPF) because it may overrun the stack frame.

See also DECLARE, EXIT, FASTPROC, FUNCNAME$, GLOBAL, INSTANCE, ISMISSING, LOCAL,
METHOD, PROPERTY, STATIC, SUB, THREAD CREATE, THREADID

Example FUNCTION HalfOf ALIAS "HalfOf" (X!) EXPORT AS SINGLE
 FUNCTION = X! / 2
END FUNCTION

GET statement

GET statement
Purpose Read a record from a random-access file, or a variable or an array from a binary file.

Syntax Random-Access files:
GET [#] filenum&, [Rec], [ABS] Var
GET [#] filenum& [, Rec]
Binary files:
GET [#] filenum&, [RecPos], Var
GET [#] filenum&, [RecPos], Arr() [RECORDS rcds] [TO count]

Remarks A

 variable used to receive data may be either ANSI or WIDE, but it must match the
CHR mode of the data read from the file. That is, if the data was written as an ANSI
string, it should be read into an ANSI string variable. If it was written as a WIDE
string, it should be read into a WIDE string variable. Failure to match this CHR mode
can cause unpredictable interpretation of the data. GET never performs conversions
of ANSI/WIDE characters, regardless of the CHR mode specified in the OPEN
statement. It reads data from the file based upon the type of string variable you use.
 It is the responsibility of the programmer to choose the correct type.

filenum& The file number under which the file was opened.

 Random Access files

Rec For random-access files, Rec is the record number to be read, from 1 to 2 6̂3-1 (the
maximum positive value for a Quad-integer). If Rec is omitted, the next record in
sequence (following the one specified by the most recent GET or PUT) is read. If the file
was just opened, the first record is read.

Var If Var is smaller than the defined record length, GET will read enough data to fill Var. The
remainder of the record is discarded and the file pointer is placed at the next record
position. If Var is larger than the defined record length, GET will read one record into Var,
and the file pointer will be moved to the next record.

When GET is used to retrieve data from a random access file into a dynamic (variable-
length) string, PowerBASIC looks for a 2-byte (WORD) size field at the beginning of each
record which indicates the number of data bytes which follow. If the data is in WIDE
format, the size is double the number of characters because each character occupies two
bytes. This 2-byte size field is placed in the file automatically by the PUT statement
when used with dynamic (variable-length) strings.

When the second form of GET is used (without a Var target string), GET reads the file
data from the current file pointer into an internal buffer. This data can then be accessed
using FIELD string variables.

PowerBASIC Compiler for Windows Version 10

763 / 2126

ABS When GET is used to read a random file into a dynamic string, it normally expects the
first two bytes of the record to contain the length of the valid data contained in the record.
The ABS keyword specifies that no length word exists in the data, and the number of
bytes to read is defined by the current length of the dynamic string variable. If the variable
length is greater than the file record length, the remainder of the string variable is filled
with nul's (CHR$(0) or $NUL). This offers greater compatibility with the actual operation of
other versions of BASIC, such as PowerBASIC for DOS.

A random access file record is limited to 32768 bytes to ensure consistent behavior
across all supported Win32 platforms. GET$ and other related functions are not
constrained in this manner.

 Binary files

RecPos For binary files, RecPos is the starting byte or

 from where the GET should begin. The optional BASE = clause of the OPEN
statement defines whether the first position is 0 or 1. The base position is 1 by
default. If RecPos is greater than the number of records or bytes in the file, no error
occurs but unpredictable data may be read. Use the EOF function to avoid reading
past the end of the file.

Var When used with a binary file, GET retrieves enough data from the file to fill Var. The Var
parameter can be a simple (scalar) variable like an Integer or a dynamic (variable-length)
string, an element in an array, or a variable of User-Defined Type.

When GET is used to read a binary file into a dynamic string, the number of bytes to read
is defined by the current size of the dynamic string variable. If the variable length is
greater than the file record length, the remainder of the string variable is filled with nuls
(CHR$(0) or $NUL). This offers greater compatibility with the actual operation of other
versions of BASIC, such as PowerBASIC for DOS.

Arr() When reading an array from the disk file, GET assigns data from the file into each
element in the array, starting at the arrays LBOUND subscript. GET attempts to read the
number of elements specified by rcds in the RECORDS option, or the number of elements
in the array, whichever is smaller. The actual number of elements read is assigned to the
variable count specified in the optional TO clause.

With a dynamic string array, it is assumed the file was written in the PowerBASIC and/or
VB packed string format using PUT of an entire string array. If a string is shorter than
65535 bytes, a 2-byte length WORD is followed by the string data. Otherwise, a 2-byte
value of 65535 is followed by a length Double-word (DWORD), then finally the string data.

With other array arrays types, the entire data area is read as a single block. In either
case, it is presumed the file was created with the complementary PUT Array statement.

EOF is set just as with other GET statements.

You can use the FILESCAN statement to determine the number of records contained in
the file, allowing an array of the appropriate type to be dimensioned before using the GET
statement to read the file.

See also CSET, CSET$, EOF, FIELD, FILESCAN, GET$, GET$$, LINE INPUT#, LSET, OPEN,
PRINT#, PUT, PUT$, PUT$$, RSET, TYPE, SEEK, WRITE#

Example ' Random-access GET example
DIM uName AS STRING * 20
DIM I AS QUAD
DIM F AS LONG

F = FREEFILE
OPEN "TESTFILE.DTA" FOR RANDOM AS #F LEN = LEN(uName)
WHILE uName <> SPACE$(20)
 PUT #F,, uName
 uName = GetInput()
WEND

http://www.powerbasic.com/products/pbdos/

PowerBASIC Compiler for Windows Version 10

764 / 2126

IF SEEK(F) > 0 THEN
 ShowText "The file contains these names:"
 FOR ix = 1 TO SEEK(F)
 GET #F, ix, uName
 ShowText uName + NL
 NEXT
ELSE
 ShowText "The file is empty"
END IF
CLOSE #F

' Binary GET Array example
OPEN "Data file to read.dat" FOR BINARY AS #1
FILESCAN #1, RECORDS TO count&
DIM TheData$(1 TO count&)
GET #1, 1, TheData$() TO y&

CLOSE #1

GET$ statement

GET$ statement
Purpose Read an ANSI

 from a file opened in binary mode.
Syntax GET$ [#] filenum&, Count&, StrgVar

filenum& The file number under which the file was opened.

Count& Specifies how many bytes to read.

StrgVar The string variable which receives the data. It can be a dynamic string, fixed-length string,
nul-terminated string, or field string. StrgVar may be either ANSI or WIDE. If it is a WIDE
variable, the data is automatically converted to WIDE Unicode before it is assigned.

Remarks GET$ reads Count& characters from file number filenum&, and assigns them to StrgVar.
GET$ and PUT$ provide a low-level alternative to sequential and random-access file-
processing techniques, allowing you to deal with files on a byte-by-byte basis.

File filenum& must have been opened in binary mode. Characters are read starting at the
current file pointer position, which can be set with the SEEK statement. When the file is
first opened, the pointer is at the beginning of the file (position 1, by default, unless
BASE=0 was specified in the OPEN statement). After GET$, the file pointer position is
automatically advanced to the position immediately following the data read.

See also EOF, GET, GET$$, INPUT#, LINE INPUT#, LOF, OPEN, PRINT#, PUT, PUT$, PUT$$,
SEEK, WRITE#

Example ' Open binary file, write the alphabet A-Z to it
OPEN "SEEK.DTA" FOR BINARY AS #1 LEN = 1 BASE = 0
FOR I& = 65 TO 90
 PUT$ #1, CHR$(I&)
NEXT I&

' Now read five characters at a time from the file,
' starting at different pointer positions
FOR I& = 0 TO 20 STEP 5
 SEEK #1, I&
 GET$ #1, 5, TempString$
 x$ = "Starting at position" + STR$(I&) + $SPC + $DQ + TempString$ + $DQ
NEXT I&

PowerBASIC Compiler for Windows Version 10

765 / 2126

CLOSE #1

Result Starting at position 0 "ABCDE"
Starting at position 5 "FGHIJ"
Starting at position 10 "KLMNO"
Starting at position 15 "PQRST"
Starting at position 20 "UVWXY"

GET$$ statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GET$$ statement
Purpose Reads WIDE

 data from a file opened in binary mode.
Syntax GET$$ [#] Filenum&, Count&, StrgVar

Filenum& The file number under which the file was opened.

Count& Specifies how many WIDE characters to read from the file.

StrgVar The string variable which receives the data. It can be a dynamic string, fixed-length
string, nul-terminated string, or field string. StrgVar may be either ANSI or WIDE. If it is
an ANSI variable, the data is automatically converted to ANSI bytes before it is assigned.

Remarks GET$$ reads Count& WIDE characters from file number filenum&, and assigns them to
StrgVar. GET$$ and PUT$$ provide a low-level alternative to sequential and random-
access file-processing techniques, allowing you to deal with files on a character-by-
character basis.

File filenum& must have been opened in binary mode. Characters are read starting at the
current file pointer position, which can be set with the SEEK statement. When the file is
first opened, the pointer is at the beginning of the file (position 1, by default, unless
BASE=0 was specified in the OPEN statement). After GET$$, the file pointer position is
automatically advanced to the position immediately following the data read.

See also EOF, GET, GET$, INPUT#, LINE INPUT#, LOF, OPEN, PRINT#, PUT, PUT$, PUT$$,
SEEK, WRITE#

GETATTR function

GETATTR function
Purpose Return the file-system attribute(s) of a disk file or directory.

Syntax x& = GETATTR(filespec$)

Remarks filespec$ specifies a filename or directory (optionally, including a drive letter and directory
path). The attribute code returned in x& is a standard operating system attribute code, or
a combination of several codes ORed together:

Attribute Description Equate

PowerBASIC Compiler for Windows Version 10

766 / 2126

0 Normal* %NORMAL
1 Read-only %READONLY
2 Hidden %HIDDEN
4 System %SYSTEM
8 Volume Label %VLABEL
16 Directory %SUBDIR
32 Archived %ARCHIVE
128 Normal* (synonym of %NORMAL)

* Some operating systems may return either 0 or 128 for normal files.

If GETATTR returns an attribute of 0 (or 128), filespec$ is a regular file: not read-only, not
hidden, not system, and not archived.

Additional file attributes may be supported on some file systems. See the %
FILE_ATTRIBUTE equates in your WinNT.inc file for a full list.

If you want to test for a single attribute, use the bitwise AND operator to strip out any
other attributes that might be set. See the example below.

GETATTR can also be used to verify the existence of a file or directory, taking advantage
of the fact that ERR will be set if the file/directory does not exist. See the example below.

Restrictions If filespec$ cannot be found, a run-time Error 53 ("File not found") occurs. You cannot
obtain the attributes of the root directory (i.e., "C:\"). Windows prevents this particular
operation, triggering an Error 53.

See also DIR$, FILEATTR, ISFILE, PATHSCAN$, SETATTR

Example ' General GETATTR example
attr& = GETATTR("C:\CONFIG.SYS")
IF (attr& AND 32&) = 32& THEN
 x$ = "CONFIG.SYS has been modified"
ELSE
 x$ = "CONFIG.SYS hasn't been modified"
END IF

GLOBAL statement

GLOBAL statement
Purpose Declare global (shared) variables between Subs, Functions. Methods, and Properties.

Syntax GLOBAL variable[()] [AS type] [, variable[()]] [, ...]
GLOBAL variable[()] [, variable[()]] [, ...] AS type

Remarks GLOBAL declares the specified variable(s) as global to the entire program. This gives a
procedure access to variable(s), without having to pass them as parameters. To declare
an array as a global variable, use an empty set of parentheses in the variable list:

GLOBAL MyArray%()
GLOBAL StringArray() AS STRING

You must then use the DIM or REDIM statements to dimension the array inside a
procedure. A good place to do this is inside your WINMAIN or PBMAIN function.

If an array is defined as GLOBAL outside a procedure, you should include the GLOBAL
keyword in the DIM statement for clarity, and compatibility with future versions of
PowerBASIC:

GLOBAL a() AS STRING
FUNCTION PBMAIN
 DIM a(1 TO 500) AS GLOBAL STRING
 [statements]
END FUNCTION

The GLOBAL statement may accept a list of variables, all of which are defined by the type

PowerBASIC Compiler for Windows Version 10

767 / 2126

descriptor keywords which follow them. For example:

GLOBAL aaa, bbb, ccc AS INTEGER
GLOBAL vptr, aptr() AS LONG PTR

Restrictions GLOBAL variables are not shared between programs and DLLs or between multiple
instances of the same DLL. That is, a GLOBAL variable is only global within its own
module. The simplest way to expose a variable to a DLL is to pass the variable

 (by reference) to the target DLL. DEFtype has no effect on variables defined by a
GLOBAL statement.

See also DIM, INSTANCE, LOCAL, STATIC, THREADED

Example #COMPILE EXE
GLOBAL Caption AS ASCIIZ * 255

FUNCTION PBMAIN() AS LONG
 DIM Msg AS ASCIIZ * 255
 CALL SetVars
 IF Caption = "GLOBAL test" then Msg = "Success!"
END FUNCTION

SUB SetVars()
 Caption = "GLOBAL test"
END SUB

GLOBALMEM ALLOC statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GLOBALMEM statement
Purpose Allocate or release a block of global memory

Syntax GLOBALMEM ALLOC count TO vHndl
GLOBALMEM FREE mHndl TO vHndl
GLOBALMEM LOCK mHndl TO vPtr
GLOBALMEM SIZE mHndl TO vSize
GLOBALMEM UNLOCK mHndl TO vLocked

Remarks GLOBALMEM allocates a block of global system memory of the requested size. This is
always allocated as "moveable" memory, so it can be used with any facilities of
Windows. It is the programmer's responsibility to release the allocated memory block
when it's no longer needed.

There are five general forms of the GLOBALMEM statement:

GLOBALMEM ALLOC A moveable memory block of the size in bytes specified
by count is allocated. A unique handle is assigned to
this memory object (for later identification). This handle
is assigned to the LONG or DWORD variable specified
by vHndl. If the requested allocation fails for any
reason, the value zero (0) is assigned to vHndl instead.

PowerBASIC Compiler for Windows Version 10

768 / 2126

GLOBALMEM FREE A memory block is de-allocated and released for re-use.
 The mHndl parameter is a variable or expression which
evaluates to the handle returned by GLOBALMEM
ALLOC when the memory block was created. If the de-
allocation operation was successful, the result variable
vHndl is set to zero (0) to indicate that the original
handle is no longer valid. If the operation fails for any
reason, the value of the mHndl parameter is assigned to
vHndl. It may be convenient to use the same variable for
both the parameter and the result, as it will then be
automatically cleared to zero when the memory block is
released.

GLOBALMEM LOCK The moveable memory block referenced by mHndl is
locked at a specific memory location. A pointer to this
location is assigned to the variable specified by vPtr.
 You may only read or write the memory block while it is
locked, and you use the current pointer to its location.

GLOBALMEM SIZE The size of the memory block referenced by mHndl is
retrieved and assigned to the LONG or DWORD variable
specified by vSize. The mHndl parameter is the handle
originally returned by GLOBALMEM ALLOC.

GLOBALMEM UNLOCK The moveable memory block referenced by mHndl is
unlocked, and the previous memory pointer is
invalidated. If the memory block remains locked
(perhaps because it had been locked more than once),
the value TRUE (non-zero) is assigned to the result
variable vLocked. If the memory block is now unlocked,
or the parameter mHndl was invalid, the value FALSE (0)
is assigned to vLocked instead.

See also MEMORY

GLOBALMEM FREE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GLOBALMEM statement
Purpose Allocate or release a block of global memory

Syntax GLOBALMEM ALLOC count TO vHndl
GLOBALMEM FREE mHndl TO vHndl
GLOBALMEM LOCK mHndl TO vPtr
GLOBALMEM SIZE mHndl TO vSize
GLOBALMEM UNLOCK mHndl TO vLocked

Remarks GLOBALMEM allocates a block of global system memory of the requested size. This is
always allocated as "moveable" memory, so it can be used with any facilities of
Windows. It is the programmer's responsibility to release the allocated memory block
when it's no longer needed.

PowerBASIC Compiler for Windows Version 10

769 / 2126

There are five general forms of the GLOBALMEM statement:

GLOBALMEM ALLOC A moveable memory block of the size in bytes specified
by count is allocated. A unique handle is assigned to
this memory object (for later identification). This handle
is assigned to the LONG or DWORD variable specified
by vHndl. If the requested allocation fails for any
reason, the value zero (0) is assigned to vHndl instead.

GLOBALMEM FREE A memory block is de-allocated and released for re-use.
 The mHndl parameter is a variable or expression which
evaluates to the handle returned by GLOBALMEM
ALLOC when the memory block was created. If the de-
allocation operation was successful, the result variable
vHndl is set to zero (0) to indicate that the original
handle is no longer valid. If the operation fails for any
reason, the value of the mHndl parameter is assigned to
vHndl. It may be convenient to use the same variable for
both the parameter and the result, as it will then be
automatically cleared to zero when the memory block is
released.

GLOBALMEM LOCK The moveable memory block referenced by mHndl is
locked at a specific memory location. A pointer to this
location is assigned to the variable specified by vPtr.
 You may only read or write the memory block while it is
locked, and you use the current pointer to its location.

GLOBALMEM SIZE The size of the memory block referenced by mHndl is
retrieved and assigned to the LONG or DWORD variable
specified by vSize. The mHndl parameter is the handle
originally returned by GLOBALMEM ALLOC.

GLOBALMEM UNLOCK The moveable memory block referenced by mHndl is
unlocked, and the previous memory pointer is
invalidated. If the memory block remains locked
(perhaps because it had been locked more than once),
the value TRUE (non-zero) is assigned to the result
variable vLocked. If the memory block is now unlocked,
or the parameter mHndl was invalid, the value FALSE (0)
is assigned to vLocked instead.

See also MEMORY

GLOBALMEM LOCK statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GLOBALMEM statement
Purpose Allocate or release a block of global memory

Syntax GLOBALMEM ALLOC count TO vHndl
GLOBALMEM FREE mHndl TO vHndl

PowerBASIC Compiler for Windows Version 10

770 / 2126

GLOBALMEM LOCK mHndl TO vPtr
GLOBALMEM SIZE mHndl TO vSize
GLOBALMEM UNLOCK mHndl TO vLocked

Remarks GLOBALMEM allocates a block of global system memory of the requested size. This is
always allocated as "moveable" memory, so it can be used with any facilities of
Windows. It is the programmer's responsibility to release the allocated memory block
when it's no longer needed.

There are five general forms of the GLOBALMEM statement:

GLOBALMEM ALLOC A moveable memory block of the size in bytes specified
by count is allocated. A unique handle is assigned to
this memory object (for later identification). This handle
is assigned to the LONG or DWORD variable specified
by vHndl. If the requested allocation fails for any
reason, the value zero (0) is assigned to vHndl instead.

GLOBALMEM FREE A memory block is de-allocated and released for re-use.
 The mHndl parameter is a variable or expression which
evaluates to the handle returned by GLOBALMEM
ALLOC when the memory block was created. If the de-
allocation operation was successful, the result variable
vHndl is set to zero (0) to indicate that the original
handle is no longer valid. If the operation fails for any
reason, the value of the mHndl parameter is assigned to
vHndl. It may be convenient to use the same variable for
both the parameter and the result, as it will then be
automatically cleared to zero when the memory block is
released.

GLOBALMEM LOCK The moveable memory block referenced by mHndl is
locked at a specific memory location. A pointer to this
location is assigned to the variable specified by vPtr.
 You may only read or write the memory block while it is
locked, and you use the current pointer to its location.

GLOBALMEM SIZE The size of the memory block referenced by mHndl is
retrieved and assigned to the LONG or DWORD variable
specified by vSize. The mHndl parameter is the handle
originally returned by GLOBALMEM ALLOC.

GLOBALMEM UNLOCK The moveable memory block referenced by mHndl is
unlocked, and the previous memory pointer is
invalidated. If the memory block remains locked
(perhaps because it had been locked more than once),
the value TRUE (non-zero) is assigned to the result
variable vLocked. If the memory block is now unlocked,
or the parameter mHndl was invalid, the value FALSE (0)
is assigned to vLocked instead.

See also MEMORY

GLOBALMEM SIZE statement

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

771 / 2126

Example

GLOBALMEM statement
Purpose Allocate or release a block of global memory

Syntax GLOBALMEM ALLOC count TO vHndl
GLOBALMEM FREE mHndl TO vHndl
GLOBALMEM LOCK mHndl TO vPtr
GLOBALMEM SIZE mHndl TO vSize
GLOBALMEM UNLOCK mHndl TO vLocked

Remarks GLOBALMEM allocates a block of global system memory of the requested size. This is
always allocated as "moveable" memory, so it can be used with any facilities of
Windows. It is the programmer's responsibility to release the allocated memory block
when it's no longer needed.

There are five general forms of the GLOBALMEM statement:

GLOBALMEM ALLOC A moveable memory block of the size in bytes specified
by count is allocated. A unique handle is assigned to
this memory object (for later identification). This handle
is assigned to the LONG or DWORD variable specified
by vHndl. If the requested allocation fails for any
reason, the value zero (0) is assigned to vHndl instead.

GLOBALMEM FREE A memory block is de-allocated and released for re-use.
 The mHndl parameter is a variable or expression which
evaluates to the handle returned by GLOBALMEM
ALLOC when the memory block was created. If the de-
allocation operation was successful, the result variable
vHndl is set to zero (0) to indicate that the original
handle is no longer valid. If the operation fails for any
reason, the value of the mHndl parameter is assigned to
vHndl. It may be convenient to use the same variable for
both the parameter and the result, as it will then be
automatically cleared to zero when the memory block is
released.

GLOBALMEM LOCK The moveable memory block referenced by mHndl is
locked at a specific memory location. A pointer to this
location is assigned to the variable specified by vPtr.
 You may only read or write the memory block while it is
locked, and you use the current pointer to its location.

GLOBALMEM SIZE The size of the memory block referenced by mHndl is
retrieved and assigned to the LONG or DWORD variable
specified by vSize. The mHndl parameter is the handle
originally returned by GLOBALMEM ALLOC.

GLOBALMEM UNLOCK The moveable memory block referenced by mHndl is
unlocked, and the previous memory pointer is
invalidated. If the memory block remains locked
(perhaps because it had been locked more than once),
the value TRUE (non-zero) is assigned to the result
variable vLocked. If the memory block is now unlocked,
or the parameter mHndl was invalid, the value FALSE (0)
is assigned to vLocked instead.

See also MEMORY

GLOBALMEM UNLOCK statement

PowerBASIC Compiler for Windows Version 10

772 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GLOBALMEM statement
Purpose Allocate or release a block of global memory

Syntax GLOBALMEM ALLOC count TO vHndl
GLOBALMEM FREE mHndl TO vHndl
GLOBALMEM LOCK mHndl TO vPtr
GLOBALMEM SIZE mHndl TO vSize
GLOBALMEM UNLOCK mHndl TO vLocked

Remarks GLOBALMEM allocates a block of global system memory of the requested size. This is
always allocated as "moveable" memory, so it can be used with any facilities of
Windows. It is the programmer's responsibility to release the allocated memory block
when it's no longer needed.

There are five general forms of the GLOBALMEM statement:

GLOBALMEM ALLOC A moveable memory block of the size in bytes specified
by count is allocated. A unique handle is assigned to
this memory object (for later identification). This handle
is assigned to the LONG or DWORD variable specified
by vHndl. If the requested allocation fails for any
reason, the value zero (0) is assigned to vHndl instead.

GLOBALMEM FREE A memory block is de-allocated and released for re-use.
 The mHndl parameter is a variable or expression which
evaluates to the handle returned by GLOBALMEM
ALLOC when the memory block was created. If the de-
allocation operation was successful, the result variable
vHndl is set to zero (0) to indicate that the original
handle is no longer valid. If the operation fails for any
reason, the value of the mHndl parameter is assigned to
vHndl. It may be convenient to use the same variable for
both the parameter and the result, as it will then be
automatically cleared to zero when the memory block is
released.

GLOBALMEM LOCK The moveable memory block referenced by mHndl is
locked at a specific memory location. A pointer to this
location is assigned to the variable specified by vPtr.
 You may only read or write the memory block while it is
locked, and you use the current pointer to its location.

GLOBALMEM SIZE The size of the memory block referenced by mHndl is
retrieved and assigned to the LONG or DWORD variable
specified by vSize. The mHndl parameter is the handle
originally returned by GLOBALMEM ALLOC.

GLOBALMEM UNLOCK The moveable memory block referenced by mHndl is
unlocked, and the previous memory pointer is
invalidated. If the memory block remains locked
(perhaps because it had been locked more than once),
the value TRUE (non-zero) is assigned to the result
variable vLocked. If the memory block is now unlocked,

PowerBASIC Compiler for Windows Version 10

773 / 2126

or the parameter mHndl was invalid, the value FALSE (0)
is assigned to vLocked instead.

See also MEMORY

GOSUB statement

GOSUB/GOSUB DWORD statements
Purpose Invoke a subroutine.

Syntax GOSUB {label | linenumber}
GOSUB DWORD dwpointer

Remarks GOSUB causes execution to branch to the statement prefaced by label or linenumber,
after first saving its current location on the stack. The label or linenumber must be local
to the Sub, Function, Method, or Property where the GOSUB statement is located.
Executing a RETURN statement returns control to the instruction immediately following
the GOSUB.

When using GOSUB, be sure that each subroutine returns to its caller gracefully through
a RETURN statement. Run-away (recursive) GOSUBs that loop upon themselves will eat
up large chunks of stack space, reducing available memory.

All labels and line numbers are private. You cannot GOSUB to a label outside of the
current procedure.

For time critical or high-performance code, using a GOSUB to perform a repetitive task is
almost always faster then performing a call to a procedure, since there is no overhead in
setting up a stack frame for a GOSUB.

DWORD GOSUB DWORD causes execution to branch to address stored in dwpointer, after first
saving its current location on the stack. dwpointer must be a Double word, Long integer,
or pointer variable that contains the address of a label that is in the same procedure as
the GOSUB DWORD statement. Executing a RETURN statement returns control to the
instruction immediately following the GOSUB DWORD statement.

See also #STACK, FUNCTION, METHOD, ON GOSUB, PROPERTY, SUB, RETURN

Example FUNCTION DoCalc!(Radius!)
 pi# = ATN(1) * 4 ' calculate value of PI
 GOSUB CalcArea ' jump to subroutine Radius!
 EXIT FUNCTION

CalcArea:
 FUNCTION = pi# * Radius! ^2 ' calculate area
 RETURN ' return from subroutine
END FUNCTION

GOSUB DWORD statement

GOSUB/GOSUB DWORD statements
Purpose Invoke a subroutine.

Syntax GOSUB {label | linenumber}
GOSUB DWORD dwpointer

Remarks GOSUB causes execution to branch to the statement prefaced by label or linenumber,
after first saving its current location on the stack. The label or linenumber must be local
to the Sub, Function, Method, or Property where the GOSUB statement is located.
Executing a RETURN statement returns control to the instruction immediately following
the GOSUB.

PowerBASIC Compiler for Windows Version 10

774 / 2126

When using GOSUB, be sure that each subroutine returns to its caller gracefully through
a RETURN statement. Run-away (recursive) GOSUBs that loop upon themselves will eat
up large chunks of stack space, reducing available memory.

All labels and line numbers are private. You cannot GOSUB to a label outside of the
current procedure.

For time critical or high-performance code, using a GOSUB to perform a repetitive task is
almost always faster then performing a call to a procedure, since there is no overhead in
setting up a stack frame for a GOSUB.

DWORD GOSUB DWORD causes execution to branch to address stored in dwpointer, after first
saving its current location on the stack. dwpointer must be a Double word, Long integer,
or pointer variable that contains the address of a label that is in the same procedure as
the GOSUB DWORD statement. Executing a RETURN statement returns control to the
instruction immediately following the GOSUB DWORD statement.

See also #STACK, FUNCTION, METHOD, ON GOSUB, PROPERTY, SUB, RETURN

Example FUNCTION DoCalc!(Radius!)
 pi# = ATN(1) * 4 ' calculate value of PI
 GOSUB CalcArea ' jump to subroutine Radius!
 EXIT FUNCTION

CalcArea:
 FUNCTION = pi# * Radius! ^2 ' calculate area
 RETURN ' return from subroutine
END FUNCTION

GOTO statement

GOTO/GOTO DWORD statements
Purpose Transfer program execution to the statement identified by a label or line number.

Syntax GOTO {label | linenumber}
GOTO DWORD dwpointer

Remarks GOTO causes program flow to jump unconditionally to the code identified by label or
linenumber. The label or linenumber must be local to the Sub, Function, Method, or
Property where the GOTO statement is located. GOTO differs from GOSUB and other
similar control statements, in that after execution of a GOTO, the program retains no
memory of where it was before it executed the jump.

Labels and line numbers are private. You cannot GOTO a label outside of the current
procedure.

DWORD GOTO DWORD causes execution to jump unconditionally to address stored in dwpointer.
dwpointer must be a Double word, Long integer, or

 variable that contains the address of a label which is local to the procedure where the
GOTO DWORD statement is located.

See also CALL, CALL DWORD, DO/LOOP, EXIT, FOR/NEXT, FUNCTION, GOSUB, IF block,
METHOD, PROPERTY, RETURN, SELECT, SUB, WHILE/WEND

Example FUNCTION test() AS LONG
 RESET X
Start: ' define a label
 INCR X ' increment X
 IF X < 10 THEN DoBeep
 EXIT FUNCTION
 .[statements]
DoBeep:
 BEEP

PowerBASIC Compiler for Windows Version 10

775 / 2126

 GOTO Start ' jump back to Start
END FUNCTION
One method of obtaining the same results without use of GOTO is:

FUNCTION test() AS LONG
 FOR X = 1 TO 9
 GOSUB DoBeep
 NEXT X
 EXIT FUNCTION
 [statements]
DoBeep:
 BEEP
 RETURN
END FUNCTION

GOTO DWORD statement

GOTO/GOTO DWORD statements
Purpose Transfer program execution to the statement identified by a label or line number.

Syntax GOTO {label | linenumber}
GOTO DWORD dwpointer

Remarks GOTO causes program flow to jump unconditionally to the code identified by label or
linenumber. The label or linenumber must be local to the Sub, Function, Method, or
Property where the GOTO statement is located. GOTO differs from GOSUB and other
similar control statements, in that after execution of a GOTO, the program retains no
memory of where it was before it executed the jump.

Labels and line numbers are private. You cannot GOTO a label outside of the current
procedure.

DWORD GOTO DWORD causes execution to jump unconditionally to address stored in dwpointer.
dwpointer must be a Double word, Long integer, or

 variable that contains the address of a label which is local to the procedure where the
GOTO DWORD statement is located.

See also CALL, CALL DWORD, DO/LOOP, EXIT, FOR/NEXT, FUNCTION, GOSUB, IF block,
METHOD, PROPERTY, RETURN, SELECT, SUB, WHILE/WEND

Example FUNCTION test() AS LONG
 RESET X
Start: ' define a label
 INCR X ' increment X
 IF X < 10 THEN DoBeep
 EXIT FUNCTION
 .[statements]
DoBeep:
 BEEP
 GOTO Start ' jump back to Start
END FUNCTION
One method of obtaining the same results without use of GOTO is:

FUNCTION test() AS LONG
 FOR X = 1 TO 9
 GOSUB DoBeep
 NEXT X
 EXIT FUNCTION
 [statements]
DoBeep:
 BEEP

PowerBASIC Compiler for Windows Version 10

776 / 2126

 RETURN
END FUNCTION

GRAPHIC Code Group

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC Code Group
Purpose The

 Code Group offers statements and functions which display text and graphics on a
GRAPHIC TARGET (this could be a Graphic Window, a Graphic Control, or a). In
addition, it provides a wide variety of support to manage and interact with these items.

Syntax GRAPHIC DirectorWord [params]
GRAPHIC DirectorWord [params] TO ReturnVariable(s)

Function Form:
ReturnVariable = GRAPHIC (DirectorWord [,params])
ReturnVariable$ = GRAPHIC$ (DirectorWord [,params])

Remarks Some of the functionality of the GRAPHIC group was available in prior versions of
PowerBASIC, but it has now been expanded. Some Graphic Procedures (namely those
which return a single value) may be used in two forms, a statement with a TO clause, or a
function which may be used as a term in an expression:

GRAPHIC GET LINES TO LineCountVar&
LineCountVar& = GRAPHIC(LINES)

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity. When a function form is available, it
is labeled with the prefix "Function Form".

Some Graphic procedures return two or more values. As it is not possible to
simultaneously inject multiple terms into a valid expression, the function option is not
available for them.

GRAPHIC TARGET

The term GRAPHIC TARGET refers to a Graphic Bitmap, a Graphic Control, or a Graphic
Window. You may want to think of a graphic target as your painter's canvas, where you
display any amount of text and graphics. Many graphic targets may exist
simultaneously, but only one is attached to the graphic stream at a time. The attached
graphic target is the one acted upon by graphic code.

Graphic
Bitmap

This is a non-visible target typically used as a work area to construct
an image prior to displaying it. You can create a new, blank bitmap
with GRAPHIC BITMAP NEW, or load one from a resource or disk file
with GRAPHIC BITMAP LOAD. At that point, other graphic code can
be used to act on it.

Graphic
Control

This is a static control/window which is placed on a DDT Dialog with
CONTROL ADD GRAPHIC. Once you attach this control, you can

PowerBASIC Compiler for Windows Version 10

777 / 2126

display all forms of text and graphics on it.

Graphic
Window

This is a standalone window which can be placed at any location on
the desktop. It's created with GRAPHIC WINDOW and can even be
used as a graphical console window. Once you attach this window,
you can display all forms of text and graphics on it.

GRAPHIC STREAM

The Graphic Stream is the connection between graphic code and a graphic target. The
Graphic Stream is created when you attach a particular target with GRAPHIC ATTACH.
 From that moment forward, all graphic code acts on that selected target. This continues
until such time as you select a new graphic target. When this occurs, the graphic stream
to the first target is disabled, and a new graphic stream to the new target is created.

You can redirect the graphic stream to different graphic targets as often as necessary for
the logic of your program.

PAGE UNITS

PAGE UNITS are used to measure the size of a graphical item, or to define a particular
position on a graphic target. You can define page units to be pixels, dialog units, or
scaled units of your choice.

Initially, each graphic target inherits the page unit size from its parent: pixels or dialog
units. You can change this to scaled world coordinates of your choice with GRAPHIC
SCALE. You can revert from dialog units or scaled units back to pixels (the most
accurate form) by executing GRAPHIC SCALE PIXELS.

By default, the upper left corner of a graphic target is considered to be the X,Y position
0,0 and grows larger to the right or downward. The X axis is horizontal, while the Y axis
is vertical. Whenever an X,Y position is given, the X value is stated first. Both the limits
and the axis direction can be altered with GRAPHIC SCALE.

GRAPHIC POSITION (POS)

Each time you draw text or graphics, it is displayed at the current graphic position (POS)
for that target. Upon completion, the POS is updated to the last point referenced. You
can draw a relative distance from the POS (using a STEP option), or set an entirely new
position with GRAPHIC SET POS.

Most PowerBASIC functions specify graphic and pixel positions in Page Units as X,Y
(horizontal term first, then the vertical term). This is true for both graphics and text.
 When you draw text with GRAPHIC PRINT, POS defines the position of the upper-left
corner of the first character.

TEXT CELL (ROW/COLUMN POSITION)

For ease of programming, a few procedures specify text position by row and column. In
this case, the position is measured in text cells, which is the space occupied by one
character. This works well with fixed width fonts, which is recommended. If a variable
width font is chosen, PowerBASIC must use the average character size for these
calculations, which can give imprecise results.

For compatibility with most current and prior versions of BASIC (PowerBASIC included),
code which references text rows and columns names the vertical term first (ROWS,
COLUMNS). Rows and columns are always numbered from one upward.

See also Graphic Commands, Graphics

GRAPHIC(CANVAS.X) function

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

778 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET CANVAS statement
Purpose Retrieves the writable size of the attached graphic target.

Syntax GRAPHIC GET CANVAS TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(CANVAS.X)
HeightVar! = GRAPHIC(CANVAS.Y)

Remarks GRAPHIC GET CANVAS retrieves the size of the drawing buffer for the attached graphic
window, control, or bitmap. The size is specified in Page Units, so it could return scaled
values if they were applied with GRAPHIC SCALE. If the graphic window or control is
FIXED (the default), the size returned is equivalent to the CLIENT size (other than the
scaling factor). The CANVAS size does not include a caption, frame, scrollbars, etc. If
no graphic target has been attached with GRAPHIC ATTACH, the values 0,0 are returned.

See also GRAPHIC GET CLIENT, GRAPHIC GET CLIP, GRAPHIC GET SIZE, GRAPHIC GET
SCALE, GRAPHIC SCALE

GRAPHIC(CANVAS.Y) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET CANVAS statement
Purpose Retrieves the writable size of the attached graphic target.

Syntax GRAPHIC GET CANVAS TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(CANVAS.X)
HeightVar! = GRAPHIC(CANVAS.Y)

Remarks GRAPHIC GET CANVAS retrieves the size of the drawing buffer for the attached graphic
window, control, or bitmap. The size is specified in Page Units, so it could return scaled
values if they were applied with GRAPHIC SCALE. If the graphic window or control is
FIXED (the default), the size returned is equivalent to the CLIENT size (other than the
scaling factor). The CANVAS size does not include a caption, frame, scrollbars, etc. If
no graphic target has been attached with GRAPHIC ATTACH, the values 0,0 are returned.

See also GRAPHIC GET CLIENT, GRAPHIC GET CLIP, GRAPHIC GET SIZE, GRAPHIC GET
SCALE, GRAPHIC SCALE

PowerBASIC Compiler for Windows Version 10

779 / 2126

GRAPHIC(Cell.Size.X) function

GRAPHIC CELL SIZE statement
Purpose Retrieve the character cell size including external leading.

Syntax GRAPHIC CELL SIZE TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(Cell.Size.X)
HeightVar! = GRAPHIC(Cell.Size.Y)

Remarks GRAPHIC CELL SIZE retrieves the size of one character cell, for the current font, on the
attached graphic target. The returned character size is specified in PAGE UNITS, and
allows you to calculate the number of text lines which will fit in a particular space. The
height value is the size of the displayed character, including external leading (if any) for
this particular font.

If the font is a fixed-width font, like Courier New or Lucida Console,the sizes returned are
as exact as possible, given the fractional rounding approximations necessary for some
scaled units. If the font is proportional, like Arial or Times New Roman, the width will be
the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the
character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the exact height of
characters without external leading, use GRAPHIC CHR SIZE.

See also GRAPHIC CELL, GRAPHIC CHR SIZE, GRAPHIC SET FONT, GRAPHIC TEXT SIZE

GRAPHIC(Cell.Size.Y) function

GRAPHIC CELL SIZE statement
Purpose Retrieve the character cell size including external leading.

Syntax GRAPHIC CELL SIZE TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(Cell.Size.X)
HeightVar! = GRAPHIC(Cell.Size.Y)

Remarks GRAPHIC CELL SIZE retrieves the size of one character cell, for the current font, on the
attached graphic target. The returned character size is specified in PAGE UNITS, and
allows you to calculate the number of text lines which will fit in a particular space. The
height value is the size of the displayed character, including external leading (if any) for
this particular font.

If the font is a fixed-width font, like Courier New or Lucida Console,the sizes returned are
as exact as possible, given the fractional rounding approximations necessary for some
scaled units. If the font is proportional, like Arial or Times New Roman, the width will be
the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the
character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the exact height of
characters without external leading, use GRAPHIC CHR SIZE.

See also GRAPHIC CELL, GRAPHIC CHR SIZE, GRAPHIC SET FONT, GRAPHIC TEXT SIZE

PowerBASIC Compiler for Windows Version 10

780 / 2126

GRAPHIC(Chr.Size.X) function

GRAPHIC CHR SIZE statement
Purpose Retrieve the character size on the Graphic Target.

Syntax GRAPHIC CHR SIZE To WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(Chr.Size.X)
HeightVar! = GRAPHIC(Chr.Size.Y)

Remarks GRAPHIC CHR SIZE retrieves the size of one character, for the current font, on the
attached graphic target. The returned character size is specified in Page Units. The
height value is the actual size of the displayed character, without including external
leading (if any) for this particular font.

If the font is a fixed-width font, like Courier New or Lucida Console,the sizes returned are
as exact as possible, given the fractional rounding approximations necessary for some
scaled units. If the font is proportional, like Arial or Times New Roman, the width will be
the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the
character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the total row height
including external leading, use GRAPHIC CELL SIZE instead.

See also GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC CELL SIZE, GRAPHIC SET FONT,
GRAPHIC PRINT, GRAPHIC TEXT SIZE

GRAPHIC(Chr.Size.Y) function

GRAPHIC CHR SIZE statement
Purpose Retrieve the character size on the Graphic Target.

Syntax GRAPHIC CHR SIZE To WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(Chr.Size.X)
HeightVar! = GRAPHIC(Chr.Size.Y)

Remarks GRAPHIC CHR SIZE retrieves the size of one character, for the current font, on the
attached graphic target. The returned character size is specified in Page Units. The
height value is the actual size of the displayed character, without including external
leading (if any) for this particular font.

If the font is a fixed-width font, like Courier New or Lucida Console,the sizes returned are
as exact as possible, given the fractional rounding approximations necessary for some
scaled units. If the font is proportional, like Arial or Times New Roman, the width will be
the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the
character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the total row height
including external leading, use GRAPHIC CELL SIZE instead.

See also GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC CELL SIZE, GRAPHIC SET FONT,
GRAPHIC PRINT, GRAPHIC TEXT SIZE

GRAPHIC(Client.X) function

PowerBASIC Compiler for Windows Version 10

781 / 2126

GRAPHIC GET CLIENT statement
Purpose Retrieve the client size of the selected graphic target.

Syntax GRAPHIC GET CLIENT To WidthVar!, HeightVar!

Function form:
WidthVar! = GRAPHIC(Client.X)
HeightVar! = GRAPHIC(Client.Y)

Remarks GRAPHIC GET CLIENT retrieves the physical size of the client area (visible part) of the
attached graphic window or control. The size is specified in Pixels or Dialog Units,
depending upon how it was created. The sizes returned are not altered or affected by
GRAPHIC SCALE, VIRTUAL, or AUTOSIZE operations, as it returns the physical size of
the viewable area in the terms used to create it. The client area does not include a
caption, frame, scrollbars, etc. When GRAPHIC GET CLIENT is used with a

, it returns 0,0. You would normally use GRAPHIC GET CANVAS with a Bitmap,
or to obtain the size of the area which can be drawn. If no graphic target has been
attached with GRAPHIC ATTACH, the values 0,0 are returned.

See also GRAPHIC ATTACH, GRAPHIC GET CANVAS, GRAPHIC GET CLIP, GRAPHIC GET
SIZE, GRAPHIC SET CLIENT

GRAPHIC(Client.Y) function

GRAPHIC GET CLIENT statement
Purpose Retrieve the client size of the selected graphic target.

Syntax GRAPHIC GET CLIENT To WidthVar!, HeightVar!

Function form:
WidthVar! = GRAPHIC(Client.X)
HeightVar! = GRAPHIC(Client.Y)

Remarks GRAPHIC GET CLIENT retrieves the physical size of the client area (visible part) of the
attached graphic window or control. The size is specified in Pixels or Dialog Units,
depending upon how it was created. The sizes returned are not altered or affected by
GRAPHIC SCALE, VIRTUAL, or AUTOSIZE operations, as it returns the physical size of
the viewable area in the terms used to create it. The client area does not include a
caption, frame, scrollbars, etc. When GRAPHIC GET CLIENT is used with a

, it returns 0,0. You would normally use GRAPHIC GET CANVAS with a Bitmap,
or to obtain the size of the area which can be drawn. If no graphic target has been
attached with GRAPHIC ATTACH, the values 0,0 are returned.

See also GRAPHIC ATTACH, GRAPHIC GET CANVAS, GRAPHIC GET CLIP, GRAPHIC GET
SIZE, GRAPHIC SET CLIENT

GRAPHIC(Clip.X) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

782 / 2126

GRAPHIC GET CLIP statement
Purpose Retrieves the size of the clip area.

Syntax GRAPHIC GET CLIP TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(Clip.X)
HeightVar! = GRAPHIC(Clip.Y)

Remarks The clip area of a graphic target is that space where

 operations can be displayed. That is, the clip area is that portion of the client area
which is not protected (clipped) by GRAPHIC SET CLIP.
GRAPHIC GET CLIP retrieves the size of the clip area, and assigns these values to the
variables specified by WidthVar! and HeightVar!. The size is specified in PAGE UNITS. If
no graphic target is selected, the values 0,0 are returned.

See also GRAPHIC GET CANVAS, GRAPHIC GET CLIENT, GRAPHIC SET CLIP

GRAPHIC(Clip.Y) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET CLIP statement
Purpose Retrieves the size of the clip area.

Syntax GRAPHIC GET CLIP TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(Clip.X)
HeightVar! = GRAPHIC(Clip.Y)

Remarks The clip area of a graphic target is that space where

 operations can be displayed. That is, the clip area is that portion of the client area
which is not protected (clipped) by GRAPHIC SET CLIP.
GRAPHIC GET CLIP retrieves the size of the clip area, and assigns these values to the
variables specified by WidthVar! and HeightVar!. The size is specified in PAGE UNITS. If
no graphic target is selected, the values 0,0 are returned.

See also GRAPHIC GET CANVAS, GRAPHIC GET CLIENT, GRAPHIC SET CLIP

GRAPHIC(COL) function

Keyword Template
Purpose

Syntax

PowerBASIC Compiler for Windows Version 10

783 / 2126

Remarks

See also

Example

GRAPHIC CELL statement
Purpose Sets or retrieves the next print position, based upon the row and column position of a text

cell.

Syntax GRAPHIC CELL = RowValue&, ColValue&
GRAPHIC CELL TO RowVar&, ColVar&
GRAPHIC COL TO ColVar&
GRAPHIC ROW TO RowVar&

Function Form:
ColVar& = GRAPHIC(COL)
RowVar& = GRAPHIC(ROW)

Remarks GRAPHIC CELL is used to set or retrieve the print position, based upon the row and
column position of a Text Cell. That is the row column position where the next printed
text will be displayed. These operations are very similar to GRAPHIC GET POS and
GRAPHIC SET POS, except that the position is reported in text rows and columns, rather
than Page Units. The current graphic position is translated to a row and column number,
based upon the standard character size in a fixed width font, or the average character
size for a variable width font.

RowValue& specifies the horizontal screen row (starting at 1) at which to position the
cursor. ColValue& specifies the vertical screen column (starting at 1) at which to position
the cursor. Since row and column numbers start at one (1), the upper left corner of the
window is considered to be cell 1,1.

The first form of GRAPHIC CELL moves the print position to the desired row and column.
 If a value given is zero (0), that parameter is ignored and that position is not changed.

The second form of GRAPHIC CELL retrieves the current print position, and assigns the
values to the variables specified by RowVar& and ColVar&. Every point which falls within
a text character cell is reported as that Row/Column position. If the graphic position is
not at the upper left corner of the text character, you may get imprecise or unexpected
results. This can occur if you perform a graphic operation other than GRAPHIC PRINT
which leaves the "Last Point Referenced" at a mid-cell position.

The remaining forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

See also GRAPHIC CELL SIZE, GRAPHIC GET POS, GRAPHIC SET FONT, GRAPHIC SET POS,
GRAPHIC SET SCROLLTEXT, GRAPHIC SET WORDWRAP, GRAPHIC SET WRAP,
GRAPHIC SPLIT

GRAPHIC(DC) function

GRAPHIC GET DC statement
Purpose Retrieve the handle of the DC (device context) for the selected graphic target.

Syntax GRAPHIC GET DC TO hDC???
Function Form:
DCVar??? = GRAPHIC(DC)

Remarks The DC handle may be used with various Windows API functions to perform specialized
graphic operations in the graphic target. If no graphic window is currently selected, zero
is returned.

PowerBASIC Compiler for Windows Version 10

784 / 2126

See also GRAPHIC ATTACH

GRAPHIC(INSTAT) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC INSTAT statement
Purpose Determines whether a keyboard character is ready.

Syntax GRAPHIC INSTAT TO NumericVar

Function Form:
InstatVar& = GRAPHIC(INSTAT)

Remarks The

 variable receives the keyboard buffer status for the selected graphic target. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.
GRAPHIC INSTAT does not remove the character from the buffer, so repeated execution
will continue to return TRUE until the character is read with GRAPHIC INKEY$, GRAPHIC
INPUT, etc.

See also GRAPHIC INKEY$, GRAPHIC INPUT, GRAPHIC INPUT FLUSH, GRAPHIC LINE INPUT,
GRAPHIC WAITKEY$

GRAPHIC(LINES) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET LINES statement
Purpose Retrieves the number of text lines which will fit on the graphic target.

Syntax GRAPHIC GET LINES TO linecount&

Function Form:
linecount& = GRAPHIC(LINES)

Remarks GRAPHIC GET LINES retrieves the number of lines of text which will fit on the graphic
target, given the current selected font. This value is assigned to linecount&.

PowerBASIC Compiler for Windows Version 10

785 / 2126

See also GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC CHR SIZE, GRAPHIC PRINT, GRAPHIC
SET FONT, GRAPHIC TEXT SIZE

GRAPHIC(LOC.X) function

GRAPHIC GET LOC statement
Purpose Retrieves the location of the Graphic Window on the screen.

Syntax GRAPHIC GET LOC TO x&, y&

Function Form:
x& = GRAPHIC(LOC.X)
y& = GRAPHIC(LOC.Y)

Remarks This statement retrieves the location of the selected Graphic Window. If no graphic object
is selected, or it is not a Graphic Window, 0,0 is returned. The location is specified in
pixels, relative to the upper left corner of the screen.

See also GRAPHIC ATTACH, GRAPHIC GET PPI, GRAPHIC SET LOC

GRAPHIC(LOC.Y) function

GRAPHIC GET LOC statement
Purpose Retrieves the location of the Graphic Window on the screen.

Syntax GRAPHIC GET LOC TO x&, y&

Function Form:
x& = GRAPHIC(LOC.X)
y& = GRAPHIC(LOC.Y)

Remarks This statement retrieves the location of the selected Graphic Window. If no graphic object
is selected, or it is not a Graphic Window, 0,0 is returned. The location is specified in
pixels, relative to the upper left corner of the screen.

See also GRAPHIC ATTACH, GRAPHIC GET PPI, GRAPHIC SET LOC

GRAPHIC(MIX) function

GRAPHIC GET MIX statement
Purpose Retrieve the color mix mode for the selected graphic target.

Syntax GRAPHIC GET MIX TO mixmode&

Function Form:
mixmode& = GRAPHIC(MIX)

Remarks There are 16 mix modes available to use for mixing the drawing color with the color that
already exists at the drawing location.

%mix_Blackness Pixel is always 0 (black).
%mix_NotMergeSrc Pixel is the inverse of the MergeSrc color.
%mix_MaskNotSrc Pixel is a combination of the colors common to both the pixel and

the inverse of the source.
%mix_NotCopySrc Pixel is the inverse of the pen color.
%mix_MaskSrcNot Pixel is a combination of the colors common to both the source

and the inverse of the pixel.
%mix_Not Pixel is the inverse of the pixel color.
%mix_XorSrc Pixel is a combination of the colors in the source and in the pixel,

PowerBASIC Compiler for Windows Version 10

786 / 2126

but not in both.
%mix_NotMaskSrc Pixel is the inverse of the MaskSrc color.
%mix_MaskSrc Pixel is a combination of the colors common to both the source

and the pixel.
%mix_NotXorSrc Pixel is the inverse of the XorSrc color.
%mix_Nop Pixel remains unchanged.
%mix_MergeNotSrc Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_CopySrc Pixel is the source color (default).
%mix_MergeSrcNot Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_MergeSrc Pixel is a combination of the source color and the pixel color.
%mix_Whiteness Pixel is always 1 (white).

See also GRAPHIC SET MIX

GRAPHIC(OVERLAP) function

GRAPHIC GET OVERLAP statement
Purpose Retrieves the status of Graphic Overlap Mode.

Syntax GRAPHIC GET OVERLAP To OverlapVar&

Function Form:
OverlapVar& = GRAPHIC(OVERLAP)

Remarks GRAPHIC GET OVERLAP retrieves the status of overlap mode and assigns it to the
variable specified by OverlapVar&. If Overlap Mode is enabled, the value true (non-zero) is
assigned. If it's disabled, the value false (zero) is assigned instead. The value returned
reflects the status of the graphic target which is currently attached to the graphic stream.

With Overlap Mode, you control how PowerBASIC treats graphic operations which involve
a RECT structure in their definition. Windows graphic conventions consider the bottom
and right coordinates of a RECT to be exclusive. In other words, the pixels at the bottom
and right edges lie immediately outside the rectangle. They are not drawn, but are
ignored. For example:

GRAPHIC BOX (0,0) - (50,50)

In this case, a box is drawn from 0,0 to 49,49. The final pixels at the bottom and right
edge are simply not drawn. However, if Overlap Mode is enabled with GRAPHIC SET
OVERLAP, the box is drawn from 0,0 to 50,50.

The Overlap Mode affects drawing operations involving GRAPHIC SCALE, GRAPHIC BOX,
GRAPHIC ELLIPSE, GRAPHIC LINE, GRAPHIC POLYLINE, etc.

See also GRAPHIC SET OVERLAP

GRAPHIC(PIXEL...) function

GRAPHIC GET PIXEL statement
Purpose Retrieve the color of the pixel at the specified point in the selected graphic target.

Syntax GRAPHIC GET PIXEL [STEP] (x!, y!) To PixelVar&

Function Form:
PixelVar& = GRAPHIC(PIXEL [STEP], x!, y!)

Remarks The coordinate points x!, y! are specified in Page Units.

See also GRAPHIC ATTACH, GRAPHIC COLOR, GRAPHIC SCALE, GRAPHIC SET PIXEL

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

787 / 2126

GRAPHIC(POS.X) function

GRAPHIC GET POS statement
Purpose Retrieve the POS (last point referenced) by a

 statement.
Syntax GRAPHIC GET POS To XVar!, YVar!

Function Form:
XVar! = GRAPHIC(POS.X)
YVar! = GRAPHIC(POS.Y)

Remarks The coordinate points XVar!, YVar! are specified in the same terms (pixels or dialog units)
as the parent dialog (or world coordinates, if those were chosen with GRAPHIC SCALE).

See also GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC SCALE, GRAPHIC SET POS

GRAPHIC(POS.Y) function

GRAPHIC GET POS statement
Purpose Retrieve the POS (last point referenced) by a

 statement.
Syntax GRAPHIC GET POS To XVar!, YVar!

Function Form:
XVar! = GRAPHIC(POS.X)
YVar! = GRAPHIC(POS.Y)

Remarks The coordinate points XVar!, YVar! are specified in the same terms (pixels or dialog units)
as the parent dialog (or world coordinates, if those were chosen with GRAPHIC SCALE).

See also GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC SCALE, GRAPHIC SET POS

GRAPHIC(PPI.X) function

GRAPHIC GET PPI statement
Purpose Retrieve the resolution of the display device, in points per inch.

Syntax GRAPHIC GET PPI TO XVar&, YVar&

Function Form:
XVar& = GRAPHIC(PPI.X)
YVar& = GRAPHIC(PPI.Y)

Remarks The resolution is always specified in pixels. This statement is particularly useful in
drawing items such as rulers and graphs to a representative physical size". There are
25.4 millimeters per inch, so just divide by 25.4 to convert from pixels per inch to pixels
per millimeter.

"Representative physical size" means that the actual image may be close to a particular
physical size, but is subject to factors including Windows default PPI setting, the driver's
DPI to PPI ratio and even how the monitor has been adjusted. By using the GRAPHIC
GET PPI, results, you can construct a representative graphic image that can be saved
and later output at the intended scale by more precise means, for example a higher
resolution Windows printer.

See also GRAPHIC ATTACH, GRAPHIC SCALE

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

788 / 2126

GRAPHIC(PPI.Y) function

GRAPHIC GET PPI statement
Purpose Retrieve the resolution of the display device, in points per inch.

Syntax GRAPHIC GET PPI TO XVar&, YVar&

Function Form:
XVar& = GRAPHIC(PPI.X)
YVar& = GRAPHIC(PPI.Y)

Remarks The resolution is always specified in pixels. This statement is particularly useful in
drawing items such as rulers and graphs to a representative physical size". There are
25.4 millimeters per inch, so just divide by 25.4 to convert from pixels per inch to pixels
per millimeter.

"Representative physical size" means that the actual image may be close to a particular
physical size, but is subject to factors including Windows default PPI setting, the driver's
DPI to PPI ratio and even how the monitor has been adjusted. By using the GRAPHIC
GET PPI, results, you can construct a representative graphic image that can be saved
and later output at the intended scale by more precise means, for example a higher
resolution Windows printer.

See also GRAPHIC ATTACH, GRAPHIC SCALE

GRAPHIC(ROW) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC CELL statement
Purpose Sets or retrieves the next print position, based upon the row and column position of a text

cell.

Syntax GRAPHIC CELL = RowValue&, ColValue&
GRAPHIC CELL TO RowVar&, ColVar&
GRAPHIC COL TO ColVar&
GRAPHIC ROW TO RowVar&

Function Form:
ColVar& = GRAPHIC(COL)
RowVar& = GRAPHIC(ROW)

Remarks GRAPHIC CELL is used to set or retrieve the print position, based upon the row and
column position of a Text Cell. That is the row column position where the next printed
text will be displayed. These operations are very similar to GRAPHIC GET POS and
GRAPHIC SET POS, except that the position is reported in text rows and columns, rather
than Page Units. The current graphic position is translated to a row and column number,
based upon the standard character size in a fixed width font, or the average character
size for a variable width font.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

789 / 2126

RowValue& specifies the horizontal screen row (starting at 1) at which to position the
cursor. ColValue& specifies the vertical screen column (starting at 1) at which to position
the cursor. Since row and column numbers start at one (1), the upper left corner of the
window is considered to be cell 1,1.

The first form of GRAPHIC CELL moves the print position to the desired row and column.
 If a value given is zero (0), that parameter is ignored and that position is not changed.

The second form of GRAPHIC CELL retrieves the current print position, and assigns the
values to the variables specified by RowVar& and ColVar&. Every point which falls within
a text character cell is reported as that Row/Column position. If the graphic position is
not at the upper left corner of the text character, you may get imprecise or unexpected
results. This can occur if you perform a graphic operation other than GRAPHIC PRINT
which leaves the "Last Point Referenced" at a mid-cell position.

The remaining forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

See also GRAPHIC CELL SIZE, GRAPHIC GET POS, GRAPHIC SET FONT, GRAPHIC SET POS,
GRAPHIC SET SCROLLTEXT, GRAPHIC SET WORDWRAP, GRAPHIC SET WRAP,
GRAPHIC SPLIT

GRAPHIC(SCROLLTEXT) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET SCROLLTEXT statement
Purpose Retrieves the status of Graphic ScrollText Mode.

Syntax GRAPHIC GET SCROLLTEXT To ScrollVar&

Function Form:
ScrollVar& = GRAPHIC(SCROLLTEXT)

Remarks GRAPHIC GET SCROLLTEXT retrieves the status of ScrollText mode and assigns it to
the variable specified by ScrollVar&. If ScrollText Mode is enabled, the value true (non-
zero) is assigned. If it's disabled, the value false (zero) is assigned instead. The value
returned reflects the status of the graphic target which is currently attached to the graphic
stream.

With ScrollText Mode, you can control how PowerBASIC prints text on a graphic target
when it reaches the end of a page. Since a graphic target operates on a full page basis,
the default is to ignore text which is printed past the end of the page. This can be
modified under program control by using GRAPHIC SET SCROLLTEXT.

When ScrollText Mode is enabled, scrolling of a page is triggered only by GRAPHIC
PRINT. If the POS (last point referenced) is located on the bottom row of the graphic
target, and a GRAPHIC PRINT statement moves the POS off of the page, the entire
contents of the graphic target is scrolled one row, and a new blank row is opened at the
bottom.

See also GRAPHIC CELL, GRAPHIC SET SCROLLTEXT

PowerBASIC Compiler for Windows Version 10

790 / 2126

GRAPHIC(SIZE.X) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET SIZE statement
Purpose Retrieves the overall size of the selected graphic target.

Syntax GRAPHIC GET SIZE To WidthVar&, HeightVar&

Function Form:
WidthVar& = GRAPHIC(SIZE.X)
HeightVar& = GRAPHIC(SIZE.Y)

Remarks GRAPHIC GET SIZE retrieves overall physical size of the selected graphic window or
control. The size is specified in Pixels or Dialog Units, depending upon how it was
created. The size always includes any caption, frame, scrollbars, etc. If no graphic
target is attached, the values 0,0 are returned.

See also GRAPHIC GET CANVAS, GRAPHIC GET CLIENT, GRAPHIC GET CLIP, GRAPHIC GET
LINES, GRAPHIC SET SIZE

GRAPHIC(SIZE.Y) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET SIZE statement
Purpose Retrieves the overall size of the selected graphic target.

Syntax GRAPHIC GET SIZE To WidthVar&, HeightVar&

Function Form:
WidthVar& = GRAPHIC(SIZE.X)
HeightVar& = GRAPHIC(SIZE.Y)

Remarks GRAPHIC GET SIZE retrieves overall physical size of the selected graphic window or
control. The size is specified in Pixels or Dialog Units, depending upon how it was
created. The size always includes any caption, frame, scrollbars, etc. If no graphic
target is attached, the values 0,0 are returned.

See also GRAPHIC GET CANVAS, GRAPHIC GET CLIENT, GRAPHIC GET CLIP, GRAPHIC GET
LINES, GRAPHIC SET SIZE

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

791 / 2126

GRAPHIC(STRETCHMODE) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET STRETCHMODE statement
Purpose Retrieves the default bitmap stretching mode for the attached DC.

Syntax GRAPHIC GET STRETCHMODE TO ModeVar&

Function Form:
ModeVar& = GRAPHIC(STRETCHMODE)

Remarks There are several operations in PowerBASIC which involve stretching or condensing
images on bitmaps, most notably GRAPHIC STRETCH. As individual pixels must be
added or removed, there is a good chance that the quality of the image will be degraded.
 However, if you describe the nature of the image by defining a StretchMode, you can
substantially enhance the appearance.

The default StretchMode is maintained individually for each DC. You can retrieve the
default mode with this statement, or set it with GRAPHIC GET STRETCHMODE. Of
course, you can also override the default StretchMode when you execute one of the
affected statements.

The 4 stretch mode equates are predefined in PowerBASIC.

Equate Va
lu
e

Description

%
BLACKONWHI
TE

1 This is the default Windows stretch mode, and is most
appropriate for monochrome bitmaps, or those with blocks of
color. Performs a boolean OR of eliminated and existing
pixels. It preserves black pixels at the expense of white
pixels.

%
WHITEONBLA
CK

2 Performs a boolean OR of eliminated and existing pixels. It
preserves white pixels at the expense of black pixels.

%
COLORONCO
LOR

3 Deletes eliminated lines of pixels without trying to preserve
their information.

%HALFTONE 4 This provides the highest quality for complex color bitmaps.
 The average color of the destination pixel block is kept
approximately the same as the source pixel block.

See also GRAPHIC BITMAP LOAD, GRAPHIC COPY, GRAPHIC RENDER, GRAPHIC SET
STRETCHMODE, GRAPHIC STRETCH

GRAPHIC(TEXT.SIZE.X...) function

PowerBASIC Compiler for Windows Version 10

792 / 2126

GRAPHIC TEXT SIZE statement
Purpose Calculate the size of text to be printed.

Syntax GRAPHIC TEXT SIZE txt$ TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(TEXT.SIZE.X, txt$)
HeightVar! = GRAPHIC(TEXT.SIZE.Y, txt$)

Remarks This statement calculates the total size of the printed text, based upon the current font for
the graphic target. The sizes returned are specified in Page Units.

This allows you to easily calculate the appropriate print position, particularly when using a
proportional font.

See also FONT NEW, GRAPHIC CELL, GRAPHIC CELL SIZE, GRAPHIC CHR SIZE, GRAPHIC
PRINT, GRAPHIC SET FONT, GRAPHIC SCALE, GRAPHIC SET WORDWRAP,
GRAPHIC SET WRAP, GRAPHIC SPLIT

GRAPHIC(TEXT.SIZE.Y...) function

GRAPHIC TEXT SIZE statement
Purpose Calculate the size of text to be printed.

Syntax GRAPHIC TEXT SIZE txt$ TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(TEXT.SIZE.X, txt$)
HeightVar! = GRAPHIC(TEXT.SIZE.Y, txt$)

Remarks This statement calculates the total size of the printed text, based upon the current font for
the graphic target. The sizes returned are specified in Page Units.

This allows you to easily calculate the appropriate print position, particularly when using a
proportional font.

See also FONT NEW, GRAPHIC CELL, GRAPHIC CELL SIZE, GRAPHIC CHR SIZE, GRAPHIC
PRINT, GRAPHIC SET FONT, GRAPHIC SCALE, GRAPHIC SET WORDWRAP,
GRAPHIC SET WRAP, GRAPHIC SPLIT

GRAPHIC(View.X) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET VIEW statement
Purpose Retrieves the position of the virtual graphic viewport.

Syntax GRAPHIC GET VIEW To WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(View.X)

PowerBASIC Compiler for Windows Version 10

793 / 2126

HeightVar! = GRAPHIC(View.Y)

Remarks Retrieves the position of the viewport on a virtual graphic target. The size is specified in
Page Units. If no graphic target has been selected, or no virtual window has been
created, the values 0,0 are returned.

See also GRAPHIC SET VIEW, GRAPHIC SET VIRTUAL

GRAPHIC(View.Y) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET VIEW statement
Purpose Retrieves the position of the virtual graphic viewport.

Syntax GRAPHIC GET VIEW To WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(View.X)
HeightVar! = GRAPHIC(View.Y)

Remarks Retrieves the position of the viewport on a virtual graphic target. The size is specified in
Page Units. If no graphic target has been selected, or no virtual window has been
created, the values 0,0 are returned.

See also GRAPHIC SET VIEW, GRAPHIC SET VIRTUAL

GRAPHIC(WORDWRAP) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET WORDWRAP statement
Purpose Retrieves the status of Graphic WordWrap Mode.

Syntax GRAPHIC GET WORDWRAP TO WrapVar&

Function Form:
WrapVar& = GRAPHIC(WORDWRAP)

Remarks GRAPHIC GET WORDWRAP retrieves the status of wordwrap mode and assigns it to the
variable specified by WrapVar&. If WordWrap Mode is enabled, the value true (non-zero)
is assigned. If it's disabled, the value false (zero) is assigned instead. The value returned

PowerBASIC Compiler for Windows Version 10

794 / 2126

reflects the status of the graphic target which is currently attached to the graphic stream.

With WordWrap Mode, you can control how PowerBASIC prints text on a graphic target
when it reaches the end of a line. Since a graphic target operates on a full page basis,
the default is to ignore text which is printed past the end of the line. This can be modified
under program control by using GRAPHIC SET WORDWRAP.

When WordWrap mode is enabled, it affects only GRAPHIC PRINT operations. If
GRAPHIC PRINT attempts to display a word beyond the end of a row, the entire word is
automatically wrapped to the first column of the next row.

See also GRAPHIC CELL, GRAPHIC GET WRAP, GRAPHIC SET WORDWRAP, GRAPHIC SET
WRAP, GRAPHIC SPLIT

GRAPHIC(WRAP) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET WRAP statement
Purpose Retrieves the status of Graphic Wrap Mode.

Syntax GRAPHIC GET WRAP TO WrapVar&

Function Form:
WrapVar& = GRAPHIC(WRAP)

Remarks GRAPHIC GET WRAP retrieves the status of wrap mode and assigns it to the variable
specified by WrapVar&. If Wrap Mode is enabled, the value true (non-zero) is assigned.
 If it's disabled, the value false (zero) is assigned instead. The value returned reflects the
status of the graphic target which is currently attached to the graphic stream.

With Wrap Mode, you can control how PowerBASIC prints text on a graphic target when
it reaches the end of a line. Since a graphic target operates on a full page basis, the
default is to ignore text which is printed past the end of the line. This can be modified
under program control by using GRAPHIC SET WRAP.

When Wrap Mode is enabled, it affects only GRAPHIC PRINT operations. If GRAPHIC
PRINT attempts to display a character beyond the end of a row, it is automatically
wrapped to the first column of the next row.

See also GRAPHIC CELL, GRAPHIC GET WORDWRAP, GRAPHIC SET WORDWRAP,
GRAPHIC SET WRAP, GRAPHIC SPLIT

GRAPHIC$(CAPTION) function

Keyword Template
Purpose

Syntax

Remarks

PowerBASIC Compiler for Windows Version 10

795 / 2126

See also

Example

GRAPHIC GET CAPTION statement
Purpose Retrieves the caption from a Graphic Window.

Syntax GRAPHIC GET CAPTION To CaptionVar$

Function form:
CaptionVar$ = GRAPHIC$(CAPTION)

Remarks GRAPHIC GET CAPTION retrieves the text (if any) which is currently displayed as the
caption of the selected Graphic Target. This area is also called the "title bar". A Graphic
Window is the only form of Graphic Target which may have a caption, so other forms will
return a null (zero-length) string.

See also GRAPHIC SET CAPTION, GRAPHIC WINDOW

GRAPHIC$(INKEY$) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC INKEY$ statement
Purpose Reads a keyboard character if one is ready.

Syntax GRAPHIC INKEY$ TO InkeyVar$

Function Form:
InkeyVar$ = GRAPHIC$(INKEY$)

Remarks GRAPHIC INKEY$ returns a

 of 0, 1, or 2 characters that reflects the status of the keyboard buffer for the selected
graphic target. A null string (LEN=0) means that the buffer is empty - no key pressed.
A string length of one means that an ASCII key was pressed and the string contains the
ASCII character. An ASCII value between 1 and 31 indicate a control code.

A string length of two means that an extended key was pressed. In this case, the first
character in the string has an ASCII value of zero, and the second is the extended
keyboard code.

See also GRAPHIC INPUT, GRAPHIC INPUT FLUSH, GRAPHIC INSTAT, GRAPHIC LINE INPUT,
GRAPHIC WAITKEY$

GRAPHIC$(WAITKEY$) function

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

796 / 2126

Syntax

Remarks

See also

Example

GRAPHIC WAITKEY$ statement
Purpose Reads a keyboard character or extended key, waiting until one is ready.

Syntax GRAPHIC WAITKEY$ [To WaitVar$]
GRAPHIC WAITKEY$ ([KeyMask$] [,TimeOut&]) [TO WaitVar$]

Function Form:
WaitVar$ = GRAPHIC$(WAITKEY$)
WaitVar$ = GRAPHIC$(WAITKEY$, [KeyMask$] [,TimeOutVal&])

Remarks Reads a character or extended key from the keyboard without echoing anything to the
screen. If no data is available, GRAPHIC WAITKEY$ will wait for an event to occur. It is
very similar to GRAPHIC INKEY$, except that it waits for input to be available. While
waiting, time slices are released to the operating system to reduce CPU load.

It returns a

 of one or two characters if a key was pressed. If the TO clause is omitted, the
keyboard character is discarded.
If the optional KeyMask$ expression is included, only a limited set of keys are
recognized. KeyMask$ may include any number of Sub-Masks, one for each key to
observe. For example, GRAPHIC WAITKEY$("YyNn") will recognize upper-case or lower-
case Y or N (for yes/no answers), while any other key will be ignored. If KeyMask$ is
omitted, or evaluates to a zero-length string, any key event will be recognized.

If the optional TimeOutVal& expression is included, it tells the maximum number of
milliseconds to wait for a key. GRAPHIC WAITKEY$(5000) will wait a maximum of 5
seconds. The specified TimeOut period will only be approximate, so you should not rely
upon precision accuracy. If the TimeOut period is exceeded, a zero-length string is
returned. If the TimeOutVal& parameter is omitted, or evaluates to zero (0), it will wait an
infinite length of time. The maximum TimeOut& permitted is one hour.

A string length of one (LEN(i$) = 1) means that a standard character key was pressed.
 The result string contains the character. An ASC()value between 1 and 31 indicates a
control code.

A string length of two (LEN(i$) = 2) means that an extended key was pressed. In this
case, the first character in the result string has an ASC() value of zero (0), and the second
is the extended keyboard scan code. For example, pressing the F1 key will return
CHR$(0, 59).

See also GRAPHIC INKEY$, GRAPHIC INPUT, GRAPHIC INPUT FLUSH, GRAPHIC INSTAT,
GRAPHIC LINE INPUT

GRAPHIC$(WAITKEY$...) function

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

797 / 2126

Example

GRAPHIC WAITKEY$ statement
Purpose Reads a keyboard character or extended key, waiting until one is ready.

Syntax GRAPHIC WAITKEY$ [To WaitVar$]
GRAPHIC WAITKEY$ ([KeyMask$] [,TimeOut&]) [TO WaitVar$]

Function Form:
WaitVar$ = GRAPHIC$(WAITKEY$)
WaitVar$ = GRAPHIC$(WAITKEY$, [KeyMask$] [,TimeOutVal&])

Remarks Reads a character or extended key from the keyboard without echoing anything to the
screen. If no data is available, GRAPHIC WAITKEY$ will wait for an event to occur. It is
very similar to GRAPHIC INKEY$, except that it waits for input to be available. While
waiting, time slices are released to the operating system to reduce CPU load.

It returns a

 of one or two characters if a key was pressed. If the TO clause is omitted, the
keyboard character is discarded.
If the optional KeyMask$ expression is included, only a limited set of keys are
recognized. KeyMask$ may include any number of Sub-Masks, one for each key to
observe. For example, GRAPHIC WAITKEY$("YyNn") will recognize upper-case or lower-
case Y or N (for yes/no answers), while any other key will be ignored. If KeyMask$ is
omitted, or evaluates to a zero-length string, any key event will be recognized.

If the optional TimeOutVal& expression is included, it tells the maximum number of
milliseconds to wait for a key. GRAPHIC WAITKEY$(5000) will wait a maximum of 5
seconds. The specified TimeOut period will only be approximate, so you should not rely
upon precision accuracy. If the TimeOut period is exceeded, a zero-length string is
returned. If the TimeOutVal& parameter is omitted, or evaluates to zero (0), it will wait an
infinite length of time. The maximum TimeOut& permitted is one hour.

A string length of one (LEN(i$) = 1) means that a standard character key was pressed.
 The result string contains the character. An ASC()value between 1 and 31 indicates a
control code.

A string length of two (LEN(i$) = 2) means that an extended key was pressed. In this
case, the first character in the result string has an ASC() value of zero (0), and the second
is the extended keyboard scan code. For example, pressing the F1 key will return
CHR$(0, 59).

See also GRAPHIC INKEY$, GRAPHIC INPUT, GRAPHIC INPUT FLUSH, GRAPHIC INSTAT,
GRAPHIC LINE INPUT

GRAPHIC ARC statement

GRAPHIC ARC statement
Purpose Draw an arc in the selected graphic target.

Syntax GRAPHIC ARC (x1!, y1!) - (x2!, y2!), arcStart!, arcEnd! [, rgbColor&]

Remarks An arc is a section of a circle or an ellipse. To specify a particular arc, you would first
define the full circle or ellipse of which it is a part, and then specify the points on the
ellipse where the arc starts and stops.

The full circle or ellipse is defined by its bounding rectangle, which is defined as the
smallest rectangle which can be drawn around the circle or ellipse. For example, if the
circle is centered at position (400,400), with a radius of 100 pixels, the upper left corner
(x1!, y1!) of the bounding rectangle is (300,300), and the lower right corner (x2!, y2!) is

PowerBASIC Compiler for Windows Version 10

798 / 2126

(500,500). The start point and end point of the arc are specified by their angle, which
must be given in radians. A complete circle or ellipse is 2*pi radians. On a 12-hour clock-
face, the values 0 and 2*pi both refer to the position of 3 o'clock, while the value 1*pi refers
to the position of 9 o'clock. Other positions are specified by a radian value relative to
these. In PowerBASIC, arcs are always drawn counter-clockwise from the starting point
to the ending point.

Prior to any graphical operations, the graphic target must first be selected with GRAPHIC
ATTACH. The Coordinates are specified in the same terms (pixels or dialog units) as the
parent dialog (or world coordinates, if those were chosen with GRAPHIC SCALE). Line
width can be set using GRAPHIC WIDTH. If line width is set to 1 (the default), the line
style can be set with GRAPHIC STYLE. Because of the nature of an arc, GRAPHIC ARC
neither uses, nor updates, GRAPHIC POS (last point referenced).

x1!, y1! The upper left corner of the bounding rectangle of the full circle or ellipse.

x2!, y2! The lower right corner of the bounding rectangle of the full circle or ellipse.

ArcStart! The starting angle of the arc, in radians, from 0 to 2*pi.

ArcEnd! The ending angle of the arc, in radians, from 0 to 2*pi radians. Note that arcs are always
drawn counter-clockwise from arcStart! to arcEnd!. Compared with a 12-hour clock-face,
0 or 2*pi radians is at 3 o'clock, and 1*pi radians is at 9 o'clock.

rgbColor& Optional RGB color for the arc. If omitted (or -1), the current foreground color for the
graphic window is used.

See also Built In RGB Color Equates, GRAPHIC ATTACH, GRAPHIC COLOR, GRAPHIC ELLIPSE,
GRAPHIC PIE, GRAPHIC SET OVERLAP, GRAPHIC STYLE, GRAPHIC WIDTH

Example ' Draw two arcs that combine into a circle.
' The upper half uses the default foreground color.
' The lower half is drawn in red.
LOCAL Pi AS DOUBLE
Pi = 4 * ATN(1) ' Calculate Pi
GRAPHIC ARC (5, 5) - (105, 105), 0, Pi ' Upper half
GRAPHIC ARC (5, 5) - (105, 105), Pi, 0, %RED ' Lower half

GRAPHIC ATTACH statement

GRAPHIC ATTACH statement
Purpose Select the graphic target (window, control, or

) on which future drawing operations will take place.
Syntax GRAPHIC ATTACH hWin, id [, REDRAW]

Remarks This statement chooses a graphic target. All further graphic operations will be directed to
this target until another GRAPHIC ATTACH or GRAPHIC DETACH statement is executed,
or the graphic target is deleted. All PowerBASIC graphical displays are persistent -- they
will be automatically redrawn even if minimized or temporarily covered by another window.

By default, all graphic operations are displayed immediately upon execution of a graphic
statement. In many cases, this is a good choice, because the display is always up-to-
date. However, as the complexity of graphic operations increases, this continuous update
process does not afford the best performance. It is usually better to use the REDRAW
option described below, as it will generally provide a dramatic improvement in overall
performance.

Only one thread may be attached to a particular Graphic Target at a time. An attempt to
attach more than one will generate an Illegal Function Call Error 5.

hWin Handle of the GRAPHIC WINDOW, DIALOG, or BITMAP to be used with

 statements.

PowerBASIC Compiler for Windows Version 10

799 / 2126

id The control id, if the target is a GRAPHIC CONTROL, or zero if the target is a GRAPHIC
WINDOW or GRAPHIC BITMAP.

REDRAW This option can provide a dramatic improvement in the execution speed of graphic
statements, as it eliminates repetitive updates to the display. If this option is included, all
drawing statements are buffered until a GRAPHIC REDRAW statement is executed, or
the operating system chooses to update the target window. Without REDRAW, all
graphical statements (Line, Box, Print, etc.) are performed immediately. However, in
most cases, it's better to defer the display until a number of statements have been
performed.

While the REDRAW option defers update of the display, it does not guarantee that no
interim updates will be performed. There are times when the operating system, or other
factors, may intervene. If update must be suppressed until complete, you should create
your graphic invisibly using a GRAPHIC BITMAP, then display it by using GRAPHIC
COPY.

Example ' Draw a blue gradient fill.
' Each line is displayed as it's drawn.
GRAPHIC ATTACH hDlg, %IDC_GRAPHIC1
FOR y& = 0 TO 255
 GRAPHIC LINE (0, y&) - (255, y&), RGB(0, 0, y&)
NEXT

' Draw a buffered, blue gradient fill.
' Nothing is displayed before GRAPHIC REDRAW,
' this enhancing performance dramatically.
GRAPHIC ATTACH hDlg, %IDC_GRAPHIC2, REDRAW
FOR y& = 0 TO 255
 GRAPHIC LINE (0, y&) - (255, y&), RGB(0, 0, y&)
NEXT
GRAPHIC REDRAW

See also CONTROL ADD GRAPHIC, GRAPHIC BITMAP LOAD, GRAPHIC BITMAP NEW,
GRAPHIC DETACH, GRAPHIC WINDOW

GRAPHIC BITMAP END statement

GRAPHIC BITMAP END statement
Purpose Close the selected graphic bitmap.

Syntax GRAPHIC BITMAP END

Remarks You must close every memory bitmap (that was created with GRAPHIC BITMAP LOAD or
GRAPHIC BITMAP NEW) when you are finished using them for graphical operations. To
close a bitmap, select it with the GRAPHIC ATTACH statement, then execute GRAPHIC
BITMAP END.

See also GRAPHIC ATTACH, GRAPHIC BITMAP LOAD, GRAPHIC BITMAP NEW

GRAPHIC BITMAP LOAD statement

GRAPHIC BITMAP LOAD statement
Purpose Create a memory bitmap and load an image into it.

Syntax GRAPHIC BITMAP LOAD BmpName$, nWidth&, nHeight& [,stretch&] TO hBmp???

BmpName$ The name of the bitmap image to load.

nWidth& The width of the bitmap, in pixels.

PowerBASIC Compiler for Windows Version 10

800 / 2126

nHeight& The height of the bitmap, in pixels.

stretch& Stretch mode if the bitmap is to be resized.

hBmp??? The bitmap handle.

Remarks GRAPHIC BITMAP LOAD creates a new memory bitmap, loading a bitmap image from a
resource or a disk file. This bitmap works just like a GRAPHIC WINDOW, except that it
is not visible. The parameter BmpName$ specifies the name of the image to be loaded. If
BmpName$ contains a period, it is presumed to be the name of a disk file. Otherwise, an
attempt is made to load it from a resource -- if not found, it is then presumed to be a disk
file.

The parameters nWidth& and nHeight& specify the width and height of the bitmap, in
pixels. If either of the size parameters are zero (0), the bitmap is loaded at its natural
size. If either of the size parameters is different from the natural size, the bitmap is
stretched or condensed to the requested size.

If the bitmap creation is successful, the bitmap handle is assigned to the variable
hbmp???. If not successful, hbmp??? is set to zero. When you are finished using this
memory bitmap, you must delete it with GRAPHIC BITMAP END.

If the stretch& parameter is included, it is one of the values in the following table. If not
included, or it is the value zero (0), the stretch mode is unchanged. An appropriate
choice of stretch mode can substantially enhance the quality of bitmaps which are
changed in size. The stretch mode equates are predefined in PowerBASIC.

The 4 stretch modes are:

%BLACKONWHITE This is the default Windows stretch mode, and is most
appropriate for monochrome bitmaps, or those with blocks of
color. Performs a boolean OR of eliminated and existing
pixels. It preserves black pixels at the expense of white pixels.

%WHITEONBLACK Performs a boolean OR of eliminated and existing pixels. It
preserves white pixels at the expense of black pixels.

%
COLORONCOLOR

Deletes eliminated lines of pixels without trying to preserve
their information.

%HALFTONE This provides the highest quality for complex color bitmaps.
 The average color of the destination pixel block is kept
approximately the same as the source pixel block.

The following code will retrieve the natural size of an image in a bitmap file, in pixels:

nFile& = FREEFILE
OPEN "myimage.bmp" FOR BINARY AS nFile&
GET #nFile&, 19, nWidth&
GET #nFile&, 23, nHeight&
CLOSE nFile&

See also GRAPHIC BITMAP END, GRAPHIC BITMAP NEW, GRAPHIC GET STRETCHMODE,
GRAPHIC IMAGELIST, GRAPHIC RENDER, GRAPHIC SET STRETCHMODE, GRAPHIC
STRETCH

GRAPHIC BITMAP NEW statement

GRAPHIC BITMAP NEW statement
Purpose Create a new memory bitmap.

Syntax GRAPHIC BITMAP NEW nWidth&, nHeight& TO hBmp???

Remarks GRAPHIC BITMAP NEW creates a new memory bitmap, which may be manipulated and
drawn just as if it were a GRAPHIC WINDOW, except that it is not visible. The
parameters nWidth& and nHeight& specify the width and height of the bitmap, in pixels. If
the bitmap creation is successful, the bitmap handle is assigned to the variable hBmp???

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

801 / 2126

. If not successful, hBmp??? is set to zero. When you are finished using this memory
bitmap, you must delete it with GRAPHIC BITMAP END.

See also GRAPHIC ATTACH, GRAPHIC BITMAP END, GRAPHIC BITMAP LOAD, GRAPHIC
IMAGELIST

GRAPHIC BOX statement

GRAPHIC BOX statement
Purpose Draw a box with square or rounded corners in the selected graphic target.

Syntax GRAPHIC BOX (x1!, y1!) - (x2!, y2!) [, [corner&] [, [rgbColor&] [,
 [fillcolor&] [, [fillstyle&]]]]]

Remarks The coordinates are specified in Page Units. Line width can be set using GRAPHIC
WIDTH. If line width is set to 1 (the default), the line style can be set with GRAPHIC
STYLE. Because of the nature of a box, GRAPHIC BOX neither uses, nor updates, the
last point referenced (POS). Windows graphic conventions consider the bottom and right
coordinates of a BOX to be exclusive. The pixels at the bottom and right edges are not
drawn unless Overlap Mode is enabled. See GRAPHIC SET OVERLAP for details.

x1!, y1! The upper left corner of the box.

x2!, y2! The lower right corner of the box.

corner& The percentage of roundness of the corners, in the range of 0 to 100. A value of zero
creates square corners, while 100 creates a circle/oval. A value of 20 being most
common for a pleasant, rounded appearance. If corner& is omitted, the default is 0, which
creates a rectangle with square corners.

rgbColor& Optional RGB color of the box edge. If omitted (or -1), the edge color defaults to the
current foreground color for the selected graphic target.

fillcolor& Optional RGB color of the box interior. If fillcolor& is omitted (or -2), the interior of the box
is not filled, allowing the background to show through. If fillcolor& is -1, the interior is
painted with the same color as the edge. Otherwise, fillcolor& specifies the RGB color to
be used.

fillstyle& Optional fill style (pattern) to be used. If fillstyle& is omitted, the default fill style is solid
(0). If a hatch pattern is chosen (1 to 6), the foreground color is specified by the fillcolor&,
while the background is specified by the default background color. The optional fillstyle&
may be:

0 Solid (default)
1 Horizontal Lines
2 Vertical Lines
3 Upward Diagonal Lines
4 Downward Diagonal Lines
5 Crossed Lines
6 Diagonal Crossed Lines

See also Built In RGB Color Equates, GRAPHIC ATTACH, GRAPHIC COLOR, GRAPHIC LINE,
GRAPHIC SET OVERLAP, GRAPHIC STYLE, GRAPHIC WIDTH

Example ' Draw rectangle with square corners and default colors.
GRAPHIC BOX (10, 10) - (100, 80)

' Draw a blue rectangle with 20% rounded corners,
' filled with a light-gray, diagonal cross pattern
GRAPHIC BOX (15, 15) - (95, 75), 20, %BLUE, RGB(191,191,191), 6

GRAPHIC CELL SIZE statement

PowerBASIC Compiler for Windows Version 10

802 / 2126

GRAPHIC CELL SIZE statement
Purpose Retrieve the character cell size including external leading.

Syntax GRAPHIC CELL SIZE TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(Cell.Size.X)
HeightVar! = GRAPHIC(Cell.Size.Y)

Remarks GRAPHIC CELL SIZE retrieves the size of one character cell, for the current font, on the
attached graphic target. The returned character size is specified in PAGE UNITS, and
allows you to calculate the number of text lines which will fit in a particular space. The
height value is the size of the displayed character, including external leading (if any) for
this particular font.

If the font is a fixed-width font, like Courier New or Lucida Console,the sizes returned are
as exact as possible, given the fractional rounding approximations necessary for some
scaled units. If the font is proportional, like Arial or Times New Roman, the width will be
the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the
character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the exact height of
characters without external leading, use GRAPHIC CHR SIZE.

See also GRAPHIC CELL, GRAPHIC CHR SIZE, GRAPHIC SET FONT, GRAPHIC TEXT SIZE

GRAPHIC CELL statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC CELL statement
Purpose Sets or retrieves the next print position, based upon the row and column position of a text

cell.

Syntax GRAPHIC CELL = RowValue&, ColValue&
GRAPHIC CELL TO RowVar&, ColVar&
GRAPHIC COL TO ColVar&
GRAPHIC ROW TO RowVar&

Function Form:
ColVar& = GRAPHIC(COL)
RowVar& = GRAPHIC(ROW)

Remarks GRAPHIC CELL is used to set or retrieve the print position, based upon the row and
column position of a Text Cell. That is the row column position where the next printed
text will be displayed. These operations are very similar to GRAPHIC GET POS and
GRAPHIC SET POS, except that the position is reported in text rows and columns, rather
than Page Units. The current graphic position is translated to a row and column number,
based upon the standard character size in a fixed width font, or the average character
size for a variable width font.

PowerBASIC Compiler for Windows Version 10

803 / 2126

RowValue& specifies the horizontal screen row (starting at 1) at which to position the
cursor. ColValue& specifies the vertical screen column (starting at 1) at which to position
the cursor. Since row and column numbers start at one (1), the upper left corner of the
window is considered to be cell 1,1.

The first form of GRAPHIC CELL moves the print position to the desired row and column.
 If a value given is zero (0), that parameter is ignored and that position is not changed.

The second form of GRAPHIC CELL retrieves the current print position, and assigns the
values to the variables specified by RowVar& and ColVar&. Every point which falls within
a text character cell is reported as that Row/Column position. If the graphic position is
not at the upper left corner of the text character, you may get imprecise or unexpected
results. This can occur if you perform a graphic operation other than GRAPHIC PRINT
which leaves the "Last Point Referenced" at a mid-cell position.

The remaining forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

See also GRAPHIC CELL SIZE, GRAPHIC GET POS, GRAPHIC SET FONT, GRAPHIC SET POS,
GRAPHIC SET SCROLLTEXT, GRAPHIC SET WORDWRAP, GRAPHIC SET WRAP,
GRAPHIC SPLIT

GRAPHIC CHR SIZE statement

GRAPHIC CHR SIZE statement
Purpose Retrieve the character size on the Graphic Target.

Syntax GRAPHIC CHR SIZE To WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(Chr.Size.X)
HeightVar! = GRAPHIC(Chr.Size.Y)

Remarks GRAPHIC CHR SIZE retrieves the size of one character, for the current font, on the
attached graphic target. The returned character size is specified in Page Units. The
height value is the actual size of the displayed character, without including external
leading (if any) for this particular font.

If the font is a fixed-width font, like Courier New or Lucida Console,the sizes returned are
as exact as possible, given the fractional rounding approximations necessary for some
scaled units. If the font is proportional, like Arial or Times New Roman, the width will be
the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the
character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the total row height
including external leading, use GRAPHIC CELL SIZE instead.

See also GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC CELL SIZE, GRAPHIC SET FONT,
GRAPHIC PRINT, GRAPHIC TEXT SIZE

GRAPHIC CLEAR statement

GRAPHIC CLEAR statement
Purpose Clear the entire selected graphic target, optionally using a specified color and fill style.

Syntax GRAPHIC CLEAR [rgbColor& [, fillstyle&]]

Remarks The graphic target must first be selected with GRAPHIC ATTACH. The last point
referenced (POS) is set to the upper left corner of the graphic window (0,0).

PowerBASIC Compiler for Windows Version 10

804 / 2126

rgbColor& Optional RGB value representing the fill color. If rgbColor& is omitted (or -1), the graphic
target is cleared to the default background color for the selected graphic target.

fillstyle& Optional fill style (pattern) to be used. If fillstyle& is omitted, the default fill style is solid
(0). If a hatch pattern is chosen (1 to 6), the foreground color is specified by the
rgbColor&, while the background is specified by the default background color for the
selected graphic window. The optional fillstyle& may be:

0 Solid (default)
1 Horizontal Lines
2 Vertical Lines
3 Upward Diagonal Lines
4 Downward Diagonal Lines
5 Crossed Lines
6 Diagonal Crossed Lines

See also Built In RGB Color Equates, GRAPHIC ATTACH, GRAPHIC COLOR

GRAPHIC COLOR statement

GRAPHIC COLOR statement
Purpose Sets the foreground and background color.

Syntax GRAPHIC COLOR foreground& [, background&]

Remarks If either parameter is -1, the default foreground/background color is used. If the
background parameter is -2, the background is not painted, allowing the content behind to
become visible. If either parameter is -3, the existing color is not changed. Otherwise,
the specified RGB color is used.

See also Built In RGB Color Equates, GRAPHIC ATTACH, GRAPHIC PRINT, GRAPHIC SET FONT

Example ' Set red foreground and blue background color.
GRAPHIC COLOR %RED, RGB(0,0,191)

GRAPHIC COPY statement

GRAPHIC COPY statement
Purpose Copy a

 to the selected graphic target.
Syntax GRAPHIC COPY hbmpSource???, id& [, style&]

GRAPHIC COPY hbmpSource???, id& TO (x!, y!) [, style&]
GRAPHIC COPY hbmpSource???, id&, (x1!, y1!)-(x2!, y2!) TO (x!, y!) [,
style%]

Remarks You can copy a complete bitmap, or a portion of it, to the selected graphic target. The
expression hbmpSource??? specifies the handle of the source GRAPHIC BITMAP,
 GRAPHIC WINDOW, or dialog containing a GRAPHIC CONTROL. The expression id& is
the unique control identifier in the range 1 to 65535, as assigned with the CONTROL ADD
GRAPHIC statement. id& must be 0 for a GRAPHIC WINDOW or a GRAPHIC BITMAP.
 The destination of the copy operation is the window selected by GRAPHIC ATTACH. You
must take care that your parameters are valid for the specified bitmap, or the results of
the operation are undefined.

The first form of the GRAPHIC COPY statement copies the complete bitmap, positioning
it at (0,0), which is the upper left corner of the destination.

The second form of GRAPHIC COPY also copies the complete bitmap, but positions it at
the point specified by the parameter (x!, y!).

The third form copies a portion of the bitmap, specified by x1,y1 as the upper left corner

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

805 / 2126

and x2,y2 as the lower right corner. It is positioned at the point specified by the
parameter (x,y). You must use care that your parameters are valid for the specified
bitmaps, or results of the operation are undefined.

If the style parameter is included, it is one of the values in the following table. If not
included, a default of %mix_CopySrc is presumed. There are 8 mix modes available to
use for mixing drawing colors with the colors which already exist at the at the drawing
location The mix mode

 are predefined in PowerBASIC.
%mix_Blackness Pixel is always 0 (black).
%mix_NotMergeSrc Pixel is the inverse of the MergeSrc color.
%mix_MaskNotSrc Pixel is a combination of the colors common to both the pixel and

the inverse of the source.
%mix_NotCopySrc Pixel is the inverse of the pen color.
%mix_MaskSrcNot Pixel is a combination of the colors common to both the source

and the inverse of the pixel.
%mix_Not Pixel is the inverse of the pixel color.
%mix_XorSrc Pixel is a combination of the colors in the source and in the pixel,

but not in both.
%mix_NotMaskSrc Pixel is the inverse of the MaskSrc color.
%mix_MaskSrc Pixel is a combination of the colors common to both the source

and the pixel.
%mix_NotXorSrc Pixel is the inverse of the XorSrc color.
%mix_Nop Pixel remains unchanged.
%mix_MergeNotSrc Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_CopySrc Pixel is the source color (default).
%mix_MergeSrcNot Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_MergeSrc Pixel is a combination of the source color and the pixel color.
%mix_Whiteness Pixel is always 1 (white).

See also GRAPHIC GET STRETCHMODE, GRAPHIC RENDER, GRAPHIC SET STRETCHMODE,
GRAPHIC STRETCH

GRAPHIC DETACH statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC DETACH statement
Purpose Detaches a graphic target attached to the graphic stream.

Syntax GRAPHIC DETACH

Remarks Though detached from the graphic stream, the graphic target is not deleted, nor is it
altered in any way. Until another graphic target is attached, any

 statements executed are ignored. If no graphic is attached, this statement performs
no operation.

PowerBASIC Compiler for Windows Version 10

806 / 2126

See also GRAPHIC ATTACH, GRAPHIC BITMAP LOAD, GRAPHIC BITMAP NEW, GRAPHIC
WINDOW

GRAPHIC ELLIPSE statement

GRAPHIC ELLIPSE statement
Purpose Draw an ellipse or a circle in the selected graphic target.

Syntax GRAPHIC ELLIPSE (x1!, y1!) - (x2!, y2!) [, [rgbColor&] [,[fillcolor&] [,
[fillstyle&]]]]

Remarks Coordinates are specified in Page Units. Line width can be set using GRAPHIC WIDTH.
 If line width is set to 1 (the default), the line style can be set with GRAPHIC STYLE.
 Because of the nature of an ellipse, which has no obvious beginning or end, GRAPHIC
ELLIPSE neither uses, nor updates, the last point referenced (POS).

The coordinate pair define an invisible bounding rectangle which would enclose the ellipse
to be drawn. It tells both the size and the proportions of the ellipse. Windows graphic
conventions consider the bottom and right coordinates of it to be exclusive. The pixels at
the bottom and right edges are ignored, unless Overlap Mode is enabled. See GRAPHIC
SET OVERLAP for details.

x1!, y1! The upper left corner of the bounding rectangle.

x2!, y2! The lower right corner of the bounding rectangle.

rgbColor& Optional RGB color of the ellipse edge. If omitted (or -1), the edge color defaults to the
current foreground color for the selected graphic window.

fillcolor& Optional RGB color of the ellipse interior. If fillcolor& is omitted (or -2), the interior of the
ellipse is not filled, allowing the background to show through. If fillcolor& is -1, the interior
is painted with the same color as the edge. Otherwise, fillcolor& specifies the RGB color
to be used.

fillstyle&

Optional fill style (pattern) to be used. If fillstyle& is omitted, the default fill style is solid
(0). If a hatch pattern is chosen (1 to 6), the foreground color is specified by the fillcolor&,
while the background is specified by the default background color for the selected graphic
window. The optional fillstyle& may be:

0 Solid (default)
1 Horizontal Lines
2 Vertical Lines
3 Upward Diagonal Lines
4 Downward Diagonal Lines
5 Crossed Lines
6 Diagonal Crossed Lines

See also Built In RGB Color Equates, GRAPHIC ARC, GRAPHIC ATTACH, GRAPHIC COLOR,
GRAPHIC LINE, GRAPHIC PIE, GRAPHIC SET OVERLAP, GRAPHIC STYLE, GRAPHIC
WIDTH

Example ' Draw a circle, using default colors.
GRAPHIC ELLIPSE (10, 10) - (100, 100)

' Draw a blue ellipse filled with a light-gray,
' diagonal cross pattern.
GRAPHIC ELLIPSE (15, 25) - (95, 50), %BLUE, RGB(191,191,191), 6

GRAPHIC GET BITS statement

GRAPHIC GET BITS statement

PowerBASIC Compiler for Windows Version 10

807 / 2126

Purpose Retrieve a copy of a bitmap , storing it as a device-independent bitmap in a dynamic string
variable.

Syntax GRAPHIC GET BITS TO bitvar$

Remarks This statement retrieves a copy of the entire bitmap for the selected graphic target,
assigning it to the dynamic string variable specified by bitvar$. This allows you to make
many modifications to the bitmap very quickly, particularly operations which may not be
directly supported by GRAPHIC code. For example, you might change all red pixels in a
bitmap to blue. Once your operations are complete, the bitmap is replaced using
GRAPHIC SET BITS.

The bitvar$ string will contain a series of four-byte values, each of which represents a long
integer. You can convert the four-byte string sections to numeric values with the CVL
function, and convert a numeric value to a four-byte string with MKL$. The first four-byte
value specifies the width of the bitmap, in pixels, and the second specifies the height.
Following that will be one four-byte value for each pixel in the bitmap, which represents
the color of that pixel. So, a 20 by 20 bitmap would have 400 pixels and require 1600
bytes (400 * 4), plus 4 bytes for the width and 4 bytes for the height, or a total of 1608
bytes.

The first four-byte pixel value in the string represents the top-left corner of the image, the
second represents the second pixel of the first row, and so on. After the last pixel of the
first row will be the first pixel of the second row, etc.

If execution speed is most important, it's likely that the string can be manipulated most
efficiently with pointer variables.

Some Windows API functions, namely those which reference Device-Independent Bitmaps
(DIB), require that colors be specified in the reverse of normal RGB sequence (Blue-
Green-Red instead of Red-Green-Blue). To maximize performance, GRAPHIC GET BITS
uses BGR format as well. You can use the BGR() function to translate an RGB value to
its BGR equivalent.

See also Built In RGB Color Equates, BGR, CVL, GRAPHIC SET BITS, MKL$, RGB

Example ' Change all red pixels to blue
LOCAL PixelPtr AS LONG PTR
GRAPHIC GET BITS TO bmp$
xsize& = CVL(bmp$,1)
ysize& = CVL(bmp$,5)
PixelPtr = STRPTR(bmp$) + 8
FOR i& = 1 TO xsize& * ysize&
 IF @PixelPtr = BGR(%red) THEN @PixelPtr = BGR(%blue)
 INCR PixelPtr
NEXT
GRAPHIC SET BITS bmp$

GRAPHIC GET CANVAS statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET CANVAS statement

PowerBASIC Compiler for Windows Version 10

808 / 2126

Purpose Retrieves the writable size of the attached graphic target.

Syntax GRAPHIC GET CANVAS TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(CANVAS.X)
HeightVar! = GRAPHIC(CANVAS.Y)

Remarks GRAPHIC GET CANVAS retrieves the size of the drawing buffer for the attached graphic
window, control, or bitmap. The size is specified in Page Units, so it could return scaled
values if they were applied with GRAPHIC SCALE. If the graphic window or control is
FIXED (the default), the size returned is equivalent to the CLIENT size (other than the
scaling factor). The CANVAS size does not include a caption, frame, scrollbars, etc. If
no graphic target has been attached with GRAPHIC ATTACH, the values 0,0 are returned.

See also GRAPHIC GET CLIENT, GRAPHIC GET CLIP, GRAPHIC GET SIZE, GRAPHIC GET
SCALE, GRAPHIC SCALE

GRAPHIC GET CAPTION statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET CAPTION statement
Purpose Retrieves the caption from a Graphic Window.

Syntax GRAPHIC GET CAPTION To CaptionVar$

Function form:
CaptionVar$ = GRAPHIC$(CAPTION)

Remarks GRAPHIC GET CAPTION retrieves the text (if any) which is currently displayed as the
caption of the selected Graphic Target. This area is also called the "title bar". A Graphic
Window is the only form of Graphic Target which may have a caption, so other forms will
return a null (zero-length) string.

See also GRAPHIC SET CAPTION, GRAPHIC WINDOW

GRAPHIC GET CLIENT statement

GRAPHIC GET CLIENT statement
Purpose Retrieve the client size of the selected graphic target.

Syntax GRAPHIC GET CLIENT To WidthVar!, HeightVar!

Function form:
WidthVar! = GRAPHIC(Client.X)
HeightVar! = GRAPHIC(Client.Y)

Remarks GRAPHIC GET CLIENT retrieves the physical size of the client area (visible part) of the
attached graphic window or control. The size is specified in Pixels or Dialog Units,
depending upon how it was created. The sizes returned are not altered or affected by
GRAPHIC SCALE, VIRTUAL, or AUTOSIZE operations, as it returns the physical size of

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

809 / 2126

the viewable area in the terms used to create it. The client area does not include a
caption, frame, scrollbars, etc. When GRAPHIC GET CLIENT is used with a

, it returns 0,0. You would normally use GRAPHIC GET CANVAS with a Bitmap,
or to obtain the size of the area which can be drawn. If no graphic target has been
attached with GRAPHIC ATTACH, the values 0,0 are returned.

See also GRAPHIC ATTACH, GRAPHIC GET CANVAS, GRAPHIC GET CLIP, GRAPHIC GET
SIZE, GRAPHIC SET CLIENT

GRAPHIC GET CLIP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET CLIP statement
Purpose Retrieves the size of the clip area.

Syntax GRAPHIC GET CLIP TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(Clip.X)
HeightVar! = GRAPHIC(Clip.Y)

Remarks The clip area of a graphic target is that space where

 operations can be displayed. That is, the clip area is that portion of the client area
which is not protected (clipped) by GRAPHIC SET CLIP.
GRAPHIC GET CLIP retrieves the size of the clip area, and assigns these values to the
variables specified by WidthVar! and HeightVar!. The size is specified in PAGE UNITS. If
no graphic target is selected, the values 0,0 are returned.

See also GRAPHIC GET CANVAS, GRAPHIC GET CLIENT, GRAPHIC SET CLIP

GRAPHIC GET DC statement

GRAPHIC GET DC statement
Purpose Retrieve the handle of the DC (device context) for the selected graphic target.

Syntax GRAPHIC GET DC TO hDC???
Function Form:
DCVar??? = GRAPHIC(DC)

Remarks The DC handle may be used with various Windows API functions to perform specialized
graphic operations in the graphic target. If no graphic window is currently selected, zero
is returned.

See also GRAPHIC ATTACH

PowerBASIC Compiler for Windows Version 10

810 / 2126

GRAPHIC GET LINES statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET LINES statement
Purpose Retrieves the number of text lines which will fit on the graphic target.

Syntax GRAPHIC GET LINES TO linecount&

Function Form:
linecount& = GRAPHIC(LINES)

Remarks GRAPHIC GET LINES retrieves the number of lines of text which will fit on the graphic
target, given the current selected font. This value is assigned to linecount&.

See also GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC CHR SIZE, GRAPHIC PRINT, GRAPHIC
SET FONT, GRAPHIC TEXT SIZE

GRAPHIC GET LOC statement

GRAPHIC GET LOC statement
Purpose Retrieves the location of the Graphic Window on the screen.

Syntax GRAPHIC GET LOC TO x&, y&

Function Form:
x& = GRAPHIC(LOC.X)
y& = GRAPHIC(LOC.Y)

Remarks This statement retrieves the location of the selected Graphic Window. If no graphic object
is selected, or it is not a Graphic Window, 0,0 is returned. The location is specified in
pixels, relative to the upper left corner of the screen.

See also GRAPHIC ATTACH, GRAPHIC GET PPI, GRAPHIC SET LOC

GRAPHIC GET MIX statement

GRAPHIC GET MIX statement
Purpose Retrieve the color mix mode for the selected graphic target.

Syntax GRAPHIC GET MIX TO mixmode&

Function Form:
mixmode& = GRAPHIC(MIX)

Remarks There are 16 mix modes available to use for mixing the drawing color with the color that
already exists at the drawing location.

%mix_Blackness Pixel is always 0 (black).
%mix_NotMergeSrc Pixel is the inverse of the MergeSrc color.
%mix_MaskNotSrc Pixel is a combination of the colors common to both the pixel and

PowerBASIC Compiler for Windows Version 10

811 / 2126

the inverse of the source.
%mix_NotCopySrc Pixel is the inverse of the pen color.
%mix_MaskSrcNot Pixel is a combination of the colors common to both the source

and the inverse of the pixel.
%mix_Not Pixel is the inverse of the pixel color.
%mix_XorSrc Pixel is a combination of the colors in the source and in the pixel,

but not in both.
%mix_NotMaskSrc Pixel is the inverse of the MaskSrc color.
%mix_MaskSrc Pixel is a combination of the colors common to both the source

and the pixel.
%mix_NotXorSrc Pixel is the inverse of the XorSrc color.
%mix_Nop Pixel remains unchanged.
%mix_MergeNotSrc Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_CopySrc Pixel is the source color (default).
%mix_MergeSrcNot Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_MergeSrc Pixel is a combination of the source color and the pixel color.
%mix_Whiteness Pixel is always 1 (white).

See also GRAPHIC SET MIX

GRAPHIC GET OVERLAP statement

GRAPHIC GET OVERLAP statement
Purpose Retrieves the status of Graphic Overlap Mode.

Syntax GRAPHIC GET OVERLAP To OverlapVar&

Function Form:
OverlapVar& = GRAPHIC(OVERLAP)

Remarks GRAPHIC GET OVERLAP retrieves the status of overlap mode and assigns it to the
variable specified by OverlapVar&. If Overlap Mode is enabled, the value true (non-zero) is
assigned. If it's disabled, the value false (zero) is assigned instead. The value returned
reflects the status of the graphic target which is currently attached to the graphic stream.

With Overlap Mode, you control how PowerBASIC treats graphic operations which involve
a RECT structure in their definition. Windows graphic conventions consider the bottom
and right coordinates of a RECT to be exclusive. In other words, the pixels at the bottom
and right edges lie immediately outside the rectangle. They are not drawn, but are
ignored. For example:

GRAPHIC BOX (0,0) - (50,50)

In this case, a box is drawn from 0,0 to 49,49. The final pixels at the bottom and right
edge are simply not drawn. However, if Overlap Mode is enabled with GRAPHIC SET
OVERLAP, the box is drawn from 0,0 to 50,50.

The Overlap Mode affects drawing operations involving GRAPHIC SCALE, GRAPHIC BOX,
GRAPHIC ELLIPSE, GRAPHIC LINE, GRAPHIC POLYLINE, etc.

See also GRAPHIC SET OVERLAP

GRAPHIC GET PIXEL statement

GRAPHIC GET PIXEL statement
Purpose Retrieve the color of the pixel at the specified point in the selected graphic target.

Syntax GRAPHIC GET PIXEL [STEP] (x!, y!) To PixelVar&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

812 / 2126

Function Form:
PixelVar& = GRAPHIC(PIXEL [STEP], x!, y!)

Remarks The coordinate points x!, y! are specified in Page Units.

See also GRAPHIC ATTACH, GRAPHIC COLOR, GRAPHIC SCALE, GRAPHIC SET PIXEL

GRAPHIC GET POS statement

GRAPHIC GET POS statement
Purpose Retrieve the POS (last point referenced) by a

 statement.
Syntax GRAPHIC GET POS To XVar!, YVar!

Function Form:
XVar! = GRAPHIC(POS.X)
YVar! = GRAPHIC(POS.Y)

Remarks The coordinate points XVar!, YVar! are specified in the same terms (pixels or dialog units)
as the parent dialog (or world coordinates, if those were chosen with GRAPHIC SCALE).

See also GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC SCALE, GRAPHIC SET POS

GRAPHIC GET PPI statement

GRAPHIC GET PPI statement
Purpose Retrieve the resolution of the display device, in points per inch.

Syntax GRAPHIC GET PPI TO XVar&, YVar&

Function Form:
XVar& = GRAPHIC(PPI.X)
YVar& = GRAPHIC(PPI.Y)

Remarks The resolution is always specified in pixels. This statement is particularly useful in
drawing items such as rulers and graphs to a representative physical size". There are
25.4 millimeters per inch, so just divide by 25.4 to convert from pixels per inch to pixels
per millimeter.

"Representative physical size" means that the actual image may be close to a particular
physical size, but is subject to factors including Windows default PPI setting, the driver's
DPI to PPI ratio and even how the monitor has been adjusted. By using the GRAPHIC
GET PPI, results, you can construct a representative graphic image that can be saved
and later output at the intended scale by more precise means, for example a higher
resolution Windows printer.

See also GRAPHIC ATTACH, GRAPHIC SCALE

GRAPHIC GET SCALE statement

Keyword Template
Purpose

Syntax

Remarks

See also

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

813 / 2126

Example

GRAPHIC GET SCALE statement
Purpose Retrieve the current coordinate limits for the graphic target.

Syntax GRAPHIC GET SCALE TO x1!, y1!, x2!, y2!

Remarks GRAPHIC SCALE allows you to define your own world coordinate system for subsequent

 statements. World coordinates may be values, with the only requirement that x1! not
equal x2!, and y1! not equal y2!.
GRAPHIC GET SCALE retrieves the coordinate limits, which may be either custom world
coordinates (if a GRAPHIC SCALE has been executed), or else default pixel coordinates.
 This allows you to save and restore a previous set of coordinates. This statement will
automatically adjust to allow Dialog Unit scale factors to be retrieved.

See also GRAPHIC SCALE, GRAPHIC SCALE PIXELS

GRAPHIC GET SCROLLTEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET SCROLLTEXT statement
Purpose Retrieves the status of Graphic ScrollText Mode.

Syntax GRAPHIC GET SCROLLTEXT To ScrollVar&

Function Form:
ScrollVar& = GRAPHIC(SCROLLTEXT)

Remarks GRAPHIC GET SCROLLTEXT retrieves the status of ScrollText mode and assigns it to
the variable specified by ScrollVar&. If ScrollText Mode is enabled, the value true (non-
zero) is assigned. If it's disabled, the value false (zero) is assigned instead. The value
returned reflects the status of the graphic target which is currently attached to the graphic
stream.

With ScrollText Mode, you can control how PowerBASIC prints text on a graphic target
when it reaches the end of a page. Since a graphic target operates on a full page basis,
the default is to ignore text which is printed past the end of the page. This can be
modified under program control by using GRAPHIC SET SCROLLTEXT.

When ScrollText Mode is enabled, scrolling of a page is triggered only by GRAPHIC
PRINT. If the POS (last point referenced) is located on the bottom row of the graphic
target, and a GRAPHIC PRINT statement moves the POS off of the page, the entire
contents of the graphic target is scrolled one row, and a new blank row is opened at the
bottom.

See also GRAPHIC CELL, GRAPHIC SET SCROLLTEXT

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

814 / 2126

GRAPHIC GET SIZE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET SIZE statement
Purpose Retrieves the overall size of the selected graphic target.

Syntax GRAPHIC GET SIZE To WidthVar&, HeightVar&

Function Form:
WidthVar& = GRAPHIC(SIZE.X)
HeightVar& = GRAPHIC(SIZE.Y)

Remarks GRAPHIC GET SIZE retrieves overall physical size of the selected graphic window or
control. The size is specified in Pixels or Dialog Units, depending upon how it was
created. The size always includes any caption, frame, scrollbars, etc. If no graphic
target is attached, the values 0,0 are returned.

See also GRAPHIC GET CANVAS, GRAPHIC GET CLIENT, GRAPHIC GET CLIP, GRAPHIC GET
LINES, GRAPHIC SET SIZE

GRAPHIC GET STRETCHMODE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET STRETCHMODE statement
Purpose Retrieves the default bitmap stretching mode for the attached DC.

Syntax GRAPHIC GET STRETCHMODE TO ModeVar&

Function Form:
ModeVar& = GRAPHIC(STRETCHMODE)

Remarks There are several operations in PowerBASIC which involve stretching or condensing
images on bitmaps, most notably GRAPHIC STRETCH. As individual pixels must be
added or removed, there is a good chance that the quality of the image will be degraded.
 However, if you describe the nature of the image by defining a StretchMode, you can
substantially enhance the appearance.

The default StretchMode is maintained individually for each DC. You can retrieve the
default mode with this statement, or set it with GRAPHIC GET STRETCHMODE. Of
course, you can also override the default StretchMode when you execute one of the

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

815 / 2126

affected statements.

The 4 stretch mode equates are predefined in PowerBASIC.

Equate Va
lu
e

Description

%
BLACKONWHI
TE

1 This is the default Windows stretch mode, and is most
appropriate for monochrome bitmaps, or those with blocks of
color. Performs a boolean OR of eliminated and existing
pixels. It preserves black pixels at the expense of white
pixels.

%
WHITEONBLA
CK

2 Performs a boolean OR of eliminated and existing pixels. It
preserves white pixels at the expense of black pixels.

%
COLORONCO
LOR

3 Deletes eliminated lines of pixels without trying to preserve
their information.

%HALFTONE 4 This provides the highest quality for complex color bitmaps.
 The average color of the destination pixel block is kept
approximately the same as the source pixel block.

See also GRAPHIC BITMAP LOAD, GRAPHIC COPY, GRAPHIC RENDER, GRAPHIC SET
STRETCHMODE, GRAPHIC STRETCH

GRAPHIC GET VIEW statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET VIEW statement
Purpose Retrieves the position of the virtual graphic viewport.

Syntax GRAPHIC GET VIEW To WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(View.X)
HeightVar! = GRAPHIC(View.Y)

Remarks Retrieves the position of the viewport on a virtual graphic target. The size is specified in
Page Units. If no graphic target has been selected, or no virtual window has been
created, the values 0,0 are returned.

See also GRAPHIC SET VIEW, GRAPHIC SET VIRTUAL

GRAPHIC GET WORDWRAP statement

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

816 / 2126

Syntax

Remarks

See also

Example

GRAPHIC GET WORDWRAP statement
Purpose Retrieves the status of Graphic WordWrap Mode.

Syntax GRAPHIC GET WORDWRAP TO WrapVar&

Function Form:
WrapVar& = GRAPHIC(WORDWRAP)

Remarks GRAPHIC GET WORDWRAP retrieves the status of wordwrap mode and assigns it to the
variable specified by WrapVar&. If WordWrap Mode is enabled, the value true (non-zero)
is assigned. If it's disabled, the value false (zero) is assigned instead. The value returned
reflects the status of the graphic target which is currently attached to the graphic stream.

With WordWrap Mode, you can control how PowerBASIC prints text on a graphic target
when it reaches the end of a line. Since a graphic target operates on a full page basis,
the default is to ignore text which is printed past the end of the line. This can be modified
under program control by using GRAPHIC SET WORDWRAP.

When WordWrap mode is enabled, it affects only GRAPHIC PRINT operations. If
GRAPHIC PRINT attempts to display a word beyond the end of a row, the entire word is
automatically wrapped to the first column of the next row.

See also GRAPHIC CELL, GRAPHIC GET WRAP, GRAPHIC SET WORDWRAP, GRAPHIC SET
WRAP, GRAPHIC SPLIT

GRAPHIC GET WRAP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC GET WRAP statement
Purpose Retrieves the status of Graphic Wrap Mode.

Syntax GRAPHIC GET WRAP TO WrapVar&

Function Form:
WrapVar& = GRAPHIC(WRAP)

Remarks GRAPHIC GET WRAP retrieves the status of wrap mode and assigns it to the variable
specified by WrapVar&. If Wrap Mode is enabled, the value true (non-zero) is assigned.
 If it's disabled, the value false (zero) is assigned instead. The value returned reflects the
status of the graphic target which is currently attached to the graphic stream.

With Wrap Mode, you can control how PowerBASIC prints text on a graphic target when
it reaches the end of a line. Since a graphic target operates on a full page basis, the
default is to ignore text which is printed past the end of the line. This can be modified

PowerBASIC Compiler for Windows Version 10

817 / 2126

under program control by using GRAPHIC SET WRAP.

When Wrap Mode is enabled, it affects only GRAPHIC PRINT operations. If GRAPHIC
PRINT attempts to display a character beyond the end of a row, it is automatically
wrapped to the first column of the next row.

See also GRAPHIC CELL, GRAPHIC GET WORDWRAP, GRAPHIC SET WORDWRAP,
GRAPHIC SET WRAP, GRAPHIC SPLIT

GRAPHIC IMAGELIST statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC IMAGELIST statement
Purpose Displays an image from an IMAGELIST

Syntax GRAPHIC IMAGELIST (x!,y!), hLst, index&, overlay&, style&

Remarks One of the images stored in an IMAGELIST is displayed on the selected graphic control,

, or window. The parameters x!,y! define the upper left corner of the position of the
image. hLst is the handle of the IMAGELIST and index& is the selector of the image
to be displayed (1=first, 2=second, etc.). If overlay& is non-zero, it specifies an
overlay image to be added to the displayed image from the image list. The parameter
style& may be one of the following style bits:

%ILD_NORMAL Draws the image using the background color of the image list.
 If the background color is the default value %CLR_NONE
(defined in the Commctrl.inc file), the image is drawn
transparently.

%
ILD_TRANSPARENT

Draws the image transparently if there is a mask.

%ILD_MASK Draws the mask.

%ILD_BLEND25 If there is a mask, the image is drawn blending 25% with the
system highlight color.

%ILD_BLEND50 If there is a mask, the image is drawn blending 50% with the
system highlight color.

See also GRAPHIC ATTACH, GRAPHIC COPY, GRAPHIC RENDER, GRAPHIC STRETCH,
IMAGELIST

GRAPHIC INKEY$ statement

Keyword Template
Purpose

Syntax

Remarks

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

818 / 2126

See also

Example

GRAPHIC INKEY$ statement
Purpose Reads a keyboard character if one is ready.

Syntax GRAPHIC INKEY$ TO InkeyVar$

Function Form:
InkeyVar$ = GRAPHIC$(INKEY$)

Remarks GRAPHIC INKEY$ returns a

 of 0, 1, or 2 characters that reflects the status of the keyboard buffer for the selected
graphic target. A null string (LEN=0) means that the buffer is empty - no key pressed.
A string length of one means that an ASCII key was pressed and the string contains the
ASCII character. An ASCII value between 1 and 31 indicate a control code.

A string length of two means that an extended key was pressed. In this case, the first
character in the string has an ASCII value of zero, and the second is the extended
keyboard code.

See also GRAPHIC INPUT, GRAPHIC INPUT FLUSH, GRAPHIC INSTAT, GRAPHIC LINE INPUT,
GRAPHIC WAITKEY$

GRAPHIC INPUT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC INPUT statement
Purpose Reads data from the keyboard from within a graphic window or graphic control.

Syntax GRAPHIC INPUT [prompt,] varlist

prompt An optional quoted string literal or string equate which is displayed to the user as a
prompt.

varlist A comma delimited sequence of one or more or variables.

Remarks GRAPHIC INPUT displays the prompt on the graphic window or graphic control, waits for
the user to enter data from the keyboard, and assigns the data to the variables in varlist.
 Data entered from the keyboard must match the type of the variables -- that is, non-
numeric characters are unacceptable for numeric variables.

If a single GRAPHIC INPUT statement prompts for more than one variable, the user must
enter the proper number of values on a single line, separated by commas. If not enough
comma-delimited values are entered, remaining variables are set to zero or nul.

See also GRAPHIC INKEY$, GRAPHIC INPUT FLUSH, GRAPHIC INSTAT, GRAPHIC LINE INPUT,
GRAPHIC WAITKEY$

PowerBASIC Compiler for Windows Version 10

819 / 2126

GRAPHIC INPUT FLUSH statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC INPUT FLUSH statement
Purpose Remove all buffered keyboard data.

Syntax GRAPHIC INPUT FLUSH

See also GRAPHIC INKEY$, GRAPHIC INPUT, GRAPHIC INSTAT, GRAPHIC LINE INPUT,
GRAPHIC WAITKEY$

GRAPHIC INSTAT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC INSTAT statement
Purpose Determines whether a keyboard character is ready.

Syntax GRAPHIC INSTAT TO NumericVar

Function Form:
InstatVar& = GRAPHIC(INSTAT)

Remarks The

 variable receives the keyboard buffer status for the selected graphic target. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.
GRAPHIC INSTAT does not remove the character from the buffer, so repeated execution
will continue to return TRUE until the character is read with GRAPHIC INKEY$, GRAPHIC
INPUT, etc.

See also GRAPHIC INKEY$, GRAPHIC INPUT, GRAPHIC INPUT FLUSH, GRAPHIC LINE INPUT,
GRAPHIC WAITKEY$

GRAPHIC LINE INPUT statement

PowerBASIC Compiler for Windows Version 10

820 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC LINE INPUT statement
Purpose Read an entire line from the keyboard from within a Graphic Window or a Graphic Control.

Syntax GRAPHIC LINE INPUT ["prompt"] string_variable

Remarks GRAPHIC LINE INPUT displays the optional prompt on the Graphic Window or Control
and waits for user input. Keystrokes are accepted until you press ENTER, at which time
the entire typed string is assigned to the string_variable. Input is limited to 255
characters.

See also GRAPHIC INKEY$, GRAPHIC INPUT, GRAPHIC INPUT FLUSH, GRAPHIC INSTAT,
GRAPHIC WAITKEY$

GRAPHIC LINE statement

GRAPHIC LINE statement
Purpose Draw a line on the selected graphic target

Syntax GRAPHIC LINE [STEP] [(x1!, y1!)] - [STEP] (x2!, y2!)[, rgbColor&]

Remarks The line is drawn from the first point, up to, but not including the second point. Coordinate
points are specified in Page Units. Line width can be set using GRAPHIC WIDTH. If line
width is set to 1 (the default), the line style can be set with GRAPHIC STYLE.

Windows graphic conventions consider the final x2 and y2 coordinates to be exclusive.
 Therefore, by default, the final pixel is not drawn unless Overlap Mode is enabled. See
GRAPHIC SET OVERLAP for details.

x1!, y1! Optional values which define the starting point of the line. If this optional first point is
omitted, the line begins at the last point referenced (POS) in a preceding

 statement. If the first STEP option is included, the x1! and y1! starting coordinates
are relative to the last point referenced (POS).

x2!, y2! The ending point of the line. If the second STEP option is included, the x2! and y2! ending
coordinates are relative to the starting coordinates.

rgbColor& Optional RGB color value for the line. If rgbColor& is omitted (or -1), the line color defaults
to the current foreground color.

See also GRAPHIC ARC, GRAPHIC ATTACH, GRAPHIC BOX, GRAPHIC COLOR, GRAPHIC
ELLIPSE, GRAPHIC PIE, GRAPHIC SET OVERLAP, GRAPHIC STYLE, GRAPHIC
WIDTH

Example ' Draw a triangle. Note that, since LINE draws up to,
' but not including the second point, one extra point
' must be added when STEP is used.
GRAPHIC LINE (10, 10) - (10, 100) ' left side
GRAPHIC LINE STEP - (101, 100) ' base line
GRAPHIC LINE STEP - (10, 10) ' back to top

PowerBASIC Compiler for Windows Version 10

821 / 2126

GRAPHIC PAINT statement

GRAPHIC PAINT statement
Purpose Fill an area with a solid color or a hatch pattern.

Syntax GRAPHIC PAINT [BORDER | REPLACE] [STEP] (x!, y!) [, [rgbFill&] [,
[rgbBorder&] [, [fillstyle&]]]]

Remarks The coordinate points are specified in Page Units.

x!, y! The point where filling begins. If the STEP option is included, the x and y coordinates are
relative to the last point referenced (POS) in the selected graphic target.

rgbFill& Optional RGB color value for the fill area. If rgbFill& is omitted (or -1), the default
foreground color is used.

rgbBorder& Optional RGB base color of the fill area. If the REPLACE option is chosen, filling
continues outward in all directions until a color other than rgbBorder& is found. If the
BORDER option (or no option) is included, filling continues outward until the rgbBorder&
color is found. If rgbBorder& is not specified, it is assumed to be the same as the
rgbFill& parameter.

fillstyle& Optional fill style (pattern) to use. If fillstyle& is omitted, the default fill style is solid (0). If
a hatch pattern is chosen (1 to 6), the foreground color is specified by the rgbFill&, while
the background is specified by the default background color for the selected graphic
target. The optional fillstyle& may be:

0 Solid (default)
1 Horizontal Lines
2 Vertical Lines
3 Upward Diagonal Lines
4 Downward Diagonal Lines
5 Crossed Lines
6 Diagonal Crossed Lines

See also Built In RGB Color Equates, GRAPHIC ARC, GRAPHIC ATTACH, GRAPHIC BOX,
GRAPHIC COLOR, GRAPHIC ELLIPSE, GRAPHIC LINE, GRAPHIC PIE

Example FUNCTION PBMAIN
 LOCAL hWin AS DWORD

 GRAPHIC WINDOW "Paint", 0, 0, 200, 200 TO hWin
 GRAPHIC ATTACH hWin, 0

 ' Draw a circle with blue foreground color
 ' and a box below it with red foreground color.
 GRAPHIC ELLIPSE (10, 10) - (70, 70), %BLUE
 GRAPHIC BOX (10, 80) - (70, 120), 0, %RED

 ' Fill the area inside the circle's blue borders
 ' with a green diagonal pattern.
 GRAPHIC PAINT BORDER (40, 40), %GREEN, %BLUE, 6

 'Retrieve the color at point 5,5 (outside the circle).
 GRAPHIC GET PIXEL (5, 5) TO lRes&

 ' Fill the area outside the circle by replacing the color
 ' at point 5,5 and outwards with a solid yellow color.
 GRAPHIC PAINT REPLACE (5, 5), RGB(255, 255, 223), lRes&, 0

 SLEEP 10000
END FUNCTION

PowerBASIC Compiler for Windows Version 10

822 / 2126

GRAPHIC PIE statement

GRAPHIC PIE statement
Purpose Draw a pie section on the selected graphic target.

Syntax GRAPHIC PIE (x1!, y1!) - (x2!, y2!), arcStart!, arcEnd! [, [rgbColor&] [,
[fillcolor&] [, [fillstyle&]]]]

Remarks A pie section is an arc, with a line drawn from each end point to the center of the circle or
ellipse. To specify a pie section, you would first define the full circle or ellipse of which it
is a part, and then specify the points on the ellipse where the arc starts and stops.

The full circle or ellipse is defined by its bounding rectangle, which is the smallest
rectangle which can be drawn around the circle or ellipse. For example, if the circle is
centered at position (400,400), with a radius of 100 pixels, the upper left corner (x1,y1) of
the bounding rectangle is (300,300), and the lower right corner (x2,y2) is (500,500).

The start point and end point of the arc are specified by their angle, which must be given
in radians. A complete circle or ellipse is 2*pi radians. On a 12-hour clock-face, the values
0 and 2*pi both refer to the position of 3 o'clock, while the value 1*pi refers to the position
of 9 o'clock. Other positions are specified by a radian value relative to these. In
PowerBASIC, arcs are always drawn counter-clockwise from the starting point to the
ending point.

Prior to any graphical operations, the graphic target must first be selected with GRAPHIC
ATTACH. The Coordinates are specified in the same terms (pixels or dialog units) as the
parent dialog (or world coordinates, if those were chosen with GRAPHIC SCALE). Line
width can be set using GRAPHIC WIDTH. If line width is set to 1 (the default), the line
style can be set with GRAPHIC STYLE. Because of the nature of a pie section,
GRAPHIC PIE neither uses, nor updates, graphic POS (last point referenced).

x1!, y1! The upper left corner of the bounding rectangle of the full circle or ellipse.

x2!, y2! The lower right corner of the bounding rectangle of the full circle or ellipse.

ArcStart! The starting angle of the arc, in radians, from 0 to 2*pi.

ArcEnd! The ending angle of the arc, in radians, from 0 to 2*pi radians. Note that arcs are always
drawn counter-clockwise from arcStart! to arcEnd!. Compared with a 12-hour clock-face,
0 or 2*pi radians is at 3 o'clock, and 1*pi radians is at 9 o'clock.

rgbColor& Optional RGB color of the pie section edge. If omitted (or -1), the edge color defaults to
the current foreground color.

fillcolor& Optional RGB color of the pie section interior. If fillcolor& is omitted (or -2), the interior of
the pie section is not filled, allowing the background to show through. If fillcolor& is -1,
the interior is painted with the same color as the edge. Otherwise, fillcolor& specifies the
RGB color to be used.

fillstyle& Optional fill style (pattern) to be used. If fillstyle& is omitted, the default fill style is solid
(0). If a hatch pattern is chosen (1 to 6), the foreground color is specified by the fillcolor&,
while the background is specified by the default background color. The optional fillstyle&
may be:

0 Solid (default)
1 Horizontal Lines
2 Vertical Lines
3 Upward Diagonal Lines
4 Downward Diagonal Lines
5 Crossed Lines
6 Diagonal Crossed Lines

See also Built In RGB Color Equates, GRAPHIC ARC, GRAPHIC ATTACH, GRAPHIC BOX,
GRAPHIC COLOR, GRAPHIC ELLIPSE, GRAPHIC LINE, GRAPHIC SET OVERLAP,
GRAPHIC STYLE, GRAPHIC WIDTH

Example FUNCTION PBMAIN

PowerBASIC Compiler for Windows Version 10

823 / 2126

 LOCAL hWin AS DWORD

 GRAPHIC WINDOW "Pie", 0, 0, 200, 200 TO hWin
 GRAPHIC ATTACH hWin, 0

 ' A full circle is 2Pi radians (100%).
 ' To show a 25% Pie, use the formula 0.25 * 2Pi.
 ' The following divides a full circle into four 25% parts, each
 ' with its own colors, each slightly separated from the others.
 ' Note: 0 is at 3 O'clock, then it builds counter-clockwise.

 LOCAL Pi2 AS DOUBLE
 Pi2 = 8 * ATN(1) ' 2 * Pi can be useful here

 GRAPHIC PIE (10, 9)-(110, 109), 0, Pi2 * 0.25, %BLUE, %
LTGRAY, 3
 GRAPHIC PIE (9, 9)-(109, 109), Pi2 * 0.25, Pi2 * 0.50, %RED, %
LTGRAY, 4
 GRAPHIC PIE (9, 10)-(109, 110), Pi2 * 0.5, Pi2 * 0.75, RGB(0,127,0), %
LTGRAY, 3
 GRAPHIC PIE (10, 10)-(110, 110), Pi2 * 0.75, 0, %GRAY, %LTGRAY,
4

 SLEEP 10000
END FUNCTION

GRAPHIC POLYGON statement

GRAPHIC POLYGON statement
Purpose Draw a polygon in the selected graphic target.

Syntax GRAPHIC POLYGON points [,[rgbColor&] [, [fillcolor&] [,[fillstyle&] [,
fillmode&]]]]

Remarks The Coordinates are specified in Page Units. Line width can be set using GRAPHIC
WIDTH. If line width is set to 1 (the default), the line style can be set with GRAPHIC
STYLE. GRAPHIC POLYGON neither uses, nor updates, the last point referenced
(POS).

points User-defined type that defines the number of vertices and the location of each. There
must be at least two, and no more than 1024 vertices. The first member is a long integer
point count, followed directly by the appropriate number of single precision floats to
specify the actual coordinates. Floating point coordinates are required, because of the
possibility of their use as world coordinates with SCALE. You can use a type with a
scalar list, like this:

TYPE PolyPoints
 count as long
 x1 as single
 y1 as single
 x2 as single
 y2 as single
 x3 as single
 y3 as single
END TYPE

Or, you can create an array using point types, like this:

TYPE PolyPoint
 x as single
 y as single
END TYPE

PowerBASIC Compiler for Windows Version 10

824 / 2126

TYPE PolyArray
 count as long
 xy(1 TO 3) as PolyPoint
END TYPE

rgbColor& Optional RGB color of the polygon edge. If omitted (or -1), the edge color defaults to the
current foreground color.

fillcolor& Optional RGB color of the polygon interior. If fillcolor& is omitted (or -2), the interior of the
ellipse is not filled, allowing the background to show through. If fillcolor& is -1, the interior
is painted with the same color as the edge. Otherwise, fillcolor& specifies the RGB color
to be used.

fillstyle& Optional fill style (pattern) to be used. If fillstyle& is omitted, the default fill style is solid
(0). If a hatch pattern is chosen (1 to 6), the foreground color is specified by the fillcolor&,
while the background is specified by the default background color. The optional fillstyle&
may be:

0 Solid (default)
1 Horizontal Lines
2 Vertical Lines
3 Upward Diagonal Lines
4 Downward Diagonal Lines
5 Crossed Lines
6 Diagonal Crossed Lines

fillmode& If fillmode& is missing (or zero), the winding mode is selected. This fills any region with a
non-zero winding value. If fillmode& is non-zero, the alternate mode is selected. This fills
the area between odd-numbered and even-numbered polygon sides on each scan line.
That is, it fills the area between the first side and the second side, between the third side
and fourth side, etc.

See also Built In RGB Color Equates, GRAPHIC ARC, GRAPHIC ATTACH, GRAPHIC BOX,
GRAPHIC COLOR, GRAPHIC ELLIPSE, GRAPHIC LINE, GRAPHIC POLYLINE,
GRAPHIC SET OVERLAP, GRAPHIC STYLE, GRAPHIC WIDTH

GRAPHIC POLYLINE statement

GRAPHIC POLYLINE statement
Purpose Draw a series of connected line segments.

Syntax GRAPHIC POLYLINE points [, rgbColor&]

Remarks The Coordinates are specified in Page Units. Line width can be set using GRAPHIC
WIDTH. If line width is set to 1 (the default), the line style can be set with GRAPHIC
STYLE. GRAPHIC POLYLINE neither uses, nor updates, the last point referenced (POS).

Windows graphic conventions consider the final x and y coordinates to be exclusive.
 Therefore, by default, the final pixel is not drawn unless Overlap Mode is enabled. See
GRAPHIC SET OVERLAP for details.

points User-defined type that defines the number of vertices and the location of each. There
must be at least two, and no more than 1024 vertices. The first member is a long integer
point count, followed directly by the appropriate number of single precision floats to
specify the actual coordinates. Floating point coordinates are required, because of the
possibility of their use as world coordinates with SCALE. You can use a type with a
scalar list, like this:

TYPE PolyPoints
 count as long
 x1 as single
 y1 as single
 x2 as single

PowerBASIC Compiler for Windows Version 10

825 / 2126

 y2 as single
 x3 as single
 y3 as single
END TYPE

Or, you can create an array using point types, like this:

TYPE PolyPoint
 x as single
 y as single
END TYPE

TYPE PolyArray
 count as long
 xy(1 TO 3) as PolyPoint
END TYPE

rgbColor& Optional RGB color of the polyline. If omitted (or -1), the color defaults to the current
foreground color.

See also Built In RGB Color Equates, GRAPHIC ARC, GRAPHIC ATTACH, GRAPHIC BOX,
GRAPHIC COLOR, GRAPHIC ELLIPSE, GRAPHIC LINE, GRAPHIC POLYGON,
GRAPHIC SET OVERLAP, GRAPHIC STYLE, GRAPHIC WIDTH

GRAPHIC PRINT statement

GRAPHIC PRINT statement
Purpose Output text to the selected graphic target.

Syntax GRAPHIC PRINT [EXPRLIST] [POS(n)] [SPC(n)] [TAB(n)] [,] [;]...

Remarks Prior to any graphical operations are executed, you should be certain that a graphic
target has been selected, either by default, or with GRAPHIC ATTACH. The text color
and the text background color are set with GRAPHIC COLOR. Text which extends
beyond the bounds of the graphic target is clipped. The size of the text to be printed
can be determined in advance with GRAPHIC TEXT SIZE, and formatted to fit a
particular field with GRAPHIC SPLIT. Drawing begins at the last point referenced by
another

 procedure, or the point specified by GRAPHIC SET POS. The upper left corner
of the text is positioned at the POS.
GRAPHIC PRINT has the following parts, which may occur in any order and quantity,
within a single statement:

EXP
RLIS
T

 and/or expression(s) to be written to the graphic target. A semicolon
can be used as separator between multiple expressions in the same
statement. Upon completion, the POS is moved to the left margin of the
next line.

POS
(n)

An optional function used to set the POS to the horizontal page unit (pixel,
dialog unit, scaled unit, etc.) specified by the numeric argument, Multiple
uses of the POS function is permitted in a single statement. The vertical
position of the POS is never changed.

SPC
(n)

An optional function used to insert n spaces into the printed output.
 Multiple use of SPC is permitted in a single statement. Values of n less
than 1 are ignored.

TAB(
n)

An optional function used to tab to the nth column before printing the next
expression. Multiple use of TAB is permitted in a single statement. Since
TAB references columns, rather than pixels, it can give unpredictable
results when used with a variable width font. It is best used with a fixed

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

826 / 2126

width font.

; , Special characters that determine the position of the next text item printed.
 A semicolon (;) means the next text item is printed immediately; a comma
(,) means the next text item is printed at the start of the next print zone.
 Print zones begin every 14 columns.

If the final argument is a semicolon or comma, the POS is maintained at the current
location, rather than the default action of moving to the start of the next line. For
example:

GRAPHIC PRINT "Hello";
GRAPHIC PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, GRAPHIC PRINT just moves the POS to the left margin of the
next line. Any control codes, such as Carriage Return, Line-Feed, and Backspace are
not interpreted. They will display as symbols in the currently selected font.

USING$ is a separate function, which may be included in the ExprList. See the
USING$() function for more information.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

See also GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC CHR SIZE, GRAPHIC SET FONT,
GRAPHIC GET POS, GRAPHIC SET POS, GRAPHIC SET SCROLLTEXT, GRAPHIC
SET WORDWRAP, GRAPHIC SET WRAP, GRAPHIC SPLIT, GRAPHIC TEXT SIZE,
USING$

GRAPHIC REDRAW statement

GRAPHIC REDRAW statement
Purpose Update buffered graphical statements, drawing them to the selected graphic target.

Syntax GRAPHIC REDRAW

Remarks This statement is only needed when GRAPHIC ATTACH with the REDRAW option have
been chosen for faster, buffered draw operations. Otherwise, it performs no operation.

All PowerBASIC graphical displays are persistent -- they are automatically redrawn for
you after resuming from being minimized or temporarily covered by other windows.

In intensive drawing operations, it is preferable to delay the display until a
number of statements have been performed by using the REDRAW option with
the GRAPHIC ATTACH statement and the GRAPHIC REDRAW statement. This
can improve the overall performance dramatically.

See also GRAPHIC ATTACH

Example FUNCTION PBMAIN
 LOCAL hWin AS DWORD

 ' Draw a buffered, blue gradient fill
 GRAPHIC WINDOW "Gradient", 0, 0, 255, 255 TO hWin
 GRAPHIC ATTACH hWin, 0, REDRAW
 FOR y& = 0 TO 255
 GRAPHIC LINE (0, y&) - (255, y&), RGB(0, 0, y&)
 NEXT
 GRAPHIC REDRAW

 SLEEP 10000

PowerBASIC Compiler for Windows Version 10

827 / 2126

END FUNCTION

GRAPHIC RENDER statement

GRAPHIC RENDER statement
Purpose Render an image on the selected graphic target.

Syntax GRAPHIC RENDER [BITMAP | ICON] ImgName, (x1!, y1!)-(x2!, y2!)

Remarks Renders an image (bitmap or icon), loaded from a resource or a disk file, on the selected
graphic target. The optional director word identifies whether the source is a

 or an . If not specified, Bitmap is the default.
The parameter ImgName tells the name of the image. If ImgName is a numeric resource
ID, it can be given as a numeric expression or the string equivalent with a leading pound
sign (e.g. "#10023"). Otherwise, the string resource ID or the file name is given as a string
expression. If the string name contains a period, it's presumed to be the name of a disk
file. Otherwise, an attempt is made to load it as a resource; if not found, it's presumed to
be a disk file.

The parameters x1!, y1! define the upper left corner of the target rectangle, while x2!, y2!
define the lower right corner of that rectangle. If the target rectangle is larger or smaller
than the original, the image is stretched or condensed to the requested size.

The following code will retrieve the natural size of an image in a bitmap file, in pixels:

nFile& = FREEFILE
OPEN "myimage.bmp" FOR BINARY AS nFile&
GET #nFile&, 19, nWidth&
GET #nFile&, 23, nHeight&
CLOSE nFile&

See also GRAPHIC COPY, GRAPHIC GET STRETCHMODE, GRAPHIC IMAGELIST, GRAPHIC
SET STRETCHMODE, GRAPHIC STRETCH

GRAPHIC SAVE statement

GRAPHIC SAVE statement
Purpose Save an image to a bitmap (.BMP) file.

Syntax GRAPHIC SAVE BmpName$

Remarks The selected graphic target (a graphic

, control, or window, etc.) is saved to a disk file using the filename specified by
BmpName$. The bitmap is always saved in a single plane, 24-bit format, to allow for
the maximum (true color) resolution.

See also CONTROL ADD GRAPHIC, GRAPHIC ATTACH, GRAPHIC BITMAP LOAD, GRAPHIC
BITMAP NEW

GRAPHIC SCALE statement

GRAPHIC SCALE statement
Purpose Define a custom coordinate system for the graphic target.

Syntax GRAPHIC SCALE (x1!, y1!) - (x2!, y2!)
GRAPHIC SCALE PIXELS

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

828 / 2126

Remarks The graphic target must first be chosen with GRAPHIC ATTACH. GRAPHIC SCALE lets
you define your own world coordinate system for subsequent

 statements. The custom coordinates remain with the graphic target until GRAPHIC
SCALE is repeated, or the target is deleted. World coordinates may be values, with
the only requirement that x1! not equal x2!, and y1! not equal y2!. If either is equal,
the statement is ignored.
If x2! is greater than x1!, coordinates grow larger as they move to the right. Otherwise,
they grow larger as they move to the left.

If y2! is greater than y1!, coordinates grow larger as they move downward. Otherwise, they
grow larger as they move upward.

By default, the position x2!/y2! translates to the first pixel which is outside of the client
area, and therefore not drawn. However, if OVERLAP MODE is enabled by GRAPHIC
SET OVERLAP, x2!/y2! translates to the final pixel in the client area and is drawn.

GRAPHIC SCALE PIXELS sets or resets the coordinate system to pixel coordinates.
 This can be particularly valuable when the original coordinates are in Dialog Units, since
this provides increased resolution for other graphic functions.

See also GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC CELL SIZE, GRAPHIC GET SCALE,
GRAPHIC SET OVERLAP

GRAPHIC SET AUTOSIZE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC SET AUTOSIZE statement
Purpose Expands a graphic target into autosize mode.

Syntax GRAPHIC SET AUTOSIZE nWidth, nHeight [,USERSIZE]

Remarks AUTOSIZE mode allows the attached graphic target (control or window)to display the
contents of a virtual window, which may be larger or smaller. The entire contents of the
virtual window are always displayed on the screen, so the image is stretched or
condensed to fit properly. The physical size of the display area is not changed. If the
graphic target is a

, no operation is performed, as there is no display area.
This statement may be used to change a target to AUTOSIZE mode, or to change the
sizes and UserSize option of an existing AUTOSIZE target.

When executed, a new virtual bitmap of the specified height and width is created. nWidth
and nHeight are always specified in Pixels or Dialog Units, depending upon the original
window creation. The new virtual bitmap is immediately filled with the original bitmap, but
stretched or condensed to fit. This is done to avoid flashing effects which sometimes
occur with a brief color change. Your program may now draw to the new bitmap in the
normal fashion for a bitmap of the new size.

If a clip area had been established to create margins, it is reset. If scaled coordinates
had been established, they are also reset, as neither would be appropriate for the altered

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

829 / 2126

size. You can enable these attributes again with GRAPHIC SCALE or GRAPHIC SET
CLIP, based upon the new size of the drawing area. You can retrieve the size of the
virtual drawing area, at any time, with GRAPHIC GET CANVAS.

AUTOSIZE mode is quite similar to VIRTUAL mode. Both create a virtual window which
is the target of your drawing and text printing operations. The difference is the way in
which they are displayed. VIRTUAL displays a viewport, smaller than the virtual window,
which can be moved to various positions. This allows the user to view one selected
section at a time. AUTOSIZE displays the entire virtual window, all of the time, by
stretching or condensing it as needed.

If you add the USERSIZE option, an attached graphic window is displayed with a thick
frame, which allows the user to "drag" the edges to a new size at any time. This option is
not appropriate for a graphic control, and is ignored in that case.

See also GRAPHIC GET CANVAS, GRAPHIC SCALE, GRAPHIC SET CLIP, GRAPHIC SET
FIXED, GRAPHIC SET VIRTUAL,

GRAPHIC SET BITS statement

GRAPHIC SET BITS statement
Purpose Replace a copy of a bitmap that was retrieved as a device-independent bitmap.

Syntax GRAPHIC SET BITS bitexpr$

Remarks This statement replaces a bitmap that was originally retrieved with the GRAPHIC GET
BITS statement. The bitmap is assigned to the selected graphic target from the string
expression specified by bitexpr$. This allows you to make many modifications to the
bitmap very quickly, particularly operations which may not be directly supported by
PowerBASIC. For example, a typical use might be to change all red pixels in a bitmap to
blue.

The bitexpr$ string contains a series of four-byte values, each of which represents a long
integer. You can convert the four-byte string sections to numeric values with the CVL
function, and convert a numeric value to a four-byte string with MKL$. The first four-byte
value specifies the width of the bitmap, in pixels, and the second specifies the height.
Following that will be one four-byte value for each pixel in the bitmap, which represents
the color of that pixel. So, a 20 by 20 bitmap would have 400 pixels and require 1600
bytes (400 * 4), plus 4 bytes for the width and 4 bytes for the height, or a total of 1608
bytes.

The first four-byte pixel value in the string represents the top-left corner of the image, the
second represents the second pixel of the first row, and so on. After the last pixel of the
first row will be the first pixel of the second row, etc.

If execution speed is most important, it's likely that the string can be manipulated most
efficiently with pointer variables.

Some Windows API functions, namely those which reference Device-Independent Bitmaps
(DIB), require that colors be specified in the reverse of normal RGB sequence (Blue-
Green-Red instead of Red-Green-Blue). To maximize performance, GRAPHIC SET BITS
uses BGR format as well. You can use the BGR function to translate an RGB value to its
BGR equivalent.

See also Built In RGB Color Equates, BGR, CVL, GRAPHIC GET BITS, MKL$, RGB

Example ' Change all red pixels to blue
LOCAL PixelPtr AS LONG PTR
GRAPHIC GET BITS TO bmp$
xsize& = CVL(bmp$,1)
ysize& = CVL(bmp$,5)
PixelPtr = STRPTR(bmp$) + 8
FOR i& = 1 TO xsize& * ysize&

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

830 / 2126

 IF @PixelPtr = BGR(%red) THEN @PixelPtr = BGR(%blue)
 INCR PixelPtr
NEXT
GRAPHIC SET BITS bmp$

GRAPHIC SET CAPTION statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC SET CAPTION statement
Purpose Change the caption on a Graphic Window.

Syntax GRAPHIC SET CAPTION CaptionExpr$

Remarks If the selected Graphic Target has a title bar, the caption is changed to the contents of the
string expression.

See also GRAPHIC WINDOW

GRAPHIC SET CLIENT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC SET CLIENT statement
Purpose Change the size of a graphic control or graphic window to a specific client area size.

Syntax GRAPHIC SET CLIENT nWide&, nHigh&

nWide&, nHigh& Integral numeric expressions which specify the desired size of the client area. Width and
height are specified in pixels or dialog units, depending upon the system used when
created.

Remarks Client size may be smaller than overall size, depending on the type of borders used. The
client area is the part inside the borders, which varies depending upon the style and
exstyle at creation. Overall size includes the borders. A graphic target with a border will
typically have a larger overall size than one without a border.

Beginning with this version of PowerBASIC, GRAPHIC CONTROLS may be resized with
CONTROL SET CLIENT, GRAPHIC SET CLIENT, CONTROL SET SIZE, and GRAPHIC
SET SIZE.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

831 / 2126

The original bitmap is copied, pixel for pixel, to the newly resized graphic control or
window. Any expanded area is filled with the current background color. Your program
draws to it in the normal fashion for a bitmap of the new size.

If a clip area had been established to create margins, it is reset. If scaled coordinates
had been established, they are also reset, as neither would be appropriate for the altered
size. You can enable these attributes again with GRAPHIC SCALE or GRAPHIC SET
CLIP, based upon the new size of the drawing area.

See also CONTROL GET CLIENT, CONTROL GET SIZE, CONTROL SET CLIENT, CONTROL SET
SIZE, GRAPHIC GET CANVAS, GRAPHIC GET CLIENT, GRAPHIC GET SIZE,
GRAPHIC SET CLIP, GRAPHIC SET SIZE

GRAPHIC SET CLIP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC SET CLIP statement
Purpose Establishes margins around the outer edges of the graphic target.

Syntax GRAPHIC SET CLIP LeftMargin!, TopMargin!, RightMargin!, BottomMargin!

Remarks This statement establishes margins on any or all sides of the graphic target. All
subsequent

 operations are "clipped" on these boundaries, so that no additional text or graphics
are displayed in these protected areas. However, the margins are not erased, so
anything already written in these areas will remain unchanged.
Each of the 4 parameters is specified in the PAGE UNITS currently in effect. However, as
this statement changes the target space available to you, the page units are immediately
set to pixels. The upper left corner of the clip area is now addressed as point (0,0), while
the right and bottom limits are reduced by the size of the margins. If you would prefer to
use Scaled Page Units for this revised clip area, you must execute a new GRAPHIC
SCALE.

GRAPHIC SET CLIP is particularly useful for displaying text, where enclosing "white
space" improves the appearance a good deal.

You can disable a clip area by executing GRAPHIC SET CLIP 0,0,0,0.

See also GRAPHIC GET CLIP, GRAPHIC SCALE

GRAPHIC SET FIXED statement

Keyword Template
Purpose

Syntax

Remarks

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

832 / 2126

See also

Example

GRAPHIC SET FIXED statement
Purpose Restores a graphic target to standard fixed mode.

Syntax GRAPHIC SET FIXED

Remarks The attached graphic target (control or window) is restored to the standard FIXED mode.
 The drawing area is set equal to the physical size of the display area, which is not
changed.

When executed, it is assumed that the graphic subsystem is set to AUTOSIZE or
VIRTUAL mode. If not, no operation is performed. A new bitmap of the client area size is
created. The original bitmap is copied, pixel for pixel, at the existing size. Any expanded
area is filled with the current background color. Your program draws to it in the normal
fashion for a bitmap of the new size.

If a clip area had been established to create margins, it is reset. If scaled coordinates
had been established, they are also reset, as neither would be appropriate for the altered
size. You can enable these attributes again with GRAPHIC SCALE or GRAPHIC SET
CLIP, based upon the new size of the drawing area. You can retrieve the size of the
drawing area with GRAPHIC GET CANVAS or GRAPHIC GET CLIENT.

See also GRAPHIC GET CANVAS, GRAPHIC GET CLIENT, GRAPHIC SCALE, GRAPHIC SET
AUTOSIZE, GRAPHIC SET VIRTUAL

GRAPHIC SET FOCUS statement

GRAPHIC SET FOCUS statement
Purpose Bring the selected graphic window to the foreground and direct focus to it.

Syntax GRAPHIC SET FOCUS

Remarks A graphic window must first be chosen with GRAPHIC ATTACH. The GRAPHIC SET
FOCUS statement brings the graphic window to the foreground, directing focus to it. This
is particularly useful when another window may overlap the graphic window.

See also GRAPHIC ATTACH, GRAPHIC WINDOW

GRAPHIC SET FONT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC SET FONT statement
Purpose Select a font for use on the graphic target.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

833 / 2126

Syntax GRAPHIC SET FONT fonthndl&

fonthndl& The numeric handle returned by the FONT NEW statement.

Remarks The font specified by fonthndl& is selected to be used by all of the following GRAPHIC
PRINT, GRAPHIC INPUT, and GRAPHIC LINE INPUT statements. This is the most
efficient way to change fonts and their general appearance (size, style, etc.). If you
specify a fonthndl& of zero, the font is changed back to the original default font chosen by
PowerBASIC.

You can predefine virtually any number of fonts and attributes by executing FONT NEW
statements for each of them. That makes them ready for immediate use when selected
by GRAPHIC SET FONT.

If no specific font is selected, the default font is MS Sans Serif, 8 point, with no style
attributes.

Restrictions GRAPHIC SET FONT replaces GRAPHIC FONT. Note that the GRAPHIC FONT
statement is no longer supported, so update your code to use the new syntax.

See also FONT NEW, GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC CELL SIZE, GRAPHIC
CHR SIZE, GRAPHIC INPUT, GRAPHIC LINE INPUT, GRAPHIC PRINT, GRAPHIC TEXT
SIZE

GRAPHIC SET LOC statement

GRAPHIC SET LOC statement
Purpose Change the location of the selected Graphic Window on the screen.

Syntax GRAPHIC SET LOC x&, y&

Remarks This statement changes the location of the selected Graphic Window. If no graphic target
is selected, or it is not a Graphic Window, no action is taken. The location is always
given in pixels, relative to the upper left corner of the screen.

See also GRAPHIC ATTACH, GRAPHIC GET LOC, GRAPHIC GET PPI

GRAPHIC SET MIX statement

GRAPHIC SET MIX statement
Purpose Set the color mix mode for the selected graphic target.

Syntax GRAPHIC SET MIX mode&

Remarks There are 16 mix modes available to use for mixing the drawing color with the color that
already exists at the drawing location. The mix mode equates are predefined in
PowerBASIC.

%mix_Blackness Pixel is always 0 (black).
%mix_NotMergeSrc Pixel is the inverse of the MergeSrc color.
%mix_MaskNotSrc Pixel is a combination of the colors common to both the pixel and

the inverse of the source.
%mix_NotCopySrc Pixel is the inverse of the pen color.
%mix_MaskSrcNot Pixel is a combination of the colors common to both the source

and the inverse of the pixel.
%mix_Not Pixel is the inverse of the pixel color.
%mix_XorSrc Pixel is a combination of the colors in the source and in the pixel,

but not in both.
%mix_NotMaskSrc Pixel is the inverse of the MaskSrc color.
%mix_MaskSrc Pixel is a combination of the colors common to both the source

and the pixel.

PowerBASIC Compiler for Windows Version 10

834 / 2126

%mix_NotXorSrc Pixel is the inverse of the XorSrc color.
%mix_Nop Pixel remains unchanged.
%mix_MergeNotSrc Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_CopySrc Pixel is the source color (default).
%mix_MergeSrcNot Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_MergeSrc Pixel is a combination of the source color and the pixel color.
%mix_Whiteness Pixel is always 1 (white).

See also GRAPHIC ATTACH, GRAPHIC GET MIX

GRAPHIC SET OVERLAP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC SET OVERLAP statement
Purpose Enables or disables Graphic Overlap Mode.

Syntax GRAPHIC SET OVERLAP [NumrExpr&]

Remarks GRAPHIC SET OVERLAP enables or disables overlap mode for the graphic target which
is currently attached to the graphic stream. It has no effect on any other graphic target.
 If NumrExpr& is true (non-zero), overlap mode is enabled. If false (zero), wrap mode is
disabled. If NumrExpr& is missing, the default is to enable Overlap Mode.

With Overlap Mode, you control how PowerBASIC treats

 operations which involve a RECT structure in their definition. Windows graphic
conventions consider the bottom and right coordinates of a RECT to be exclusive. In
other words, the pixels at the bottom and right edges lie immediately outside the
rectangle. They are not drawn, but are ignored. For example:

GRAPHIC BOX (0,0) - (50,50)

In this case, a box is drawn from 0,0 to 49,49. The final pixels at the bottom and right
edge are simply not drawn. However, if Overlap Mode is enabled with GRAPHIC SET
OVERLAP, the box is drawn from 0,0 to 50,50.

The Overlap Mode affects drawing operations involving GRAPHIC SCALE, GRAPHIC BOX,
GRAPHIC ELLIPSE, GRAPHIC LINE, GRAPHIC POLYLINE, etc.

See also GRAPHIC GET OVERLAP

GRAPHIC SET PIXEL statement

GRAPHIC SET PIXEL statement
Purpose Draw a single pixel.

Syntax GRAPHIC SET PIXEL [STEP] (x!, y!) [, rgbColor&]

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

835 / 2126

Remarks The coordinate point is specified in Page Units. If the STEP option is included, the x! and
y! coordinates are relative to the last point referenced (POS).

See also Built In RGB Color Equates, GRAPHIC COLOR, GRAPHIC GET PIXEL, GRAPHIC SET
BITS

GRAPHIC SET POS statement

GRAPHIC SET POS statement
Purpose Set the last point referenced (POS) for the selected graphic target.

Syntax GRAPHIC SET POS [STEP] (x!, y!)

Remarks The coordinate point is specified in Page Units. If the STEP option is included, the x! and
y! coordinates are relative to the last point referenced (POS).

See also GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC GET POS, GRAPHIC SCALE

GRAPHIC SET SCROLLTEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC SET SCROLLTEXT statement
Purpose Enables or disables Graphic ScrollText Mode.

Syntax GRAPHIC SET SCROLLTEXT [NumrExpr&]

Remarks GRAPHIC SET SCROLLTEXT enables or disables scroll mode for the graphic target which
is currently attached to the graphic stream. It has no effect on any other graphic target.
 If NumrExpr& is true (non-zero), ScrollText mode is enabled. If false (zero), the mode is
disabled. If NumrExpr& is missing, the default is to enable ScrollText Mode.

With ScrollText Mode, you can control how PowerBASIC prints text on a graphic target
when it reaches the end of a page. Since a graphic target operates on a full page basis,
the default is to ignore text which is printed past the end of the page.

When ScrollText Mode is enabled, scrolling of a page is triggered only by GRAPHIC
PRINT. If the POS (last point referenced) is located on the bottom row of the graphic
target, and a GRAPHIC PRINT statement moves the POS off of the page, the entire
contents of the graphic target is scrolled one row, and a new blank row is opened at the
bottom.

See also GRAPHIC GET SCROLLTEXT, GRAPHIC SET AUTOSIZE, GRAPHIC SET VIRTUAL,
GRAPHIC SET WORDWRAP, GRAPHIC SET WRAP

GRAPHIC SET SIZE statement

Keyword Template

PowerBASIC Compiler for Windows Version 10

836 / 2126

Purpose

Syntax

Remarks

See also

Example

GRAPHIC SET SIZE statement
Purpose Change the overall size of a graphic control or graphic window.

Syntax GRAPHIC SET SIZE nWide&, nHigh&

Remarks Overall size may be larger than client size, depending on the type of borders used. The
client area is the part inside the borders, while overall size includes the borders. A
graphic target with a border will typically have a larger overall size than one without a
border.

Beginning with this version of PowerBASIC, GRAPHIC CONTROLS may be resized with
CONTROL SET CLIENT, GRAPHIC SET CLIENT, CONTROL SET SIZE, and GRAPHIC
SET SIZE.

The original bitmap is copied, pixel for pixel, to the newly resized control. Any expanded
area is filled with the current background color. Your program draws to it in the normal
fashion for a bitmap of the new size.

If a clip area had been established to create margins, it is reset. If scaled coordinates
had been established, they are also reset, as neither would be appropriate for the altered
size. You can enable these attributes again with GRAPHIC SCALE or GRAPHIC SET
CLIP, based upon the new size of the drawing area.

nWide&, nHigh& Integral numeric expressions which specify the desired size of the overall area. Width
and height are specified in pixels or dialog units, depending upon the system used at
creation.

See also CONTROL SET CLIENT, CONTROL SET SIZE, GRAPHIC GET SIZE, GRAPHIC SET
CLIENT,

GRAPHIC SET STRETCHMODE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC SET STRETCHMODE statement
Purpose Sets the default bitmap stretching mode for the current DC.

Syntax GRAPHIC SET STRETCHMODE ModeExpr

Remarks There are several operations in PowerBASIC which involve stretching or condensing
images on bitmaps, most notably GRAPHIC STRETCH. As individual pixels must be
added or removed, there is a good chance that the quality of the image will be degraded.
 However, if you describe the nature of the image by defining a StretchMode, you can

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

837 / 2126

substantially enhance the appearance.

The default StretchMode is maintained individually for each DC. You can set the default
mode with this statement, or retrieve it with GRAPHIC GET STRETCHMODE. Of course,
you can also override the default StretchMode when you execute one of the affected
statements.

The 4 stretch mode equates are predefined in PowerBASIC.

Equate Va
lu
e

Description

%
BLACKONWHI
TE

1 This is the default Windows stretch mode, and is most
appropriate for monochrome bitmaps, or those with blocks of
color. Performs a boolean OR of eliminated and existing
pixels. It preserves black pixels at the expense of white
pixels.

%
WHITEONBLA
CK

2 Performs a boolean OR of eliminated and existing pixels. It
preserves white pixels at the expense of black pixels.

%
COLORONCO
LOR

3 Deletes eliminated lines of pixels without trying to preserve
their information.

%HALFTONE 4 This provides the highest quality for complex color bitmaps.
 The average color of the destination pixel block is kept
approximately the same as the source pixel block.

See also GRAPHIC BITMAP LOAD, GRAPHIC COPY, GRAPHIC GET STRETCHMODE,
GRAPHIC RENDER, GRAPHIC STRETCH

GRAPHIC SET VIEW statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC SET VIEW statement
Purpose Changes the position of the viewport on a virtual graphic target.

Syntax GRAPHIC SET VIEW XPos, YPos

Remarks Moves the position of the viewport to the new position on a virtual graphic target. The
position is specified in Page Units. If no graphic target has been attached, or no virtual
window has been created, then no operation is performed.

See also GRAPHIC GET VIEW, GRAPHIC SET AUTOSIZE, GRAPHIC SET VIRTUAL

GRAPHIC SET VIRTUAL statement

Keyword Template

PowerBASIC Compiler for Windows Version 10

838 / 2126

Purpose

Syntax

Remarks

See also

Example

GRAPHIC SET VIRTUAL statement
Purpose Expands a graphic target into virtual mode.

Syntax GRAPHIC SET VIRTUAL nWidth&, nHeight& [,USERSIZE]

Remarks VIRTUAL mode allows the attached graphic target (control or window) to display the
contents of a larger virtual window. The physical size of the display area is not changed.
 Instead, the display area acts as a smaller viewport, which can be moved around the
larger virtual window to view one section at a time. The physical size of the display area
is not changed. If the graphic target is a

, no operation is performed, as there would be no display area.
This statement may be used to change a target to VIRTUAL mode, or to change the
sizes and UserSize option of an existing VIRTUAL target.

When executed, a new virtual bitmap of the specified height and width is created.
 nWidth& and nHeight& are always specified in Pixels or Dialog Units, depending upon
the original window creation. The original bitmap is copied, pixel for pixel, at the existing
size. Any expanded area is filled with the current background color. Your program draws
to it in the normal fashion for a bitmap of the new size. Scroll bars are added so the user
can move the viewport to the desired section. The size of the viewport is not changed.

The graphic viewport is initially placed at the upper-left corner of the virtual window. If a
clip area had been established to create margins, it is reset. If scaled coordinates had
been established, they are also reset, as neither would be appropriate for the altered size.
 You can enable these attributes again with GRAPHIC SCALE or GRAPHIC SET CLIP,
based upon the new size of the drawing area. You can retrieve the size of the virtual
drawing area, at any time, with GRAPHIC GET CANVAS.

The graphic viewport can be moved by clicking the scrollbars, or by moving the mouse
wheel to alter the vertical position. Depressing the control key, along with the mouse
wheel, alters the horizontal position. In addition, the cursor movement keys (Left, Right,
Up, Down, PageUp, PageDown, Home, End) may also be used for this purpose.
 VIRTUAL mode is quite similar to AUTOSIZE mode. Both create a virtual window which
is the target of your drawing and text printing operations. The difference is the way in
which they are displayed.

VIRTUAL displays a viewport, smaller than the virtual window, which can be moved to
various positions. This allows the user to view one selected section at a time.
 AUTOSIZE displays the entire virtual window, all of the time, by stretching or condensing
it as needed.

If you add the USERSIZE option, an attached graphic window is displayed with a thick
frame, which allows the user to "drag" the edges to a new size at any time. This option is
not appropriate for a graphic control, and is ignored in that case.

Generally speaking, it is not advisable to enable ScrollText mode on a virtual graphic
window, as the display may be confusing to the user.

See also GRAPHIC GET CANVAS, GRAPHIC GET VIEW, GRAPHIC SET AUTOSIZE, GRAPHIC
SET FIXED, GRAPHIC SET VIEW

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

839 / 2126

GRAPHIC SET WORDWRAP statement

GRAPHIC SET WORDWRAP statement
Purpose Enables or disables Graphic WordWrap Mode.

Syntax GRAPHIC SET WORDWRAP [NumrExpr&]

Remarks GRAPHIC SET WORDWRAP enables or disables WordWrap mode for the graphic target
which is currently attached to the graphic stream. It has no effect on any other graphic
target. If NumrExpr& is true (non-zero), WordWrap mode is enabled. If false (zero), wrap
mode is disabled. If NumrExpr& is missing, the default is to enable WordWrap Mode.

With WordWrap Mode, you can control how PowerBASIC prints text on a graphic target
when it reaches the end of a line. Since a graphic target operates on a full page basis,
the default is to ignore text which is printed past the end of the line.

When WordWrap mode is enabled, it affects only GRAPHIC PRINT operations. If
GRAPHIC PRINT attempts to display a word beyond the end of a row, the entire word is
automatically wrapped to the first column of the next row.

See also GRAPHIC CELL, GRAPHIC GET WORDWRAP, GRAPHIC SET WORDWRAP,
GRAPHIC SET WRAP, GRAPHIC SPLIT

GRAPHIC SET WRAP statement

GRAPHIC SET WRAP statement
Purpose Enables or disables Graphic Wrap Mode.

Syntax GRAPHIC SET WRAP [NumrExpr&]

Remarks GRAPHIC SET WRAP enables or disables wrap mode for the graphic target which is
currently attached to the graphic stream. It has no effect on any other graphic target. If
NumrExpr& is true (non-zero), wrap mode is enabled. If false (zero), wrap mode is
disabled. If NumrExpr& is missing, the default is to enable Wrap Mode.

With Wrap Mode, you can control how PowerBASIC prints text on a graphic target when
it reaches the end of a line. Since a graphic target operates on a full page basis, the
default is to ignore text which is printed past the end of the line.

When Wrap Mode is enabled, it affects only GRAPHIC PRINT operations. If GRAPHIC
PRINT attempts to display a character beyond the end of a row, it is automatically
wrapped to the first column of the next row.

See also GRAPHIC CELL, GRAPHIC GET WRAP, GRAPHIC PRINT, GRAPHIC SET
SCROLLTEXT, GRAPHIC SET WORDWRAP, GRAPHIC SPLIT

GRAPHIC SPLIT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

840 / 2126

GRAPHIC SPLIT statement
Purpose Splits a string into two parts for display on a graphic target.

Syntax GRAPHIC SPLIT [WORD] MainStr, Part1Len To Part1Var, Part2Var

Remarks Generally speaking, GRAPHIC SPLIT allows you to determine how much text will fit on a
line (or a line section), so you don't overrun the end. This is critical with variable-width
fonts. Since these text characters have different widths, you cannot rely on a simple
character count.

GRAPHIC SPLIT separates the MainStr string expression into two parts, which are then
assigned to the two

 variables specified by Part1Var and Part2Var. The numeric expression Part1Len
specifies the maximum width of the print field, using page units (pixels, dialog units,
scaled units). After completion of GRAPHIC SPLIT, the Part1Var will contain those
characters which can be safely displayed in the print field. The Part2Var will contain
the remaining characters, which might be displayed on following lines.
Since this operation creates a "line break" not contemplated in the original text, you may
have to modify the results in order to obtain the best appearance. For example, it's
usually best to remove any leading spaces from Part2Var before printing it.

If the WORD option is included, PowerBASIC guarantees that Part1Var will not end on a
partial word. This may require that Part1Len is adjusted to a smaller value. In that case,
Part2Var would be assigned these characters to compensate.

See also GRAPHIC CELL, GRAPHIC PRINT, GRAPHIC SET SCROLLTEXT, GRAPHIC SET
WORDWRAP, GRAPHIC SET WRAP, SPLIT

GRAPHIC STRETCH statement

GRAPHIC STRETCH statement
Purpose Copy and resize a bitmap to the selected graphic target.

Syntax GRAPHIC STRETCH hBmp, ID, (x1,y1)-(x2,y2) TO (x3,y3)-(x4,y4) [, Mix,
Stretch]
GRAPHIC STRETCH PAGE hBmp, ID [, Mix, Stretch]

Remarks You can copy a complete bitmap, or a portion of it, to the selected graphic target, while
resizing it to a larger or smaller size. The handle variable hBmp specifies the handle of
the source bitmap, control, or window. The parameter ID is the control identifier (1 to
65535) assigned with the CONTROL ADD GRAPHIC. ID must be zero (0) for a GRAPHIC
WINDOW or a

. The destination of the stretch operation is always the attached graphic target. The
bitmap is automatically resized to fit the destination parameters. You must use care that
your parameters are valid for the specified bitmap, or the result of the operation is
undefined.
The second form, GRAPHIC STRETCH PAGE, is a shortcut for copying a complete
bitmap to the clip or client area of the selected graphic target. The image is automatically
stretched or condensed to fit the target appropriately.

Mix If the Mix parameter is included, it is one of the values in the following table. If not
included, or the value zero (0), a default of %mix_CopySrc is presumed. There are 16 mix
modes available to use for mixing drawing colors with the colors which already exist at the
drawing location. The mix mode equates are predefined in PowerBASIC.

%mix_Blackness Pixel is always 0 (black).
%mix_NotMergeSrc Pixel is the inverse of the MergeSrc color.
%mix_MaskNotSrc Pixel is a combination of the colors common to both the pixel and

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

841 / 2126

the inverse of the source.
%mix_NotCopySrc Pixel is the inverse of the pen color.
%mix_MaskSrcNot Pixel is a combination of the colors common to both the source

and the inverse of the pixel.
%mix_Not Pixel is the inverse of the pixel color.
%mix_XorSrc Pixel is a combination of the colors in the source and in the pixel,

but not in both.
%mix_NotMaskSrc Pixel is the inverse of the MaskSrc color.
%mix_MaskSrc Pixel is a combination of the colors common to both the source

and the pixel.
%mix_NotXorSrc Pixel is the inverse of the XorSrc color.
%mix_Nop Pixel remains unchanged.
%mix_MergeNotSrc Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_CopySrc Pixel is the source color (default).
%mix_MergeSrcNot Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_MergeSrc Pixel is a combination of the source color and the pixel color.
%mix_Whiteness Pixel is always 1 (white).

Stretch If the stretch& parameter is included, it is one of the values in the following table. If not
included, or it is the value zero (0), the stretch mode is unchanged. An appropriate
choice of stretch mode can substantially enhance the quality of bitmaps which are
changed in size. The stretch mode equates are predefined in PowerBASIC.

Equate Va
lu
e

Description

%
BLACKONWHI
TE

1 This is the default Windows stretch mode, and is most
appropriate for monochrome bitmaps, or those with blocks of
color. Performs a boolean OR of eliminated and existing
pixels. It preserves black pixels at the expense of white
pixels.

%
WHITEONBLA
CK

2 Performs a boolean OR of eliminated and existing pixels. It
preserves white pixels at the expense of black pixels.

%
COLORONCO
LOR

3 Deletes eliminated lines of pixels without trying to preserve
their information.

%HALFTONE 4 This provides the highest quality for complex color bitmaps.
 The average color of the destination pixel block is kept
approximately the same as the source pixel block.

See also GRAPHIC COPY, GRAPHIC IMAGELIST, GRAPHIC RENDER, GRAPHIC SET
STRETCHMODE

GRAPHIC STYLE statement

GRAPHIC STYLE statement
Purpose Set the line style to be used by various

 statements in the selected graphic target.
Syntax GRAPHIC STYLE linestyle&

Remarks The graphic target must first be selected with GRAPHIC ATTACH. Due to limitations in
the Windows graphics device interface (GDI), styles are only applied if the line width is set
to 1, the default. If the line width is greater than 1, the style is interpreted as 0, solid.

Available line styles are:

PowerBASIC Compiler for Windows Version 10

842 / 2126

0 Solid (default)
1 Dash
2 Dot
3 DashDot
4 DashDotDot

See also GRAPHIC ARC, GRAPHIC ATTACH, GRAPHIC BOX, GRAPHIC ELLIPSE, GRAPHIC
LINE, GRAPHIC PIE, GRAPHIC WIDTH

Example ' Draw a square box with red, dotted lines
GRAPHIC WIDTH 1
GRAPHIC STYLE 2
GRAPHIC BOX (10, 10) - (110, 110), 0, %RED

GRAPHIC TEXT SIZE statement

GRAPHIC TEXT SIZE statement
Purpose Calculate the size of text to be printed.

Syntax GRAPHIC TEXT SIZE txt$ TO WidthVar!, HeightVar!

Function Form:
WidthVar! = GRAPHIC(TEXT.SIZE.X, txt$)
HeightVar! = GRAPHIC(TEXT.SIZE.Y, txt$)

Remarks This statement calculates the total size of the printed text, based upon the current font for
the graphic target. The sizes returned are specified in Page Units.

This allows you to easily calculate the appropriate print position, particularly when using a
proportional font.

See also FONT NEW, GRAPHIC CELL, GRAPHIC CELL SIZE, GRAPHIC CHR SIZE, GRAPHIC
PRINT, GRAPHIC SET FONT, GRAPHIC SCALE, GRAPHIC SET WORDWRAP,
GRAPHIC SET WRAP, GRAPHIC SPLIT

GRAPHIC WAITKEY$ statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC WAITKEY$ statement
Purpose Reads a keyboard character or extended key, waiting until one is ready.

Syntax GRAPHIC WAITKEY$ [To WaitVar$]
GRAPHIC WAITKEY$ ([KeyMask$] [,TimeOut&]) [TO WaitVar$]

Function Form:
WaitVar$ = GRAPHIC$(WAITKEY$)
WaitVar$ = GRAPHIC$(WAITKEY$, [KeyMask$] [,TimeOutVal&])

Remarks Reads a character or extended key from the keyboard without echoing anything to the
screen. If no data is available, GRAPHIC WAITKEY$ will wait for an event to occur. It is
very similar to GRAPHIC INKEY$, except that it waits for input to be available. While

PowerBASIC Compiler for Windows Version 10

843 / 2126

waiting, time slices are released to the operating system to reduce CPU load.

It returns a

 of one or two characters if a key was pressed. If the TO clause is omitted, the
keyboard character is discarded.
If the optional KeyMask$ expression is included, only a limited set of keys are
recognized. KeyMask$ may include any number of Sub-Masks, one for each key to
observe. For example, GRAPHIC WAITKEY$("YyNn") will recognize upper-case or lower-
case Y or N (for yes/no answers), while any other key will be ignored. If KeyMask$ is
omitted, or evaluates to a zero-length string, any key event will be recognized.

If the optional TimeOutVal& expression is included, it tells the maximum number of
milliseconds to wait for a key. GRAPHIC WAITKEY$(5000) will wait a maximum of 5
seconds. The specified TimeOut period will only be approximate, so you should not rely
upon precision accuracy. If the TimeOut period is exceeded, a zero-length string is
returned. If the TimeOutVal& parameter is omitted, or evaluates to zero (0), it will wait an
infinite length of time. The maximum TimeOut& permitted is one hour.

A string length of one (LEN(i$) = 1) means that a standard character key was pressed.
 The result string contains the character. An ASC()value between 1 and 31 indicates a
control code.

A string length of two (LEN(i$) = 2) means that an extended key was pressed. In this
case, the first character in the result string has an ASC() value of zero (0), and the second
is the extended keyboard scan code. For example, pressing the F1 key will return
CHR$(0, 59).

See also GRAPHIC INKEY$, GRAPHIC INPUT, GRAPHIC INPUT FLUSH, GRAPHIC INSTAT,
GRAPHIC LINE INPUT

GRAPHIC WIDTH statement

GRAPHIC WIDTH statement
Purpose Set the line width to be used by various

 statements in the selected graphic target.
Syntax GRAPHIC WIDTH linewidth&

Remarks If line width is set to a value greater than 1 (default), the line style is always interpreted to
be 0 (solid).

See also GRAPHIC ARC, GRAPHIC BOX, GRAPHIC ELLIPSE, GRAPHIC LINE, GRAPHIC PIE,
GRAPHIC STYLE

Example ' Draw a square box with red, thick lines
GRAPHIC WIDTH 10
GRAPHIC BOX (10, 10) - (110, 110), 0, %RED

GRAPHIC WINDOW statement

GRAPHIC WINDOW statement
Purpose Creates a new standalone graphic window.

Syntax GRAPHIC WINDOW NEW Caption$, x&, y&, nWidth&, nHeight& [,hFont] TO
hWinVar [,HIDE|NORMALIZE]
GRAPHIC WINDOW TEXT Caption$, x&, y&, nRows&, nColumns& [,hFont] TO
hWinVar [,HIDE|NORMALIZE]

Remarks A Graphic Window is a standalone window which is used to display most any form of text

PowerBASIC Compiler for Windows Version 10

844 / 2126

and graphics. After a graphic window has been created with this statement, GRAPHIC
ATTACH would normally be used to choose it as the selected graphic target. However, if
there is no selected graphic target at the time of creation, the new Graphic Window is
automatically attached and selected. You can then draw text, lines, circles, and other
forms with various statements.

GRAPHIC WINDOW END can be used to close and destroy the selected Graphic window
at any time. Otherwise, the window is automatically destroyed when the program ends.

All PowerBASIC graphical displays are persistent -- they are automatically redrawn for
you after resuming from being minimized or temporarily covered by other windows.

The TEXT option is used to create a window oriented more towards the display of text.
 The size of the window is specified in rows and columns (rather than pixels), based upon
the size of initial font -- the default font (MS Sans Serif, 8 point) or the optional initial font
specified by the Font parameter. This does not limit the ability to display graphics, as
every

 function is still available. It simply makes it easier to create a window of the desired
size. This option is best used with fonts which have a fixed width for each character
(Courier, Lucida, etc.).
The parameter Caption$ contains the text to be displayed in the title or caption bar of the
graphic window. If caption$ is empty (zero-length), the window is displayed without a title
bar, so the appearance is different and the window cannot be dragged by the user.

The parameters x& and y& specify the location of the window, in pixels, relative to the
upper left corner of the desktop.

The parameter nWidth& gives the width of the client area of the window, not including the
frame. The width is specified in pixels.

The Parameter nHeight& gives the height of the client area of the window, not including
the frame. The height is specified in pixels.

The parameter hFont specifies the handle of the initial font to be used in the GRAPHIC
WINDOW. If this optional parameter is included, it is the handle of a font created with
FONT NEW. This parameter is particularly important when you use the TEXT option, as
the size of the window is based upon the size of the initial font. If not included, the default
font (MS Sans Serif, 8 point) is selected for you.

The Long/DWord variable hWinVar receives the handle of the newly created window. If the
window could not be created, hWinVar is assigned the value zero (0).

The option words HIDE or NORMALIZE determine whether the window will be made visible
immediately. You may wish to initially hide the window so you can first make additional
changes to it, such as with the GRAPHIC WINDOW STABILIZE statement. If neither
HIDE nor NORMALIZE is chosen, the default is to show it immediately.

A newly-created GRAPHIC WINDOW automatically receives the focus. That is, keyboard
input is directed to the graphic window until it is closed, or you choose another focus
target.

See also CONTROL ADD GRAPHIC, GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC COLOR,
GRAPHIC DETACH, GRAPHIC SET AUTOSIZE, GRAPHIC SET CAPTION, GRAPHIC
SET CLIENT, GRAPHIC SET CLIP, GRAPHIC SET FIXED, GRAPHIC SET FONT,
GRAPHIC SET LOC, GRAPHIC SET OVERLAP, GRAPHIC SET SCROLLTEXT,
GRAPHIC SET SIZE, GRAPHIC SET STRETCHMODE, GRAPHIC SET VIRTUAL,
GRAPHIC SET WORDWRAP, GRAPHIC SET WRAP, GRAPHIC WINDOW CLICK,
GRAPHIC WINDOW END, GRAPHIC WINDOW HIDE, GRAPHIC WINDOW MINIMIZE,
GRAPHIC WINDOW NONSTABLE, GRAPHIC WINDOW NORMALIZE, GRAPHIC
WINDOW STABILIZE, TXT pseudo-object

Example FUNCTION PBMAIN () AS LONG
 ' Create and show a Graphic window on screen
 LOCAL hWin AS DWORD
 GRAPHIC WINDOW "Box", 300, 300, 130, 130 TO hWin

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

845 / 2126

 GRAPHIC ATTACH hWin, 0
 GRAPHIC BOX (10, 10) - (120, 120), 0, %BLUE
 SLEEP 5000 ' show it for 5 seconds, then end
END FUNCTION

GRAPHIC WINDOW CLICK statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC WINDOW CLICK statement
Purpose Check whether a GRAPHIC WINDOW has been clicked with the mouse.

Syntax GRAPHIC WINDOW CLICK [hwin&] TO click&, x!, y!

hWin& Handle of the GRAPHIC WINDOW to check.

Remarks GRAPHIC WINDOW CLICK checks whether the specified GRAPHIC WINDOW has been
clicked since the last time this statement was executed on this window. If so, the value
one (1) is assigned to the click& variable for a single click, or two (2) for a double click.
 Also, the mouse position is assigned to x! and y!. If the has been no click, the value
zero (0) is assigned to all three result variables.

In case of a double click, a click& value of one (1) is returned immediately after the first
click, and a click& value of two (2) is also returned after the second click.

If the optional handle (hwin&) is omitted, the graphic window which is currently selected
with GRAPHIC ATTACH is used.

See also GRAPHIC WINDOW

GRAPHIC WINDOW END statement

GRAPHIC WINDOW END statement
Purpose Close and destroy a graphic window.

Syntax GRAPHIC WINDOW END [hWin]

Remarks The GRAPHIC WINDOW identified by the handle hWin is closed and destroyed. If hWin
is omitted, or is equal to zero (0), the currently attached graphic window is destroyed.

GRAPHIC WINDOW END can be used to close and destroy a graphic window at any
time. Otherwise, the window is automatically destroyed when the program ends.

See also GRAPHIC DETACH, GRAPHIC WINDOW, GRAPHIC WINDOW HIDE

GRAPHIC WINDOW HIDE statement

Keyword Template

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

846 / 2126

Purpose

Syntax

Remarks

See also

Example

GRAPHIC WINDOW HIDE statement
Purpose Make a graphic window invisible.

Syntax GRAPHIC WINDOW HIDE [hWin]

Remarks The GRAPHIC WINDOW identified by the handle hWin is made invisible. If hWin is
omitted, or is equal to zero (0), the currently attached graphic window is made invisible.

See also GRAPHIC WINDOW END, GRAPHIC WINDOW MINIMIZE, GRAPHIC WINDOW
NONSTABLE, GRAPHIC WINDOW NORMALIZE, GRAPHIC WINDOW STABILIZE

GRAPHIC WINDOW MINIMIZE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC WINDOW MINIMIZE statement
Purpose Minimize a graphic window.

Syntax GRAPHIC WINDOW MINIMIZE [hWin]

Remarks The GRAPHIC WINDOW identified by the handle hWin is minimized. If hWin is omitted,
or is equal to zero (0), the currently attached graphic window is minimized. You can
restore the graphic window to its normal state with GRAPHIC WINDOW NORMALIZE.

See also GRAPHIC WINDOW HIDE, GRAPHIC WINDOW NONSTABLE, GRAPHIC WINDOW
NORMALIZE, GRAPHIC WINDOW STABILIZE

GRAPHIC WINDOW NONSTABLE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

847 / 2126

GRAPHIC WINDOW NONSTABLE statement

Purpose Make a graphic window non-stable (closeable).

Syntax GRAPHIC WINDOW NONSTABLE [hWin]

Remarks The GRAPHIC WINDOW identified by the handle hWin is made non-stable, meaning that
it can be closed by the user. If there is a system menu, the close option and the close
box are enabled. The ALT-F4 close key is also enabled. This is the default mode of
operation.

If hWin is omitted, or is equal to zero (0), the currently attached graphic window is made
non-stable.

See also GRAPHIC WINDOW HIDE, GRAPHIC WINDOW MINIMIZE, GRAPHIC WINDOW
NORMALIZE, GRAPHIC WINDOW STABILIZE

GRAPHIC WINDOW NORMALIZE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC WINDOW NORMALIZE statement

Purpose Make a graphic window visible.

Syntax GRAPHIC WINDOW NORMALIZE [hWin]

Remarks The GRAPHIC WINDOW identified by the handle hWin is made visible. If hWin is
omitted, or is equal to zero (0), the currently attached graphic window is made visible.

See also GRAPHIC WINDOW HIDE, GRAPHIC WINDOW MINIMIZE, GRAPHIC WINDOW
NONSTABLE, GRAPHIC WINDOW STABILIZE

GRAPHIC WINDOW STABILIZE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

GRAPHIC WINDOW STABILIZE statement

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

848 / 2126

Purpose Make a graphic window stabilized (non-closeable).

Syntax GRAPHIC WINDOW STABILIZE [hWin]

Remarks The GRAPHIC WINDOW identified by the handle hWin is stabilized, meaning that it
cannot be closed by the user. If there is a system menu, the close option and the close
box are grayed. The ALT-F4 close key is disabled. This allows you to be certain that
your operations on the graphic window can be completed. When a graphic window is
stabilized, only GRAPHIC WINDOW END or program termination will close it.

See also GRAPHIC WINDOW END, GRAPHIC WINDOW HIDE, GRAPHIC WINDOW MINIMIZE,
GRAPHIC WINDOW NONSTABLE, GRAPHIC WINDOW NORMALIZE

GRAPHIC WINDOW TEXT statement

GRAPHIC WINDOW statement
Purpose Creates a new standalone graphic window.

Syntax GRAPHIC WINDOW NEW Caption$, x&, y&, nWidth&, nHeight& [,hFont] TO
hWinVar [,HIDE|NORMALIZE]
GRAPHIC WINDOW TEXT Caption$, x&, y&, nRows&, nColumns& [,hFont] TO
hWinVar [,HIDE|NORMALIZE]

Remarks A Graphic Window is a standalone window which is used to display most any form of text
and graphics. After a graphic window has been created with this statement, GRAPHIC
ATTACH would normally be used to choose it as the selected graphic target. However, if
there is no selected graphic target at the time of creation, the new Graphic Window is
automatically attached and selected. You can then draw text, lines, circles, and other
forms with various statements.

GRAPHIC WINDOW END can be used to close and destroy the selected Graphic window
at any time. Otherwise, the window is automatically destroyed when the program ends.

All PowerBASIC graphical displays are persistent -- they are automatically redrawn for
you after resuming from being minimized or temporarily covered by other windows.

The TEXT option is used to create a window oriented more towards the display of text.
 The size of the window is specified in rows and columns (rather than pixels), based upon
the size of initial font -- the default font (MS Sans Serif, 8 point) or the optional initial font
specified by the Font parameter. This does not limit the ability to display graphics, as
every

 function is still available. It simply makes it easier to create a window of the desired
size. This option is best used with fonts which have a fixed width for each character
(Courier, Lucida, etc.).
The parameter Caption$ contains the text to be displayed in the title or caption bar of the
graphic window. If caption$ is empty (zero-length), the window is displayed without a title
bar, so the appearance is different and the window cannot be dragged by the user.

The parameters x& and y& specify the location of the window, in pixels, relative to the
upper left corner of the desktop.

The parameter nWidth& gives the width of the client area of the window, not including the
frame. The width is specified in pixels.

The Parameter nHeight& gives the height of the client area of the window, not including
the frame. The height is specified in pixels.

The parameter hFont specifies the handle of the initial font to be used in the GRAPHIC
WINDOW. If this optional parameter is included, it is the handle of a font created with
FONT NEW. This parameter is particularly important when you use the TEXT option, as
the size of the window is based upon the size of the initial font. If not included, the default
font (MS Sans Serif, 8 point) is selected for you.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

849 / 2126

The Long/DWord variable hWinVar receives the handle of the newly created window. If the
window could not be created, hWinVar is assigned the value zero (0).

The option words HIDE or NORMALIZE determine whether the window will be made visible
immediately. You may wish to initially hide the window so you can first make additional
changes to it, such as with the GRAPHIC WINDOW STABILIZE statement. If neither
HIDE nor NORMALIZE is chosen, the default is to show it immediately.

A newly-created GRAPHIC WINDOW automatically receives the focus. That is, keyboard
input is directed to the graphic window until it is closed, or you choose another focus
target.

See also CONTROL ADD GRAPHIC, GRAPHIC ATTACH, GRAPHIC CELL, GRAPHIC COLOR,
GRAPHIC DETACH, GRAPHIC SET AUTOSIZE, GRAPHIC SET CAPTION, GRAPHIC
SET CLIENT, GRAPHIC SET CLIP, GRAPHIC SET FIXED, GRAPHIC SET FONT,
GRAPHIC SET LOC, GRAPHIC SET OVERLAP, GRAPHIC SET SCROLLTEXT,
GRAPHIC SET SIZE, GRAPHIC SET STRETCHMODE, GRAPHIC SET VIRTUAL,
GRAPHIC SET WORDWRAP, GRAPHIC SET WRAP, GRAPHIC WINDOW CLICK,
GRAPHIC WINDOW END, GRAPHIC WINDOW HIDE, GRAPHIC WINDOW MINIMIZE,
GRAPHIC WINDOW NONSTABLE, GRAPHIC WINDOW NORMALIZE, GRAPHIC
WINDOW STABILIZE, TXT pseudo-object

Example FUNCTION PBMAIN () AS LONG
 ' Create and show a Graphic window on screen
 LOCAL hWin AS DWORD
 GRAPHIC WINDOW "Box", 300, 300, 130, 130 TO hWin
 GRAPHIC ATTACH hWin, 0
 GRAPHIC BOX (10, 10) - (120, 120), 0, %BLUE
 SLEEP 5000 ' show it for 5 seconds, then end
END FUNCTION

GUID$ function

GUID$ function
Purpose Return a 16-byte (128-bit) Globally Unique Identifier (GUID) or Universally Unique Identifier

(UUID) binary

.
Syntax id$ = GUID$[()]

id$ = GUID$(guidtext$)

Remarks The GUID$ function, with no parameter (or a null, zero-length string parameter) will return
a new, unique 16-byte string GUID (Globally Unique Identifier). This GUID may be used
as a new class identifier or an interface identifier, or for some other purpose where a
unique identifier may be required, such as for a one-time encryption key.

If guidtext$ is specified, GUID$ examines a text string, and converts the first standard
format, human-readable GUID it finds, and returns a 16-byte binary string. This 16-byte
string contains the internal GUID representation as a 128-bit data item.

To be valid, the GUID string in guidtext$ string must contain exactly 32 hexadecimal
digits, optionally delimited by spaces or hyphens, but which must be enclosed overall by
curly braces. For example: "{01234567-89AB-CDEF-FEDC-BA9876543210}".

The GUID$ function is the logical complement to the GUIDTXT$ function.

id$ The return string may be assigned to a dynamic string, or a fixed-length string of at least
16 bytes, or (typically) a GUID variable. See DIM for more information on creating GUID
variables.

Restrictions If any errors are encountered, GUID$ returns a null (zero-length) string instead of the 16-
byte GUID string. GUID$ can also be used in string equate assignments provided an
explicit human-readable GUIDTXT$ argument string is assigned. For example:

PowerBASIC Compiler for Windows Version 10

850 / 2126

$AppGuid = GUID$("{01234567-89AB-CDEF-FEDC-BA9876543210}")

See also DIM, CLSID$, GUIDTXT$, How are GUID's used with objects?, INTERFACE (Direct),
INTERFACE (IDBind), ISINTERFACE, ISNOTHING, ISOBJECT, Just what is COM?, LET
(with Objects), OBJECT, OBJACTIVE, OBJPTR, OBJRESULT, PROGID$, What is an
object, anyway?

Example DIM oID1 AS GUID, oID2 AS GUID
oID1 = GUID$("{01234567-89AB-CDEF-FEDC-BA9876543210}")
oID2 = GUID$("The GUID we need is shown as
{0123456789ABCDEFFEDCBA9876543210}")

GUIDTXT$ function

GUIDTXT$ function
Purpose Return a 38-byte human-readable Globally Unique Identifier (GUID) or Universally Unique

Identifier (UUID) string from a 16-byte GUID

.
Syntax id$ = GUIDTXT$(guid16$)

Remarks The GUIDTXT$ function takes a string parameter guid16$ that must be exactly 16-bytes
long (and represents a 128-bit GUID string), and returns a 38-byte GUID text string.
guid16$ is usually a GUID variable but may also be a dynamic or fixed-length string, etc.

The GUIDTXT$ function is the logical complement to the GUID$ function.

Restrictions If any errors are encountered, GUIDTXT$ returns a null (zero-length) string instead of the
38-byte GUID text string.

See also DIM, CLSID$, GUID$, INTERFACE (Direct), INTERFACE (IDBind), ISINTERFACE,
ISNOTHING, ISOBJECT, LET (with Objects), OBJECT, OBJACTIVE, OBJPTR,
OBJRESULT, PROGID$, What is an object, anyway?

Example oID1$ = GUID$("{01234567-89AB-CDEF-FEDC-BA9876543210}")
oID2$ = GUIDTXT$(oID1$)

HEADER GET COUNT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

HEADER statement
Purpose Manipulate a HEADER control in order to set/retrieve data.

Syntax HEADER SEND hWin, ID&, Msg&, wParam&, lParam& [TO ResultVar&]

hWin Handle of the window that owns the Header.

ID& The Header control identifier.

Msg& The message you want to send to the Header.

wParam& The first message parameter (message dependent).

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

851 / 2126

lParam& The second message parameter (message dependent).

ResultVar& Variable which receives the message return value.

Remarks The HEADER statement is used to communicate with a HEADER control to set or
retrieve various types of data. While you may create a custom header control for your
own purposes, the most common usage is to communicate with the HEADER control
which is embedded in every LISTVIEW control.

To communicate with a LISTVIEW HEADER, use the LISTVIEW GET HEADERID to get
the values for the hWin and ID& parameters. Otherwise, those parameters would be
assigned as with any other control.

HEADER GET COUNT hWin, ID& TO CountVar&

Retrieves the count of the items in a header control. If the operation was successful, the
count value is assigned to the variable specified by CountVar&. If the operation failed, the
value -1 is assigned to CountVar& instead.

HEADER GET ITEM hWin, ID&, Index&, ItemPtr [TO ResultVar&]

Retrieves an HD_Item structure which describes an item in a Header Control. Index&
defines the item to be retrieved (1=first, 2=second, etc.). ItemPtr is the address of an
HD_Item structure to be filled. If the operation succeeds, true is assigned to the variable
specified by ResultVar&. If it fails, false is assigned instead.

HEADER SEND hWin, ID&, Msg&, wParam&, lParam& [TO ResultVar&]

A window message specified by Msg& is sent to the HEADER control, along with
message dependent parameters (if any). If a result is returned, it is assigned to the
variable specified by ResultVar&.

HEADER SET ITEM hWin, ID&, Index&, ItemPtr [TO ResultVar&]

Sets the attributes of the specified item in a Header Control. Index& defines the item to
be set (1=first, 2=second, etc.). ItemPtr is the address of an HD_Item structure which
defines the attributes. If the operation succeeds, true is assigned to the variable specified
by ResultVar&. If it fails, false is assigned instead.

See also LISTVIEW

HEADER GET ITEM statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

HEADER statement
Purpose Manipulate a HEADER control in order to set/retrieve data.

Syntax HEADER SEND hWin, ID&, Msg&, wParam&, lParam& [TO ResultVar&]

hWin Handle of the window that owns the Header.

ID& The Header control identifier.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

852 / 2126

Msg& The message you want to send to the Header.

wParam& The first message parameter (message dependent).

lParam& The second message parameter (message dependent).

ResultVar& Variable which receives the message return value.

Remarks The HEADER statement is used to communicate with a HEADER control to set or
retrieve various types of data. While you may create a custom header control for your
own purposes, the most common usage is to communicate with the HEADER control
which is embedded in every LISTVIEW control.

To communicate with a LISTVIEW HEADER, use the LISTVIEW GET HEADERID to get
the values for the hWin and ID& parameters. Otherwise, those parameters would be
assigned as with any other control.

HEADER GET COUNT hWin, ID& TO CountVar&

Retrieves the count of the items in a header control. If the operation was successful, the
count value is assigned to the variable specified by CountVar&. If the operation failed, the
value -1 is assigned to CountVar& instead.

HEADER GET ITEM hWin, ID&, Index&, ItemPtr [TO ResultVar&]

Retrieves an HD_Item structure which describes an item in a Header Control. Index&
defines the item to be retrieved (1=first, 2=second, etc.). ItemPtr is the address of an
HD_Item structure to be filled. If the operation succeeds, true is assigned to the variable
specified by ResultVar&. If it fails, false is assigned instead.

HEADER SEND hWin, ID&, Msg&, wParam&, lParam& [TO ResultVar&]

A window message specified by Msg& is sent to the HEADER control, along with
message dependent parameters (if any). If a result is returned, it is assigned to the
variable specified by ResultVar&.

HEADER SET ITEM hWin, ID&, Index&, ItemPtr [TO ResultVar&]

Sets the attributes of the specified item in a Header Control. Index& defines the item to
be set (1=first, 2=second, etc.). ItemPtr is the address of an HD_Item structure which
defines the attributes. If the operation succeeds, true is assigned to the variable specified
by ResultVar&. If it fails, false is assigned instead.

See also LISTVIEW

HEADER SEND statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

HEADER statement
Purpose Manipulate a HEADER control in order to set/retrieve data.

Syntax HEADER SEND hWin, ID&, Msg&, wParam&, lParam& [TO ResultVar&]

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

853 / 2126

hWin Handle of the window that owns the Header.

ID& The Header control identifier.

Msg& The message you want to send to the Header.

wParam& The first message parameter (message dependent).

lParam& The second message parameter (message dependent).

ResultVar& Variable which receives the message return value.

Remarks The HEADER statement is used to communicate with a HEADER control to set or
retrieve various types of data. While you may create a custom header control for your
own purposes, the most common usage is to communicate with the HEADER control
which is embedded in every LISTVIEW control.

To communicate with a LISTVIEW HEADER, use the LISTVIEW GET HEADERID to get
the values for the hWin and ID& parameters. Otherwise, those parameters would be
assigned as with any other control.

HEADER GET COUNT hWin, ID& TO CountVar&

Retrieves the count of the items in a header control. If the operation was successful, the
count value is assigned to the variable specified by CountVar&. If the operation failed, the
value -1 is assigned to CountVar& instead.

HEADER GET ITEM hWin, ID&, Index&, ItemPtr [TO ResultVar&]

Retrieves an HD_Item structure which describes an item in a Header Control. Index&
defines the item to be retrieved (1=first, 2=second, etc.). ItemPtr is the address of an
HD_Item structure to be filled. If the operation succeeds, true is assigned to the variable
specified by ResultVar&. If it fails, false is assigned instead.

HEADER SEND hWin, ID&, Msg&, wParam&, lParam& [TO ResultVar&]

A window message specified by Msg& is sent to the HEADER control, along with
message dependent parameters (if any). If a result is returned, it is assigned to the
variable specified by ResultVar&.

HEADER SET ITEM hWin, ID&, Index&, ItemPtr [TO ResultVar&]

Sets the attributes of the specified item in a Header Control. Index& defines the item to
be set (1=first, 2=second, etc.). ItemPtr is the address of an HD_Item structure which
defines the attributes. If the operation succeeds, true is assigned to the variable specified
by ResultVar&. If it fails, false is assigned instead.

See also LISTVIEW

HEADER SET ITEM statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

HEADER statement

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

854 / 2126

Purpose Manipulate a HEADER control in order to set/retrieve data.

Syntax HEADER SEND hWin, ID&, Msg&, wParam&, lParam& [TO ResultVar&]

hWin Handle of the window that owns the Header.

ID& The Header control identifier.

Msg& The message you want to send to the Header.

wParam& The first message parameter (message dependent).

lParam& The second message parameter (message dependent).

ResultVar& Variable which receives the message return value.

Remarks The HEADER statement is used to communicate with a HEADER control to set or
retrieve various types of data. While you may create a custom header control for your
own purposes, the most common usage is to communicate with the HEADER control
which is embedded in every LISTVIEW control.

To communicate with a LISTVIEW HEADER, use the LISTVIEW GET HEADERID to get
the values for the hWin and ID& parameters. Otherwise, those parameters would be
assigned as with any other control.

HEADER GET COUNT hWin, ID& TO CountVar&

Retrieves the count of the items in a header control. If the operation was successful, the
count value is assigned to the variable specified by CountVar&. If the operation failed, the
value -1 is assigned to CountVar& instead.

HEADER GET ITEM hWin, ID&, Index&, ItemPtr [TO ResultVar&]

Retrieves an HD_Item structure which describes an item in a Header Control. Index&
defines the item to be retrieved (1=first, 2=second, etc.). ItemPtr is the address of an
HD_Item structure to be filled. If the operation succeeds, true is assigned to the variable
specified by ResultVar&. If it fails, false is assigned instead.

HEADER SEND hWin, ID&, Msg&, wParam&, lParam& [TO ResultVar&]

A window message specified by Msg& is sent to the HEADER control, along with
message dependent parameters (if any). If a result is returned, it is assigned to the
variable specified by ResultVar&.

HEADER SET ITEM hWin, ID&, Index&, ItemPtr [TO ResultVar&]

Sets the attributes of the specified item in a Header Control. Index& defines the item to
be set (1=first, 2=second, etc.). ItemPtr is the address of an HD_Item structure which
defines the attributes. If the operation succeeds, true is assigned to the variable specified
by ResultVar&. If it fails, false is assigned instead.

See also LISTVIEW

HEX$ function

HEX$ function
Purpose Convert an integral value to a hexadecimal

.
Syntax s$ = HEX$(IntVal [, Digits [, LeadSpaces [, TrailSpaces]]])

Remarks IntVal is a numeric expression in the range of a 64-bit Quad Integer (-
9223372036854775808 to +9223372036854775807). Any fractional part of the value is
rounded. The result string is always formatted as an integral number using all the

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

855 / 2126

significant digits in IntVal. It is never expressed in scientific notation.

If Digits is 0 (or not given), no leading characters will be added to the numeric field. If
Digits is a positive number greater than 0, the result string will be prepended with leading
zeros to achieve the desired length. If Digits is a negative number, leading spaces are
added to reach the absolute length. Digits may be in the range of -16 to +16.

LeadSpaces specifies additional leading spaces to be prepended, regardless of the length
of the numeric portion of the string.

TrailSpaces specifies additional trailing spaces to be appended to the end of the string.

See also BIN$, DEC$, FORMAT$, OCT$, STR$, TRIM$, USING$, VAL

HI function

HI function
Purpose Extract the most significant (high-order) portion of an

 value.
Syntax result = HI(DataType, value)

Remarks The value returned by HI is unsigned if DataType is BYTE, WORD, or DWORD, and
signed if DataType is INTEGER or LONG. value may be up to twice the size of the data
type specified by DataType. In the following example, n may be up to a 16-bit value (twice
the size of a BYTE):

b = HI(BYTE,n)

Restrictions HI replaces HIBYT, HIWRD, and HIINT. Note that those functions are no longer
supported, so update your code to use the new syntax.

See also LO, MAK

HOST ADDR statement

HOST ADDR statement
Purpose Translate a host name into a corresponding IP address.

Syntax HOST ADDR [hostname$] TO ip&
HOST ADDR(index&) TO ip&

Remarks hostname$ is the name of a computer on the network or a domain name such as
"powerbasic.com". If hostname$ is zero-length or not specified, the primary IP address of
the current computer is returned.

ip& receives the IP address of the specified host name. ip& may be a REGISTER or
memory variable.

It is possible for a computer to have more than one IP address. For example, if you have
a network card in your computer, and you are dialed into the Internet using a modem,
your computer will have two IP addresses. By using the indexed form of the statement:

HOST ADDR(index&) TO ip&

…you can retrieve the first IP address with index& = 1, the second with index& = 2, etc.
If, on return, ip& contains zero (0), there are no further IP addresses to retrieve on that
computer.

A numeric IP address can be easily converted to a dotted IP address

 with the following code:
DIM p AS BYTE PTR
HOST ADDR "localhost" TO ip&

PowerBASIC Compiler for Windows Version 10

856 / 2126

p = VARPTR(ip&)
a$ = USING$("#_.#_.#_.#", @p, @p[1], @p[2], @p[3])
' returns "127.0.0.1"

Restrictions In order to obtain the IP address of the current computer, you must have at least one
socket open, or you must first obtain the name of the computer by using the HOST
NAME statement.

See also HOST NAME, TCP and UDP Communications, TCP OPEN, UDP OPEN

Example HOST ADDR "powerbasic.com" TO ip& ' Primary IP

FUNCTION HowManyIPs() AS LONG
 DIM p AS BYTE PTR
 RESET index&
 DO
 HOST ADDR(index&+1) TO ip&
 IF ISTRUE ip& THEN
 INCR index&
 p = VARPTR(ip&)
 a$ = USING$("#_.#_.#_.#", @p, @p[1], @p[2], @p[3])
 END IF
 LOOP UNTIL ip& = 0
 FUNCTION = index&
END FUNCTION

HOST NAME statement

HOST NAME statement
Purpose Translate an IP address into a corresponding host name.

Syntax HOST NAME [ip&] TO hostname$

Remarks ip& is the IP address you want to look up. If ip& is zero (0) or not specified, the name of
the current computer is returned. hostname$ receives the name of the host
corresponding to the IP address.

In order to translate an IP address into an Internet domain name, your computer will need
to be connected to a DNS server on the Internet or local Intranet.

See also HOST ADDR, TCP and UDP Communications, TCP OPEN, UDP OPEN

Example HOST ADDR "powerbasic.com" TO ip&
HOST NAME ip& TO hostname$
CALL ShowResult(hostname$, ip&)

IDISPINFO pseudo-object

Keyword Template
Purpose

Syntax

Remarks

See also

Example

IDISPINFO pseudo-object

PowerBASIC Compiler for Windows Version 10

857 / 2126

Purpose Sets and returns additional information about certain Dispatch Status Codes for the
OBJRESULT function.

Syntax info& = IDISPINFO.CODE
info& = IDISPINFO.CONTEXT
info$ = IDISPINFO.DESC$
info$ = IDISPINFO.HELP$
info$ = IDISPINFO.SOURCE$
IDISPINFO.CLEAR
IDISPINFO.SET code& [, source$, desc$, help$, context&]

Remarks GET Properties

IDISPINFO.CODE When OBJRESULT is %DISP_E_EXCEPTION, this Get
Property returns a long integer value which represents a
more specific error code. If the value is less than 65536, it
is known as a WCODE, which is usually defined by the
application when found in 32-bit or 64-bit Windows. Much
more common are the larger values known as an SCODE.
 These are usually defined by Windows, although application
defined values are allowed. The most common are:

 %E_UNEXPECTED = &H8000FFFF&
 %E_NOTIMPL = &H80004001&
 %E_NOINTERFACE = &H80004002&
 %E_POINTER = &H80004003&
 %E_ABORT = &H80004004&
 %E_FAIL = &H80004005&
 %E_ACCESSDENIED = &H80070005&
 %E_HANDLE = &H80070006&
 %E_OUTOFMEMORY = &H8007000E&
 %E_INVALIDARG = &H80070057&

IDISPINFO.CONTEXT When OBJRESULT is %DISP_E_EXCEPTION, this Get
Property returns a long integer value which is the context of
the topic within the help file (IDISPINFO.HELP$). This
property is only valid if IDISPINFO.HELP returns a valid
string.

IDISPINFO.DESC$ When OBJRESULT is %DISP_E_EXCEPTION, this Get
Property returns a string containing a textual, human-
readable description of the status. It is intended to be read
by the customer. If no description is available, a null, zero-
length string is returned.

IDISPINFO.HELP$ When OBJRESULT is %DISP_E_EXCEPTION, this Get
Property returns a string containing drive, path, and filename
of a Help File with more information about this particular
status code. If no help is available, a null, zero-length string
is returned.

IDISPINFO.PARAM When OBJRESULT is either %DISP_E_PARAMNOTFOUND
or %DISP_E_TYPEMISMATCH, this Get Property returns a
long integer value which represents the parameter number of
the first parameter which failed to match the requirements
needed. The value is indexed to zero, which is the standard
numbering convention for Dispatch parameters. The first
parameter is 0, the second is 1, and so on.

IDISPINFO.SOURCE$ When OBJRESULT is %DISP_E_EXCEPTION, this Get
Property returns a string containing a textual, human-
readable description of the source of the exception.
 Typically, this will be the application name. If no source is
available, a null, zero-length string is returned.

PowerBASIC Compiler for Windows Version 10

858 / 2126

SET Properties

IDISPINFO.CLEAR Clears all properties which may have been set by prior
execution of IDISPINFO.SET in this thread.

IDISPINFO.SET This statement may be executed in a METHOD or
PROPERTY on a Dual Interface, so that the calling code
can obtain additional information about Dispatch exception
conditions. These five data items are passed back to the
caller in the EXCEPINFO structure, so that they can be
retrieved with IDISPINFO GET Properties, or other functions
in other programming languages. This data is only available
when using the Dispatch interface. It is unavailable to Direct
Methods. The first parameter (code&) is required, and must
be identical to the value which you return with METHOD
OBJRESULT or PROPERTY OBJRESULT. The actual
OBJRESULT will then be changed to %
DISP_E_EXCEPTION, so that the caller will know that this
data must also be retrieved. Note that the last four
parameters are optional.

Restrictions You should only execute the GET PROPERTY methods listed above when OBJRESULT
returns the specified status code. In any other case, IDISPINFO Get Properties will
return zero or a null string.

See also OBJECT, OBJRESULT, OBJRESULT$, What is an object, anyway?, What is DISPATCH?

Example IDISPINFO.SET &H80004040, "MyApp", "Valve stem error","C:\Help.chm", 1773

IF statement

IF statement
Purpose Test a condition and execute one or more program statements only if the condition is met.

Syntax IF integer_expression THEN {sub | label | statements} [ELSE {sub | label |
statements}]

Remarks If integer_expression is TRUE (evaluates to a non-zero value), the statements following
THEN are executed, and the statements following the optional ELSE are not executed. If
integer_expression is FALSE (zero), the statements following THEN are not executed,
and the statements following the optional ELSE are executed. If the ELSE clause is
omitted, execution continues with the next line of the program, provided
integer_expression evaluates to FALSE.

integer_expression will often be a result returned by a relational operator as shown here:

IF Income > Expenses THEN x$ = "OK!" ELSE x$ = "Uh-oh"

integer_expression can also be a boolean value. For example, your program could set the
variable BeepOn to 1 (or any non-zero value) if audible beeps are requested, and to 0 if
not, then use an IF statement to control output:

IF BeepOn THEN BEEP

…is equivalent to:

IF BeepOn <> 0 THEN BEEP

integer_expression can include the logical operators AND and OR, as in:

IF (a = b) AND (c = d) THEN x$ = "They are equal"

label If a label is specified, the label must appear within the same Sub, Function, Method, or
Property as the IF statement. The GOTO keyword is implied by THEN, or can replace
THEN:

IF EOF(1) THEN GotFile

PowerBASIC Compiler for Windows Version 10

859 / 2126

IF EOF(1) GOTO GotFile

proc If proc is specified, it must identify a Sub, Function, Method, or Property.

The IF statement and all its associated statements, including those after an ELSE, must
appear on the same logical program line. The following is therefore illegal:

IF a < b THEN t = 15 : u = 16 : v = 17
 ELSE t = 17 : u = 16 : v = 15

…because the compiler treats the ELSE statement as a brand-new statement unrelated
to the one above it. If you have more statements than you can fit on one line, you can
use the line continuation character, the underscore "_", to spread a single logical line
over several physical lines. For example, the following is a legal way of restating the last
example:

IF a < b THEN t = 15 : u = 16 : v = 17 _
 ELSE t = 17 : u = 16 : v = 15

A better method of programming long and complex IF/THEN constructs is to use the IF
block statement.

Also note that every statement following the ELSE will be executed if integer_expression
is FALSE. For example, you might expect the following statement:

Taxable = %TRUE
Price = 1.00
Rate = .05
Total = 5.00
IF Taxable THEN Tax = Price * Rate ELSE Tax = 0: Total = Total + Tax

…to bring Total to 5.05, but it won't. The Total = Total + Tax statement will only be
executed if Taxable is FALSE. It's easy to get the correct results using the IF block:

IF Taxable THEN
 Tax = Price * Rate
ELSE
 Tax = 0
END IF
Total = Total + Tax

Short-Circuit Evaluation

 Note that PowerBASIC features short-circuit evaluation of relational expressions using
AND and OR. This optimization means that evaluation of a relational expression in an IF,
IF/END IF, DO/LOOP, or WHILE/WEND is terminated just as soon as it is possible to tell
what the result will be. For example:

IF LEN(a$) AND MyFunc(a$) THEN CALL ShowText("Ok!")

In the above example, if LEN(a$) is zero, there is no further need to evaluate the
expression, because 0 and anything will always be FALSE. So, if LEN(a$) is zero,
MyFunc() is not called at all, and ShowText() is not executed.

To give short-circuit optimization an extra boost, AND and OR are treated as a Boolean
operator rather than a bitwise operator, and this can sometimes produce unexpected
results. For example, consider the following expression:

a& = 4
b& = 2
IF a& AND b& THEN CALL ShowText("TRUE") ELSE CALL ShowText("FALSE")

Applying the traditional BASIC bitwise evaluation, you would expect to see FALSE
displayed because (4 AND 2) = 0. Due to the short-circuit optimization though, each
value is treated as a Boolean, just as if you had written:

IF ISTRUE a& AND ISTRUE b& THEN ...

If you believe this may be a problem for your particular code, you can disable the short-
circuit evaluation by surrounding the entire conditional expression in parentheses:

IF (a& AND b&) THEN CALL ShowText("TRUE") ELSE CALL ShowText("FALSE")

The parentheses force the entire expression to be evaluated, so AND reverts to being a

PowerBASIC Compiler for Windows Version 10

860 / 2126

bitwise operator.

See also CHOOSE, CHOOSE&, CHOOSE$, IF block, IIF, IIF&, IIF$, MAX, MAX&, MAX$, MIN,
MIN&, MIN$, SWITCH, SWITCH&, SWITCH$, SELECT

Example IF x > 100 THEN y = 3 ELSE y = 4

IF/END IF block

IF/END IF block
Purpose Create IF/THEN/ELSE constructs with multiple lines and/or conditions.

Syntax IF integer_expression THEN
 [statements]
[ELSEIF integer_expression THEN
 [statements]]
[ELSE
 [statements]]
END IF

Remarks In executing IF blocks, the truth of the integer_expression in the initial IF statement is
checked first. If it evaluates to FALSE (zero), each of the following ELSEIF statements is
examined in order. There can be as many ELSEIF statements as desired. As soon as
one is found to be TRUE (non-zero), PowerBASIC executes the statement(s) following the
associated THEN and before the next ELSEIF or ELSE.

Execution then jumps to the statement just after the terminating END IF without making
any further tests. If none of the test expressions evaluates to TRUE, the statement(s) in
the ELSE clause (which is optional) are executed.

Note that there must be nothing following the THEN keyword in an IF block; that's how the
compiler distinguishes an IF block from a conventional IF statement. There must also be
nothing on the same line as the ELSE (except for remarks).

IF blocks can be nested; that is, any of the statements after any of the THENs may
contain IF blocks. Although the compiler doesn't care, the clarity of source code is
improved by indenting the statements controlled by each test a couple of spaces, as
shown in the example.

IF blocks must be terminated with a matching END IF statement. Note that the END IF
statement requires a space and the ELSEIF statement does not.

See the IF statement for notes on PowerBASIC's Short-circuit evaluation and its possible
side effects.

See also CHOOSE, CHOOSE&, CHOOSE$, EXIT, IF, IIF, IIF&, IIF$, MAX, MAX&, MAX$, MIN,
MIN&, MIN$, SELECT, Short-circuit evaluation, SWITCH, SWITCH&, SWITCH$, SELECT

Example X = (RND * 500) + 1
IF X = 1 THEN
 x$ = "The number is 1"
ELSEIF X = 2 THEN
 x$ = "The number is 2"
ELSE
 IF X < 50 THEN
 x$ = "The number is less than 50"
 ELSEIF X < 100 THEN
 x$ = "Greater than 49 and less than 100"
 ELSE
 x$ = "The number is 100 or greater"
 END IF
END IF

PowerBASIC Compiler for Windows Version 10

861 / 2126

IIF function

IIF function
Purpose Return one of two values based upon a TRUE/FALSE evaluation.

Syntax var = IIF(num_expression, truepart, falsepart)
var& = IIF&(num_expression, truepart&, falsepart&)
var$ = IIF$(num_expression, truepart$, falsepart$)

Remarks IIF expects parts of any numeric type. IIF& expects parts optimized for long integer type.
IIF$ expects parts of

 type.
If num_expression evaluates to TRUE (non-zero), the truepart is returned, else the
falsepart is returned. num_expression is evaluated as a normal PowerBASIC Boolean
expression, which offers short-circuit expression evaluation as needed.

IIF(1 AND 2, 3, 4) would return the truepart (3) because both terms in num_expression are
TRUE, and therefore evaluate to TRUE.

To force a bitwise evaluation of num_expression, enclose it in parentheses. For example,
IIF$((1 AND 2), "True", "False") would return "False".

IIF% is recognized as a valid synonym for IIF&.

Restrictions Contrary to the implementation in some other languages, only the selected expression
(truepart or falsepart) is evaluated at run-time, not both. This ensures optimum execution
speed, as well as the elimination of unanticipated side effects.

See also CHOOSE, CHOOSE&, CHOOSE$, SWITCH, SWITCH&, SWITCH$

Example iLOGFONT.lfWeight = IIF&(Weight&, 700&, 400&)
Score& = Score& + IIF&(Answer = %FALSE, 0, 10)

ILinkListCollection.ADD method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

PowerBASIC Compiler for Windows Version 10

862 / 2126

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

PowerBASIC Compiler for Windows Version 10

863 / 2126

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

PowerBASIC Compiler for Windows Version 10

864 / 2126

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

PowerBASIC Compiler for Windows Version 10

865 / 2126

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the

PowerBASIC Compiler for Windows Version 10

866 / 2126

caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

ILinkListCollection.CLEAR method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the

PowerBASIC Compiler for Windows Version 10

867 / 2126

same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it

PowerBASIC Compiler for Windows Version 10

868 / 2126

to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

PowerBASIC Compiler for Windows Version 10

869 / 2126

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL

PowerBASIC Compiler for Windows Version 10

870 / 2126

interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

ILinkListCollection.COUNT method

Keyword Template
Purpose

Syntax

Remarks

PowerBASIC Compiler for Windows Version 10

871 / 2126

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as

PowerBASIC Compiler for Windows Version 10

872 / 2126

either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved

PowerBASIC Compiler for Windows Version 10

873 / 2126

sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If

PowerBASIC Compiler for Windows Version 10

874 / 2126

the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

875 / 2126

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

ILinkListCollection.FIRST method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may

PowerBASIC Compiler for Windows Version 10

876 / 2126

be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

PowerBASIC Compiler for Windows Version 10

877 / 2126

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position

PowerBASIC Compiler for Windows Version 10

878 / 2126

number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is

PowerBASIC Compiler for Windows Version 10

879 / 2126

successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

PowerBASIC Compiler for Windows Version 10

880 / 2126

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

ILinkListCollection.INDEX method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should

PowerBASIC Compiler for Windows Version 10

881 / 2126

be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

PowerBASIC Compiler for Windows Version 10

882 / 2126

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the

PowerBASIC Compiler for Windows Version 10

883 / 2126

caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)

PowerBASIC Compiler for Windows Version 10

884 / 2126

<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

ILinkListCollection.INSERT method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

885 / 2126

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

PowerBASIC Compiler for Windows Version 10

886 / 2126

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

PowerBASIC Compiler for Windows Version 10

887 / 2126

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will

PowerBASIC Compiler for Windows Version 10

888 / 2126

be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

PowerBASIC Compiler for Windows Version 10

889 / 2126

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

ILinkListCollection.ITEM method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

PowerBASIC Compiler for Windows Version 10

890 / 2126

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the

PowerBASIC Compiler for Windows Version 10

891 / 2126

item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)

PowerBASIC Compiler for Windows Version 10

892 / 2126

RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the

PowerBASIC Compiler for Windows Version 10

893 / 2126

requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

PowerBASIC Compiler for Windows Version 10

894 / 2126

See Also FOR EACH/NEXT

ILinkListCollection.LAST method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items

PowerBASIC Compiler for Windows Version 10

895 / 2126

directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent

PowerBASIC Compiler for Windows Version 10

896 / 2126

references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

PowerBASIC Compiler for Windows Version 10

897 / 2126

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

PowerBASIC Compiler for Windows Version 10

898 / 2126

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

ILinkListCollection.NEXT method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not

PowerBASIC Compiler for Windows Version 10

899 / 2126

have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

PowerBASIC Compiler for Windows Version 10

900 / 2126

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

901 / 2126

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

PowerBASIC Compiler for Windows Version 10

902 / 2126

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

PowerBASIC Compiler for Windows Version 10

903 / 2126

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

ILinkListCollection.PREVIOUS method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

PowerBASIC Compiler for Windows Version 10

904 / 2126

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent

PowerBASIC Compiler for Windows Version 10

905 / 2126

references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

PowerBASIC Compiler for Windows Version 10

906 / 2126

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

907 / 2126

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

PowerBASIC Compiler for Windows Version 10

908 / 2126

ILinkListCollection.REMOVE method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL

PowerBASIC Compiler for Windows Version 10

909 / 2126

interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

PowerBASIC Compiler for Windows Version 10

910 / 2126

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is

PowerBASIC Compiler for Windows Version 10

911 / 2126

not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

PowerBASIC Compiler for Windows Version 10

912 / 2126

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

ILinkListCollection.REPLACE method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined

PowerBASIC Compiler for Windows Version 10

913 / 2126

internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

PowerBASIC Compiler for Windows Version 10

914 / 2126

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

PowerBASIC Compiler for Windows Version 10

915 / 2126

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is

PowerBASIC Compiler for Windows Version 10

916 / 2126

returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods

PowerBASIC Compiler for Windows Version 10

917 / 2126

CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IMAGELIST ADD BITMAP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

IMAGELIST statement
Purpose Create and manage an IMAGELIST object to use with other functions.

Syntax IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]
IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]
IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]
IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]
IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]
IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]
IMAGELIST GET COUNT hLst TO dataValue&
IMAGELIST KILL hLst
IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO hLst
IMAGELIST SET OVERLAY hLst, image&, overlay&

hBmp Handle of a Bitmap.

hIcn Handle of an Icon.

hLst Handle of the IMAGELIST.

hMsk Handle of a Mask.

dataValue& A long integer variable to which result data is assigned.

rgbColor& A RGB color used in the bitmap to specify transparent pixels.

Remarks An IMAGELIST is a structure which contains any number of graphical images, either
bitmaps or icons, but not a mixture. All of the images are automatically converted to the
type, size, and color depth specified when the IMAGELIST is created. A bitmap (file type
*.BMP) is a single color image, while an icon (file type *.ICO) supports transparency by
including both a color bitmap and a mask bitmap. The mask bitmap is a monochrome
image (one bit per pixel), where each "set" bit describes a pixel which remains
transparent. The IMAGELIST structure can best be described as a set, or array, of

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

918 / 2126

images. You can retrieve the images individually by index number, or pass the entire
IMAGELIST to a control which requires it (LISTVIEW, etc.).

An empty ImageList is first created with IMAGELIST NEW. Images are then added with
IMAGELIST ADD, until the structure is complete. If you add an image which is wider than
the size specified by nWidth&, the image is separated into multiple bitmaps, each of
which is added in sequence. When an IMAGELIST is attached to a control like
LISTVIEW, it is usually destroyed automatically when the control is destroyed. Consult
the control documentation for that information. If not, you must explicitly destroy it with
IMAGELIST KILL.

IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a handle (hBmp), so it must have been loaded into memory (e.g. with

). If the ImageList is an ICON type, a second mask bitmap is also specified by a
handle (hMsk). If the TO clause is included, the index position of the first added
bitmap (starting with 1) is assigned to the variable designated by dataValue&. If the
operation fails, the value 0 is assigned.

IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a name

 (Bmp$), which is the name of an embedded resource or a disk file. If the name string
contains a period, it is presumed to be a disk file. Otherwise, an attempt is made to
load it from a resource - if not found, it is then presumed to be a disk file. If the image
name is a numeric resource, it should be described with a leading pound sign
("#12345"). If the ImageList is an ICON type, a second mask bitmap is also
specified by a handle (hMsk). If the TO clause is included, the index position of the
first added bitmap (starting with 1) is assigned to the variable designated by
dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a handle (hIcn), so it must have been loaded into memory (e.g. with the
WinApi LoadIcon. If the TO clause is included, the index position of the first added icon
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a name string (Icn$), which is the name of an embedded resource or a disk
file. If the name string contains a period, it is presumed to be a disk file. Otherwise, an
attempt is made to load it from a resource - if not found, it is then presumed to be a disk
file. If the icon name is a numeric resource, it should be described with a leading pound
sign ("#12345"). If the TO clause is included, the index position of the first added bitmap
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a handle (hBmp), so it must have been loaded into memory (e.g. with
GRAPHIC BITMAP). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

919 / 2126

is included, the index position of the first added icon (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a name string (Bmp$), which is the name of an embedded resource or a
disk file. If the name string contains a period, it is presumed to be a disk file. Otherwise,
an attempt is made to load it from a resource - if not found, it is then presumed to be a
disk file. If the image name is a numeric resource, it should be described with a leading
pound sign ("#12345"). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added bitmap (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST GET COUNT hLst TO dataValue&

The number of images in the IMAGELIST is retrieved, and assigned to the long integer
variable specified by dataValue&.

IMAGELIST KILL hLst

The IMAGELIST specified by hLst is destroyed. All allocated memory and resources are
released.

IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO
hLst

A new ImageList structure is created. If you specify BITMAP, each image you add will be
stored as a single bitmap. If you specify ICON, each image you add will be stored as two
bitmaps in order to support transparent areas. The parameters nWidth& and nHeight&
specify the size of each image in pixels. The depth& parameter specifies the color depth
in bits per pixel (4,8,16,24,32). A depth of 4 offers 16 colors, 8 offers 256 colors, etc. The
initial& parameter specifies the initial size of the ImageList. While it can grow beyond
this number, it is most efficient to allocate space accurately at the time of creation. The
variable hLst receives the handle of the newly created ImageList, or zero if the operation
failed.

IMAGELIST SET OVERLAY hLst, image&, overlay&

The image specified by the index number image& is declared to be an overlay image.
 The overlay& parameter must be in the range of 1 to 15, and it is used later to retrieve
and/or specify this particular overlay image.

See also GRAPHIC BITMAP LOAD, GRAPHIC BITMAP NEW, GRAPHIC IMAGELIST, LISTVIEW,
TAB SET IMAGELIST, TREEVIEW, XPRINT IMAGELIST

IMAGELIST ADD ICON statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

920 / 2126

IMAGELIST statement
Purpose Create and manage an IMAGELIST object to use with other functions.

Syntax IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]
IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]
IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]
IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]
IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]
IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]
IMAGELIST GET COUNT hLst TO dataValue&
IMAGELIST KILL hLst
IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO hLst
IMAGELIST SET OVERLAY hLst, image&, overlay&

hBmp Handle of a Bitmap.

hIcn Handle of an Icon.

hLst Handle of the IMAGELIST.

hMsk Handle of a Mask.

dataValue& A long integer variable to which result data is assigned.

rgbColor& A RGB color used in the bitmap to specify transparent pixels.

Remarks An IMAGELIST is a structure which contains any number of graphical images, either
bitmaps or icons, but not a mixture. All of the images are automatically converted to the
type, size, and color depth specified when the IMAGELIST is created. A bitmap (file type
*.BMP) is a single color image, while an icon (file type *.ICO) supports transparency by
including both a color bitmap and a mask bitmap. The mask bitmap is a monochrome
image (one bit per pixel), where each "set" bit describes a pixel which remains
transparent. The IMAGELIST structure can best be described as a set, or array, of
images. You can retrieve the images individually by index number, or pass the entire
IMAGELIST to a control which requires it (LISTVIEW, etc.).

An empty ImageList is first created with IMAGELIST NEW. Images are then added with
IMAGELIST ADD, until the structure is complete. If you add an image which is wider than
the size specified by nWidth&, the image is separated into multiple bitmaps, each of
which is added in sequence. When an IMAGELIST is attached to a control like
LISTVIEW, it is usually destroyed automatically when the control is destroyed. Consult
the control documentation for that information. If not, you must explicitly destroy it with
IMAGELIST KILL.

IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a handle (hBmp), so it must have been loaded into memory (e.g. with

). If the ImageList is an ICON type, a second mask bitmap is also specified by a
handle (hMsk). If the TO clause is included, the index position of the first added
bitmap (starting with 1) is assigned to the variable designated by dataValue&. If the
operation fails, the value 0 is assigned.

IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a name

 (Bmp$), which is the name of an embedded resource or a disk file. If the name string
contains a period, it is presumed to be a disk file. Otherwise, an attempt is made to
load it from a resource - if not found, it is then presumed to be a disk file. If the image
name is a numeric resource, it should be described with a leading pound sign

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

921 / 2126

("#12345"). If the ImageList is an ICON type, a second mask bitmap is also
specified by a handle (hMsk). If the TO clause is included, the index position of the
first added bitmap (starting with 1) is assigned to the variable designated by
dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a handle (hIcn), so it must have been loaded into memory (e.g. with the
WinApi LoadIcon. If the TO clause is included, the index position of the first added icon
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a name string (Icn$), which is the name of an embedded resource or a disk
file. If the name string contains a period, it is presumed to be a disk file. Otherwise, an
attempt is made to load it from a resource - if not found, it is then presumed to be a disk
file. If the icon name is a numeric resource, it should be described with a leading pound
sign ("#12345"). If the TO clause is included, the index position of the first added bitmap
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a handle (hBmp), so it must have been loaded into memory (e.g. with
GRAPHIC BITMAP). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added icon (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a name string (Bmp$), which is the name of an embedded resource or a
disk file. If the name string contains a period, it is presumed to be a disk file. Otherwise,
an attempt is made to load it from a resource - if not found, it is then presumed to be a
disk file. If the image name is a numeric resource, it should be described with a leading
pound sign ("#12345"). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added bitmap (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST GET COUNT hLst TO dataValue&

The number of images in the IMAGELIST is retrieved, and assigned to the long integer
variable specified by dataValue&.

IMAGELIST KILL hLst

The IMAGELIST specified by hLst is destroyed. All allocated memory and resources are
released.

IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO
hLst

A new ImageList structure is created. If you specify BITMAP, each image you add will be

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

922 / 2126

stored as a single bitmap. If you specify ICON, each image you add will be stored as two
bitmaps in order to support transparent areas. The parameters nWidth& and nHeight&
specify the size of each image in pixels. The depth& parameter specifies the color depth
in bits per pixel (4,8,16,24,32). A depth of 4 offers 16 colors, 8 offers 256 colors, etc. The
initial& parameter specifies the initial size of the ImageList. While it can grow beyond
this number, it is most efficient to allocate space accurately at the time of creation. The
variable hLst receives the handle of the newly created ImageList, or zero if the operation
failed.

IMAGELIST SET OVERLAY hLst, image&, overlay&

The image specified by the index number image& is declared to be an overlay image.
 The overlay& parameter must be in the range of 1 to 15, and it is used later to retrieve
and/or specify this particular overlay image.

See also GRAPHIC BITMAP LOAD, GRAPHIC BITMAP NEW, GRAPHIC IMAGELIST, LISTVIEW,
TAB SET IMAGELIST, TREEVIEW, XPRINT IMAGELIST

IMAGELIST ADD MASKED statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

IMAGELIST statement
Purpose Create and manage an IMAGELIST object to use with other functions.

Syntax IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]
IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]
IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]
IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]
IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]
IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]
IMAGELIST GET COUNT hLst TO dataValue&
IMAGELIST KILL hLst
IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO hLst
IMAGELIST SET OVERLAY hLst, image&, overlay&

hBmp Handle of a Bitmap.

hIcn Handle of an Icon.

hLst Handle of the IMAGELIST.

hMsk Handle of a Mask.

dataValue& A long integer variable to which result data is assigned.

rgbColor& A RGB color used in the bitmap to specify transparent pixels.

Remarks An IMAGELIST is a structure which contains any number of graphical images, either
bitmaps or icons, but not a mixture. All of the images are automatically converted to the
type, size, and color depth specified when the IMAGELIST is created. A bitmap (file type
*.BMP) is a single color image, while an icon (file type *.ICO) supports transparency by
including both a color bitmap and a mask bitmap. The mask bitmap is a monochrome

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

923 / 2126

image (one bit per pixel), where each "set" bit describes a pixel which remains
transparent. The IMAGELIST structure can best be described as a set, or array, of
images. You can retrieve the images individually by index number, or pass the entire
IMAGELIST to a control which requires it (LISTVIEW, etc.).

An empty ImageList is first created with IMAGELIST NEW. Images are then added with
IMAGELIST ADD, until the structure is complete. If you add an image which is wider than
the size specified by nWidth&, the image is separated into multiple bitmaps, each of
which is added in sequence. When an IMAGELIST is attached to a control like
LISTVIEW, it is usually destroyed automatically when the control is destroyed. Consult
the control documentation for that information. If not, you must explicitly destroy it with
IMAGELIST KILL.

IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a handle (hBmp), so it must have been loaded into memory (e.g. with

). If the ImageList is an ICON type, a second mask bitmap is also specified by a
handle (hMsk). If the TO clause is included, the index position of the first added
bitmap (starting with 1) is assigned to the variable designated by dataValue&. If the
operation fails, the value 0 is assigned.

IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a name

 (Bmp$), which is the name of an embedded resource or a disk file. If the name string
contains a period, it is presumed to be a disk file. Otherwise, an attempt is made to
load it from a resource - if not found, it is then presumed to be a disk file. If the image
name is a numeric resource, it should be described with a leading pound sign
("#12345"). If the ImageList is an ICON type, a second mask bitmap is also
specified by a handle (hMsk). If the TO clause is included, the index position of the
first added bitmap (starting with 1) is assigned to the variable designated by
dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a handle (hIcn), so it must have been loaded into memory (e.g. with the
WinApi LoadIcon. If the TO clause is included, the index position of the first added icon
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a name string (Icn$), which is the name of an embedded resource or a disk
file. If the name string contains a period, it is presumed to be a disk file. Otherwise, an
attempt is made to load it from a resource - if not found, it is then presumed to be a disk
file. If the icon name is a numeric resource, it should be described with a leading pound
sign ("#12345"). If the TO clause is included, the index position of the first added bitmap
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a handle (hBmp), so it must have been loaded into memory (e.g. with
GRAPHIC BITMAP). The parameter rgbColor& specifies the RGB color used in the

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

924 / 2126

bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added icon (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a name string (Bmp$), which is the name of an embedded resource or a
disk file. If the name string contains a period, it is presumed to be a disk file. Otherwise,
an attempt is made to load it from a resource - if not found, it is then presumed to be a
disk file. If the image name is a numeric resource, it should be described with a leading
pound sign ("#12345"). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added bitmap (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST GET COUNT hLst TO dataValue&

The number of images in the IMAGELIST is retrieved, and assigned to the long integer
variable specified by dataValue&.

IMAGELIST KILL hLst

The IMAGELIST specified by hLst is destroyed. All allocated memory and resources are
released.

IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO
hLst

A new ImageList structure is created. If you specify BITMAP, each image you add will be
stored as a single bitmap. If you specify ICON, each image you add will be stored as two
bitmaps in order to support transparent areas. The parameters nWidth& and nHeight&
specify the size of each image in pixels. The depth& parameter specifies the color depth
in bits per pixel (4,8,16,24,32). A depth of 4 offers 16 colors, 8 offers 256 colors, etc. The
initial& parameter specifies the initial size of the ImageList. While it can grow beyond
this number, it is most efficient to allocate space accurately at the time of creation. The
variable hLst receives the handle of the newly created ImageList, or zero if the operation
failed.

IMAGELIST SET OVERLAY hLst, image&, overlay&

The image specified by the index number image& is declared to be an overlay image.
 The overlay& parameter must be in the range of 1 to 15, and it is used later to retrieve
and/or specify this particular overlay image.

See also GRAPHIC BITMAP LOAD, GRAPHIC BITMAP NEW, GRAPHIC IMAGELIST, LISTVIEW,
TAB SET IMAGELIST, TREEVIEW, XPRINT IMAGELIST

IMAGELIST GET COUNT statement

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

925 / 2126

Example

IMAGELIST statement
Purpose Create and manage an IMAGELIST object to use with other functions.

Syntax IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]
IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]
IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]
IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]
IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]
IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]
IMAGELIST GET COUNT hLst TO dataValue&
IMAGELIST KILL hLst
IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO hLst
IMAGELIST SET OVERLAY hLst, image&, overlay&

hBmp Handle of a Bitmap.

hIcn Handle of an Icon.

hLst Handle of the IMAGELIST.

hMsk Handle of a Mask.

dataValue& A long integer variable to which result data is assigned.

rgbColor& A RGB color used in the bitmap to specify transparent pixels.

Remarks An IMAGELIST is a structure which contains any number of graphical images, either
bitmaps or icons, but not a mixture. All of the images are automatically converted to the
type, size, and color depth specified when the IMAGELIST is created. A bitmap (file type
*.BMP) is a single color image, while an icon (file type *.ICO) supports transparency by
including both a color bitmap and a mask bitmap. The mask bitmap is a monochrome
image (one bit per pixel), where each "set" bit describes a pixel which remains
transparent. The IMAGELIST structure can best be described as a set, or array, of
images. You can retrieve the images individually by index number, or pass the entire
IMAGELIST to a control which requires it (LISTVIEW, etc.).

An empty ImageList is first created with IMAGELIST NEW. Images are then added with
IMAGELIST ADD, until the structure is complete. If you add an image which is wider than
the size specified by nWidth&, the image is separated into multiple bitmaps, each of
which is added in sequence. When an IMAGELIST is attached to a control like
LISTVIEW, it is usually destroyed automatically when the control is destroyed. Consult
the control documentation for that information. If not, you must explicitly destroy it with
IMAGELIST KILL.

IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a handle (hBmp), so it must have been loaded into memory (e.g. with

). If the ImageList is an ICON type, a second mask bitmap is also specified by a
handle (hMsk). If the TO clause is included, the index position of the first added
bitmap (starting with 1) is assigned to the variable designated by dataValue&. If the
operation fails, the value 0 is assigned.

IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a name

 (Bmp$), which is the name of an embedded resource or a disk file. If the name string
contains a period, it is presumed to be a disk file. Otherwise, an attempt is made to
load it from a resource - if not found, it is then presumed to be a disk file. If the image

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

926 / 2126

name is a numeric resource, it should be described with a leading pound sign
("#12345"). If the ImageList is an ICON type, a second mask bitmap is also
specified by a handle (hMsk). If the TO clause is included, the index position of the
first added bitmap (starting with 1) is assigned to the variable designated by
dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a handle (hIcn), so it must have been loaded into memory (e.g. with the
WinApi LoadIcon. If the TO clause is included, the index position of the first added icon
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a name string (Icn$), which is the name of an embedded resource or a disk
file. If the name string contains a period, it is presumed to be a disk file. Otherwise, an
attempt is made to load it from a resource - if not found, it is then presumed to be a disk
file. If the icon name is a numeric resource, it should be described with a leading pound
sign ("#12345"). If the TO clause is included, the index position of the first added bitmap
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a handle (hBmp), so it must have been loaded into memory (e.g. with
GRAPHIC BITMAP). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added icon (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a name string (Bmp$), which is the name of an embedded resource or a
disk file. If the name string contains a period, it is presumed to be a disk file. Otherwise,
an attempt is made to load it from a resource - if not found, it is then presumed to be a
disk file. If the image name is a numeric resource, it should be described with a leading
pound sign ("#12345"). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added bitmap (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST GET COUNT hLst TO dataValue&

The number of images in the IMAGELIST is retrieved, and assigned to the long integer
variable specified by dataValue&.

IMAGELIST KILL hLst

The IMAGELIST specified by hLst is destroyed. All allocated memory and resources are
released.

IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO
hLst

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

927 / 2126

A new ImageList structure is created. If you specify BITMAP, each image you add will be
stored as a single bitmap. If you specify ICON, each image you add will be stored as two
bitmaps in order to support transparent areas. The parameters nWidth& and nHeight&
specify the size of each image in pixels. The depth& parameter specifies the color depth
in bits per pixel (4,8,16,24,32). A depth of 4 offers 16 colors, 8 offers 256 colors, etc. The
initial& parameter specifies the initial size of the ImageList. While it can grow beyond
this number, it is most efficient to allocate space accurately at the time of creation. The
variable hLst receives the handle of the newly created ImageList, or zero if the operation
failed.

IMAGELIST SET OVERLAY hLst, image&, overlay&

The image specified by the index number image& is declared to be an overlay image.
 The overlay& parameter must be in the range of 1 to 15, and it is used later to retrieve
and/or specify this particular overlay image.

See also GRAPHIC BITMAP LOAD, GRAPHIC BITMAP NEW, GRAPHIC IMAGELIST, LISTVIEW,
TAB SET IMAGELIST, TREEVIEW, XPRINT IMAGELIST

IMAGELIST KILL statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

IMAGELIST statement
Purpose Create and manage an IMAGELIST object to use with other functions.

Syntax IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]
IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]
IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]
IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]
IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]
IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]
IMAGELIST GET COUNT hLst TO dataValue&
IMAGELIST KILL hLst
IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO hLst
IMAGELIST SET OVERLAY hLst, image&, overlay&

hBmp Handle of a Bitmap.

hIcn Handle of an Icon.

hLst Handle of the IMAGELIST.

hMsk Handle of a Mask.

dataValue& A long integer variable to which result data is assigned.

rgbColor& A RGB color used in the bitmap to specify transparent pixels.

Remarks An IMAGELIST is a structure which contains any number of graphical images, either
bitmaps or icons, but not a mixture. All of the images are automatically converted to the
type, size, and color depth specified when the IMAGELIST is created. A bitmap (file type
*.BMP) is a single color image, while an icon (file type *.ICO) supports transparency by

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

928 / 2126

including both a color bitmap and a mask bitmap. The mask bitmap is a monochrome
image (one bit per pixel), where each "set" bit describes a pixel which remains
transparent. The IMAGELIST structure can best be described as a set, or array, of
images. You can retrieve the images individually by index number, or pass the entire
IMAGELIST to a control which requires it (LISTVIEW, etc.).

An empty ImageList is first created with IMAGELIST NEW. Images are then added with
IMAGELIST ADD, until the structure is complete. If you add an image which is wider than
the size specified by nWidth&, the image is separated into multiple bitmaps, each of
which is added in sequence. When an IMAGELIST is attached to a control like
LISTVIEW, it is usually destroyed automatically when the control is destroyed. Consult
the control documentation for that information. If not, you must explicitly destroy it with
IMAGELIST KILL.

IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a handle (hBmp), so it must have been loaded into memory (e.g. with

). If the ImageList is an ICON type, a second mask bitmap is also specified by a
handle (hMsk). If the TO clause is included, the index position of the first added
bitmap (starting with 1) is assigned to the variable designated by dataValue&. If the
operation fails, the value 0 is assigned.

IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a name

 (Bmp$), which is the name of an embedded resource or a disk file. If the name string
contains a period, it is presumed to be a disk file. Otherwise, an attempt is made to
load it from a resource - if not found, it is then presumed to be a disk file. If the image
name is a numeric resource, it should be described with a leading pound sign
("#12345"). If the ImageList is an ICON type, a second mask bitmap is also
specified by a handle (hMsk). If the TO clause is included, the index position of the
first added bitmap (starting with 1) is assigned to the variable designated by
dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a handle (hIcn), so it must have been loaded into memory (e.g. with the
WinApi LoadIcon. If the TO clause is included, the index position of the first added icon
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a name string (Icn$), which is the name of an embedded resource or a disk
file. If the name string contains a period, it is presumed to be a disk file. Otherwise, an
attempt is made to load it from a resource - if not found, it is then presumed to be a disk
file. If the icon name is a numeric resource, it should be described with a leading pound
sign ("#12345"). If the TO clause is included, the index position of the first added bitmap
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a handle (hBmp), so it must have been loaded into memory (e.g. with

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

929 / 2126

GRAPHIC BITMAP). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added icon (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a name string (Bmp$), which is the name of an embedded resource or a
disk file. If the name string contains a period, it is presumed to be a disk file. Otherwise,
an attempt is made to load it from a resource - if not found, it is then presumed to be a
disk file. If the image name is a numeric resource, it should be described with a leading
pound sign ("#12345"). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added bitmap (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST GET COUNT hLst TO dataValue&

The number of images in the IMAGELIST is retrieved, and assigned to the long integer
variable specified by dataValue&.

IMAGELIST KILL hLst

The IMAGELIST specified by hLst is destroyed. All allocated memory and resources are
released.

IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO
hLst

A new ImageList structure is created. If you specify BITMAP, each image you add will be
stored as a single bitmap. If you specify ICON, each image you add will be stored as two
bitmaps in order to support transparent areas. The parameters nWidth& and nHeight&
specify the size of each image in pixels. The depth& parameter specifies the color depth
in bits per pixel (4,8,16,24,32). A depth of 4 offers 16 colors, 8 offers 256 colors, etc. The
initial& parameter specifies the initial size of the ImageList. While it can grow beyond
this number, it is most efficient to allocate space accurately at the time of creation. The
variable hLst receives the handle of the newly created ImageList, or zero if the operation
failed.

IMAGELIST SET OVERLAY hLst, image&, overlay&

The image specified by the index number image& is declared to be an overlay image.
 The overlay& parameter must be in the range of 1 to 15, and it is used later to retrieve
and/or specify this particular overlay image.

See also GRAPHIC BITMAP LOAD, GRAPHIC BITMAP NEW, GRAPHIC IMAGELIST, LISTVIEW,
TAB SET IMAGELIST, TREEVIEW, XPRINT IMAGELIST

IMAGELIST NEW BITMAP statement

Keyword Template
Purpose

Syntax

Remarks

PowerBASIC Compiler for Windows Version 10

930 / 2126

See also

Example

IMAGELIST statement
Purpose Create and manage an IMAGELIST object to use with other functions.

Syntax IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]
IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]
IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]
IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]
IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]
IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]
IMAGELIST GET COUNT hLst TO dataValue&
IMAGELIST KILL hLst
IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO hLst
IMAGELIST SET OVERLAY hLst, image&, overlay&

hBmp Handle of a Bitmap.

hIcn Handle of an Icon.

hLst Handle of the IMAGELIST.

hMsk Handle of a Mask.

dataValue& A long integer variable to which result data is assigned.

rgbColor& A RGB color used in the bitmap to specify transparent pixels.

Remarks An IMAGELIST is a structure which contains any number of graphical images, either
bitmaps or icons, but not a mixture. All of the images are automatically converted to the
type, size, and color depth specified when the IMAGELIST is created. A bitmap (file type
*.BMP) is a single color image, while an icon (file type *.ICO) supports transparency by
including both a color bitmap and a mask bitmap. The mask bitmap is a monochrome
image (one bit per pixel), where each "set" bit describes a pixel which remains
transparent. The IMAGELIST structure can best be described as a set, or array, of
images. You can retrieve the images individually by index number, or pass the entire
IMAGELIST to a control which requires it (LISTVIEW, etc.).

An empty ImageList is first created with IMAGELIST NEW. Images are then added with
IMAGELIST ADD, until the structure is complete. If you add an image which is wider than
the size specified by nWidth&, the image is separated into multiple bitmaps, each of
which is added in sequence. When an IMAGELIST is attached to a control like
LISTVIEW, it is usually destroyed automatically when the control is destroyed. Consult
the control documentation for that information. If not, you must explicitly destroy it with
IMAGELIST KILL.

IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a handle (hBmp), so it must have been loaded into memory (e.g. with

). If the ImageList is an ICON type, a second mask bitmap is also specified by a
handle (hMsk). If the TO clause is included, the index position of the first added
bitmap (starting with 1) is assigned to the variable designated by dataValue&. If the
operation fails, the value 0 is assigned.

IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a name

 (Bmp$), which is the name of an embedded resource or a disk file. If the name string

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

931 / 2126

contains a period, it is presumed to be a disk file. Otherwise, an attempt is made to
load it from a resource - if not found, it is then presumed to be a disk file. If the image
name is a numeric resource, it should be described with a leading pound sign
("#12345"). If the ImageList is an ICON type, a second mask bitmap is also
specified by a handle (hMsk). If the TO clause is included, the index position of the
first added bitmap (starting with 1) is assigned to the variable designated by
dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a handle (hIcn), so it must have been loaded into memory (e.g. with the
WinApi LoadIcon. If the TO clause is included, the index position of the first added icon
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a name string (Icn$), which is the name of an embedded resource or a disk
file. If the name string contains a period, it is presumed to be a disk file. Otherwise, an
attempt is made to load it from a resource - if not found, it is then presumed to be a disk
file. If the icon name is a numeric resource, it should be described with a leading pound
sign ("#12345"). If the TO clause is included, the index position of the first added bitmap
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a handle (hBmp), so it must have been loaded into memory (e.g. with
GRAPHIC BITMAP). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added icon (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a name string (Bmp$), which is the name of an embedded resource or a
disk file. If the name string contains a period, it is presumed to be a disk file. Otherwise,
an attempt is made to load it from a resource - if not found, it is then presumed to be a
disk file. If the image name is a numeric resource, it should be described with a leading
pound sign ("#12345"). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added bitmap (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST GET COUNT hLst TO dataValue&

The number of images in the IMAGELIST is retrieved, and assigned to the long integer
variable specified by dataValue&.

IMAGELIST KILL hLst

The IMAGELIST specified by hLst is destroyed. All allocated memory and resources are
released.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

932 / 2126

IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO
hLst

A new ImageList structure is created. If you specify BITMAP, each image you add will be
stored as a single bitmap. If you specify ICON, each image you add will be stored as two
bitmaps in order to support transparent areas. The parameters nWidth& and nHeight&
specify the size of each image in pixels. The depth& parameter specifies the color depth
in bits per pixel (4,8,16,24,32). A depth of 4 offers 16 colors, 8 offers 256 colors, etc. The
initial& parameter specifies the initial size of the ImageList. While it can grow beyond
this number, it is most efficient to allocate space accurately at the time of creation. The
variable hLst receives the handle of the newly created ImageList, or zero if the operation
failed.

IMAGELIST SET OVERLAY hLst, image&, overlay&

The image specified by the index number image& is declared to be an overlay image.
 The overlay& parameter must be in the range of 1 to 15, and it is used later to retrieve
and/or specify this particular overlay image.

See also GRAPHIC BITMAP LOAD, GRAPHIC BITMAP NEW, GRAPHIC IMAGELIST, LISTVIEW,
TAB SET IMAGELIST, TREEVIEW, XPRINT IMAGELIST

IMAGELIST NEW ICON statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

IMAGELIST statement
Purpose Create and manage an IMAGELIST object to use with other functions.

Syntax IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]
IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]
IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]
IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]
IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]
IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]
IMAGELIST GET COUNT hLst TO dataValue&
IMAGELIST KILL hLst
IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO hLst
IMAGELIST SET OVERLAY hLst, image&, overlay&

hBmp Handle of a Bitmap.

hIcn Handle of an Icon.

hLst Handle of the IMAGELIST.

hMsk Handle of a Mask.

dataValue& A long integer variable to which result data is assigned.

rgbColor& A RGB color used in the bitmap to specify transparent pixels.

Remarks An IMAGELIST is a structure which contains any number of graphical images, either

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

933 / 2126

bitmaps or icons, but not a mixture. All of the images are automatically converted to the
type, size, and color depth specified when the IMAGELIST is created. A bitmap (file type
*.BMP) is a single color image, while an icon (file type *.ICO) supports transparency by
including both a color bitmap and a mask bitmap. The mask bitmap is a monochrome
image (one bit per pixel), where each "set" bit describes a pixel which remains
transparent. The IMAGELIST structure can best be described as a set, or array, of
images. You can retrieve the images individually by index number, or pass the entire
IMAGELIST to a control which requires it (LISTVIEW, etc.).

An empty ImageList is first created with IMAGELIST NEW. Images are then added with
IMAGELIST ADD, until the structure is complete. If you add an image which is wider than
the size specified by nWidth&, the image is separated into multiple bitmaps, each of
which is added in sequence. When an IMAGELIST is attached to a control like
LISTVIEW, it is usually destroyed automatically when the control is destroyed. Consult
the control documentation for that information. If not, you must explicitly destroy it with
IMAGELIST KILL.

IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a handle (hBmp), so it must have been loaded into memory (e.g. with

). If the ImageList is an ICON type, a second mask bitmap is also specified by a
handle (hMsk). If the TO clause is included, the index position of the first added
bitmap (starting with 1) is assigned to the variable designated by dataValue&. If the
operation fails, the value 0 is assigned.

IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a name

 (Bmp$), which is the name of an embedded resource or a disk file. If the name string
contains a period, it is presumed to be a disk file. Otherwise, an attempt is made to
load it from a resource - if not found, it is then presumed to be a disk file. If the image
name is a numeric resource, it should be described with a leading pound sign
("#12345"). If the ImageList is an ICON type, a second mask bitmap is also
specified by a handle (hMsk). If the TO clause is included, the index position of the
first added bitmap (starting with 1) is assigned to the variable designated by
dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a handle (hIcn), so it must have been loaded into memory (e.g. with the
WinApi LoadIcon. If the TO clause is included, the index position of the first added icon
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a name string (Icn$), which is the name of an embedded resource or a disk
file. If the name string contains a period, it is presumed to be a disk file. Otherwise, an
attempt is made to load it from a resource - if not found, it is then presumed to be a disk
file. If the icon name is a numeric resource, it should be described with a leading pound
sign ("#12345"). If the TO clause is included, the index position of the first added bitmap
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

934 / 2126

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a handle (hBmp), so it must have been loaded into memory (e.g. with
GRAPHIC BITMAP). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added icon (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a name string (Bmp$), which is the name of an embedded resource or a
disk file. If the name string contains a period, it is presumed to be a disk file. Otherwise,
an attempt is made to load it from a resource - if not found, it is then presumed to be a
disk file. If the image name is a numeric resource, it should be described with a leading
pound sign ("#12345"). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added bitmap (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST GET COUNT hLst TO dataValue&

The number of images in the IMAGELIST is retrieved, and assigned to the long integer
variable specified by dataValue&.

IMAGELIST KILL hLst

The IMAGELIST specified by hLst is destroyed. All allocated memory and resources are
released.

IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO
hLst

A new ImageList structure is created. If you specify BITMAP, each image you add will be
stored as a single bitmap. If you specify ICON, each image you add will be stored as two
bitmaps in order to support transparent areas. The parameters nWidth& and nHeight&
specify the size of each image in pixels. The depth& parameter specifies the color depth
in bits per pixel (4,8,16,24,32). A depth of 4 offers 16 colors, 8 offers 256 colors, etc. The
initial& parameter specifies the initial size of the ImageList. While it can grow beyond
this number, it is most efficient to allocate space accurately at the time of creation. The
variable hLst receives the handle of the newly created ImageList, or zero if the operation
failed.

IMAGELIST SET OVERLAY hLst, image&, overlay&

The image specified by the index number image& is declared to be an overlay image.
 The overlay& parameter must be in the range of 1 to 15, and it is used later to retrieve
and/or specify this particular overlay image.

See also GRAPHIC BITMAP LOAD, GRAPHIC BITMAP NEW, GRAPHIC IMAGELIST, LISTVIEW,
TAB SET IMAGELIST, TREEVIEW, XPRINT IMAGELIST

IMAGELIST SET OVERLAY statement

Keyword Template
Purpose

Syntax

PowerBASIC Compiler for Windows Version 10

935 / 2126

Remarks

See also

Example

IMAGELIST statement
Purpose Create and manage an IMAGELIST object to use with other functions.

Syntax IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]
IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]
IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]
IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]
IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]
IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]
IMAGELIST GET COUNT hLst TO dataValue&
IMAGELIST KILL hLst
IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO hLst
IMAGELIST SET OVERLAY hLst, image&, overlay&

hBmp Handle of a Bitmap.

hIcn Handle of an Icon.

hLst Handle of the IMAGELIST.

hMsk Handle of a Mask.

dataValue& A long integer variable to which result data is assigned.

rgbColor& A RGB color used in the bitmap to specify transparent pixels.

Remarks An IMAGELIST is a structure which contains any number of graphical images, either
bitmaps or icons, but not a mixture. All of the images are automatically converted to the
type, size, and color depth specified when the IMAGELIST is created. A bitmap (file type
*.BMP) is a single color image, while an icon (file type *.ICO) supports transparency by
including both a color bitmap and a mask bitmap. The mask bitmap is a monochrome
image (one bit per pixel), where each "set" bit describes a pixel which remains
transparent. The IMAGELIST structure can best be described as a set, or array, of
images. You can retrieve the images individually by index number, or pass the entire
IMAGELIST to a control which requires it (LISTVIEW, etc.).

An empty ImageList is first created with IMAGELIST NEW. Images are then added with
IMAGELIST ADD, until the structure is complete. If you add an image which is wider than
the size specified by nWidth&, the image is separated into multiple bitmaps, each of
which is added in sequence. When an IMAGELIST is attached to a control like
LISTVIEW, it is usually destroyed automatically when the control is destroyed. Consult
the control documentation for that information. If not, you must explicitly destroy it with
IMAGELIST KILL.

IMAGELIST ADD BITMAP hLst, hBmp [,hMsk] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a handle (hBmp), so it must have been loaded into memory (e.g. with

). If the ImageList is an ICON type, a second mask bitmap is also specified by a
handle (hMsk). If the TO clause is included, the index position of the first added
bitmap (starting with 1) is assigned to the variable designated by dataValue&. If the
operation fails, the value 0 is assigned.

IMAGELIST ADD BITMAP hLst, Bmp$ [,Msk$] [TO dataValue&]

An image is added to the ImageList specified by hLst. With this syntax, the image is
specified by a name

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

936 / 2126

 (Bmp$), which is the name of an embedded resource or a disk file. If the name string
contains a period, it is presumed to be a disk file. Otherwise, an attempt is made to
load it from a resource - if not found, it is then presumed to be a disk file. If the image
name is a numeric resource, it should be described with a leading pound sign
("#12345"). If the ImageList is an ICON type, a second mask bitmap is also
specified by a handle (hMsk). If the TO clause is included, the index position of the
first added bitmap (starting with 1) is assigned to the variable designated by
dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, hIcn [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a handle (hIcn), so it must have been loaded into memory (e.g. with the
WinApi LoadIcon. If the TO clause is included, the index position of the first added icon
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD ICON hLst, Icn$ [TO dataValue&]

An icon is added to the ImageList specified by hLst. With this syntax, the icon is
specified by a name string (Icn$), which is the name of an embedded resource or a disk
file. If the name string contains a period, it is presumed to be a disk file. Otherwise, an
attempt is made to load it from a resource - if not found, it is then presumed to be a disk
file. If the icon name is a numeric resource, it should be described with a leading pound
sign ("#12345"). If the TO clause is included, the index position of the first added bitmap
(starting with 1) is assigned to the variable designated by dataValue&. If the operation
fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, hBmp, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a handle (hBmp), so it must have been loaded into memory (e.g. with
GRAPHIC BITMAP). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added icon (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST ADD MASKED hLst, Bmp$, rgbColor& [TO dataValue&]

A bitmap is added to the icon ImageList specified by hLst. With this syntax, the bitmap
is specified by a name string (Bmp$), which is the name of an embedded resource or a
disk file. If the name string contains a period, it is presumed to be a disk file. Otherwise,
an attempt is made to load it from a resource - if not found, it is then presumed to be a
disk file. If the image name is a numeric resource, it should be described with a leading
pound sign ("#12345"). The parameter rgbColor& specifies the RGB color used in the
bitmap to specify transparent pixels. Each pixel of that color is changed to the color
black, and a mask bitmap is created to describe the transparent pixels. If the TO clause
is included, the index position of the first added bitmap (starting with 1) is assigned to the
variable designated by dataValue&. If the operation fails, the value 0 is assigned.

IMAGELIST GET COUNT hLst TO dataValue&

The number of images in the IMAGELIST is retrieved, and assigned to the long integer
variable specified by dataValue&.

IMAGELIST KILL hLst

The IMAGELIST specified by hLst is destroyed. All allocated memory and resources are
released.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

937 / 2126

IMAGELIST NEW BITMAP|ICON nWidth&, nHeight&, depth&, initial& TO
hLst

A new ImageList structure is created. If you specify BITMAP, each image you add will be
stored as a single bitmap. If you specify ICON, each image you add will be stored as two
bitmaps in order to support transparent areas. The parameters nWidth& and nHeight&
specify the size of each image in pixels. The depth& parameter specifies the color depth
in bits per pixel (4,8,16,24,32). A depth of 4 offers 16 colors, 8 offers 256 colors, etc. The
initial& parameter specifies the initial size of the ImageList. While it can grow beyond
this number, it is most efficient to allocate space accurately at the time of creation. The
variable hLst receives the handle of the newly created ImageList, or zero if the operation
failed.

IMAGELIST SET OVERLAY hLst, image&, overlay&

The image specified by the index number image& is declared to be an overlay image.
 The overlay& parameter must be in the range of 1 to 15, and it is used later to retrieve
and/or specify this particular overlay image.

See also GRAPHIC BITMAP LOAD, GRAPHIC BITMAP NEW, GRAPHIC IMAGELIST, LISTVIEW,
TAB SET IMAGELIST, TREEVIEW, XPRINT IMAGELIST

IMP operator

IMP operator
Purpose The IMP operator works as both a logical and a bitwise arithmetic operator.

Syntax p IMP q

Remarks IMP as a logical operator

The IMP operator returns FALSE (zero) if and only if its first operand is TRUE (non-zero),
and its second operand is FALSE. In all other cases, it returns TRUE.

Truth table
x y x IMP y
T T T
T F F
F T T
F F T

Using IMP as a bitwise arithmetic operator

IMP is seldom used as a bitwise arithmetic operator, but here is a sample:

See also Arithmetic Operators, AND, EQV, ISFALSE, ISTRUE, NOT, OR, XOR

IMPORT ADDR statement

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

938 / 2126

Syntax

Remarks

See also

Example

IMPORT statement
Purpose Load or free a library (DLL) to access an imported procedure.

Syntax IMPORT ADDR ProcName$, LibName$ TO AddrVar& [, HndlVar&]
IMPORT CLOSE LibHndl

Remarks In most cases, libraries are implicitly loaded automatically when you list an IMPORT or
LIB option in a DECLARE statement. While that's the easiest approach, it can cause a
fatal problem if the DLL is missing, or it's a version which does not include the
Sub/Function you need. In that case, your program will fail at startup, and not execute at
all.

IMPORT ADDR allows you to load a DLL explicitly, by name, so that you can handle a
problem gracefully if the operation fails for any reason. With IMPORT ADDR, ProcName$
specifies the name of the SUB or Function you wish to access, while LibName$ specifies
the name of the DLL and where it is located. ProcName$ must use the correct
upper/lower case for all alphabetic characters or it will fail. If the load is successful, the
address of the entry point of the Sub/Function is assigned to the variable AddrVar&, and
the handle of the DLL is assigned to the optional variable HndlVar&. Both of these
variables must be Long Integers or DWords. If the load fails for any reason, the value zero
(0) is assigned to both.

After the library (DLL) is loaded successfully, you can access the Sub/Function with
CALL DWORD AddrVar&.

Once you are through using the library, you can release it and regain the memory used
by executing IMPORT CLOSE. The expression LibHndl must specify the value returned
in HndlVar& when the DLL was loaded. If you do not execute an IMPORT CLOSE, the
DLL will be automatically released when your program terminates.

See also CALL DWORD, DECLARE

IMPORT CLOSE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

IMPORT statement
Purpose Load or free a library (DLL) to access an imported procedure.

Syntax IMPORT ADDR ProcName$, LibName$ TO AddrVar& [, HndlVar&]
IMPORT CLOSE LibHndl

Remarks In most cases, libraries are implicitly loaded automatically when you list an IMPORT or
LIB option in a DECLARE statement. While that's the easiest approach, it can cause a

PowerBASIC Compiler for Windows Version 10

939 / 2126

fatal problem if the DLL is missing, or it's a version which does not include the
Sub/Function you need. In that case, your program will fail at startup, and not execute at
all.

IMPORT ADDR allows you to load a DLL explicitly, by name, so that you can handle a
problem gracefully if the operation fails for any reason. With IMPORT ADDR, ProcName$
specifies the name of the SUB or Function you wish to access, while LibName$ specifies
the name of the DLL and where it is located. ProcName$ must use the correct
upper/lower case for all alphabetic characters or it will fail. If the load is successful, the
address of the entry point of the Sub/Function is assigned to the variable AddrVar&, and
the handle of the DLL is assigned to the optional variable HndlVar&. Both of these
variables must be Long Integers or DWords. If the load fails for any reason, the value zero
(0) is assigned to both.

After the library (DLL) is loaded successfully, you can access the Sub/Function with
CALL DWORD AddrVar&.

Once you are through using the library, you can release it and regain the memory used
by executing IMPORT CLOSE. The expression LibHndl must specify the value returned
in HndlVar& when the DLL was loaded. If you do not execute an IMPORT CLOSE, the
DLL will be automatically released when your program terminates.

See also CALL DWORD, DECLARE

INCR statement

INCR statement
Purpose Increment a variable by 1; increment a pointer by the size of its target; or increment the

target of a numeric pointer by 1.

Syntax INCR variable

Remarks variable can be a

 or a pointer variable. When INCR is used with a numeric variable, 1 is added to the
numeric variable.
When INCR is used with a pointer variable itself, the value of the pointer is incremented by
the size of the pointer's target.

When INCR is used on a numeric pointer's target (i.e., INCR @IntPtr) the value of the
target is incremented by 1.

For example, given a pointer to an array where the pointer targets element 1000, applying
INCR to the pointer would result in the pointer aiming at element 1001. The actual
address held by the pointer would have risen by two, because the target of the pointer is
an Integer which is two bytes wide.

Conversely, if INCR was used on the target of this Integer pointer, the value of the element
itself would be incremented by 1.

See also DECR, LET

Example DIM x&, LongPtr AS LONG POINTER
INCR x&
INCR LongPtr
INCR @LongPtr

INPUT# statement

INPUT# statement

PowerBASIC Compiler for Windows Version 10

940 / 2126

Purpose Load variables with data from a sequential file.

Syntax INPUT #filenum&, variable_list

Remarks filenum& is the file number, or variable containing a file number, given when the file was
opened. variable_list is a comma-delimited sequence of one or more

 or variables. When the INPUT# statement reads an unquoted data item from a file,
it removes leading spaces. If leading spaces are significant, place quotes around the
file data, either directly or by using WRITE# to save the data to disk. Please note that
data to be quoted should not contain embedded quotes.
The data in the file must match the type(s) of the variable(s) defined in the INPUT#
statement. The file data should be separated by commas with a carriage return at the
end. The WRITE# statement is ideal for creating such files.

INPUT# also supports fixed-length and nul-terminated string variables; however, data that
is longer than the string is truncated to fit into the string. Dynamic strings receive the
data without truncation. UDT variables may not be used, although fixed-length and nul-
terminated UDT member variables are supported.

See also LINE INPUT#, PRINT#, WRITE#

Example SUB MakeFile
 ' MakeFile opens a sequential file for output.
 ' Using WRITE#, it writes lines of different
 ' data types to 'the file.
 OPEN "INPUT#.DTA" FOR OUTPUT AS #1
 StringVariable$ = "I'll be back."
 IntegerVar% = 1000
 FloatingPoint! = 30000.12
 ' Write a line of text to the sequential file.
 WRITE #1, StringVariable$, IntegerVar%, FloatingPoint!
 CLOSE #1
END SUB

SUB ReadFile
 ' This procedure opens a sequential file for
 ' input. Using INPUT# it reads lines of
 ' different data types from the file.
 OPEN "INPUT#.DTA" FOR INPUT AS #1
 RESET StringVariable$
 RESET IntegerVar%
 RESET FloatingPoint!
 ' Read a line of text from the sequential file.
 INPUT #1, StringVariable$, IntegerVar%, FloatingPoint!
 CLOSE #1
END SUB

INPUTBOX$ function

INPUTBOX$ function
Purpose INPUTBOX$ displays a dialog box containing a prompt. INPUTBOX$ waits for the user to

enter text, and accept or cancel the dialog. INPUTBOX$ returns the contents of the text
box.

Syntax sResult$ = INPUTBOX$(prompt$ [[, title$], default$] [, xpos%, ypos%])

Remarks Prompt$ is the text prompt displayed in the Inputbox dialog.

Title$ is the caption for the Inputbox dialog and is optional.

Default$ is the default result text displayed in the edit section of the Inputbox dialog, and

PowerBASIC Compiler for Windows Version 10

941 / 2126

is optional.

xpos% and ypos% specify the location on the screen to display the Inputbox, in dialog
units. If these are not specified, the Inputbox dialog is centered on the screen.

Restrictions The returned string value is limited to 255 characters.

See also MSGBOX function, MSGBOX statement, TXT pseudo-object

Example sResult$ = INPUTBOX$("Enter your Name",, "Jane Doe")

INSTANCE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

INSTANCE statement
Purpose Declare INSTANCE variables which are unique to each object.

Syntax INSTANCE variable[()] [AS type] [, variable[()]]
INSTANCE variable[()] [, variable[()]] [, ...] AS type

Remarks INSTANCE statements are used to declare instance variables for an object. A unique set
of instance variables is created for every new object, which may only be referenced from
within that object. INSTANCE statements may only be placed at the beginning of a
CLASS/END CLASS block, preceding all

 blocks.
INSTANCE will optionally accept a list of variables, each of which are defined by the
 descriptor which follows it:

INSTANCE x as integer, y as long

INSTANCE will also accept a list of variables, all of which are defined by the single
descriptor at the end of the list;

INSTANCE aaa, bbb, ccc AS INTEGER
INSTANCE vptr, aptr() AS LONG PTR

To declare an array as an instance variable, use an empty set of parentheses in the
variable list: You can then use the DIM statement to dimension the array.

See also GLOBAL,INTERFACE (Direct), LOCAL, STATIC, THREADED, What is an object,
anyway?

INSTR function

INSTR function
Purpose Search a

 for the existence of a second string.
Syntax y& = INSTR([Position&,] MainStr$, [ANY] MatchStr$)

Remarks INSTR returns the position of MatchStr$ within MainStr$. The return value is indexed to

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

942 / 2126

one, while zero means "not found".

Position& specifies the character position to begin the search. If Position& is one or
greater, MainStr$ is searched left to right. The value one starts at the first character, two
the second, etc. If Position& is -1 or less, MainStr$ is searched from right to left. The
value -1 starts at the last character, -2 the second to last, etc. If Position& is not given,
the default value of +1 is assumed.

x& = INSTR("xyz", "y") ' returns 2
x& = INSTR("xyz", "a") ' returns 0
a$ = "My Dog" : b$ = " "
x& = INSTR(a$, b$) ' returns 3

It is important to note that in all cases, even when Position& is negative, the return value
of INSTR() is the absolute position of the match, from left to right, starting with the first
character.

ANY If the ANY keyword is included, MatchStr$ specifies a list of single characters. INSTR
searches for each of these characters individually. As soon as any one of these
characters is found, INSTR returns the position of the match.

x& = INSTR(-2, "efcdef", ANY "ef") returns a result of 5

INSTR is case-sensitive, meaning that upper-case and lower-case letters must match
exactly in MatchStr$ and MainStr$.

Restrictions Special search terms are evaluated in this sequence:

1. If Position& is zero, or beyond the length of MainStr$, the value zero is returned.

2. If MainStr$ is null, the value zero is returned.

3. If MatchStr$ is null, the absolute Position& value (default of 1) is returned.

See also EXTRACT$, LCASE$, LEFT$, LTRIM$, MID$, RIGHT$, RTRIM$, SHRINK$, TALLY,
TRIM$, UCASE$, VERIFY

Example ' x$ = first command-line argument, assuming spaces, commas,
' periods, and tabs are valid delimiters.
IF INSTR(COMMAND$, ANY " ,." + CHR$(9)) > 0 THEN
 x$ = "There is more than one command-line argument"
ELSE
 x$ = "There is at most one command-line argument"
END IF

INT function

INT function
Purpose Convert a numeric expression to an

 value.
Syntax y = INT(numeric_expression)

Remarks INT rounds numeric_expression to the largest integral value that is less than or equal to
numeric_expression.

See also CEIL, CINT, FIX, FRAC, ROUND

Example DIM X AS SINGLE, Y AS LONG
FOR X = -1.1 TO 2.1 STEP .5
 Y = INT(X)
NEXT X

Result X Y
-1.1 -2
-0.6 -1
-0.1 -1
 0.4 0

PowerBASIC Compiler for Windows Version 10

943 / 2126

 0.9 0
 1.4 1
 1.9 1

INTERFACE / END INTERFACE Block (Direct)

Keyword Template
Purpose

Syntax

Remarks

See also

Example

INTERFACE / END INTERFACE Block (Direct)
Purpose Declare a direct object interface and its member Methods/Properties.

Syntax INTERFACE interfacename [$GUID] [AS EVENT] [AS HIDDEN]
 {METHOD | PROPERTY} name [([arguments])] [AS type]]
END INTERFACE

Remarks The first line in an Interface Block must be an INHERIT statement. INHERIT specifies the
base class or the user interface upon which this new interface is built. It defines the base
methods available, the optional user methods which are available, and the calling
conventions which will apply. In the current version of PowerBASIC, the following may be
used:

INHERIT IUnknown

This defines a Custom Interface with only direct access to the interface methods.
OBJRESULT (an hResult value) is not supported. Return values are typically passed in
CPU/FPU registers, just like a user defined FUNCTION. This is the format most often
used for internal objects, as it offers access to more data types than the other forms. You
may substitute the word CUSTOM for IUNKNOWN, as they are synonyms.

INHERIT IAutomation

This defines an Automation Interface with only direct access to the interface methods.
 OBJRESULT (an hResult value) is always supported. Return values are passed as a
hidden, last parameter (automatically, by PowerBASIC). Parameters and return values
are limited to COM data types. A User Defined Type used as a return value or parameter
will be converted to a BYVAL DWORD. This is the format most often used for COM
objects which do not require access to the IDispatch interface. You may substitute the
word AUTOMATION for IAUTOMATION, as they are synonyms.

INHERIT IDispatch

This defines a Dual Interface, which offers both direct access and Dispatch access to the
interface methods. OBJRESULT (an hResult value) is always supported. This interface
inherits from IAutomation, so the calling conventions are identical to IAutomation when
used for direct access. You may substitute the word DUAL for IDISPATCH, as they are
synonyms.

INHERIT <UserClass>, <UserInterface>

This defines an inherited user-written interface, so the new interface implements the base
class IUnknown, IDispatch, etc.) and all of the Methods and Properties, as well. It's

PowerBASIC Compiler for Windows Version 10

944 / 2126

necessary to specify both the class and the interface name to be inherited, because it's
possible to have multiple implementations of any particular interface.

INTERFACE / END INTERFACE statements enclose the METHOD and PROPERTY
definitions which constitute a class. There are two forms of the INTERFACE / END
INTERFACE block. When it appears outside of a CLASS block, it is simply a declaration
of the interface, much like DECLARE statements are used for functions:

INTERFACE name [$GUID] [AS EVENT]
 INHERIT IUnknown
 METHOD MyMethod(xyz AS LONG)
 PROPERTY GET MyProp() AS STRING
END INTERFACE

The above form is used to declare an interface which is implemented in another .EXE or
.DLL, but will be accessed here through COM services. It may also be used for added
self-documentation of internal classes. If it appears within a CLASS block, it is the
implementation of the Methods/Properties for the Class. The interface implementation
must precisely match any prior interface declaration.

CLASS name [$GUID] [AS COM]
 INTERFACE name [$GUID] [AS HIDDEN]
 INHERIT iUnknown
 METHOD MyMethod(xyz AS LONG)
 [statements]
 END METHOD
 PROPERTY GET MyProp() AS STRING
 [statements]
 END PROPERTY
 END INTERFACE
END CLASS

The name and optional $GUID are supplied by the programmer to uniquely identify the
interface. The first entry in every INTERFACE block must be the base class upon which it
is built. Every interface must ultimately inherit from IUnknown, which is a requirement.

By default, a class is considered private, so that the methods are accessible only from
within the EXE or DLL where it is defined. The AS COM attribute to the CLASS
statement makes the class available externally, to virtually any process which is COM-
aware.

The optional AS HIDDEN attribute to the INTERFACE statement prevents the interface
from being documented when the type library is created. When marked as hidden, any
and all uses of the interface are hidden, even if they appear in multiple classes.

With an internal class, the $GUID on CLASS and INTERFACE statements may be freely
omitted, as PowerBASIC can readily identify them by name. With a published COM
class, you should insert a specific GUID of your choice. If omitted, a random GUID will
be created by the compiler, but it will change every time you compile the program. This
will be difficult to synchronize with other programs which wish to identify and access your
object.

The following code defines a dual interface whose methods are available for both direct
access and Dispatch access. This is the form you will typically use for COM objects,
since it offers the best compatibility with varied client modules.

INTERFACE DispatchIface
 INHERIT IDispatch
 METHOD MethodDef()
 [statements]
 END METHOD
END INTERFACE

You should note that the IDispatch interface itself inherits from IUnknown, so that both
interfaces are ultimately available. As an additional required base class, the IDispatch

PowerBASIC Compiler for Windows Version 10

945 / 2126

declaration is built into the PowerBASIC Compiler.

Every method and property in a dual interface needs a positive, long integer value to
identify it. That integral value is known as a DispID (Dispatch ID), and it's used internally
by COM services to call the correct function on a Dispatch interface. You can specify a
particular DispID by enclosing it in angle brackets immediately following the
Method/Property name in an Interface definition block.

INTERFACE DualIface
 INHERIT IDispatch
 METHOD MethodOne <76> ()
 METHOD MethodTwo <77> ()
END INTERFACE

If you don't specify a DispID, PowerBASIC will assign a random value for you. This is fine
for internal objects, but may cause a failure for published COM objects, as the DispID
could change each time you compile your program. It is particularly important that you
specify a DispID for each Method/Property in a COM Event Interface.

Inherited User-Written Interfaces

PowerBASIC offers Implementation Inheritance of user-written interfaces. That is, an
interface can inherit all of the code in the methods and properties of a selected interface.
 You can then add additional methods and properties to the new interface. When you
inherit a user-written interface, you must specify both the class name and the interface
name, since COM allows you to have multiple implementations of any particular interface.

You can override an inherited method or property by coding a replacement which is
preceded by the word OVERRIDE. It's possible to one or many override procedures, but
they must appear in the same sequence as the ones they replace.

CLASS MyClass
 INTERFACE MyFace
 INHERIT IDispatch
 METHOD aaa()
 ' code...
 END METHOD
 METHOD bbb()
 ' code...
 END METHOD
 METHOD ccc()
 ' code...
 END METHOD
 METHOD ddd()
 ' code...
 END METHOD
 END INTERFACE
END CLASS

CLASS TheClass
 INTERFACE TheFace
 INHERIT MyClass, MyFace
 OVERRIDE METHOD bbb()
 ' new code...
 END METHOD
 OVERRIDE METHOD ddd()
 ' new code...
 END METHOD
 METHOD xxx()
 ' code...
 END METHOD
 END INTERFACE
END CLASS

PowerBASIC Compiler for Windows Version 10

946 / 2126

Note that in the above example, the new interface "TheFace" first inherits all four methods
from "MyFace" (aaa,bbb,ccc,ddd). However, because of the OVERRIDE statements,
both bbb() and ddd() are replaced by newer versions of the methods. Because of the
nature of Virtual Function Tables, the OVERRIDE procedures must remain in the original
sequence. That is, bbb() must precede ddd(), and both must precede any added
methods, such as xxx().

Because of the nature of code replacement necessary in implementation inheritance, the
interface to be inherited must always physically precede the new, child interface.

See also INTERFACE (IDBind), CLASS, INSTANCE, ISINTERFACE, LET (with Objects), ME,
METHOD, MYBASE, PROPERTY, What does an Interface look like?, What is
inheritance?

INTERFACE/END INTERFACE block (Dispatch)

INTERFACE/END INTERFACE block (IDBind)
Purpose Declare a dispatch interface and its member Methods/Properties for the purposes of

IDBinding to a Dispatch COM interface.

Syntax INTERFACE IDBIND interfacename
 MEMBER {CALL | GET | SET | LET} membername <dispid> ([[OPTIONAL
 [IN | OUT | INOUT]] paramname <dispid> [AS type] [,...]])
 [AS {vartype | interface}]
 [...]
END INTERFACE

Remarks In order to provide IDBinding services, PowerBASIC must be able to pre-construct the
references to the DISPATCH COM interface members at compile-time. Without an
interface definition block, only late-binding at run-time would be possible. Late-binding is
less efficient than IDBinding.

You may list every Method/Property in the interface, or just the ones that are referenced in
the code. They can appear in any sequence. Member names may contain (normally)
reserved keywords such as INPUT or KILL, etc

The most important aspect of an interface block is that it clearly associates a dispid with
the each Method/Property name. Named parameters in the paramname list also require
an appropriate dispid value, as does any Property which returns an object to be used in a
nested object reference. All dispid values must be enclosed in angle brackets (< and >),
and may be expressed as hexadecimal or decimal numeric literals.

You can look up the dispid values of COM servers using an Object Browser, or by reading
your object documentation. You can even insert additional information about the types
and return value for your own reference, even though the compiler does not use them.

Previous versions of PowerBASIC compilers used an older style syntax of
"INTERFACE DISPATCH interfacename" for this structure. It was updated to
better reflect the nature of the description. While the older syntax will be
recognized in this version, we suggest you update the word DISPATCH to
IDBIND soon.

Restrictions If the compiler cannot resolve the interface name definition specified in a DIM or LET
statement, a compile-time error is generated accordingly.

interfacename must not be a PowerBASIC keyword. If a keyword conflict arises, the
addition of an arbitrary prefix is acceptable. For example, INTERFACE IDBIND Shell()
could be changed to INTERFACE IDBIND MyShell() and PowerBASIC will still resolve the
interface correctly.

Method/Property membername items may freely use PowerBASIC keywords without
concern for conflicts with normal code syntax. For example, MEMBER CALL Open() is a
valid syntax for an interface method.

PowerBASIC Compiler for Windows Version 10

947 / 2126

See also DIM, ID Binding, INTERFACE (Direct), ISINTERFACE, LET (with Objects), Late Binding,
LET (with Variants), OBJACTIVE, OBJECT, OBJPTR, OBJRESULT, PROGID$, What is
an object, anyway?, What is DISPATCH?

Example INTERFACE IDBIND IAPPUser
 MEMBER CALL DELETE<&H1>()
 MEMBER GET Name<&H2>() AS STRING
 MEMBER LET Name<&H2>() 'Param Type As String
 MEMBER LET Password<&H3>() 'Param Type As String
 MEMBER GET ReadOnly<&H4>() AS LONG
 MEMBER LET ReadOnly<&H4>() 'Param Type As Long
 MEMBER GET ProjectRights<&H5>(OPTIONAL IN Project AS STRING<&H0>) AS
LONG
 MEMBER LET ProjectRights<&H5>(OPTIONAL IN Project AS STRING<&H0>)
 MEMBER CALL RemoveProjectRights<&H6>(IN Project AS STRING<&H0>)
END INTERFACE

INTERFACE IDBIND IAPPItems
 MEMBER GET Count<&H1>() AS LONG
 MEMBER GET Item<&H0>(IN sItem AS VARIANT<&H0>) AS IAPPItem
END INTERFACE

DIM oApp AS IAPPUser
LET oApp = NEW IAPPUser IN "com.server.0"

IPowerArray.ARRAYBASE method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19

PowerBASIC Compiler for Windows Version 10

948 / 2126

 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be

PowerBASIC Compiler for Windows Version 10

949 / 2126

stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

PowerBASIC Compiler for Windows Version 10

950 / 2126

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.ARRAYDESC method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not

PowerBASIC Compiler for Windows Version 10

951 / 2126

recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

PowerBASIC Compiler for Windows Version 10

952 / 2126

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

PowerBASIC Compiler for Windows Version 10

953 / 2126

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.ARRAYINFO property get

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is

PowerBASIC Compiler for Windows Version 10

954 / 2126

identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

PowerBASIC Compiler for Windows Version 10

955 / 2126

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

Retrieves the number of dimensions (subscripts) for this array.

PowerBASIC Compiler for Windows Version 10

956 / 2126

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.ARRAYINFO property set

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

Remarks All array operations are executed with METHOD and PROPERTY invocations on a

PowerBASIC Compiler for Windows Version 10

957 / 2126

PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

An exact copy is made of the SafeArray contained in the parameter Variant. The array

PowerBASIC Compiler for Windows Version 10

958 / 2126

copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

959 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.CLONE method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

960 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

961 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

962 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.COPYFROMVARIANT method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

963 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

964 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

965 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.COPYTOVARIANT method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

966 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

967 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

968 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.DIM method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

969 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

970 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

971 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.ELEMENTPTR method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

972 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

973 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

974 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.ELEMENTSIZE method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

975 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

976 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

977 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.ERASE method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

978 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

979 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

980 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.LBOUND method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

981 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

982 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

983 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.LOCK method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

984 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

985 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

986 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.MOVEFROMVARIANT

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

987 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

988 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

989 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.MOVETOVARIANT

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

990 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

991 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

992 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.REDIM method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

993 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

994 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

995 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.REDIMPRESERVE method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

996 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

997 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

998 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.RESET method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

999 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

1000 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

1001 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.SUBSCRIPTS method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

1002 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

1003 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

1004 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.UBOUND method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

1005 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

1006 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

1007 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.UNLOCK method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

1008 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

1009 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

1010 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.VALUEGET method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

1011 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

1012 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

1013 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.VALUESET method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

1014 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

1015 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

1016 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerArray.VALUETYPE method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

PowerBASIC Compiler for Windows Version 10

1017 / 2126

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

PowerBASIC Compiler for Windows Version 10

1018 / 2126

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter
is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

PowerBASIC Compiler for Windows Version 10

1019 / 2126

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

IPowerCollection.ADD method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

PowerBASIC Compiler for Windows Version 10

1020 / 2126

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

PowerBASIC Compiler for Windows Version 10

1021 / 2126

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

PowerBASIC Compiler for Windows Version 10

1022 / 2126

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

PowerBASIC Compiler for Windows Version 10

1023 / 2126

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the

PowerBASIC Compiler for Windows Version 10

1024 / 2126

caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerCollection.CLEAR method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the

PowerBASIC Compiler for Windows Version 10

1025 / 2126

same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it

PowerBASIC Compiler for Windows Version 10

1026 / 2126

to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

PowerBASIC Compiler for Windows Version 10

1027 / 2126

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL

PowerBASIC Compiler for Windows Version 10

1028 / 2126

interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerCollection.CONTAINS method

Keyword Template
Purpose

Syntax

Remarks

PowerBASIC Compiler for Windows Version 10

1029 / 2126

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as

PowerBASIC Compiler for Windows Version 10

1030 / 2126

either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved

PowerBASIC Compiler for Windows Version 10

1031 / 2126

sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If

PowerBASIC Compiler for Windows Version 10

1032 / 2126

the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

1033 / 2126

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerCollection.COUNT method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may

PowerBASIC Compiler for Windows Version 10

1034 / 2126

be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

PowerBASIC Compiler for Windows Version 10

1035 / 2126

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position

PowerBASIC Compiler for Windows Version 10

1036 / 2126

number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is

PowerBASIC Compiler for Windows Version 10

1037 / 2126

successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

PowerBASIC Compiler for Windows Version 10

1038 / 2126

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerCollection.ENTRY method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should

PowerBASIC Compiler for Windows Version 10

1039 / 2126

be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

PowerBASIC Compiler for Windows Version 10

1040 / 2126

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the

PowerBASIC Compiler for Windows Version 10

1041 / 2126

caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)

PowerBASIC Compiler for Windows Version 10

1042 / 2126

<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerCollection.FIRST method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1043 / 2126

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

PowerBASIC Compiler for Windows Version 10

1044 / 2126

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

PowerBASIC Compiler for Windows Version 10

1045 / 2126

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will

PowerBASIC Compiler for Windows Version 10

1046 / 2126

be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

PowerBASIC Compiler for Windows Version 10

1047 / 2126

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerCollection.INDEX method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

PowerBASIC Compiler for Windows Version 10

1048 / 2126

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the

PowerBASIC Compiler for Windows Version 10

1049 / 2126

item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)

PowerBASIC Compiler for Windows Version 10

1050 / 2126

RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the

PowerBASIC Compiler for Windows Version 10

1051 / 2126

requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

PowerBASIC Compiler for Windows Version 10

1052 / 2126

See Also FOR EACH/NEXT

IPowerCollection.ITEM method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items

PowerBASIC Compiler for Windows Version 10

1053 / 2126

directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent

PowerBASIC Compiler for Windows Version 10

1054 / 2126

references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

PowerBASIC Compiler for Windows Version 10

1055 / 2126

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

PowerBASIC Compiler for Windows Version 10

1056 / 2126

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerCollection.LAST method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not

PowerBASIC Compiler for Windows Version 10

1057 / 2126

have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

PowerBASIC Compiler for Windows Version 10

1058 / 2126

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

1059 / 2126

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

PowerBASIC Compiler for Windows Version 10

1060 / 2126

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

PowerBASIC Compiler for Windows Version 10

1061 / 2126

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerCollection.NEXT method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

PowerBASIC Compiler for Windows Version 10

1062 / 2126

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent

PowerBASIC Compiler for Windows Version 10

1063 / 2126

references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

PowerBASIC Compiler for Windows Version 10

1064 / 2126

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

1065 / 2126

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

PowerBASIC Compiler for Windows Version 10

1066 / 2126

IPowerCollection.PREVIOUS method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL

PowerBASIC Compiler for Windows Version 10

1067 / 2126

interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

PowerBASIC Compiler for Windows Version 10

1068 / 2126

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is

PowerBASIC Compiler for Windows Version 10

1069 / 2126

not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

PowerBASIC Compiler for Windows Version 10

1070 / 2126

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerCollection.REMOVE method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined

PowerBASIC Compiler for Windows Version 10

1071 / 2126

internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

PowerBASIC Compiler for Windows Version 10

1072 / 2126

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

PowerBASIC Compiler for Windows Version 10

1073 / 2126

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is

PowerBASIC Compiler for Windows Version 10

1074 / 2126

returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods

PowerBASIC Compiler for Windows Version 10

1075 / 2126

CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerCollection.REPLACE method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

PowerBASIC Compiler for Windows Version 10

1076 / 2126

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the

PowerBASIC Compiler for Windows Version 10

1077 / 2126

parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

1078 / 2126

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on

PowerBASIC Compiler for Windows Version 10

1079 / 2126

your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerCollection.SORT method

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

1080 / 2126

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They

PowerBASIC Compiler for Windows Version 10

1081 / 2126

may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PowerBASIC Compiler for Windows Version 10

1082 / 2126

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

1083 / 2126

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PowerBASIC Compiler for Windows Version 10

1084 / 2126

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IPowerThread.Close method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed

PowerBASIC Compiler for Windows Version 10

1085 / 2126

with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still

PowerBASIC Compiler for Windows Version 10

1086 / 2126

running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD

PowerBASIC Compiler for Windows Version 10

1087 / 2126

...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

PowerBASIC Compiler for Windows Version 10

1088 / 2126

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)

PowerBASIC Compiler for Windows Version 10

1089 / 2126

END FUNCTION

IPowerThread.Equals method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed

PowerBASIC Compiler for Windows Version 10

1090 / 2126

to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

PowerBASIC Compiler for Windows Version 10

1091 / 2126

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread

PowerBASIC Compiler for Windows Version 10

1092 / 2126

has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)

PowerBASIC Compiler for Windows Version 10

1093 / 2126

 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.Handle method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local

PowerBASIC Compiler for Windows Version 10

1094 / 2126

storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

PowerBASIC Compiler for Windows Version 10

1095 / 2126

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code

PowerBASIC Compiler for Windows Version 10

1096 / 2126

END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but

PowerBASIC Compiler for Windows Version 10

1097 / 2126

logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

PowerBASIC Compiler for Windows Version 10

1098 / 2126

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.Id method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your

PowerBASIC Compiler for Windows Version 10

1099 / 2126

program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

PowerBASIC Compiler for Windows Version 10

1100 / 2126

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long

PowerBASIC Compiler for Windows Version 10

1101 / 2126

integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

PowerBASIC Compiler for Windows Version 10

1102 / 2126

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.IsAlive method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and

PowerBASIC Compiler for Windows Version 10

1103 / 2126

maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

PowerBASIC Compiler for Windows Version 10

1104 / 2126

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

PowerBASIC Compiler for Windows Version 10

1105 / 2126

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all

PowerBASIC Compiler for Windows Version 10

1106 / 2126

the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

PowerBASIC Compiler for Windows Version 10

1107 / 2126

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.Join method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

PowerBASIC Compiler for Windows Version 10

1108 / 2126

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal

PowerBASIC Compiler for Windows Version 10

1109 / 2126

AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved

PowerBASIC Compiler for Windows Version 10

1110 / 2126

and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

PowerBASIC Compiler for Windows Version 10

1111 / 2126

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThreadLaunch method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.

PowerBASIC Compiler for Windows Version 10

1112 / 2126

THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

PowerBASIC Compiler for Windows Version 10

1113 / 2126

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

PowerBASIC Compiler for Windows Version 10

1114 / 2126

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all

PowerBASIC Compiler for Windows Version 10

1115 / 2126

the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

PowerBASIC Compiler for Windows Version 10

1116 / 2126

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.Priority property get

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

PowerBASIC Compiler for Windows Version 10

1117 / 2126

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal

PowerBASIC Compiler for Windows Version 10

1118 / 2126

AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved

PowerBASIC Compiler for Windows Version 10

1119 / 2126

and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

PowerBASIC Compiler for Windows Version 10

1120 / 2126

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.Priority property set

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.

PowerBASIC Compiler for Windows Version 10

1121 / 2126

THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

PowerBASIC Compiler for Windows Version 10

1122 / 2126

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

PowerBASIC Compiler for Windows Version 10

1123 / 2126

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all

PowerBASIC Compiler for Windows Version 10

1124 / 2126

the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

PowerBASIC Compiler for Windows Version 10

1125 / 2126

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.Result method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

PowerBASIC Compiler for Windows Version 10

1126 / 2126

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal

PowerBASIC Compiler for Windows Version 10

1127 / 2126

AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved

PowerBASIC Compiler for Windows Version 10

1128 / 2126

and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

PowerBASIC Compiler for Windows Version 10

1129 / 2126

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.Resume method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.

PowerBASIC Compiler for Windows Version 10

1130 / 2126

THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

PowerBASIC Compiler for Windows Version 10

1131 / 2126

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

PowerBASIC Compiler for Windows Version 10

1132 / 2126

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all

PowerBASIC Compiler for Windows Version 10

1133 / 2126

the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

PowerBASIC Compiler for Windows Version 10

1134 / 2126

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.StackSize property get

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

PowerBASIC Compiler for Windows Version 10

1135 / 2126

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal

PowerBASIC Compiler for Windows Version 10

1136 / 2126

AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved

PowerBASIC Compiler for Windows Version 10

1137 / 2126

and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

PowerBASIC Compiler for Windows Version 10

1138 / 2126

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.StackSize property set

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.

PowerBASIC Compiler for Windows Version 10

1139 / 2126

THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

PowerBASIC Compiler for Windows Version 10

1140 / 2126

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

PowerBASIC Compiler for Windows Version 10

1141 / 2126

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all

PowerBASIC Compiler for Windows Version 10

1142 / 2126

the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

PowerBASIC Compiler for Windows Version 10

1143 / 2126

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.Suspend method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

PowerBASIC Compiler for Windows Version 10

1144 / 2126

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal

PowerBASIC Compiler for Windows Version 10

1145 / 2126

AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved

PowerBASIC Compiler for Windows Version 10

1146 / 2126

and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

PowerBASIC Compiler for Windows Version 10

1147 / 2126

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.TimeCreate method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.

PowerBASIC Compiler for Windows Version 10

1148 / 2126

THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

PowerBASIC Compiler for Windows Version 10

1149 / 2126

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

PowerBASIC Compiler for Windows Version 10

1150 / 2126

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all

PowerBASIC Compiler for Windows Version 10

1151 / 2126

the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

PowerBASIC Compiler for Windows Version 10

1152 / 2126

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.TimeExit method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

PowerBASIC Compiler for Windows Version 10

1153 / 2126

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal

PowerBASIC Compiler for Windows Version 10

1154 / 2126

AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved

PowerBASIC Compiler for Windows Version 10

1155 / 2126

and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

PowerBASIC Compiler for Windows Version 10

1156 / 2126

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.TimeKernel method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.

PowerBASIC Compiler for Windows Version 10

1157 / 2126

THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

PowerBASIC Compiler for Windows Version 10

1158 / 2126

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

PowerBASIC Compiler for Windows Version 10

1159 / 2126

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all

PowerBASIC Compiler for Windows Version 10

1160 / 2126

the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

PowerBASIC Compiler for Windows Version 10

1161 / 2126

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerThread.TimeUser method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

PowerBASIC Compiler for Windows Version 10

1162 / 2126

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the
thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal

PowerBASIC Compiler for Windows Version 10

1163 / 2126

AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...
MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved

PowerBASIC Compiler for Windows Version 10

1164 / 2126

and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

PowerBASIC Compiler for Windows Version 10

1165 / 2126

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

IPowerTime.AddDays method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a

PowerBASIC Compiler for Windows Version 10

1166 / 2126

predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

PowerBASIC Compiler for Windows Version 10

1167 / 2126

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an

PowerBASIC Compiler for Windows Version 10

1168 / 2126

appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.AddHours method

Keyword Template

PowerBASIC Compiler for Windows Version 10

1169 / 2126

Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

PowerBASIC Compiler for Windows Version 10

1170 / 2126

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

PowerBASIC Compiler for Windows Version 10

1171 / 2126

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

PowerBASIC Compiler for Windows Version 10

1172 / 2126

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.AddMinutes method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

PowerBASIC Compiler for Windows Version 10

1173 / 2126

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the

PowerBASIC Compiler for Windows Version 10

1174 / 2126

PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

PowerBASIC Compiler for Windows Version 10

1175 / 2126

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.AddMonths method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the

PowerBASIC Compiler for Windows Version 10

1176 / 2126

PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

PowerBASIC Compiler for Windows Version 10

1177 / 2126

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

PowerBASIC Compiler for Windows Version 10

1178 / 2126

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.AddMSeconds method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

PowerBASIC Compiler for Windows Version 10

1179 / 2126

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters

PowerBASIC Compiler for Windows Version 10

1180 / 2126

are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal

PowerBASIC Compiler for Windows Version 10

1181 / 2126

Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

PowerBASIC Compiler for Windows Version 10

1182 / 2126

IPowerTime.AddSeconds method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

PowerBASIC Compiler for Windows Version 10

1183 / 2126

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

PowerBASIC Compiler for Windows Version 10

1184 / 2126

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

PowerBASIC Compiler for Windows Version 10

1185 / 2126

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.AddTicks method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by

PowerBASIC Compiler for Windows Version 10

1186 / 2126

using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PowerBASIC Compiler for Windows Version 10

1187 / 2126

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

PowerBASIC Compiler for Windows Version 10

1188 / 2126

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.AddYears method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

PowerBASIC Compiler for Windows Version 10

1189 / 2126

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

PowerBASIC Compiler for Windows Version 10

1190 / 2126

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

PowerBASIC Compiler for Windows Version 10

1191 / 2126

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.DateDiff method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1192 / 2126

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

PowerBASIC Compiler for Windows Version 10

1193 / 2126

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal

PowerBASIC Compiler for Windows Version 10

1194 / 2126

Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

PowerBASIC Compiler for Windows Version 10

1195 / 2126

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.DateString method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

PowerBASIC Compiler for Windows Version 10

1196 / 2126

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

PowerBASIC Compiler for Windows Version 10

1197 / 2126

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

PowerBASIC Compiler for Windows Version 10

1198 / 2126

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.DateStringLong method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

PowerBASIC Compiler for Windows Version 10

1199 / 2126

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&

PowerBASIC Compiler for Windows Version 10

1200 / 2126

parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.

PowerBASIC Compiler for Windows Version 10

1201 / 2126

 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.Day method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

PowerBASIC Compiler for Windows Version 10

1202 / 2126

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.

PowerBASIC Compiler for Windows Version 10

1203 / 2126

DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

PowerBASIC Compiler for Windows Version 10

1204 / 2126

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.DayOfWeek method

Keyword Template
Purpose

Syntax

PowerBASIC Compiler for Windows Version 10

1205 / 2126

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

PowerBASIC Compiler for Windows Version 10

1206 / 2126

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

PowerBASIC Compiler for Windows Version 10

1207 / 2126

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

PowerBASIC Compiler for Windows Version 10

1208 / 2126

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.DayOfWeekString method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

PowerBASIC Compiler for Windows Version 10

1209 / 2126

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range

PowerBASIC Compiler for Windows Version 10

1210 / 2126

of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

PowerBASIC Compiler for Windows Version 10

1211 / 2126

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.DaysInMonth method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME

PowerBASIC Compiler for Windows Version 10

1212 / 2126

MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

PowerBASIC Compiler for Windows Version 10

1213 / 2126

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT

PowerBASIC Compiler for Windows Version 10

1214 / 2126

Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.FileTime property get

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

PowerBASIC Compiler for Windows Version 10

1215 / 2126

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

PowerBASIC Compiler for Windows Version 10

1216 / 2126

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the

PowerBASIC Compiler for Windows Version 10

1217 / 2126

specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.FileTime property set

PowerBASIC Compiler for Windows Version 10

1218 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract

PowerBASIC Compiler for Windows Version 10

1219 / 2126

seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the

PowerBASIC Compiler for Windows Version 10

1220 / 2126

range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is

PowerBASIC Compiler for Windows Version 10

1221 / 2126

suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.Hour method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

PowerBASIC Compiler for Windows Version 10

1222 / 2126

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PowerBASIC Compiler for Windows Version 10

1223 / 2126

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to

PowerBASIC Compiler for Windows Version 10

1224 / 2126

Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.IsLeapYear method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

PowerBASIC Compiler for Windows Version 10

1225 / 2126

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

PowerBASIC Compiler for Windows Version 10

1226 / 2126

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

PowerBASIC Compiler for Windows Version 10

1227 / 2126

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.Minute method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1228 / 2126

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the

PowerBASIC Compiler for Windows Version 10

1229 / 2126

specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

PowerBASIC Compiler for Windows Version 10

1230 / 2126

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

PowerBASIC Compiler for Windows Version 10

1231 / 2126

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.Month method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

PowerBASIC Compiler for Windows Version 10

1232 / 2126

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

PowerBASIC Compiler for Windows Version 10

1233 / 2126

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

PowerBASIC Compiler for Windows Version 10

1234 / 2126

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.MonthString method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

PowerBASIC Compiler for Windows Version 10

1235 / 2126

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

PowerBASIC Compiler for Windows Version 10

1236 / 2126

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value

PowerBASIC Compiler for Windows Version 10

1237 / 2126

is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.MSecond method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

PowerBASIC Compiler for Windows Version 10

1238 / 2126

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

PowerBASIC Compiler for Windows Version 10

1239 / 2126

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

PowerBASIC Compiler for Windows Version 10

1240 / 2126

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.NewDate method

Keyword Template
Purpose

Syntax

Remarks

PowerBASIC Compiler for Windows Version 10

1241 / 2126

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by

PowerBASIC Compiler for Windows Version 10

1242 / 2126

using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in

PowerBASIC Compiler for Windows Version 10

1243 / 2126

the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed

PowerBASIC Compiler for Windows Version 10

1244 / 2126

that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.NewTime method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

PowerBASIC Compiler for Windows Version 10

1245 / 2126

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

PowerBASIC Compiler for Windows Version 10

1246 / 2126

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

PowerBASIC Compiler for Windows Version 10

1247 / 2126

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.Now method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString

PowerBASIC Compiler for Windows Version 10

1248 / 2126

MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,

PowerBASIC Compiler for Windows Version 10

1249 / 2126

Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

PowerBASIC Compiler for Windows Version 10

1250 / 2126

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.NowUTC method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a

PowerBASIC Compiler for Windows Version 10

1251 / 2126

predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

PowerBASIC Compiler for Windows Version 10

1252 / 2126

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an

PowerBASIC Compiler for Windows Version 10

1253 / 2126

appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.Second method

Keyword Template

PowerBASIC Compiler for Windows Version 10

1254 / 2126

Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

PowerBASIC Compiler for Windows Version 10

1255 / 2126

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

PowerBASIC Compiler for Windows Version 10

1256 / 2126

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

PowerBASIC Compiler for Windows Version 10

1257 / 2126

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.Tick method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

PowerBASIC Compiler for Windows Version 10

1258 / 2126

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the

PowerBASIC Compiler for Windows Version 10

1259 / 2126

PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

PowerBASIC Compiler for Windows Version 10

1260 / 2126

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.TimeDiff method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the

PowerBASIC Compiler for Windows Version 10

1261 / 2126

PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

PowerBASIC Compiler for Windows Version 10

1262 / 2126

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

PowerBASIC Compiler for Windows Version 10

1263 / 2126

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.TimeString method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

PowerBASIC Compiler for Windows Version 10

1264 / 2126

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters

PowerBASIC Compiler for Windows Version 10

1265 / 2126

are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal

PowerBASIC Compiler for Windows Version 10

1266 / 2126

Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

PowerBASIC Compiler for Windows Version 10

1267 / 2126

IPowerTime.TimeString24 method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

PowerBASIC Compiler for Windows Version 10

1268 / 2126

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

PowerBASIC Compiler for Windows Version 10

1269 / 2126

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

PowerBASIC Compiler for Windows Version 10

1270 / 2126

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.TimeStringFull method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by

PowerBASIC Compiler for Windows Version 10

1271 / 2126

using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PowerBASIC Compiler for Windows Version 10

1272 / 2126

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

PowerBASIC Compiler for Windows Version 10

1273 / 2126

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.Today method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

PowerBASIC Compiler for Windows Version 10

1274 / 2126

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

PowerBASIC Compiler for Windows Version 10

1275 / 2126

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

PowerBASIC Compiler for Windows Version 10

1276 / 2126

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.ToLocalTime method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1277 / 2126

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

PowerBASIC Compiler for Windows Version 10

1278 / 2126

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal

PowerBASIC Compiler for Windows Version 10

1279 / 2126

Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

PowerBASIC Compiler for Windows Version 10

1280 / 2126

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.ToUTC method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

PowerBASIC Compiler for Windows Version 10

1281 / 2126

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

PowerBASIC Compiler for Windows Version 10

1282 / 2126

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

PowerBASIC Compiler for Windows Version 10

1283 / 2126

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IPowerTime.Year method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

PowerBASIC Compiler for Windows Version 10

1284 / 2126

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&

PowerBASIC Compiler for Windows Version 10

1285 / 2126

parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal
Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.

PowerBASIC Compiler for Windows Version 10

1286 / 2126

 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

IQueueCollection.CLEAR method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

PowerBASIC Compiler for Windows Version 10

1287 / 2126

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

PowerBASIC Compiler for Windows Version 10

1288 / 2126

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

PowerBASIC Compiler for Windows Version 10

1289 / 2126

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the

PowerBASIC Compiler for Windows Version 10

1290 / 2126

OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

PowerBASIC Compiler for Windows Version 10

1291 / 2126

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IQueueCollection.COUNT method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

PowerBASIC Compiler for Windows Version 10

1292 / 2126

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the

PowerBASIC Compiler for Windows Version 10

1293 / 2126

parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

1294 / 2126

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on

PowerBASIC Compiler for Windows Version 10

1295 / 2126

your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IQueueCollection.DEQUEUE method

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

1296 / 2126

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They

PowerBASIC Compiler for Windows Version 10

1297 / 2126

may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PowerBASIC Compiler for Windows Version 10

1298 / 2126

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

1299 / 2126

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PowerBASIC Compiler for Windows Version 10

1300 / 2126

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IQueueCollection.ENQUEUE method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

PowerBASIC Compiler for Windows Version 10

1301 / 2126

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

PowerBASIC Compiler for Windows Version 10

1302 / 2126

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

PowerBASIC Compiler for Windows Version 10

1303 / 2126

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

PowerBASIC Compiler for Windows Version 10

1304 / 2126

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the

PowerBASIC Compiler for Windows Version 10

1305 / 2126

caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IStackCollection.CLEAR method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the

PowerBASIC Compiler for Windows Version 10

1306 / 2126

same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it

PowerBASIC Compiler for Windows Version 10

1307 / 2126

to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

PowerBASIC Compiler for Windows Version 10

1308 / 2126

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL

PowerBASIC Compiler for Windows Version 10

1309 / 2126

interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IStackCollection.COUNT method

Keyword Template
Purpose

Syntax

Remarks

PowerBASIC Compiler for Windows Version 10

1310 / 2126

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as

PowerBASIC Compiler for Windows Version 10

1311 / 2126

either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved

PowerBASIC Compiler for Windows Version 10

1312 / 2126

sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If

PowerBASIC Compiler for Windows Version 10

1313 / 2126

the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

1314 / 2126

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IStackCollection.POP method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may

PowerBASIC Compiler for Windows Version 10

1315 / 2126

be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

PowerBASIC Compiler for Windows Version 10

1316 / 2126

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position

PowerBASIC Compiler for Windows Version 10

1317 / 2126

number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is

PowerBASIC Compiler for Windows Version 10

1318 / 2126

successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

PowerBASIC Compiler for Windows Version 10

1319 / 2126

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IStackCollection.PUSH method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter
is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should

PowerBASIC Compiler for Windows Version 10

1320 / 2126

be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

PowerBASIC Compiler for Windows Version 10

1321 / 2126

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the

PowerBASIC Compiler for Windows Version 10

1322 / 2126

caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)

PowerBASIC Compiler for Windows Version 10

1323 / 2126

<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

IStringBuilderA.Add method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1324 / 2126

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

PowerBASIC Compiler for Windows Version 10

1325 / 2126

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderA.Capacity Property Get

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for

PowerBASIC Compiler for Windows Version 10

1326 / 2126

you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderA.Capacity Property Set

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1327 / 2126

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

PowerBASIC Compiler for Windows Version 10

1328 / 2126

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderA.Char Property Get

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as

PowerBASIC Compiler for Windows Version 10

1329 / 2126

the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderA.Char Property Set

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

1330 / 2126

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

PowerBASIC Compiler for Windows Version 10

1331 / 2126

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderA.Clear method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's

PowerBASIC Compiler for Windows Version 10

1332 / 2126

usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderA.Delete method

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

1333 / 2126

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

PowerBASIC Compiler for Windows Version 10

1334 / 2126

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderA.Insert method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's

PowerBASIC Compiler for Windows Version 10

1335 / 2126

usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderA.Len method

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

1336 / 2126

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

PowerBASIC Compiler for Windows Version 10

1337 / 2126

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderA.String method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's

PowerBASIC Compiler for Windows Version 10

1338 / 2126

usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderW.Add method

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

1339 / 2126

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

PowerBASIC Compiler for Windows Version 10

1340 / 2126

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderW.Capacity Property Get

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's

PowerBASIC Compiler for Windows Version 10

1341 / 2126

usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderW.Capacity Property Set

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

1342 / 2126

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

PowerBASIC Compiler for Windows Version 10

1343 / 2126

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderW.Char Property Get

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's

PowerBASIC Compiler for Windows Version 10

1344 / 2126

usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderW.Char Property Set

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

1345 / 2126

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

PowerBASIC Compiler for Windows Version 10

1346 / 2126

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderW.Clear method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's

PowerBASIC Compiler for Windows Version 10

1347 / 2126

usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderW.Delete method

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

1348 / 2126

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

PowerBASIC Compiler for Windows Version 10

1349 / 2126

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderW.Insert method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's

PowerBASIC Compiler for Windows Version 10

1350 / 2126

usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderW.Len method

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

1351 / 2126

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

PowerBASIC Compiler for Windows Version 10

1352 / 2126

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

IStringBuilderW.String method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's

PowerBASIC Compiler for Windows Version 10

1353 / 2126

usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long
Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

ISFALSE operator

ISFALSE and ISTRUE operators
Purpose Return the logical truth or falsity of a given expression.

Syntax ISFALSE expr
ISTRUE expr

Remarks ISTRUE returns -1 (TRUE) when expr evaluates as non-zero; otherwise, it returns zero

PowerBASIC Compiler for Windows Version 10

1354 / 2126

(FALSE). ISFALSE returns -1 when expr evaluates as 0 (FALSE); otherwise, it returns
zero.

Truth table
operator expr Result
ISTRUE = 0 0
ISTRUE <> 0 -1
ISFALSE = 0 -1
ISFALSE <> 0 0

PowerBASIC's NOT operator serves a double duty: it returns the one's-complement of an

 expression and "reverses" the value of a TRUE/FALSE (Boolean) expression.
Usually, these two functions do not conflict, but since PowerBASIC accepts any non-
zero value as TRUE, the following condition can arise:

test1 = 0 ' test1 is FALSE (zero)
IF NOT test1 THEN ' TRUE (-1 is non-zero)
[statements]

test2 = 1 ' test2 is TRUE (1 is non-zero)
IF NOT test2 THEN ' still TRUE (-2 is non-zero)
[statements]

In this case, NOT does not reverse the TRUE/FALSE value of test2. ISFALSE ensures
that the test is performed exactly as you would expect:
test2 = 1 ' test2 is TRUE (non-zero)

IF ISFALSE test2 THEN ' ISFALSE detects test2 is
[statements] ' TRUE so the IF test fails

This problem does not exist when you're testing for logical truth. PowerBASIC considers
that an expression is TRUE in every case except when the expression is zero. However,
ISTRUE converts all non-zero values to the "most true" value, -1, which provides the most
consistent results with both boolean and arithmetic expressions.

Restrictions ISTRUE and ISFALSE operators evaluate the "whole" expression following the keyword,
subject to their Operator Precedence level. For example, parentheses contained within
the expression are regarded as an integral part of the expression, and do not act as
delimiters for the ISTRUE and ISFALSE operators.

With this in mind, combining a logical test result into a further expression means that the
expressions must be separated to ensure the correct evaluation.

Consider the following statement:

IF ISTRUE (x&) + y& THEN

PowerBASIC evaluates the entire expression (x&) + y& and then calculates the logical
truth from the overall result of that expression. That is, the parentheses around the first
part of the expression do not stop ISTRUE from evaluating the whole expression. To
demonstrate this, the statement can be rewritten to concisely demonstrate the scope of
the logical evaluation:

IF ISTRUE (x& + 2) THEN

or it could be simplified even further:

IF ISTRUE x& + 2 THEN

If you wish to utilize the numeric result of the logical test in a further expression,
parentheses must be added to separate the expressions correctly:

IF (ISTRUE x&) + 2 THEN

See also Arithmetic Operators, NOT, Short-circuit evaluation

ISFILE Function

Keyword Template

PowerBASIC Compiler for Windows Version 10

1355 / 2126

Purpose

Syntax

Remarks

See also

Example

ISFILE Function
Purpose Determine whether or not a file exists.

Syntax FileExists& = ISFILE(FileName)

Remarks The file subsystem is checked to determine whether the file specified by FileName
currently exists. If it is found in any form (hidden, system, read-only, etc.), the value true
(-1) is returned. Otherwise, the value false (0) is returned.

Filename is an unambiguous file name, which may not contain an asterisk (*) or query
(?). If it contains one or more of those characters, the function always returns false (0).

See also DIR$, DISPLAY BROWSE, DISPLAY OPENFILE, DISPLAY SAVEFILE, ISFOLDER,
PATHSCAN$

ISFOLDER function

ISFOLDER function
Purpose Determine whether or not a folder exists.

Syntax FolderExists& = ISFOLDER(FolderName)

Remarks The file subsystem is checked to determine whether the folder specified by FolderName
currently exists. If it is found in any form (hidden, system, read-only, etc.), the value true
(-1) is returned. Otherwise, the value false (0) is returned.

The root directory (for example, "C:\") is considered to be a folder, and returns the value
true (-1).

FolderName is an unambiguous file name, which may not contain an asterisk (*) or query
(?). If it contains one or more of those characters, the function always returns false (0).

See also DIR$, DISPLAY BROWSE, DISPLAY OPENFILE, DISPLAY SAVEFILE, ISFILE,
PATHSCAN$

ISINTERFACE Function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

ISINTERFACE Function

PowerBASIC Compiler for Windows Version 10

1356 / 2126

Purpose Determine whether an object supports a particular interface.

Syntax IfaceValid = ISINTERFACE(ObjectVar, InterfaceName)

Remarks The object referenced by the parameter ObjectVar is tested to determine if the specified
InterfaceName is supported. If so, the value true (-1) is returned. Otherwise, the value
false (0) is returned.

See also CLASS, INTERFACE (Direct), INTERFACE (IDBind), What is an object, anyway?

ISMISSING function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

ISMISSING function
Purpose Determine whether an

 was passed by the calling code.
Syntax ParamStatus = ISMISSING(ParamVar)

Remarks The ISMISSING function may be used to test certain optional parameters to determine
whether or not the parameter was actually passed by the calling code. It may be used to
test

 VARIANT parameters, or other variable types passed ByRef. An attempt to test a
ByVAL parameter other than VARIANT will generate an error 579 (BYREF variable
or BYVAL/BYREF variant expected) to be generated during compilation.
A ByRef parameter is considered to be missing when the pointer has the value zero. A
variant parameter is considered to be missing when it has a type of %VT_ERROR and an
error value of %DISP_E_PARAMNOTFOUND.

If the specified optional parameter is missing, the value true (-1) is returned. Otherwise,
the value false (0) is returned.

Restrictions The ISMISSING function may only be used within the procedure which uses the specified
optional parameter.

See also DECLARE, FUNCTION, METHOD, PROPERTY, SUB

ISNOTHING function

ISNOTHING function
Purpose Determine the current status of a given object variable.

Syntax oStatus = ISNOTHING(objectvar)

Remarks ISNOTHING is particularly useful in determining the success or failure of a LET
statement. It returns TRUE (-1) if the object variable contains nothing, or FALSE (0) if it
contains a valid current reference to an object interface.

ISNOTHING is the complement to the ISOBJECT function.

PowerBASIC Compiler for Windows Version 10

1357 / 2126

Restrictions objectvar must be an

 or IDispatch object variable.
See also DIM, INTERFACE (Direct), INTERFACE (IDBind), ISOBJECT, LET (with Objects),

OBJECT, What is an object, anyway?

Example DIM oApp AS IAPPDatabase
LET oApp = NEW IAPPDatabase IN "DBApp.0"
IF ISNOTHING(oApp) OR ERR THEN ' Handle error

ISNOTNULL function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

ISNOTNULL function
Purpose Determine if a

 is not null (contains 1 or more characters).
Syntax ResultVar& = ISNOTNULL(StrgExpr)

Remarks The StrgExpr is examined to determine if it is null, or if it contains one or more
characters. The value true (-1) is returned if the StrgExpr contains characters, or false (0)
if it is null (zero-length).

The complementary function is ISNULL.

See also ISNULL

ISNULL function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

ISNULL function
Purpose Determine if a

 is null (zero-length).
Syntax ResultVar& = ISNULL(StrgExpr)

Remarks The StrgExpr is examined to determine whether it is null (has zero characters). The value
true (-1) is returned if the StrgExpr is null, or false (0) if it contains characters.

PowerBASIC Compiler for Windows Version 10

1358 / 2126

The complementary function is ISNOTNULL.

See also ISNOTNULL

ISOBJECT function

ISOBJECT function
Purpose Determine the current status of a given object variable.

Syntax oStatus = ISOBJECT(objectvar)

Remarks ISOBJECT is particularly useful in determining the success or failure of a LET (with
Objects) statement. It returns TRUE (-1) if the object variable contains a valid current
reference to an object interface, or FALSE (0) if it contains nothing.

ISOBJECT is the complement to the ISNOTHING function.

Restrictions objectvar must be an

 or IDispatch object variable.
See also DIM, INTERFACE (Direct), INTERFACE (IDBind), ISNOTHING, LET (with Objects),

OBJECT, What is an object, anyway?

Example DIM oApp AS IAPPDatabase
LET oApp = NEWCOM "DBApp.0"
IF ISOBJECT(oApp) AND ISFALSE ERR THEN 'Handle error

IStackCollection

Keyword Template
Purpose

Syntax

Remarks

See also

Example

COLLECTION Object Group
Purpose A collection object is a set of items which can be referred to as a unit. It provides a

convenient way to refer to a related group of items as a single object. The items in a
collection need only be related by the fact that they exist in the collection. They do not
have to share the same data type.

You create a collection the same way you create other objects, but using a predefined
internal class and a predefined internal interface.

LOCAL Collect AS IPowerCollection
LET Collect = CLASS "PowerCollection"

Once you have created a collection object, you can manipulate it using the member
methods. Each data item in the set is stored as a variant variable, which may contain
any valid data type (

, string, UDT, object, etc.). Collection interfaces are DUAL -- member methods may
be referenced using either Direct or Dispatch form.
While the collection object expects to receive your data items as variant variables, you
can take advantage of the auto-conversion options in PowerBASIC. If a variant parameter

PowerBASIC Compiler for Windows Version 10

1359 / 2126

is expected, and you pass a single variable instead, PowerBASIC will automatically
convert it with no intervention needed on your part.

Very often, it's convenient to create a collection of user defined types (UDT). While a
variant may not normally contain a UDT, PowerBASIC offers a special methodology to do
so. At programmer direction, a TYPE may be assigned to a variant (as a byte string) by
using:

[LET] VrntVar = TypeVar AS STRING

In the same manner, a UDT argument can be auto-converted to the variant type by
appending AS STRING:

CollObj.Add(Key$$, UDTVar AS STRING)

The data contained in the User-Defined Type variable (UDTVar) is stored in the variant
argument as a dynamic string of bytes (vt_bstr). When the collection object retrieves that
UDT data, it understands the content and handles it accurately. This special technique
offers ease of coding and much improved execution speed. If you like, you can use the
same sort of functionality in your own PowerBASIC code. However, you should keep in
mind that other programming languages may not understand this technique, so it should
be limited to PowerBASIC applications.

Power
Collection

A Power Collection creates a set of data items, each of which is associated with an
alpha-numeric

 key which you define. The data item is passed and stored as a variant, while the key
is passed and stored as a wide (Unicode) string. You can retrieve these data items
directly by using their key, by their position in the collection, or sequentially in
ascending or descending sequence.

Syntax The CLASS is "PowerCollection". The INTERFACE is IPowerCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a PowerCollection may be retrieved by their key using the ITEM method. They
may be retrieved sequentially using the NEXT or PREVIOUS method. Each key in a
PowerCollection must be unique. Keys in a PowerCollection are case-sensitive. To
access the keys in a case-insensitive manner, you must create and retrieve all keys as
either upper case or lower case, but not mixed.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Power Collection Methods

ADD <3> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem variant is added to the end of the PowerCollection. It is associated with
the PowerKey string for later retrieval. If the operation was successful, an HResult of
S_OK (0) is returned. If it fails because of a duplicate key, an HResult of
E_DUPLICATEKEY (&H800A01C9) is returned, and an Object Error (99) is generated.

CLEAR <4>

All PowerKeys and PowerItems are removed from the PowerCollection.

CONTAINS <5> (PowerKey AS WString) AS Long

The PowerCollection is scanned to determine if the specified PowerKey is present. If
found, the Index number of this Item (range of 1 - COUNT) is returned. This value will
always evaluate as true. If not found, the value false (0) is returned.

COUNT <6> AS Long

The number of data items currently contained in the PowerCollection is returned to the
caller.

ENTRY <7> (Index AS Long, OUT PowerKey as WString, OUT
PowerItem as Variant)

PowerBASIC Compiler for Windows Version 10

1360 / 2126

The PowerCollection entry specified by the Index number is returned to the caller in the
two specified OUT parameters. If the index number is less than one, or greater than the
item count, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

FIRST <1> AS Long

The current INDEX for the PowerCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <8> (Index AS Long) AS Long

The current INDEX for the PowerCOLLECTION is set to the specified index number. If the
parameter is less than one, or greater than the current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

ITEM <9> (PowerKey AS WString) AS Variant

The PowerItem associated with the specified PowerKey is returned. If the specified key is
not found, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT
will be %S_FALSE (1).

LAST <10> AS Long

The current INDEX for the PowerCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the PowerCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <11> AS Variant

The PREVIOUS method allows the PowerCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <12> (PowerKey AS WString)

The specified PowerKey, and the PowerItem associated with it, are removed from the
PowerCollection. The index number of each data item past the removed item is
decremented by one. If the requested PowerKey is not found, OBJRESULT returns %
S_FALSE (1) and no operation is performed.

REPLACE <13> (PowerKey AS WString, PowerItem AS Variant)

The PowerItem associated with the specified PowerKey is replaced by the new specified
PowerItem. If the requested PowerKey is not found, OBJRESULT returns %S_FALSE (1)
and no operation is performed.

SORT <14> (Flags AS Long)

The data items in the PowerCollection are sorted based upon the text in the associated
PowerKeys. If the parameter Flags is zero(0), the items are sorted in ascending
sequence. If one (1), the items are sorted in descending sequence.

LinkList
Collection

A Linked List Collection is an ordered set of data items, which are accessed by their
position in the list rather than by an alphanumeric string key. Each data item is passed
and stored as a variant variable. You can retrieve these data items by their position
number, or sequentially in ascending or descending sequence.

Syntax The CLASS is "LinkListCollection". The INTERFACE is ILinkListCollection (a DUAL

PowerBASIC Compiler for Windows Version 10

1361 / 2126

interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks Items in a LinkListCollection may be retrieved by their position number using the ITEM
method. They may be retrieved sequentially using the NEXT or PREVIOUS methods.

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

LinkList Collection Methods

ADD <3> (PowerItem AS Variant)

The PowerItem variant is added to the end of the LinkListCollection.

CLEAR <4>

All PowerItems are removed from the LinkListCollection.

COUNT <5> AS Long

The number of data items currently contained in the LinkListCollection is returned to the
caller.

FIRST <1> AS Long

The current INDEX for the LinkListCOLLECTION is set to one (1), so that subsequent
references to the NEXT method will access member items from the beginning. The
previous value of the INDEX is returned to the caller.

INDEX <6> (Index AS Long) AS Long

The current INDEX for the LinkListCOLLECTION is set to the specified index number. If
the parameter is less than one, or greater than current count of data items, the INDEX is
not changed. The previous value of the INDEX is returned to the caller.

IndexVar& = ObjectVar.INDEX(0)

The above example retrieves the current index number, without changing it, and assigns it
to the variable IndexVar&.

INSERT <7> (Index AS Long, PowerItem AS Variant)

The PowerItem variant is added to the collection at the position specified by the Index. If
the index number is less than one, or greater than the count, the item is added to the end
of the list.

ITEM <8> (Index AS Long) AS Variant

The PowerItem at the position specified by Index is returned. If the specified item is not
present, the variant returned will be of type empty (VT_EMPTY), and the OBJRESULT will
be %S_FALSE (1).

LAST <9> AS Long

The current INDEX for the LinkListCOLLECTION is set to the last item so that subsequent
references to the PREVIOUS method will access member items from the end. The
previous value of the INDEX is returned to the caller.

NEXT <2> AS Variant

The NEXT method allows the LinkListCollection data items to be retrieved sequentially.
 Each time NEXT is referenced, the data item at the position specified by the INDEX is
returned to the caller, and the INDEX is incremented. If the operation is successful, the
OBJRESULT is set to %S_OK (0). When there are no more data items to retrieve, the
OBJRESULT is set to %S_FALSE (1).

PREVIOUS <10> AS Variant

The PREVIOUS method allows the LinkListCollection data items to be retrieved
sequentially. Each time PREVIOUS is referenced, the data item at the position specified
by the INDEX is returned to the caller, and the INDEX is decremented. If the operation is
successful, the OBJRESULT is set to %S_OK (0). When there are no more data items to
retrieve, the OBJRESULT is set to %S_FALSE (1).

REMOVE <11> (Index AS Long)

PowerBASIC Compiler for Windows Version 10

1362 / 2126

The PowerItem at the position specified by Index is removed from the LinkListCollection.
 The index number of each data item past the removed item is decremented by one. If the
requested item is not present, OBJRESULT returns %S_FALSE (1) and no operation is
performed.

REPLACE <12> (Index AS Long, PowerItem AS Variant)

The PowerItem at the position specified by Index is replaced by the new specified
PowerItem. If the requested PowerItem is not present, OBJRESULT returns %S_FALSE
(1) and no operation is performed.

Stack
Collection

A Stack Collection is an ordered set of data items, which are accessed on a LIFO (Last-In
/ First-Out) basis. This collection follows the same algorithm as the machine stack on
your Intel CPU. Each data item is passed and stored as a variant variable, using the
PUSH and POP methods.

Syntax The CLASS is "StackCollection". The INTERFACE is IStackCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Stack Collection Methods
CLEAR <1>

All PowerItems are removed from the StackCollection.

COUNT <2> AS Long

The number of data items currently contained in the StackCollection is returned to the
caller.

POP <3> AS Variant

The PowerItem at the "Stack-Top" (the item most recently added) is retrieved and returned
to the caller. When there are no more data items to retrieve, the variant returned will be of
type empty (VT_EMPTY), and the OBJRESULT will be %S_FALSE (1).

PUSH <4> (PowerItem AS Variant)

The specified PowerItem is added to the StackCollection at the "Stack-Top" position.

Queue
Collection

A Queue Collection is an ordered set of data items, which are accessed on a FIFO (First-
In / First-Out) basis. Each data item is passed and stored as a variant variable, using the
ENQUEUE and DEQUEUE methods.

Syntax The CLASS is "QueueCollection". The INTERFACE is IQueueCollection (a DUAL
interface).

<ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

Queue Collection Methods
CLEAR <1>

All PowerItems are removed from the QueueCollection.

COUNT <2> AS Long

The number of data items currently contained in the QueueCollection is returned to the
caller.

DEQUEUE <3> AS Variant

The PowerItem at the "oldest" position is retrieved and returned to the caller. When there
are no more data items to retrieve, the variant returned will be of type empty (VT_EMPTY),
and the OBJRESULT will be %S_FALSE (1).

ENQUEUE <4> (PowerItem AS Variant)

PowerBASIC Compiler for Windows Version 10

1363 / 2126

The specified PowerItem is added to the QueueCollection at the "newest" position.

See Also FOR EACH/NEXT

ISTRUE operator

ISFALSE and ISTRUE operators
Purpose Return the logical truth or falsity of a given expression.

Syntax ISFALSE expr
ISTRUE expr

Remarks ISTRUE returns -1 (TRUE) when expr evaluates as non-zero; otherwise, it returns zero
(FALSE). ISFALSE returns -1 when expr evaluates as 0 (FALSE); otherwise, it returns
zero.

Truth table
operator expr Result
ISTRUE = 0 0
ISTRUE <> 0 -1
ISFALSE = 0 -1
ISFALSE <> 0 0

PowerBASIC's NOT operator serves a double duty: it returns the one's-complement of an

 expression and "reverses" the value of a TRUE/FALSE (Boolean) expression.
Usually, these two functions do not conflict, but since PowerBASIC accepts any non-
zero value as TRUE, the following condition can arise:

test1 = 0 ' test1 is FALSE (zero)
IF NOT test1 THEN ' TRUE (-1 is non-zero)
[statements]

test2 = 1 ' test2 is TRUE (1 is non-zero)
IF NOT test2 THEN ' still TRUE (-2 is non-zero)
[statements]

In this case, NOT does not reverse the TRUE/FALSE value of test2. ISFALSE ensures
that the test is performed exactly as you would expect:
test2 = 1 ' test2 is TRUE (non-zero)

IF ISFALSE test2 THEN ' ISFALSE detects test2 is
[statements] ' TRUE so the IF test fails

This problem does not exist when you're testing for logical truth. PowerBASIC considers
that an expression is TRUE in every case except when the expression is zero. However,
ISTRUE converts all non-zero values to the "most true" value, -1, which provides the most
consistent results with both boolean and arithmetic expressions.

Restrictions ISTRUE and ISFALSE operators evaluate the "whole" expression following the keyword,
subject to their Operator Precedence level. For example, parentheses contained within
the expression are regarded as an integral part of the expression, and do not act as
delimiters for the ISTRUE and ISFALSE operators.

With this in mind, combining a logical test result into a further expression means that the
expressions must be separated to ensure the correct evaluation.

Consider the following statement:

IF ISTRUE (x&) + y& THEN

PowerBASIC evaluates the entire expression (x&) + y& and then calculates the logical
truth from the overall result of that expression. That is, the parentheses around the first
part of the expression do not stop ISTRUE from evaluating the whole expression. To
demonstrate this, the statement can be rewritten to concisely demonstrate the scope of
the logical evaluation:

IF ISTRUE (x& + 2) THEN

PowerBASIC Compiler for Windows Version 10

1364 / 2126

or it could be simplified even further:

IF ISTRUE x& + 2 THEN

If you wish to utilize the numeric result of the logical test in a further expression,
parentheses must be added to separate the expressions correctly:

IF (ISTRUE x&) + 2 THEN

See also Arithmetic Operators, NOT, Short-circuit evaluation

ISWIN function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

ISWIN function
Purpose Determine whether a

/Dialog/Window currently exists
Syntax DialogExists& = ISWIN(hDlg&)

ControlExists& = ISWIN(hParentDlg&, Ident&)

Remarks The Window subsystem is checked to determine whether the specified Dialog or Control
currently exists. This function may be used for a wide range of purposes, but it's
particularly valuable when you want to be sure that a CONTROL was created successfully
with the

 statement.
If you use a single parameter, it must specify the handle of a Window, Dialog, or Control
you are checking. If you use two parameters, you would specify the handle of the parent
and the identifier of the Control you are checking.

If the target of the function currently exists, TRUE (-1) is returned. If it does not exist, the
return value is FALSE (0).

See also , CONTROL HANDLE, DIALOG NEW

ITERATE statement

ITERATE statement
Purpose Start an immediate iteration of a

 structure.
Syntax ITERATE [DO | LOOP | FOR]

Remarks ITERATE is just like using a GOTO to the line immediately before the NEXT statement (of
a FOR...NEXT loop), the LOOP statement (of a DO...LOOP loop), or the WEND
statement (of a WHILE..WEND loop). For example, the following code fragments are
equivalent:

FOR ix = 1 TO 100
 [statements]

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1365 / 2126

 ITERATE FOR
 [statements]
NEXT

FOR ix = 1 TO 100
 [statements]
 GOTO iterateForLoop
 [statements]
iterateForLoop:
NEXT

If you do not specify DO, LOOP, or FOR, ITERATE will iterate the most recently executed
structure. For example:

FOR ix = 1 TO 10
 DO UNTIL x > 10
 [statements]
 ITERATE ' will iterate the DO LOOP
 [statements]
 LOOP
NEXT
ITERATE DO and ITERATE LOOP are interchangeable.

Use this statement... To iterate this kind of loop

ITERATE FOR FOR/NEXT

ITERATE DO, ITERATE LOOP DO/LOOP, WHILE/WEND

See also DO/LOOP, EXIT, FOR EACH/NEXT, FOR/NEXT, WHILE/WEND

JOIN$ function

JOIN$ function
Purpose Return a

 consisting of all of the strings in an array, each separated by a delimiter.
Syntax A$ = JOIN$(array(), {delim$ | BINARY})

Remarks JOIN$ requires a delimiter string delim$ which may be any length.

If the delimiter expression is a null (zero-length) string, no separators are inserted
between the string sections. If the delimiter expression is the 3-byte value of "," (which
may be expressed in your source code as the string literal ""","""), a leading and trailing
double-quote is added to each string section. This ensures that the returned string
contains standard, comma-delimited quoted fields that can be easily parsed.

The array specified by array() may be any data type.

BINARY If the array consists of fixed size elements (

, Nul-Terminated Strings, etc.), the returned string consists of an exact memory image
of the array data in internal format. If the array contains variable length data (Dynamic
string, Field string), it is stored in PowerBASIC and/or Visual Basic packed string
format: If a string is shorter than 65535 bytes, it starts with a 2-byte length WORD
followed by the string data. Otherwise, it will start with a 2-byte value of 65535,
followed by a DWORD indicating the string length, then finally the string data itself.
The JOIN$ function is the natural complement to the PARSE statement.

See also BUILD$, PARSE, PARSE$, PARSECOUNT

Example FUNCTION PBMAIN
 DIM a$(2), s1$, s2$
 a$(0) = "Hello"

PowerBASIC Compiler for Windows Version 10

1366 / 2126

 a$(1) = "Power"
 a$(2) = "BASIC"
 s1$ = JOIN$(a$(),""",""")
 s2$ = JOIN$(a$(),$SPC)
END FUNCTION

Result s1$ contains: "Hello","Power","BASIC"
s2$ contains: Hello Power BASIC

KILL statement

KILL statement
Purpose Delete a disk file.

Syntax KILL filespec

Remarks filespec is a string expression specifying the file or files to be deleted, and can include a
path name and/or "wildcard" characters. filespec may be either a Short File Name (SFN)
or a Long File Name (LFN). For example:

KILL "TEST.DOC"
KILL "C:\MY APPLICATION DATA\INCOME.?87"
MyFile$ = "*.BAS"
KILL MyFile$ ' Potentially dangerous!

If filespec does not exist, Error 53 ("File not found") is generated. If filespec is read only,
Error 70 ("Permission denied") occurs. You should not attempt to KILL an open file.

Files with the HIDDEN or SYSTEM attribute can not be deleted with KILL. An attempt to
do so is ignored, with no error generated.

KILL is analogous to the DOS "DEL" and "ERASE" commands. KILL cannot delete a
directory - use RMDIR instead, after first deleting all the files in the directory.

See also FILEATTR, FILECOPY, FILENAME$, GETATTR, NAME, RMDIR, SETATTR, SETEOF

LBOUND function

LBOUND function
Purpose Return the smallest possible subscript (boundary) for an array's specified dimension.

Syntax y& = LBOUND(array [(dimension)])
y& = LBOUND(array, dimension)

Remarks LBOUND can be used in combination with UBOUND to determine the size of an array.
LBOUND of an undimensioned array returns zero. The LBOUND function has the
following parts:

array Name of the array of interest.

dimension An

 indicating which dimension's lower bound is returned. If not specified, the first
dimension is assumed.

Restrictions LBOUND cannot be used on arrays within User-Defined Types.

See also ARRAYATTR, DIM, REDIM, UBOUND

Example ' Dimension an array with lower and upper bounds
DIM MyArray%(1900 TO 2000,5 TO 10)
' get the values of the array
l1 = LBOUND(MyArray%)
u2 = UBOUND(MyArray%)
l2 = LBOUND(MyArray%(2))

PowerBASIC Compiler for Windows Version 10

1367 / 2126

u2 = UBOUND(MyArray%, 2)

LCASE$ function

LCASE$ function
Purpose Return a lowercase version of a

 argument.
Syntax s$ = LCASE$(string_expression [,ANSI | OEM])

Remarks LCASE$ returns a string equivalent to string_expression, except that uppercase letters in
string_expression are converted to lowercase. The optional ANSI or OEM parameter
specifies whether the conversion is made using the ANSI charset for the system, or the
original IBM OEM charset. If no charset is specified, PowerBASIC for Windows uses the
system ANSI charset, while PB/CC uses the IBM OEM charset. Only "International"
characters in the range of CHR$(128) to CHR$(255) are affected by this parameter.

The OEM charset is based upon the original IBM OEM charset to ensure compatibility
with programs written for all previous versions of the PowerBASIC compiler.

See also MCASE$, UCASE$

Example x$ = LCASE$("Cats aren't ALWAYS good.")

Result cats aren't always good.

LEFT$ function

LEFT$ function
Purpose Return the left-most n characters of a

.
Syntax s$ = LEFT$(string_expression, n&)

Remarks n& is a Long-integer expression and specifies the number of characters in
string_expression to be returned.

LEFT$ returns a string consisting of the left most n& characters of its string argument. If
n& is greater than or equal to the length of string_expression, all of string_expression is
returned. If n& is zero, LEFT$ returns an empty string. If the length value parameter is
negative, it is interpreted as LEN(string_expression)-ABS(n&). For example,
LEFT$("1234567890",-2) returns "12345678".

See also EXTRACT$, INSTR, LTRIM$, MID$, RIGHT$, RTRIM$, SPLIT, TALLY, TRIM$, VERIFY

Example ' Demonstrate LEFT$ and RIGHT$ functions
DIM TestString$, x$, y$, n AS LONG
TestString$ = "ABCDEFGHIJKLMNOP"
FOR n = 1 TO 14 STEP 2
 x$ = LEFT$(TestString$,n)
 y$ = RIGHT$(TestString$,n)
NEXT n

LEN function

LEN function
Purpose Return the logical length of a variable, User-Defined Type, or Union.

http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

1368 / 2126

Syntax y& = LEN(target)

Remarks If target is a

 variable or a string expression, LEN returns a value from 0 to the current string length,
representing the number of characters in target. If target is a fixed-length string, the
length of the fixed buffer is returned. If target is an nul-terminated string, the length of
the data stored in the nul-terminated string is returned, not the maximum size of the
nul-terminated string. Use SIZEOF to determine the maximum size of an nul-
terminated string.
When used with pointers, LEN returns a value of 4, since a pointer is always stored as a
DWORD. You can use LEN with the target of a pointer to return the size of target. If the
target is a dynamic string, you will receive the length of the string, not the length of the
handle.

target can also be any other variable type, including

 and User-Defined Types (defined with TYPE/END TYPE). In that case,
PowerBASIC will return the number of bytes needed to store a variable of that type.
When measuring the size of a padded (aligned) UDT structure with the LEN (or SIZEOF)
statement, the measured length includes any padding that was added to the structure.
For example, the following UDT structure:

TYPE LengthTestType DWORD
 a AS INTEGER
END TYPE
' code here
DIM abc AS LengthTestType
x& = LEN(abc)

Returns a length of 4 bytes in x&, since the UDT was padded with 2 additional bytes to
enforce DWORD alignment. Note that the LEN of individual UDT members returns the
true size of the member without regard to padding or alignment. In the previous example,
LEN(abc.a) returns 2.

See also CHRBYTES, SIZEOF

Example DIM p AS BYTE POINTER
ByteLen = LEN(p) ' size of a pointer = 4 bytes
ByteLen = LEN(@p) ' size of byte (target) = 1 byte

LET statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LET statement
Purpose Assign a value to a variable.

Syntax [LET] variable = expression
[LET] variable += expression
[LET] variable -= expression
[LET] variable *= expression

PowerBASIC Compiler for Windows Version 10

1369 / 2126

[LET] variable /= expression
[LET] variable \= expression
[LET] variable &= expression
[LET] variable AND= expression
[LET] variable OR= expression
[LET] variable EQV= expression
[LET] variable IMP= expression
[LET] variable MOD= expression
[LET] variable XOR= expression

Remarks Simple assignment

variable is a

 or variable, and expression is of a suitable type (that is, a string expression for string
variables and numeric expression for numeric variables).
The word LET is optional in assignment statements. It is allowed to provide compatibility
BASIC source files written for early versions of BASIC. In practice, the word LET is very
rarely used.

To allow easy conversion, PowerBASIC allows a User-Defined Type in a string expression.
 The User-Defined Type is simply copied, byte for byte, into the expression. However, to
assign a string back to a User-Defined Type, you should use the TYPE SET statement.

DIM abc as MyType
MyString$ = abc

Please refer to the following sections of the LET statement for special information
regarding assignment using Object variables, Variant variables, and User-Defined Type
variables.

Compound assignment

A compound assignment statement combines a binary arithmetic operator, a binary

, or a binary string operator (concatenation) as an integral part of the assignment. This
offers the programmer a "shortcut" in your source code, and can even result in more
efficient code generation. That's because the target variable is evaluated only once,
even if an array or pointer calculation could have a side effect which changes it.
Compound assignments are available for the standard arithmetic operations of add,
subtract, multiply, divide, int-divide, and modulo (+ - * / \ MOD), the bitwise operations
(AND, OR, XOR, EQV, IMP), and the concatenation operators (+ &). Each are
represented by one of the following tokens:

+= AND=

-= OR=

/= EQV=

\= IMP=

&= MOD=

*= XOR=

Each of the following pairs of code are functionally identical:

x = x + 1 x += 1

x = x / y x /= y

x = x XOR 3 x XOR= 3

x(7) = x(7) AND
5

x(7) AND= 5

x$ = x$ + y$ x$ += y$

See also BUILD$, JOIN$, LET (with Objects), LET (with Variants), LET (with Types), TYPE SET

Example MyString$ = "This is a test."
LET TempStr$ = MyString$
LET MyVarr -= YourVar

PowerBASIC Compiler for Windows Version 10

1370 / 2126

LET statement (with Objects)

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LET statement (with Objects)
Purpose Assign an object reference to an object variable.

Syntax [LET] objvar = object expression

Remarks The LET Statement, and its implied form (without using the word LET), may be used to
assign an object reference to an object variable. After you declare an object variable as a
particular interface, you must create an object and or assign an object reference to it
before you can use the objects members (methods, properties, etc.).

If an object creation or assignment fails for any reason, the objvar is set to NOTHING. If
this statement fails, no errors are generated, nor is an OBJRESULT set. You should test
for success of the operation with ISOBJECT(objvar) before trying to use the object or
execute its methods.

LET objvar = CLASS ClassName$

The term ClassName must be specified as a quoted string literal, which is the name of a
class implemented within the program. Since the class is internal (the name is known at
compile-time), you may not use a

 variable or expression. Upon execution, a new object is created, and a reference to
that object is assigned to the object variable objvar. The interface requested is
determined by the original declaration of objvar. If InterfaceName is DISPATCH,
you can reference it with the OBJECT statement -- otherwise, regular Method and
Property references are used.

LET objvar = NEWCOM PrgID$
LET objvar = GETCOM PrgID$
LET objvar = ANYCOM PrgID$

This form of the LET statement is used to obtain an object reference external to the
program using the COM facilities of Windows. If the requested object is in a DLL (in-
process server), you will always use the NEWCOM option, as you're asking for a new
object. If the request is successful, the object reference is assigned to the objvar.

If the requested object is in an EXE (out-of-process server), you may use any of the three
options. If the director word NEWCOM is specified, a new instance of a COM application
is created. With GETCOM, an interface will be opened on an existing, running
application, which has been registered as the active automation object for its class. With
ANYCOM, the compiler will first try to use an existing, running application if available, or a
new instance if not.

The string expression ProID$ evaluates to a ProgID name on an external COM server. If
the InterfaceName is DISPATCH, you can reference it with the OBJECT statement --
otherwise, regular Method and Property references are used instead.

PowerBASIC Compiler for Windows Version 10

1371 / 2126

LET objvar = NEWCOM CLSID ClassID$
LET objvar = GETCOM CLSID ClassID$
LET objvar = ANYCOM CLSID ClassID$

This form also obtains a COM object, just as the examples in the above section. There is
always a one-to-one relationship between a ProgID and a CLSID (Class ID). An object
can be identified by either of these tokens, as long as they are both available. In some
instances, you may encounter an object which has no ProgID published. You can
substitute the clause "CLSID ClassID$" for the PrgID$. It works exactly as the usual
form above, except that it describes the requested object by its 16-byte GUID which is
the CLSID (Class ID) of the object.

LET objvar = NEWCOM CLSID ClassID$ LIB DLLPath$

PowerBASIC offers the unique ability to create and reference COM objects without any
reference to the registry at all. As long as you know the CLSID (Class ID) and the file
path/name of the DLL to be accessed, you can do so with no registry access at all. You
don't need a special type of COM server. This technique can be used with any server,
whether created by PowerBASIC or another compiler. By using this method of object
creation, there is simply no need for the server to be registered at all. That allows you to
keep local copies of the COM servers you use, with no chance they will be altered or
replaced by another application. You use the above form, where the clause "CLSID
ClassID$" identifies the 16-byte Class ID, and the clause "LIB DllPath$" identifies the file
path and file name of the COM Server. Once you've obtained the COM object reference in
objvar, it is used exactly as you would with a traditional object.

LET objvar1 = objvar2

If both object variables have been declared as the same object type (the same interface
name), the source variable (objvar2) is copied to the destination variable (objvar1), and the
reference count of the object is incremented. If the object variables are of different object
types, a new interface (of the type implied by objvar1) is opened on objvar2, and a
reference to it is assigned to objvar1.

LET objvar = objmethod(params)

It is assumed that the METHOD or GET PROPERTY specified by objmethod returns an
object of the type of objvar. The objmethod is evaluated, and the object reference which it
returns is assigned to objvar.

LET objvar = ME

This form may only be used within a METHOD or PROPERTY. A new interface (of the
type implied by objvar) is opened on the current object, and a reference to it is assigned
to objvar.

LET objvar = NOTHING

This destroys an object variable, discontinuing its association with a specific object. This
in turn releases all system and memory resources associated with the object when no
more object variables refer to it.

LET objvar = vrnt

Attempts to open an interface of the specified class for objvar on the object of vrnt, and
assigns a reference to objvar. It assumes that vrnt contains a reference to an object of
type %VT_UNKNOWN or %VT_DISPATCH. If the desired interface can not be opened,
the object variable objvar is set to NOTHING.

LET vrnt = objvar

PowerBASIC Compiler for Windows Version 10

1372 / 2126

This may be used to assign an object reference from an object variable to a variant
variable. It attempts to open an IDispatch interface, else an IUnknown interface on the
object of objvar, and assigns that reference to vrnt. Variant variables can not contain
references to custom interfaces, only IDispatch or IUnknown. If the assignment is
successful, VARIANTVT(vrnt) will return either %VT_UNKNOWN or %VT_DISPATCH. If it
is unsuccessful, vrnt is set to %VT_EMPTY.

Previous versions of PowerBASIC Compilers used the SET statement for
creation of objects. LET now includes all the functionality of the old SET
statement, so you should plan to remove all SET statements as soon as
possible. This involves nothing more than changing every SET to LET, or
simply deleting every SET.

See also LET, LET (with Variants), LET (with Types), INTERFACE (Direct), INTERFACE (IDBind),
ISINTERFACE,ISNOTHING, ISOBJECT, Just what is COM?, ME, OBJECT, What is an
object, anyway?

LET statement (with Types)

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LET statement (with Types)
Purpose Assign data to a user-defined type variable.

Syntax [LET] TypeVar = TypeVar
[LET] TypeVar = VARIANT$(VrntVar)

Remarks Typevar is a user-defined type variable. In order to perform direct assignment of data from
one user-defined type variable to another, they must be dimensioned to the same type.
 To assign data between two different types, you should use the TYPE SET statement
instead.

The word LET is optional in assignment statements. It is allowed to provide compatibility
BASIC source files written for early versions of BASIC. In practice, the word LET is very
rarely used.

When User-Defined Type data is stored in a variant variable, it may be extracted as in the
second syntax example. The Variant$() function understands that UDT data is stored as
a byte string.

To allow easy conversion, PowerBASIC allows a User-Defined Type in a string expression.
 The User-Defined Type is simply copied, byte for byte, into the expression. To assign a
string back to a User-Defined Type, you may also use the TYPE SET statement.
 Generally speaking, if a UDT is used in a WIDE string expression (Unicode), it will give
unpredictable results from the character conversions.

DIM abc as MyType
MyString$ = abc

See also LET, LET (with Objects), LET (with Variants), TYPE SET, VARIANT$

Example MyString$ = "This is a test."
LET TempStr$ = MyString$

PowerBASIC Compiler for Windows Version 10

1373 / 2126

LET statement (with Variants)

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LET statement (with Variants)
Purpose Assign a value or an object reference to a variant variable.

Syntax [LET] VariantVar = variant expression
[LET] VariantVar = TypeVar AS STRING

Remarks Although notoriously lacking in efficiency, Variant variables are commonly used as COM
Object parameters due to their flexibility. They also prove valuable in a situation where a
procedure must run properly with parameters of multiple data types (a Collection would be
a good example). You can think of a Variant as a kind of container, which can hold a
variable of most any data type,

, , object, or even a UDT or an entire array. This simplifies the process of calling
procedures in a COM Object Server, as there is little need to worry about the myriad
of possible data types for each parameter.
This flexibility comes at a great price in performance, so PowerBASIC limits their use to
data storage and parameters only. You may assign a numeric value, a string value, a
UDT, an object, or even an entire array to a Variant with the LET statement, or its implied
equivalent. In the same way, you may assign one Variant value to another Variant
variable, or even assign an array contained in a Variant to a compatible PowerBASIC
array, or the reverse.

You may extract a scalar value from a Variant with VARIANT# (for numeric values),
VARIANT$ (for ANSI byte strings or user-defined types), or VARIANT$$ (for wide Unicode
strings). When you assign string data to a variant variable, ANSI strings are
automatically converted to wide Unicode characters, as this is the accepted standard for
variants. However, when you assign UDT data to a variant variable, it is stored as a
dynamic string of bytes. When you retrieve that UDT data (with Variant$), PowerBASIC
understands the content and handles it accurately. However, other programming
languages may not, so the use of this technique should be limited to PowerBASIC
applications.

LET VrntVar= vrntvar

This form duplicates the contents of one variant variable, assigning it to a second variant
variable.

LET VrntVar= expression [AS vartype]

The numeric or string expression is evaluated, and the result is stored in the variant
variable. PowerBASIC will choose an appropriate numeric or string data type to use.
 However, you can specify a preferred format by adding an optional AS vartype clause.
This can be BYTE, WORD, DWORD, INTEGER, LONG, QUAD, SINGLE, DOUBLE,
CURRENCY, or WSTRING. Strings in a variant are always stored in wide Unicode,
regardless of whether you add AS WSTRING or not. PowerBASIC handles the conversion
automatically, if it is needed.

PowerBASIC Compiler for Windows Version 10

1374 / 2126

In prior versions of PowerBASIC, the term AS STRING was interpreted to mean AS
WSTRING for wide Unicode. However, with the new support for Unicode data types, this
can no longer be allowed. All references to AS STRING with variants must be changed to
AS WSTRING.

LET VrntVar = TypeVar AS STRING

The data contained in the User-Defined Type variable (UDT) is stored in the variant
variable. It is stored internally as a dynamic string of bytes (vt_bstr). When you retrieve
that UDT data (with Variant$), PowerBASIC understands the content and handles it
accurately. However, other programming languages may not understand this technique,
so it should generally be limited to PowerBASIC applications.

In prior versions of PowerBASIC, the AS STRING clause was not a requirement, as it is
currently. Although it represents a change, it was a necessary restriction to confirm that
the conversion to string is your intention.

LET VrntVar = EMPTY

The variant variable is set to %VT_EMPTY, which means it contains no value of any kind.

LET VrntVar = ERROR numr

This form assigns a specific COM error number, which is usually a COM specific error,
such as %E_NOINTERFACE, etc.

LET VrntVar = array()

An entire PowerBASIC array is assigned to a variant variable. In the case of a string
array, PowerBASIC automatically handles Unicode conversions needed for the COM
specification. Array assignment is limited to the following data types: BYTE, WORD,
DWORD, INTEGER, LONG, QUAD, SINGLE, DOUBLE, CURRENCY, or STRING, as
Windows does not support all PowerBASIC data forms.

LET array() = vrntvar

An entire array is assigned from a variant variable to a PowerBASIC array. In the case of
a string array, PowerBASIC automatically handles Unicode conversions. You can not
assign an array with more than eight dimensions to a PowerBASIC array.

LET VrntVar = BYREF variable

This form is used to allow a variant to contain a typed pointer to a specific variable. Any
changes to the variant will cause the variable to be changed, as it is the target of the
pointer. The variable may be of any data type which is supported by variants and COM
objects: Byte, Word, Dword, Integer, Long, Quad, Single, Double, Currency, Variant,
String, and WString. If you attempt to use an unsupported variable type (like Extended,
Bit, STRINGZ, etc.), PowerBASIC will generate an error 482 (Data Type Mismatch).
 Further, you may not use a register variable (automatic or explicit), or an error 491
(Invalid Register Variable) will be generated. Note that strings used with COM objects are
expected to be in Unicode format, rather than ANSI. The ACODE$ and UCODE$
functions may be used to convert the strings as necessary. You should exercise caution
with a BYREF ANSI string, as it may not be recognized accurately by other code which
expects only Unicode strings.

LET objvar = vrnt

Attempts to open an interface of the specified class for objvar on the object of vrnt, and
assigns a reference to objvar. It assumes that vrnt contains a reference to an object of
type %VT_UNKNOWN or %VT_DISPATCH. If the desired interface can not be opened,
the object variable objvar is set to NOTHING. You can test for success/failure with the
ISOBJECT(objvar) function.

PowerBASIC Compiler for Windows Version 10

1375 / 2126

LET vrnt = objvar

This may be used to assign an object reference from an object variable to a variant
variable. It attempts to open an IDispatch interface, else an IUnknown interface on the
object of objvar, and assigns that reference to vrnt. Variant variables can not contain
references to custom interfaces, only IDispatch or IUnknown. If the assignment is
successful, VARIANTVT(vrnt) will return either %VT_UNKNOWN or %VT_DISPATCH. If it
is unsuccessful, vrnt is set to %VT_EMPTY.

See also Just what is COM?, LET, LET (with Objects), LET (with Types), VARIANT#, VARIANT$,
VARIANTVT

LIBMAIN function

LIBMAIN function
Purpose LIBMAIN (or its synonym DLLMAIN) is an optional user-defined function called by

Windows each time a DLL is loaded into, and unloaded from, memory. The PBLIBMAIN
function performs a similar task to LIBMAIN, but takes no parameters.

Syntax FUNCTION { LIBMAIN | DLLMAIN } (_
 BYVAL hInstance AS DWORD, _
 BYVAL lReason AS LONG, _
 BYVAL lReserved AS LONG) AS LONG

In 32-bit Windows, LIBMAIN is called by Windows each time a DLL is loaded
or unloaded by an application or process, and (usually) when a thread is
started and stopped. Your code should never call LIBMAIN.

Remarks The LIBMAIN / DLLMAIN function provides the following parameters:

hInstance The unique instance handle of the DLL. This handle is used by the calling application to
identify the DLL. The instance handle value is commonly used to load resources
embedded within the DLL, and to obtain the actual file name of the DLL (via the
GetModuleFilename API function). In these cases, it is common to copy the hInstance
value to a global variable, allowing the instance handle value to be utilized elsewhere in
the DLL.

lReason This flag indicates why the DLL entry-point is being called. It can be one of the following
values (as defined in WIN32API.INC):

%
DLL_PROCESS_ATTACH

Indicates that the DLL is being loaded by a process
(another DLL or EXE is loading the DLL). DLLs can use
this opportunity to initialize any instance or global data,
such as arrays. lReserved is zero if the DLL is being
loaded explicitly (run-time linking) using LoadLibrary(), or
non-zero if the DLL is being loaded implicitly (load-time
linking) during process initialization.

%
DLL_PROCESS_DETACH

Indicates that the DLL is being cleanly unloaded or
detached from the calling application. DLLs can take
this opportunity to clean up all resources for all threads
attached and known to the DLL. This is functionally
equivalent to the WEP function in 16-bit DLLs.
lReserved is zero if LIBMAIN was executed via the
FreeLibrary API and the DLLs reference count reached
zero (no further instances of the DLL are loaded), or non-
zero if LIBMAIN is executed during process termination.
A %DLL_PROCESS_DETACH does not generate %
DLL_THREAD_DETACH for active threads.

%DLL_THREAD_ATTACH Indicates that the DLL is being loaded by a new thread
in the calling application. DLLs can use this opportunity

WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

1376 / 2126

to initialize any Thread Local Storage (TLS). This
execution occurs in the context of the new thread.

%DLL_THREAD_DETACH Indicates that the thread is exiting cleanly. If the DLL
has allocated any thread-specific storage (Thread Local
Storage or TLS), it should be released. This may occur
even if there was no matching %DLL_THREAD_ATTACH
call. A %DLL_PROCESS_DETACH does not generate
%DLL_THREAD_DETACH for active threads.

lReserved The lReserved parameter specifies further aspects of the DLL initialization and cleanup. If
lReason is %DLL_PROCESS_ATTACH, lReserved is zero (0) for explicit (dynamic) loads
and non-zero for implicit loads. If lReason is %DLL_PROCESS_DETACH, lReserved is
zero if LIBMAIN has been called by using the FreeLibrary API call, and non-zero if
LIBMAIN has been called during process termination.

Return value If LIBMAIN is called with %DLL_PROCESS_ATTACH, your LIBMAIN function should
return a zero (0) if any part of your initialization process fails, or a one (1) if no errors were
encountered. If a zero is returned, Windows will abort and unload the DLL from memory.
When LIBMAIN is called with any other value than %DLL_PROCESS_ATTACH, the return
value is ignored.

Restrictions Note that Windows does not guarantee that LIBMAIN will be called in a "balanced"
manner. For example, a %DLL_PROCESS_ATTACH is not followed by a %
DLL_THREAD_ATTACH for the primary thread. In some conditions, %
DLL_THREAD_DETACH may not occur at all. Further discussion on these Windows traits
are beyond the scope of this documentation; however, an excellent source of information
can be found in "Win32 Programming", Rector/Newcomer, ISBN 0-201-63492-9.

At the point where a DLL is loaded into memory during process startup, Windows only
guarantees that the KERNEL32.DLL system library will be loaded in memory. On this
basis, API calls made from within LIBMAIN must be restricted to the range of API
functions present in KERNEL32.DLL, with the exception of the LoadLibrary,
LoadLibraryEx, and FreeLibrary API functions.

In addition, code within LIBMAIN must not call API functions in any other DLL (for
example, USER32.DLL, SHELL32.DLL, ADVAPU32.DLL, GDI32.DLL, etc), because
some API functions in those DLLs may attempt to load other libraries via LoadLibrary, etc.
For example, never call the MessageBox API function from within LIBMAIN, nor use the
related MSGBOX function or MSGBOX statement.

Failure to observe these restrictions will result in Access Violation or General Protection
Faults (GPFs), typically caused by the execution of code in DLLs that has yet to be
initialized.

See also DLLMAIN, PBLIBMAIN, PBMAIN, THREAD CREATE, WINMAIN

Example #DIM ALL
#COMPILE DLL "LIBTEST.DLL"
#INCLUDE "WIN32API.INC"

GLOBAL gNumOfTimes AS DWORD

FUNCTION LIBMAIN(BYVAL hInstance AS DWORD, _
 BYVAL lReason AS LONG, _
 BYVAL lReserved AS LONG) AS LONG

 INCR gNumOfTimes

 SELECT CASE AS LONG lReason

 CASE %DLL_PROCESS_ATTACH
 ' This DLL has been mapped into the memory context of
 ' the calling program, and can be initialized as required.
 ' Here we return a non-zero LIBMAIN result to indicate success.

PowerBASIC Compiler for Windows Version 10

1377 / 2126

 LIBMAIN = 1
 EXIT FUNCTION

 CASE %DLL_PROCESS_DETACH
 ' This DLL is about to be unloaded
 EXIT FUNCTION

 CASE %DLL_THREAD_ATTACH
 ' A [New] thread is starting (see THREADID)
 EXIT FUNCTION

 CASE %DLL_THREAD_DETACH
 ' This thread is closing (see THREADID)
 EXIT FUNCTION

 END SELECT

 ' Theoretically execution should never get to this point.
 ' However, if the DLL is being implicitly linked then return
 ' Zero (0) and the process (program) will fail to start
 ' running. For Explicit linking, returning Zero (0) will
 ' simply cause the LoadLibrary/LoadLibraryEx API call to fail.
 LIBMAIN = 0 ' Indicate failure to initialize the DLL!
END FUNCTION

SUB TestIt ALIAS "TestIt" () EXPORT
 MSGBOX "TestIt" + $CRLF + _"gNumOfTimes =" + STR$(gNumOfTimes)
END SUB

LINE INPUT# statement

LINE INPUT# statement
Purpose Read line(s) from a sequential file into a

 variable or string array, ignoring delimiters.
Syntax LINE INPUT #filenum&, string_variable

LINE INPUT #filenum&, Arr$() [RECORDS rcds] [TO count]

Remarks filenum& is the file number, or variable containing a file number, given when the file was
opened. string_variable is the string variable to be loaded with the data read from the file.

string_variable may be a fixed-length, nul-terminated, or dynamic string. For fixed-length
and nul-terminated strings, data that is longer than the string is truncated to fit into the
string. Dynamic strings receive the data without truncation. string_variable may not be a
UDT variable, although fixed-length and nul-terminated UDT member variables are
supported.

LINE INPUT# is intended for use with text files composed of lines terminated by CR/LF
($CRLF or CHR$(13,10)) sequences. It reads a line from the file and returns it, minus the
CR/LF delimiter. Commas, quotation marks and other characters have no special
meaning for LINE INPUT#, and are treated like any other text.

If the file consists of comma-delimited data items, INPUT# is likely to be more suitable
then LINE INPUT#.

The second syntax definition of LINE INPUT# reads a file opened for INPUT, assigning full
lines of text to each element of the array.

It is assumed the data is standard text, delimited by a CR/LF ($CRLF) or EOF (1A hex or
$EOF). LINE INPUT# attempts to read the number of lines specified in the RECORDS
rcds option, or the number of elements in the array, whichever is smaller.

PowerBASIC Compiler for Windows Version 10

1378 / 2126

The actual number of lines read is assigned to the variable specified in the optional TO
count clause. FILESCAN is useful in conjunction, to determine the dimensioned size of
the string array. EOF is set just as with single Line Input.

See also EOF, FILESCAN, INPUT#, PRINT#

Example SUB MakeFile
 ' Open a sequential file for output. Use PRINT#
 ' to write different data types to the file.
 OPEN "LINEINP#.DTA" FOR OUTPUT AS #1

 ' Define some variables.
 sVar$ = "There's trouble in River City, by George."
 iVar% = 1000
 fpVar! = 30000.12

 ' Write a line of text to the file.
 PRINT# 1, sVar$; iVar%; fpVar!
 CLOSE #1 'close the file
END SUB 'end procedure MakeFile

SUB ReadFile
 'Open a sequential file for input, then use
 'LINE INPUT # to read lines of different
 'data types from the file.

 OPEN "LINEINP#.DTA" FOR INPUT AS #1
 StringVar$ = ""

 'Input an entire line regardless of length or
 'delimiters.
 LINE INPUT #1, StringVar$
 CLOSE #1 'close the file
END SUB 'end procedure ReadFile

LISTBOX ADD statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&

PowerBASIC Compiler for Windows Version 10

1379 / 2126

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1380 / 2126

(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable

PowerBASIC Compiler for Windows Version 10

1381 / 2126

represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX DELETE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement

PowerBASIC Compiler for Windows Version 10

1382 / 2126

Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1383 / 2126

LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an

PowerBASIC Compiler for Windows Version 10

1384 / 2126

additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX FIND statement

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

1385 / 2126

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1386 / 2126

item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

PowerBASIC Compiler for Windows Version 10

1387 / 2126

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL

PowerBASIC Compiler for Windows Version 10

1388 / 2126

SET FONT

LISTBOX FIND EXACT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1389 / 2126

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.

PowerBASIC Compiler for Windows Version 10

1390 / 2126

 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

PowerBASIC Compiler for Windows Version 10

1391 / 2126

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX GET COUNT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1392 / 2126

(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

PowerBASIC Compiler for Windows Version 10

1393 / 2126

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the

PowerBASIC Compiler for Windows Version 10

1394 / 2126

discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX GET SELCOUNT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1395 / 2126

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

PowerBASIC Compiler for Windows Version 10

1396 / 2126

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

PowerBASIC Compiler for Windows Version 10

1397 / 2126

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX GET SELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&

PowerBASIC Compiler for Windows Version 10

1398 / 2126

LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1399 / 2126

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

PowerBASIC Compiler for Windows Version 10

1400 / 2126

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX GET STATE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

PowerBASIC Compiler for Windows Version 10

1401 / 2126

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1402 / 2126

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by

PowerBASIC Compiler for Windows Version 10

1403 / 2126

item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX GET TEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1404 / 2126

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1405 / 2126

 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the

PowerBASIC Compiler for Windows Version 10

1406 / 2126

second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX GET USER statement

PowerBASIC Compiler for Windows Version 10

1407 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1408 / 2126

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional

PowerBASIC Compiler for Windows Version 10

1409 / 2126

selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of

PowerBASIC Compiler for Windows Version 10

1410 / 2126

Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX INSERT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1411 / 2126

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

PowerBASIC Compiler for Windows Version 10

1412 / 2126

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET

PowerBASIC Compiler for Windows Version 10

1413 / 2126

USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX RESET statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1414 / 2126

datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,

PowerBASIC Compiler for Windows Version 10

1415 / 2126

the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

PowerBASIC Compiler for Windows Version 10

1416 / 2126

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX SELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1417 / 2126

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

PowerBASIC Compiler for Windows Version 10

1418 / 2126

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple

PowerBASIC Compiler for Windows Version 10

1419 / 2126

selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX SET TEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

PowerBASIC Compiler for Windows Version 10

1420 / 2126

LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1421 / 2126

item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the

PowerBASIC Compiler for Windows Version 10

1422 / 2126

index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX SET USER statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTBOX statement

PowerBASIC Compiler for Windows Version 10

1423 / 2126

Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter
item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1424 / 2126

LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an

PowerBASIC Compiler for Windows Version 10

1425 / 2126

additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL
SET FONT

LISTBOX UNSELECT statement

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

1426 / 2126

Syntax

Remarks

See also

Example

LISTBOX statement
Purpose Manipulate a LISTBOX control in order to set/retrieve data.

Syntax LISTBOX ADD hDlg, id&, StrExpr [TO datav&]
LISTBOX DELETE hDlg, id&, item&
LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&
LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTBOX GET COUNT hDlg, id& TO datav&
LISTBOX GET SELCOUNT hDlg, id& TO datav&
LISTBOX GET SELECT hDlg, id& [,item&] TO datav&
LISTBOX GET STATE hDlg, id&, item& TO datav&
LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$
LISTBOX GET USER hDlg, id&, item& TO datav&
LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]
LISTBOX RESET hDlg, id&
LISTBOX SELECT hDlg, id&, item&
LISTBOX SET TEXT hDlg, id&, item&, StrExpr
LISTBOX SET USER hDlg, id&, item&, NumExpr
LISTBOX UNSELECT hDlg, id& [,item&]

hDlg Handle of the dialog that owns the list box.

id& The control identifier assigned with CONTROL ADD LISTBOX.

item& Position of data in the LISTBOX. First string=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks In each of the following samples and descriptions, the LISTBOX control which is the
subject of the statement is identified by the handle of the dialog that owns the LISTBOX
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
LISTBOX.

The value item& refers to the position of the string data item in the LISTBOX, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

LISTBOX ADD hDlg, id&, StrExpr [TO datav&]

The string value specified by StrExpr is added to the LISTBOX control. If the LISTBOX has
the %LBS_SORT style, the new string is inserted in alphanumeric order; otherwise it is
added to the end of the existing list. If the optional TO clause is included, the index
position of the added string is assigned to the variable represented by datav&. The index
is one for the first string, two for the second, etc. If the index is less than one, an error
occurred and no string was added.

LISTBOX DELETE hDlg, id&, item&

The string at the position specified by item& is deleted from the LISTBOX. The parameter

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1427 / 2126

item& is indexed to one (1 for the first string, 2 for the second, and so on).

LISTBOX FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which begins with the data in
StrExpr, regardless of any characters which follow. Comparisons are not case-sensitive.
 Strings are searched beginning with the string specified by item&, and ending with the
last string in the LISTBOX. Searching does not wrap to the beginning of the list. The
item number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire
LISTBOX starting with the first string, item& should be set to one (1). If a matching string
is found, the index value of the match is assigned to the variable specified by datav&. If
no match is found, the value zero (0) is assigned to it.

LISTBOX FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the LISTBOX are searched to find the first string which exactly matches the
data in StrExpr. Comparisons are not case-sensitive. Strings are searched beginning with
the string specified by item&, and ending with the last string in the LISTBOX. Searching
does not wrap to the beginning of the list. The item number (item&) is indexed to 1
(1=first, 2=second, etc.). To search the entire LISTBOX starting with the first string,
item& should be set to one (1). If a matching string is found, the index value of the match
is assigned to the variable specified by datav&. If no match is found, the value zero (0) is
assigned to it.

LISTBOX GET COUNT hDlg, id& TO datav&

The number of items in the LISTBOX is retrieved, and assigned to the long integer variable
specified by datav&.

LISTBOX GET SELCOUNT hDlg, id& TO datav&

The number of selected items in the LISTBOX is retrieved, and assigned to the long
integer variable specified by datav&.

LISTBOX GET SELECT hDlg, id& [,item&] TO datav&

The LISTBOX is searched to find the first selected item. If the item& parameter is
included, searching starts at that position to facilitate retrieving multiple selected items. If
item& is omitted, the search starts at the first data item. The index number of the
selected item is assigned to the variable designated by datav&. If no item is selected,
the value zero (0) is assigned to it.

LISTBOX GET STATE hDlg, id&, item& TO datav&

A data item is checked to see if it is currently selected. The numeric value item&
specifies which user value is to be checked, 1 for the first item, 2 for the second item,
etc. If the item is selected, -1 (true) is assigned to the variable specified by datav&.
 Otherwise, 0 (false) is assigned to it.

LISTBOX GET TEXT hDlg, id& [,item&] TO txtv$

Text is retrieved from the LISTBOX and assigned to the string variable specified by txtv$.
 If the numeric expression item& is included, it determines which text string is returned, 1
for the first item, 2 for the second item, etc.

The parameter item& may be omitted, or contain the value zero (0). In the case of a
single-selection listbox, the current selected text (if any) is retrieved and assigned to
txtv$. With a multiple-selection listbox (%LBS_MULTIPLESEL or %LBS_EXTENDEDSEL
style), the text of the first (base) selected item is assigned to txtv$. To retrieve additional
selected text items from a multiple-selection listbox, use LISTBOX GET SELECT to
retrieve selected item numbers. Then apply the item numbers with LISTBOX GET TEXT
to retrieve the string data.

PowerBASIC Compiler for Windows Version 10

1428 / 2126

LISTBOX GET USER hDlg, id&, item& TO datav&

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTBOX GET USER. The
numeric value item& specifies which user value is requested, 1 for the first item, 2 for the
second item, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTBOX user values are assigned with the LISTBOX SET USER
statement. In addition to these LISTBOX user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTBOX INSERT hDlg, id&, item&, StrExpr [TO datav&]

The text for a new data item, specified by StrExpr, is inserted at the location given by
item&. The value of item& = 1 for the first item, 2 for the second item, etc. The list of
data items is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT.
 If you wish to sort all of the items, use LISTBOX ADD instead. If the optional TO clause
is included, the index position of the inserted string is assigned to the variable
represented by datav&. The index is one for the first string, two for the second, etc. If the
index is less than one, an error occurred and no string was inserted.

LISTBOX RESET hDlg, id&

Delete all contents of the specified LISTBOX.

LISTBOX SELECT hDlg, id&, item&

The string data item specified by item& is chosen as selected text for the LISTBOX
control, and the selected text is scrolled into a visible position. The value of item& = 1 for
the first item, 2 for the second item, etc. If the value of item& = 0 with a multiple
selection listbox, then all string data items are selected. LISTBOX SELECT may be used
with both single and multiple selection listboxes.

LISTBOX SET TEXT hDlg, id&, item&, StrExpr

The text for the data item specified by item& is replaced with the new text in StrExpr.
 The value of item& = 1 for the first item, 2 for the second item, etc. The list of data items
is not re-sorted, even if the LISTBOX was created with the style %LBS_SORT. If you
wish to sort the items, use LISTBOX DELETE followed by LISTBOX ADD instead.

LISTBOX SET USER hDlg, id&, item&, NumExpr

Each item in a LISTBOX may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTBOX SET USER, and
retrieved with LISTBOX GET USER. The numeric value item& specifies which user value
is to be accessed, 1 for the first item, 2 for the second item, etc. The value specified by
NumExpr is saved for later retrieval. In addition to these LISTBOX user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

LISTBOX UNSELECT hDlg, id& [,item&]

The string value specified by item& is set to an unselected state for the LISTBOX control.
 The value of item& = 1 for the first item, 2 for the second item, etc. If item& is missing,
or has the value zero, all items are set to an unselected state. LISTBOX UNSELECT
may be used with both single and multiple selection listboxes.

Restrictions Under Windows 95/98/ME, a list box is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the list box is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTBOX, CONTROL SET COLOR, CONTROL

PowerBASIC Compiler for Windows Version 10

1429 / 2126

SET FONT

LISTVIEW DELETE COLUMN statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1430 / 2126

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1431 / 2126

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1432 / 2126

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either

PowerBASIC Compiler for Windows Version 10

1433 / 2126

dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

PowerBASIC Compiler for Windows Version 10

1434 / 2126

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

PowerBASIC Compiler for Windows Version 10

1435 / 2126

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView

PowerBASIC Compiler for Windows Version 10

1436 / 2126

control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW DELETE ITEM statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]

PowerBASIC Compiler for Windows Version 10

1437 / 2126

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1438 / 2126

unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1439 / 2126

(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

PowerBASIC Compiler for Windows Version 10

1440 / 2126

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&

PowerBASIC Compiler for Windows Version 10

1441 / 2126

specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

PowerBASIC Compiler for Windows Version 10

1442 / 2126

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

PowerBASIC Compiler for Windows Version 10

1443 / 2126

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW FIND statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&

PowerBASIC Compiler for Windows Version 10

1444 / 2126

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1445 / 2126

IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

PowerBASIC Compiler for Windows Version 10

1446 / 2126

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1447 / 2126

assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for

PowerBASIC Compiler for Windows Version 10

1448 / 2126

the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

PowerBASIC Compiler for Windows Version 10

1449 / 2126

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe

PowerBASIC Compiler for Windows Version 10

1450 / 2126

the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW FIND EXACT statement

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

1451 / 2126

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1452 / 2126

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1453 / 2126

the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1454 / 2126

currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

PowerBASIC Compiler for Windows Version 10

1455 / 2126

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted

PowerBASIC Compiler for Windows Version 10

1456 / 2126

from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use

PowerBASIC Compiler for Windows Version 10

1457 / 2126

LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

PowerBASIC Compiler for Windows Version 10

1458 / 2126

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW FIT CONTENT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr

PowerBASIC Compiler for Windows Version 10

1459 / 2126

LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1460 / 2126

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1461 / 2126

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

PowerBASIC Compiler for Windows Version 10

1462 / 2126

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary

PowerBASIC Compiler for Windows Version 10

1463 / 2126

image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

PowerBASIC Compiler for Windows Version 10

1464 / 2126

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

PowerBASIC Compiler for Windows Version 10

1465 / 2126

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW FIT HEADER statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&

PowerBASIC Compiler for Windows Version 10

1466 / 2126

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1467 / 2126

item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

PowerBASIC Compiler for Windows Version 10

1468 / 2126

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1469 / 2126

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

PowerBASIC Compiler for Windows Version 10

1470 / 2126

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

PowerBASIC Compiler for Windows Version 10

1471 / 2126

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

PowerBASIC Compiler for Windows Version 10

1472 / 2126

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW GET COLUMN statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&

PowerBASIC Compiler for Windows Version 10

1473 / 2126

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1474 / 2126

each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is

PowerBASIC Compiler for Windows Version 10

1475 / 2126

found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1476 / 2126

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

PowerBASIC Compiler for Windows Version 10

1477 / 2126

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

PowerBASIC Compiler for Windows Version 10

1478 / 2126

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

PowerBASIC Compiler for Windows Version 10

1479 / 2126

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW GET COUNT statement

PowerBASIC Compiler for Windows Version 10

1480 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1481 / 2126

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1482 / 2126

with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1483 / 2126

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not

PowerBASIC Compiler for Windows Version 10

1484 / 2126

a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

PowerBASIC Compiler for Windows Version 10

1485 / 2126

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

PowerBASIC Compiler for Windows Version 10

1486 / 2126

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the

PowerBASIC Compiler for Windows Version 10

1487 / 2126

optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW GET HEADER statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

PowerBASIC Compiler for Windows Version 10

1488 / 2126

LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1489 / 2126

numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1490 / 2126

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable

PowerBASIC Compiler for Windows Version 10

1491 / 2126

specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

PowerBASIC Compiler for Windows Version 10

1492 / 2126

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

PowerBASIC Compiler for Windows Version 10

1493 / 2126

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and

PowerBASIC Compiler for Windows Version 10

1494 / 2126

delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW GET HEADERID statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

PowerBASIC Compiler for Windows Version 10

1495 / 2126

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1496 / 2126

item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)

PowerBASIC Compiler for Windows Version 10

1497 / 2126

is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1498 / 2126

special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If

PowerBASIC Compiler for Windows Version 10

1499 / 2126

NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

PowerBASIC Compiler for Windows Version 10

1500 / 2126

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

PowerBASIC Compiler for Windows Version 10

1501 / 2126

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW GET MODE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1502 / 2126

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1503 / 2126

multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which

PowerBASIC Compiler for Windows Version 10

1504 / 2126

exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1505 / 2126

facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

PowerBASIC Compiler for Windows Version 10

1506 / 2126

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

PowerBASIC Compiler for Windows Version 10

1507 / 2126

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user

PowerBASIC Compiler for Windows Version 10

1508 / 2126

value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

PowerBASIC Compiler for Windows Version 10

1509 / 2126

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW GET SELCOUNT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1510 / 2126

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1511 / 2126

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1512 / 2126

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either

PowerBASIC Compiler for Windows Version 10

1513 / 2126

dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

PowerBASIC Compiler for Windows Version 10

1514 / 2126

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

PowerBASIC Compiler for Windows Version 10

1515 / 2126

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView

PowerBASIC Compiler for Windows Version 10

1516 / 2126

control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW GET SELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]

PowerBASIC Compiler for Windows Version 10

1517 / 2126

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1518 / 2126

unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1519 / 2126

(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

PowerBASIC Compiler for Windows Version 10

1520 / 2126

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&

PowerBASIC Compiler for Windows Version 10

1521 / 2126

specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

PowerBASIC Compiler for Windows Version 10

1522 / 2126

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

PowerBASIC Compiler for Windows Version 10

1523 / 2126

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW GET STATE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&

PowerBASIC Compiler for Windows Version 10

1524 / 2126

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1525 / 2126

IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

PowerBASIC Compiler for Windows Version 10

1526 / 2126

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1527 / 2126

assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for

PowerBASIC Compiler for Windows Version 10

1528 / 2126

the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

PowerBASIC Compiler for Windows Version 10

1529 / 2126

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe

PowerBASIC Compiler for Windows Version 10

1530 / 2126

the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW GET STYLEXX statement

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

1531 / 2126

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1532 / 2126

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1533 / 2126

the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1534 / 2126

currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

PowerBASIC Compiler for Windows Version 10

1535 / 2126

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted

PowerBASIC Compiler for Windows Version 10

1536 / 2126

from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use

PowerBASIC Compiler for Windows Version 10

1537 / 2126

LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

PowerBASIC Compiler for Windows Version 10

1538 / 2126

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW GET TEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr

PowerBASIC Compiler for Windows Version 10

1539 / 2126

LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1540 / 2126

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1541 / 2126

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

PowerBASIC Compiler for Windows Version 10

1542 / 2126

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary

PowerBASIC Compiler for Windows Version 10

1543 / 2126

image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

PowerBASIC Compiler for Windows Version 10

1544 / 2126

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

PowerBASIC Compiler for Windows Version 10

1545 / 2126

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW GET USER statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&

PowerBASIC Compiler for Windows Version 10

1546 / 2126

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1547 / 2126

item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

PowerBASIC Compiler for Windows Version 10

1548 / 2126

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1549 / 2126

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

PowerBASIC Compiler for Windows Version 10

1550 / 2126

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

PowerBASIC Compiler for Windows Version 10

1551 / 2126

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

PowerBASIC Compiler for Windows Version 10

1552 / 2126

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW INSERT COLUMN statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&

PowerBASIC Compiler for Windows Version 10

1553 / 2126

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1554 / 2126

each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is

PowerBASIC Compiler for Windows Version 10

1555 / 2126

found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1556 / 2126

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

PowerBASIC Compiler for Windows Version 10

1557 / 2126

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

PowerBASIC Compiler for Windows Version 10

1558 / 2126

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

PowerBASIC Compiler for Windows Version 10

1559 / 2126

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW INSERT ITEM statement

PowerBASIC Compiler for Windows Version 10

1560 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1561 / 2126

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1562 / 2126

with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1563 / 2126

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not

PowerBASIC Compiler for Windows Version 10

1564 / 2126

a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

PowerBASIC Compiler for Windows Version 10

1565 / 2126

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

PowerBASIC Compiler for Windows Version 10

1566 / 2126

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the

PowerBASIC Compiler for Windows Version 10

1567 / 2126

optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW RESET statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

PowerBASIC Compiler for Windows Version 10

1568 / 2126

LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1569 / 2126

numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1570 / 2126

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable

PowerBASIC Compiler for Windows Version 10

1571 / 2126

specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

PowerBASIC Compiler for Windows Version 10

1572 / 2126

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

PowerBASIC Compiler for Windows Version 10

1573 / 2126

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and

PowerBASIC Compiler for Windows Version 10

1574 / 2126

delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

PowerBASIC Compiler for Windows Version 10

1575 / 2126

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1576 / 2126

item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)

PowerBASIC Compiler for Windows Version 10

1577 / 2126

is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1578 / 2126

special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If

PowerBASIC Compiler for Windows Version 10

1579 / 2126

NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

PowerBASIC Compiler for Windows Version 10

1580 / 2126

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

PowerBASIC Compiler for Windows Version 10

1581 / 2126

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SET COLUMN statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1582 / 2126

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1583 / 2126

multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which

PowerBASIC Compiler for Windows Version 10

1584 / 2126

exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1585 / 2126

facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

PowerBASIC Compiler for Windows Version 10

1586 / 2126

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

PowerBASIC Compiler for Windows Version 10

1587 / 2126

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user

PowerBASIC Compiler for Windows Version 10

1588 / 2126

value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

PowerBASIC Compiler for Windows Version 10

1589 / 2126

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SET HEADER statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1590 / 2126

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1591 / 2126

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1592 / 2126

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either

PowerBASIC Compiler for Windows Version 10

1593 / 2126

dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

PowerBASIC Compiler for Windows Version 10

1594 / 2126

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

PowerBASIC Compiler for Windows Version 10

1595 / 2126

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView

PowerBASIC Compiler for Windows Version 10

1596 / 2126

control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SET IMAGE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]

PowerBASIC Compiler for Windows Version 10

1597 / 2126

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1598 / 2126

unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1599 / 2126

(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

PowerBASIC Compiler for Windows Version 10

1600 / 2126

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&

PowerBASIC Compiler for Windows Version 10

1601 / 2126

specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

PowerBASIC Compiler for Windows Version 10

1602 / 2126

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

PowerBASIC Compiler for Windows Version 10

1603 / 2126

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SET IMAGE2 statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&

PowerBASIC Compiler for Windows Version 10

1604 / 2126

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1605 / 2126

IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

PowerBASIC Compiler for Windows Version 10

1606 / 2126

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1607 / 2126

assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for

PowerBASIC Compiler for Windows Version 10

1608 / 2126

the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

PowerBASIC Compiler for Windows Version 10

1609 / 2126

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe

PowerBASIC Compiler for Windows Version 10

1610 / 2126

the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SET IMAGELIST statement

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

1611 / 2126

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1612 / 2126

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1613 / 2126

the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1614 / 2126

currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

PowerBASIC Compiler for Windows Version 10

1615 / 2126

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted

PowerBASIC Compiler for Windows Version 10

1616 / 2126

from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use

PowerBASIC Compiler for Windows Version 10

1617 / 2126

LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

PowerBASIC Compiler for Windows Version 10

1618 / 2126

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SET MODE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr

PowerBASIC Compiler for Windows Version 10

1619 / 2126

LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1620 / 2126

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1621 / 2126

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

PowerBASIC Compiler for Windows Version 10

1622 / 2126

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary

PowerBASIC Compiler for Windows Version 10

1623 / 2126

image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

PowerBASIC Compiler for Windows Version 10

1624 / 2126

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

PowerBASIC Compiler for Windows Version 10

1625 / 2126

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SET OVERLAY statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&

PowerBASIC Compiler for Windows Version 10

1626 / 2126

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1627 / 2126

item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

PowerBASIC Compiler for Windows Version 10

1628 / 2126

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1629 / 2126

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

PowerBASIC Compiler for Windows Version 10

1630 / 2126

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

PowerBASIC Compiler for Windows Version 10

1631 / 2126

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

PowerBASIC Compiler for Windows Version 10

1632 / 2126

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SET STYLEXX statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&

PowerBASIC Compiler for Windows Version 10

1633 / 2126

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1634 / 2126

each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is

PowerBASIC Compiler for Windows Version 10

1635 / 2126

found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1636 / 2126

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

PowerBASIC Compiler for Windows Version 10

1637 / 2126

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

PowerBASIC Compiler for Windows Version 10

1638 / 2126

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

PowerBASIC Compiler for Windows Version 10

1639 / 2126

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SET TEXT statement

PowerBASIC Compiler for Windows Version 10

1640 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1641 / 2126

StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1642 / 2126

with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1643 / 2126

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not

PowerBASIC Compiler for Windows Version 10

1644 / 2126

a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

PowerBASIC Compiler for Windows Version 10

1645 / 2126

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

PowerBASIC Compiler for Windows Version 10

1646 / 2126

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the

PowerBASIC Compiler for Windows Version 10

1647 / 2126

optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SET USER statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

PowerBASIC Compiler for Windows Version 10

1648 / 2126

LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1649 / 2126

numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1650 / 2126

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable

PowerBASIC Compiler for Windows Version 10

1651 / 2126

specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

PowerBASIC Compiler for Windows Version 10

1652 / 2126

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

PowerBASIC Compiler for Windows Version 10

1653 / 2126

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and

PowerBASIC Compiler for Windows Version 10

1654 / 2126

delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW SORT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

PowerBASIC Compiler for Windows Version 10

1655 / 2126

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1656 / 2126

item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)

PowerBASIC Compiler for Windows Version 10

1657 / 2126

is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1658 / 2126

special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If

PowerBASIC Compiler for Windows Version 10

1659 / 2126

NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

PowerBASIC Compiler for Windows Version 10

1660 / 2126

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

PowerBASIC Compiler for Windows Version 10

1661 / 2126

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW UNSELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1662 / 2126

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1663 / 2126

multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which

PowerBASIC Compiler for Windows Version 10

1664 / 2126

exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1665 / 2126

facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either
dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

PowerBASIC Compiler for Windows Version 10

1666 / 2126

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

PowerBASIC Compiler for Windows Version 10

1667 / 2126

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user

PowerBASIC Compiler for Windows Version 10

1668 / 2126

value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView
control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

PowerBASIC Compiler for Windows Version 10

1669 / 2126

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LISTVIEW VISIBLE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

LISTVIEW statement
Purpose Manipulate a LISTVIEW control in order to set/retrieve data.

Syntax LISTVIEW DELETE COLUMN hDlg, id&, col&
LISTVIEW DELETE ITEM hDlg, id&, item&
LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&
LISTVIEW FIT CONTENT hDlg, id&, col&
LISTVIEW FIT HEADER hDlg, id&, col&
LISTVIEW GET COLUMN hDlg, id&, col& TO datav&
LISTVIEW GET COUNT hDlg, id& TO datav&
LISTVIEW GET HEADER hDlg, id&, col& TO txtv$
LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&
LISTVIEW GET MODE hDlg, id& TO datav&
LISTVIEW GET SELCOUNT hDlg, id& TO datav&
LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&
LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&
LISTVIEW GET STYLEXX hDlg, id& TO datav&
LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$
LISTVIEW GET USER hDlg, id&, item& TO datav&
LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&, format&
LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr
LISTVIEW RESET hDlg, id&
LISTVIEW SELECT hDlg, id&, item& [, col&]
LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr
LISTVIEW SET HEADER hDlg, id&, col&, StrExpr
LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr
LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr
LISTVIEW SET MODE hDlg, id&, NumExpr
LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr
LISTVIEW SET STYLEXX hDlg, id&, NumExpr
LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr
LISTVIEW SET USER hDlg, id&, item&, NumExpr
LISTVIEW SORT hDlg, id&, col& [, options...]
LISTVIEW UNSELECT hDlg, id&, item&, [col&]
LISTVIEW VISIBLE hDlg, id&, item&

hDlg Handle of the dialog that owns the ListView.

hLst Handle of the ImageList to be used for graphical items.

hLV Handle of the ListView Control.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1670 / 2126

id& The control identifier assigned with CONTROL ADD LISTVIEW.

item& A data item number. First=1, second=2...

col& A vertical column number. First=1, second=2...

NumExpr A

 expression passed as a parameter.
StrExpr A string expression passed as a parameter.

txtv$ A

 variable to which result text is assigned.
datav& A long integer variable to which result data is assigned.

Remarks There are 4 general display modes available with a LISTVIEW control. The initial display
mode is established at the time the control is created, as a part of the control style
parameter. It may be changed from time to time with LISTVIEW SET MODE.

Mode 0 Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 1 Report Mode - String data items are displayed as a list, top to bottom, one
item per line. The control may have one or more columns, with header
text to describe each of them. Additional sub-items may be displayed in
each column, by specifying a column number greater than one. This is
the most frequently used ListView mode, and the default mode if not
specified at the time the control is created. In this mode, it's often
convenient to think of the item number as a row number. If a small icon
IMAGELIST is attached to the LISTVIEW control, images from that list are
displayed with each data item.

Mode 2 Small Icon Mode - String data items are displayed left to right, wrapped to
multiple lines as necessary. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

Mode 3 List Mode - String data items are displayed as a list, top to bottom, one
item per line. This mode is very similar in appearance to a standard
LISTBOX control. In this mode, it's often convenient to think of the item
number as a row number. If a small icon IMAGELIST is attached to the
LISTVIEW control, images from that list are displayed with each data
item.

In all of the following descriptions, the LISTVIEW control which is the subject of the
statement is identified by the handle of the dialog that owns the LISTVIEW (hDlg), and the
unique control identifier (id&) you gave it upon creation in CONTROL ADD LISTVIEW.

Each data item (or sub-item) is referenced by a combination of its item number (item&)
and its column number (col&). A primary data item always has a column number of 1,
while sub-items always have a column number greater than 1. Sub-items are only
displayed in Report Mode. In all other display modes, they are hidden from view.

It's important to note that both primary item numbers (item&) and sub-item column
numbers (col&) start at 1. The first=1, the second=2, and so forth.

LISTVIEW DELETE COLUMN hDlg, id&, col&

The column specified by col&, including its associated header text (if any), is deleted
from the LISTVIEW control. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.). Column one of a list-view control cannot be deleted. If you must delete column one,
insert a zero length dummy column one and delete column two and above. This is a
limitation of the Microsoft Windows Listview control and not a PowerBASIC limitation.

LISTVIEW DELETE ITEM hDlg, id&, item&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1671 / 2126

The data item specified by item& is deleted from the LISTVIEW control. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.).

LISTVIEW FIND hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which begins
with the data in StrExpr, regardless of any characters which follow. Comparisons are not
case-sensitive. Strings are searched beginning with the string specified by item&, and
ending with the last string in the LISTVIEW. Searching does not wrap to the beginning of
the list. The row number (item&) is indexed to 1 (1=first, 2=second, etc.). To search the
entire LISTVIEW starting with the first string, item& should be set to one (1). If a
matching string is found, the index value of the match is assigned to the variable specified
by datav&. If no match is found, the value zero (0) is assigned to it.

LISTVIEW FIND EXACT hDlg, id&, item&, StrExpr TO datav&

Strings in the first column of a LISTVIEW are searched to find the first string which
exactly matches the data in StrExpr. Comparisons are not case-sensitive. Strings are
searched beginning with the string specified by item&, and ending with the last string in
the LISTVIEW. Searching does not wrap to the beginning of the list. The row number
(item&) is indexed to 1 (1=first, 2=second, etc.). To search the entire LISTVIEW starting
with the first string, item& should be set to one (1). If a matching string is found, the
index value of the match is assigned to the variable specified by datav&. If no match is
found, the value zero (0) is assigned to it.

LISTVIEW FIT CONTENT hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the data items
displayed in that column. The column number (col&) is indexed to 1 (1=first, 2=second,
etc.).

LISTVIEW FIT HEADER hDlg, id&, col&

The width of the column specified by col& is adjusted to fit the width of the rows displayed
in that column, and the header text at the top of that column. The column number (col&)
is indexed to 1 (1=first, 2=second, etc.). If the specified column is the last column, its
width is set to fill the remaining width of the list-view control.

LISTVIEW GET COLUMN hDlg, id&, col& TO datav&

The width of the designated column is retrieved from the ListView and assigned to the
variable specified by datav&. The width is specified in either pixels or dialog units,
depending upon which was used at creation. The value col& specifies the column number
(1=first, 2=second, etc.).

LISTVIEW GET COUNT hDlg, id& TO datav&

The number of rows in the LISTVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

LISTVIEW GET HEADER hDlg, id&, col& TO txtv$

Column header text is retrieved from the LISTVIEW and assigned to the string variable
specified by txtv$. The value col& specifies the column number (1=first, 2=second, etc.).

LISTVIEW GET HEADERID hDlg, id& TO hLV, idv&

The handle of the LISTVIEW control and the ID of HEADER control (a child of the
LISTVIEW) are retrieved and assigned to the variables represented by hLV and idv&
respectively. These two items may then be used with the HEADER statement for
advanced handling of the header control which is embedded in the LISTVIEW.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1672 / 2126

LISTVIEW GET MODE hDlg, id& TO datav&

The display mode of the specified LISTVIEW control is retrieved and assigned to the
variable designated by datav&. Possible mode values are 0=icon mode, 1=report mode,
2=small icon mode, 3=list mode.

LISTVIEW GET SELCOUNT hDlg, id& TO datav&

The LISTVIEW is interrogated to determine the number of primary data items which are
currently selected. This count is assigned to the long integer variable specified by
datav&. To determine the count of sub-items selections, you must execute LISTVIEW
GET STATE on every active sub-item.

LISTVIEW GET SELECT hDlg, id& [, item&] TO datav&

The LISTVIEW is interrogated to determine the next primary data item which is currently
selected. The parameter item& specifies the starting item number for the search, to
facilitate retrieving multiple selected items. To start at the beginning, use an item& of one
(1), or just omit that parameter. The selected item number is assigned to the long integer
variable specified by datav&. If no selected items are found, the value zero (0) is returned.
 To find selected sub-items, you must execute LISTVIEW GET STATE on remaining
active sub-items.

LISTVIEW GET STATE hDlg, id&, item&, col& TO datav&

A data item is tested to see if it is currently selected. The values of item&/col& specify
the position of the data item (1=first, 2=second, etc.). If the item is selected, -1 (true) is
assigned to the variable specified by datav&. Otherwise, 0 (false) is assigned to it.

LISTVIEW GET STYLEXX hDlg, id& TO datav&

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement retrieves the current setting of this special
extended style, and assigns it to the long integer variable specified by datav&. A list of
the available extended styles can be found under LISTVIEW SET STYLEXXX. This
special extended style is named STYLEXX to distinguish it from the primary style and
extended style specified in CONTROL ADD LISTVIEW.

LISTVIEW GET TEXT hDlg, id&, item&, col& TO txtv$

A string data item is retrieved from the LISTVIEW control and assigned to the string
variable specified by txtv$. The values of item&/col& specify the position of the data item
(1=first, 2=second, etc.).

LISTVIEW GET USER hDlg, id&, item& TO datav&

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is retrieved with LISTVIEW GET USER.
 The numeric value item& specifies which user value is requested, 1 for the first row, 2 for
the second row, etc. The returned user value is assigned to the long integer variable
specified by datav&. LISTVIEW user values are assigned with the LISTVIEW SET USER
statement. In addition to these LISTVIEW user values, every DDT control offers an
additional eight user values which can be accessed with CONTROL GET USER and
CONTROL SET USER.

LISTVIEW INSERT COLUMN hDlg, id&, col&, StrExpr, ColWidth&,
format&

A new vertical column is defined for Report Mode of this LISTVIEW control. The value col&
specifies the column number (1=first, 2=second, etc.). StrExpr describes the text name of
the column header. The value ColWidth& specifies the width of the column in either

PowerBASIC Compiler for Windows Version 10

1673 / 2126

dialog units or pixels, depending upon which was specified at creation. The value format&
describes the format and justification of the text: 0=left, 1=right, 2=center. Column 1 is
always left-justified, regardless of what is requested here. When inserting a new column
1, the contents of the original column 1 are copied to the new column 1. This only occurs
when inserting a new left most column, when inserting other columns, no data is copied
to the new column. This is a limitation of the Microsoft Windows Listview control and not
a PowerBASIC limitation.

LISTVIEW INSERT ITEM hDlg, id&, item&, image&, StrExpr

A new row is added to this LISTVIEW control. The value item& specifies the row number
(1=first, 2=second, etc.), and StrExpr tells the text to be displayed in the first column.
The remaining columns are empty, but you can fill them by executing LISTVIEW SET
TEXT. If an IMAGELIST has been attached to this control, the parameter image&
specifies which image should be displayed (1=first, 2=second, etc.). If no image is
needed, the value 0 should be used.

LISTVIEW RESET hDlg, id&

All data items are deleted from the specified LISTVIEW control. Any columns, and their
associated headers, which may have been defined for Report Display mode are retained
without change.

LISTVIEW SELECT hDlg, id&, item& [, col&]

The string data item specified by item&/col& is chosen as selected text for the LISTVIEW
control and the item is highlighted. The values of item&/col& = 1 for the first item, 2 for
the second item, etc. If the optional parameter col& is not given, the default value of 1 is
used to select the primary data item.

LISTVIEW SET COLUMN hDlg, id&, col&, NumExpr

The width of a LISTVIEW column is changed to that designated by the NumExpr. The
value is specified in either dialog units or pixels, depending upon which was used at
creation. The value col& specifies the column number (1=first, 2=second, etc.). If
NumExpr is -1, then the column width is adjusted to fit the data items in that column. If
NumExpr is -2, the column width is adjusted to fit both the data items and the header
text. These options are functionally identical to LISTVIEW FIT CONTENT and LISTVIEW
FIT HEADER.

LISTVIEW SET HEADER hDlg, id&, col&, StrExpr

New column header text is displayed above the specified column on the LISTVIEW
control. The string expression StrExpr specifies the new header text, while the value col&
specifies the column number (1=first, 2=second, etc.).

LISTVIEW SET IMAGE hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed next to the item
specified by item&. If no IMAGELIST is attached to the LISTVIEW, nothing is displayed.

LISTVIEW SET IMAGE2 hDlg, id&, item&, NumExpr

The image specified by NumExpr (1=first, 2=second, etc.) is displayed as a secondary
"status" image next to the primary image. If NumExpr evaluates to zero, no secondary
image is displayed. A secondary image is usually used to specify item status, with an
image such as a check mark. Secondary images are generally not displayed in either of
the icon modes. If no Status Image List is attached to the LISTVIEW (using the
LISTVIEW IMAGELIST statement), nothing is displayed. A maximum of 15 status
images are supported, so NumExpr must evaluate in the range of 1-15.

PowerBASIC Compiler for Windows Version 10

1674 / 2126

LISTVIEW SET IMAGELIST hDlg, id&, hLst, NumExpr

The IMAGELIST specified by hLst is attached to this LISTVIEW control. The value of
NumExpr specifies the type of IMAGELIST:

%LVSIL_NORMAL Large icons

%LVSIL_SMALL Small icons

%LVSIL_STATE Status images

Up to three IMAGELIST structures may be attached to each LISTVIEW to display images
as needed with each data item. Depending upon the mode in effect, icons are extracted
from either the large icon or small icon list for that purpose. If a status image list is also
attached, the LISTVIEW SET IMAGE2 statement may be used to display a secondary
image. When the LISTVIEW control is destroyed, any attached IMAGELIST is
automatically destroyed unless the %LVS_SHAREIMAGELISTS style was specified at
the time the LISTVIEW was created.

LISTVIEW SET MODE hDlg, id&, NumrExpr

The display mode of the specified LISTVIEW control is changed to that designated by the
value of NumExpr. The possible mode values are 0=icon mode, 1=report mode, 2=small
icon mode, 3=list mode.

LISTVIEW SET OVERLAY hDlg, id&, item&, NumExpr

The overlay image specified by NumExpr (1=first, 2=second, etc.) is displayed on top of
the image specified by item&. If NumExpr evaluates to zero, or if no IMAGELIST is
attached to the LISTVIEW, no overlay is displayed.

LISTVIEW SET STYLEXX hDlg, id&, NumExpr

ListView controls offer a number of optional additional style attributes which are unique
and specific to a ListView. This statement allows you to alter the current setting of this
special extended style. This special extended style is named STYLEXX to distinguish it
from the primary style and extended style specified in CONTROL ADD LISTVIEW.
 NumExpr defines the new style from any combination of the following extended styles:

%LVS_EX_GRIDLINES Grid lines added in report mode

%LVS_EX_SUBITEMIMAGES Icons added to sub-items in report mode

%LVS_EX_CHECKBOXES Enables checkboxes to items

%LVS_EX_TRACKSELECT Enables hot track selection

%
LVS_EX_HEADERDRAGDROP

Enables drag-drop reordering of columns in report
mode

%LVS_EX_FULLROWSELECT Selection highlights full row in report mode

%
LVS_EX_ONECLICKACTIVATE

Notification sent on single click

%
LVS_EX_TWOCLICKACTIVATE

Notification sent on double click

%LVS_EX_FLATSB Enables flat scroll bars

%LVS_EX_REGIONAL Sets ListView region to icons and text

%LVS_EX_INFOTIP Listview does InfoTips for you

%LVS_EX_UNDERLINEHOT Hot items have underlined text

%LVS_EX_UNDERLINECOLD Non-hot items have underlined text

%LVS_EX_MULTIWORKAREAS Will not auto-arrange until work areas defined

%LVS_EX_LABELTIP Listview unfolds partly hidden labels

%LVS_EX_BORDERSELECT Border selection style instead of highlight

%LVS_EX_DOUBLEBUFFER Paints via double-buffering and reduces flicker

PowerBASIC Compiler for Windows Version 10

1675 / 2126

%LVS_EX_HIDELABELS Hides labels in Icon and Small Icon mode

%LVS_EX_SINGLEROW Display a single row

%LVS_EX_SNAPTOGRID Icons automatically snap to grid

%LVS_EX_SIMPLESELECT Changes overlay rendering to top right

LISTVIEW SET TEXT hDlg, id&, item&, col&, StrExpr

The text, if any, for the specified data item is replaced by the new text in StrExpr. You
must keep in mind that this statement does not create a new item (horizontal row), but
changes existing text, if any, to new text. To create a new data item (horizontal row), use
LISTVIEW INSERT ITEM instead. The values of item&/col& specify the position of the
data item (1=first, 2=second, etc.).

LISTVIEW SET USER hDlg, id&, item&, NumExpr

Each row in a LISTVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with LISTVIEW SET USER,
and retrieved with LISTVIEW GET USER. The numeric value item& specifies which user
value is to be accessed, 1 for the first item, 2 for the second item, etc. The value
specified by NumExpr is saved for later retrieval. In addition to these LISTVIEW user
values, every DDT control offers an additional eight user values which can be accessed
with CONTROL GET USER and CONTROL SET USER.

LISTVIEW SORT hDlg, id&, col& [, options...]

All of the items in a LISTVIEW are sorted, based upon the value of the data in a particular
column. The column number (col&) is specified as 1 for the first column, 2 for the second
column, etc. The options are one or more comma-delimited parameters which describe
the sequence and the nature of the data in the sort-key column:

ASCEND The items are arranged in ascending sequence.

DESCEND The items are arranged in descending sequence.

ALPHANUM The items consist of alphanumeric data. They are sequenced
based upon the ASCII value of each byte, so that case is
significant. Comparison is limited to the first 255 bytes of each
string.

UCASE The items consist of alphanumeric data. The case of each
alphabetic character is not significant. This is accomplished by
treating all alphabetic characters as upper case letters.
 Comparison is limited to the first 255 bytes of each string

NUMERIC The items start with numeric data, and evaluation is stopped at
the first non-numeric character. If numeric characters are not
found, the value is assumed to be zero (0). This data may be in
any supported PowerBASIC format:

, , scientific notation, radix format, etc.
MMDDYYYY A date in the format mm/dd/yyyy which is exactly ten bytes in

length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

DDMMYYYY A date in the format dd/mm/yyyy which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYMMDD A date in the format yyyy/mm/dd which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

YYYYDDMM A date in the format yyyy/dd/mm which is exactly ten bytes in
length. Leading zeros may be replaced by spaces, and
delimiters may be any character.

It is important to note that Windows may overwrite USER data when sorting your ListView

PowerBASIC Compiler for Windows Version 10

1676 / 2126

control. You should avoid the use of the LISTVIEW GET USER and LISTVIEW SET
USER statements if you may also execute a LISTVIEW SORT on the same control.

LISTVIEW UNSELECT hDlg, id&, item& [, col&]

The string value specified by item&/col& is set to an unselected state for the LISTVIEW
control. The values of item&/col& = 1 for the first item, 2 for the second item, etc. If the
optional parameter col& is not given, the default value of 1 is used to unselect the primary
data item.

LISTVIEW VISIBLE hDlg, id&, item&

A row is scrolled, if necessary, to ensure that the data specified by item& is visible. The
value of item& = 1 for the first row, 2 for the second row, etc.

Restrictions Under Windows 95/98/ME, a ListView is limited to 32,767 items. In all versions of
Windows, the actual string data contained by the ListView is limited only by available
memory.

See also Dynamic Dialog Tools, CONTROL ADD LISTVIEW, CONTROL SET COLOR, CONTROL
SET FONT, HEADER, IMAGELIST

LO function

LO function
Purpose Extract the least significant (low-order) portion of an

 value.
Syntax result = LO(DataType, value)

Remarks The value returned by LO is unsigned if DataType is BYTE, WORD, or DWORD, and
signed if DataType is INTEGER or LONG. value may be up to twice the size of the data
type specified by DataType. In the following example, n may be up to a 16-bit value (twice
the size of a BYTE):

b = LO(BYTE,n)

Restrictions LO replaces LOBYT, LOWRD, and LOINT. Note that those functions are no longer
supported, so update your code to use the new syntax.

See also HI, MAK

LOC function

LOC function
Purpose Determine the current seek position in an open disk file.

Syntax qResult&& = LOC([#] filenum&)

Remarks LOC is provided for compatibility with older BASICs. It is recommended that code is
modified to use the SEEK function instead. The Number symbol (#) is optional, but
recommended for clarity.

See also FILEATTR, SEEK function, SEEK statement

LOCAL statement

LOCAL statement
Purpose Declare local variables inside a Sub, Function, Method, or Property. Local variables retain

PowerBASIC Compiler for Windows Version 10

1677 / 2126

their values only until the end of the procedure.

Syntax LOCAL variable[()] [AS type] [, variable[()]] [...]
LOCAL variable[()] [, variable[()]] [, ...] AS type

Remarks The LOCAL statement is valid only inside a Sub, Function, Method, or Property. Local
variables lose their values when the procedure ends. Storage space for local variables is
allocated on the stack, and each local variable is initialized to zero (or, for

 variables, an empty string) each time the enclosing procedure is called.
To declare an array as a local variable, use an empty set of parentheses in the variable
list: You can then use the DIM statement to dimension the array.

LOCAL MyArray%()
LOCAL StringArray() AS STRING

The LOCAL statement may, optionally, accept a list of variables, all of which are defined
by the type descriptor keyword that follows them. For example:

LOCAL aaa, bbb, ccc AS INTEGER
LOCAL vptr, aptr() AS LONG PTR

Restrictions DEFtype has no effect on variables defined by a LOCAL statement.

See also DIM, GLOBAL, INSTANCE, STATIC, THREADED

Example Test% = 100
ShowText "Before: " + STR$(Test%)
CALL Locals
ShowText "After: " + STR$(Test%)

SUB Locals
 LOCAL Test%
 Test% = 0
 ShowText "In SUB: " + STR$(Test%)
END SUB

Result Before: 100
In SUB: 0
After: 100

LOCK statement

LOCK statement
Purpose Lock part or all of an open file, to prevent other processes from accessing it.

Syntax LOCK [#] filenum& [, {record&& | startbyte&& TO endbyte&&}]

Remarks LOCK prevents another process from accessing a record, range of records, byte, or range
of bytes in a file opened as file number filenum&.

If the file was opened in random-access mode, record&&, startbyte&&, and endbyte&&
specify record numbers. When used with binary mode files, record&&, startbyte&&, and
endbyte&& specify byte positions, starting from either zero or one (the default).

If a record is specified, only that record (or byte) is locked. Otherwise, a range of records
(or bytes) is locked, from startbyte&& to endbyte&&.

If no records are specified, or if the file was opened in sequential mode, the entire file is
locked.

All records (or bytes) to be locked must be subsequently unlocked using the UNLOCK
statement. Multiple locks may be placed on a file, and locks may be unlocked in any
order. However, the parameters used for each UNLOCK statement must exactly match
those used for the previous corresponding LOCK statement.

All locked records (or bytes) must be unlocked using the UNLOCK statement

PowerBASIC Compiler for Windows Version 10

1678 / 2126

before the file can be closed.

If a lock attempt fails, PowerBASIC sets the ERR system variable to reflect a run-time
Error 70 ("Permission denied"), or Error 75 ("Path/file access error").

See also OPEN, UNLOCK

Example OPEN "PATIENTS.DAT" FOR RANDOM AS #1 LEN = 1024
' determine the record number to retrieve
LOCK #1, recnum
GET #1, recnum
' process the record here
PUT #1, recnum
UNLOCK #1, recnum
CLOSE #1

LOF function

LOF function
Purpose Return the length of an open disk file.

Syntax y&& = LOF([#] filenum&)

Remarks filenum& is the file number with which the file was opened. LOF returns the size of the
indicated file in bytes, in the Quad-integer range 0 to 2 6̂3-1. The Number symbol (#) is
optional, but recommended for clarity.

See also FILEATTR, LOC, SEEK function, SEEK statement

Example OPEN "RECIPES.DAT" FOR BINARY AS #1
x&& = LOF(1)
CLOSE #1

LOG function

LOG, LOG2 and LOG10 functions
Purpose LOG returns the natural (base e) logarithm of its argument. LOG2 returns the base 2

logarithm. LOG10 returns the common (base 10) logarithm.

Syntax y = LOG(numeric_expression)
y = LOG2(numeric_expression)
y = LOG10(numeric_expression)

Remarks A logarithm of a number is the power to which the base would have to be raised to yield
the number. Thus:

logarithm (base b) of n = x if b^x = n

and:

(base)^log(n) = n

The EXP functions complement the LOG functions. For example, if s = LOG(t), then t
= EXP(s).

By definition, the logarithm (any base) of 1 is 0. LOG returns the natural logarithm (base
e, where e = 2.718282...) of its argument. LOG2 and LOG10 return the logarithm for base
2 and 10, respectively.

numeric_expression must be a value greater than zero.

LOG, LOG2, and LOG10 return Extended-precision values.

See also EXP, EXP2, EXP10, SQR, Arithmetic Operators

PowerBASIC Compiler for Windows Version 10

1679 / 2126

LOG2 function

LOG, LOG2 and LOG10 functions
Purpose LOG returns the natural (base e) logarithm of its argument. LOG2 returns the base 2

logarithm. LOG10 returns the common (base 10) logarithm.

Syntax y = LOG(numeric_expression)
y = LOG2(numeric_expression)
y = LOG10(numeric_expression)

Remarks A logarithm of a number is the power to which the base would have to be raised to yield
the number. Thus:

logarithm (base b) of n = x if b^x = n

and:

(base)^log(n) = n

The EXP functions complement the LOG functions. For example, if s = LOG(t), then t
= EXP(s).

By definition, the logarithm (any base) of 1 is 0. LOG returns the natural logarithm (base
e, where e = 2.718282...) of its argument. LOG2 and LOG10 return the logarithm for base
2 and 10, respectively.

numeric_expression must be a value greater than zero.

LOG, LOG2, and LOG10 return Extended-precision values.

See also EXP, EXP2, EXP10, SQR, Arithmetic Operators

LOG10 function

LOG, LOG2 and LOG10 functions
Purpose LOG returns the natural (base e) logarithm of its argument. LOG2 returns the base 2

logarithm. LOG10 returns the common (base 10) logarithm.

Syntax y = LOG(numeric_expression)
y = LOG2(numeric_expression)
y = LOG10(numeric_expression)

Remarks A logarithm of a number is the power to which the base would have to be raised to yield
the number. Thus:

logarithm (base b) of n = x if b^x = n

and:

(base)^log(n) = n

The EXP functions complement the LOG functions. For example, if s = LOG(t), then t
= EXP(s).

By definition, the logarithm (any base) of 1 is 0. LOG returns the natural logarithm (base
e, where e = 2.718282...) of its argument. LOG2 and LOG10 return the logarithm for base
2 and 10, respectively.

numeric_expression must be a value greater than zero.

LOG, LOG2, and LOG10 return Extended-precision values.

See also EXP, EXP2, EXP10, SQR, Arithmetic Operators

PowerBASIC Compiler for Windows Version 10

1680 / 2126

LPRINT statement

LPRINT statement
Purpose Output (device-dependent) text and data to a printer device.

Syntax LPRINT [expression] [SPC(n)] [TAB(n)] [,] [;]

Remarks The LPRINT functionality is identical to the traditional PRINT statement, except that the
data is sent directly to a line printer rather than to a display. A line printer is one which
will accept standard ASCII text and associated control codes, such as $CR, $LF, and
$FF.

PowerBASIC inserts a carriage return and linefeed at the end of each printed line. A
semi-colon between expressions is an optional delimiter which leaves the printer column
position unchanged. A comma moves the printer position to the next column of 14
positions each. A trailing semi-colon suppresses the final CR/LF. If TAB(n) is less than
the current printer position, output is placed at the requested position on the following line.

Before you execute an LPRINT statement, you must explicitly connect to the intended
line printer using the LPRINT ATTACH statement. If the connection to the device is
unsuccessful, all LPRINT statements are ignored until a valid printer device has been
attached. LPRINT communicates directly with the attached device, bypassing the
Windows operating system and printer driver. Therefore, any settings such as "work
offline" in your printer properties dialog will be ignored.

Once all the data has been sent to the printer, detach the printer so other applications
can use it., with the LPRINT CLOSE statement

Host-based (Windows-only) printers use proprietary control protocols so, sending print
data to them with LPRINT is unlikely to produce any output at all. PowerBASIC supports
host-based printers through

 and related statements.
See also LPRINT ATTACH, LPRINT CLOSE, LPRINT FLUSH, LPRINT FORMFEED, LPRINT$,

XPRINT, XPRINT ATTACH

Example ' Typical LPRINT printing strategy
ERRCLEAR
LPRINT ATTACH "LPT2" ' Use LPT2 device
IF ISFALSE ERR AND ISTRUE LEN(LPRINT$) THEN
 LPRINT "This is your line-printer talking"
 LPRINT FORMFEED ' Issue a formfeed
 LPRINT FLUSH ' flush the buffer
 LPRINT CLOSE ' detach the printer
END IF

LPRINT ATTACH statement

LPRINT ATTACH statement
Purpose Connect to a line-printer device for use with LPRINT.

Syntax LPRINT ATTACH device$

Remarks LPRINT ATTACH attempts a direct connection to the specified [line] printer device. A line
printer is one that will accept standard ASCII text and any device-specific control codes,
such as CR, LF, and FF.

A line printer is named by the port to which it is attached (LPT1, etc.) because the data is
sent directly to the port, not through a device driver. That is, LPRINT communicates
directly with the attached line printer device, bypassing the spooler and printer driver.
Therefore, any settings such as "work offline" in the Printer Properties dialog will be

PowerBASIC Compiler for Windows Version 10

1681 / 2126

ignored.

Once the printer is attached by LPRINT ATTACH, print data can be sent to it with the
LPRINT statement.

LPRINT ATTACH allows you to change the printer device used by LPRINT operation.
When executed, the current connection (if any) is closed and the new connection is
established. No colon is used in the device name. For example, to connect to LPT2:

LPRINT ATTACH "LPT2"

or to a printer on a network server:

LPRINT ATTACH "\\SERVER\HPLJ5"

device$ must be a valid device name and cannot exceed 32 characters in length. In some
circumstances, such as with the Novell network client, LPRINT ATTACH with a UNC name
may be rejected, and the LPRINT ATTACH will be unsuccessful, and a subsequent
LPRINT$ test will return an empty string.

If LPRINT ATTACH is not successful, an Error 68 ("Device unavailable") is generated and
LPRINT$ returns a nul (empty)

. If no LPRINT ATTACH is ever executed (successful or not), PowerBASIC will
attempt to connect to the line printer at LPT1. Once any LPRINT ATTACH is
attempted, no default to LPT1 will be presumed.
Care must be used with line printers in Windows, since if there is no available printer
attached to the port, program execution may be suspended, with no errors. So, it is wise
to use LPRINT ATTACH to explicitly connect the intended printer device, and test for the
successful connection by the examination of LPRINT$ and ERR. For example:

ERRCLEAR
LPRINT ATTACH "LPT3"
IF ERR OR LPRINT$ = "" THEN PRINT "Connection failed"

Once all the data has been sent to the printer, detach the printer so other applications
can use it., with the LPRINT CLOSE statement

Note: The Win32 API call EnumPrinters can give you a list of all valid printers and print
devices, or you can enumerate the list of printers with the PRINTERCOUNT and
PRINTER$ functions.

Restrictions If device$ is an empty string, the current connection (if any) is detached. This is
equivalent to the LPRINT CLOSE statement.

See also LPRINT, LPRINT CLOSE, LPRINT FLUSH, LPRINT FORMFEED, LPRINT$, XPRINT,
XPRINT ATTACH

Example ' Typical LPRINT printing strategy
ERRCLEAR
LPRINT ATTACH "LPT2" ' Use LPT2 device
IF (ERR<>0) OR (LEN(LPRINT$)) THEN
 LPRINT "This is your line-printer talking"
 LPRINT FORMFEED ' Issue a formfeed
 LPRINT FLUSH ' flush the buffer
 LPRINT CLOSE ' detach the printer
END IF

LPRINT CLOSE statement

LPRINT CLOSE statement
Purpose Disconnect the current printer device.

Syntax LPRINT CLOSE

Remarks LPRINT CLOSE detaches the currently selected printer connection (established with the

PowerBASIC Compiler for Windows Version 10

1682 / 2126

LPRINT ATTACH statement) from LPRINT operations, allowing the spooler subsystem to
commence print operations. Once a connection is closed, LPRINT$ will return an empty
printer device name string until a new connection is established.

LPRINT CLOSE is equivalent to using LPRINT ATTACH with an empty printer device name
string.

Restrictions LPRINT CLOSE is an essential step in the print process. To ensure the printer device is
available to other applications, printers should always be closed when not in use. Failing
to close a connection may cause significant delays before printing commences. In some
cases, some or all of the print data may be lost.

See also LPRINT, LPRINT ATTACH, LPRINT FLUSH, LPRINT FORMFEED, LPRINT$, XPRINT,
XPRINT ATTACH

Example ' Typical LPRINT printing strategy
ERRCLEAR
LPRINT ATTACH "LPT2" ' Use LPT2 device
IF ISTRUE ERR OR ISFALSE LEN(LPRINT$) THEN
 LPRINT "This is your line-printer talking"
 LPRINT FORMFEED ' Issue a formfeed
 LPRINT FLUSH ' flush the buffer
 LPRINT CLOSE ' detach the printer
END IF

LPRINT FLUSH statement

LPRINT FLUSH statement
Purpose Flush any remaining print data to a printer device and signal the start of the print process.

Syntax LPRINT FLUSH

Remarks LPRINT FLUSH forces the operating system to flush any buffered data and begin printing.
Use LPRINT FLUSH to ensure print data is submitted to the printer as soon as possible,
rather than waiting for any timeout period to elapse first. Depending upon the printer and
its drivers, printing may begin immediately, or it may be delayed until execution of an
LPRINT CLOSE statement.

Typically, an LPRINT FLUSH statement is preceded with a FORMFEED statement, so
ensure that the print job is ejected normally from the printer device.

See also LPRINT, LPRINT ATTACH, LPRINT CLOSE, LPRINT FORMFEED, LPRINT$, XPRINT,
XPRINT ATTACH

Example ' Typical LPRINT printing strategy
ERRCLEAR
LPRINT ATTACH "LPT2" ' Use LPT2 device
IF ISTRUE ERR OR ISFALSE LEN(LPRINT$) THEN
 LPRINT "This is your line-printer talking"
 LPRINT FORMFEED ' Issue a formfeed
 LPRINT FLUSH ' flush the buffer
 LPRINT CLOSE ' detach the printer
END IF

LPRINT FORMFEED statement

LPRINT FORMFEED statement
Purpose Send a formfeed (page eject) character to an attached printer device.

Syntax LPRINT FORMFEED

PowerBASIC Compiler for Windows Version 10

1683 / 2126

Remarks For direct connections, LPRINT FORMFEED sends a form-feed character (ASCII
character 12, $FF, or CHR$(12)) to the attached line printer device, to ensure the current
page will be ejected. For host-based connections, PowerBASIC signals to the printing
subsystem to perform the page eject operation.

Typically, an LPRINT FORMFEED is performed before a LPRINT FLUSH and LPRINT
CLOSE.

See also LPRINT, LPRINT ATTACH, LPRINT CLOSE, LPRINT FLUSH, LPRINT$, XPRINT, XPRINT
ATTACH

Example ' Typical LPRINT printing strategy
ERRCLEAR
LPRINT ATTACH "LPT2" ' Use LPT2 device
IF ISTRUE ERR OR ISFALSE LEN(LPRINT$) THEN
 LPRINT "This is your line-printer talking"
 LPRINT FORMFEED ' Issue a formfeed
 LPRINT FLUSH ' flush the buffer
 LPRINT CLOSE ' detach the printer
END IF

LPRINT$ function

LPRINT$ function
Purpose Return the name of the printer device used for

 operations.
Syntax device$ = LPRINT$

Remarks LPRINT$ returns the name of the currently attached printer device used by the LPRINT
statement. If there is no attached device, an empty

 is returned.
LPRINT$ is primarily used to detect if an LPRINT ATTACH operation was successful.

See also LPRINT, LPRINT ATTACH, LPRINT CLOSE, LPRINT FLUSH, LPRINT FORMFEED,
XPRINT, XPRINT ATTACH

Example ERRCLEAR
LPRINT ATTACH "LPT3"
IF ERR <> 0 OR LPRINT$ = "" THEN PRINT "Printer connection failed"

LSET statement

LSET statement
Purpose Left-align a

 within the space of another string or User-Defined Type.
Syntax LSET [ABS] result_var = string_expression [USING ustring_expression]

Remarks LSET left-aligns a string into the space of another string or variable of a User-Defined
Type.

ABS If ABS is specified, or ustring_expression is null (empty), LSET leaves the padding
positions unchanged from their original content, rather than replacing them with spaces.

USING If string_expression is shorter then result_var, LSET left-justifies string_expression within
result_var, and pads remaining character positions on the right side using the first
character in ustring_expression or spaces if not specified or is null (empty).

If string_expression is longer than result_var, LSET truncates string_expression from the

PowerBASIC Compiler for Windows Version 10

1684 / 2126

right until it fits in result_var.

LSET can be used to assign the content of a User-Defined Type to a User-Defined Type
variable of a different class, or assign a dynamic string to a User-Defined Type. For
example:

LSET MyType = STRING$(LEN(MyType), 0)
LSET MyType = a$

RSET works similarly, but performs right-justification; CSET performs center-justification.

See also CSET, CSET$, GET, LET, LET (with Types), LSET$, PUT, RESET, RSET, RSET$,
STRINSERT$, TYPE SET

Example a$ = "SuperBASIC=SuperBASIC"
LSET ABS a$ = "PowerBASIC"
' result: "PowerBASIC=SuperBASIC"

LSET a$ = "PowerBASIC" USING "*"
' result: "PowerBASIC***********"

LSET$ function

LSET$ function
Purpose Return a

 containing a left-justified (padded) string.
Syntax result_var = LSET$(string_expression, strlen& [USING ustring_expression])

Remarks LSET$ left-aligns the string string_expression into a string of strlen& characters.

USING If ustring_expression is null (empty) or is not specified, LSET$ pads string_expression
with space characters. Otherwise, LSET$ pads the string with the first character of
ustring_expression.

If string_expression is shorter then strlen&, LSET$ left-justifies string_expression within
result_var, padding the right side as described above; otherwise, LSET$ returns the left-
most strlen& bytes of string_expression.

See also CSET, CSET$, GET, LET, LSET, PUT, RESET, RSET, RSET$, STRINSERT$,
TYPE SET

Example a$ = LSET$("PowerBASIC", 20)
' result: "PowerBASIC "

a$ = LSET$("PowerBASIC",20 USING "*")
' result: "PowerBASIC**********"

LTRIM$ function

LTRIM$ function
Purpose Return a copy of a

, with leading characters or strings removed.
Syntax x$ = LTRIM$(MainString [, [ANY] MatchString])

Remarks MainString is the string expression from which to remove characters, and MatchString is
the string expression containing the characters to remove.

If MatchString is not specified, LTRIM$ removes leading spaces. LTRIM$ returns a sub-
string of MainString, from the first non-MatchString (or non-space) to the end of the string.
If MatchString (or a space) is not present at the beginning of MainString, all of MainString

PowerBASIC Compiler for Windows Version 10

1685 / 2126

is returned.

If the ANY keyword is included, MatchString specifies a list of single characters to be
searched for individually. A match on any one of these as a leading character will cause
the character to be removed from the result.

LTRIM$ is case sensitive.

See also CLIP$, EXTRACT$, INSTR, LEFT$, MID$, REMOVE$, REPLACE, RIGHT$, RTRIM$,
SHRINK$, STRDELETE$, STRINSERT$, STRREVERSE$, TALLY, TRIM$, UNWRAP$,
VERIFY

Example A$ = "0123ABC3210"
A$ = LTRIM$(A$, ANY "0123456789")

Result ABC3210

MACRO/END MACRO block

MACRO/END MACRO block
Purpose Define a single or multi-line text substitution block.

Syntax Single line macro:
MACRO macroname [(prm1, prm2, ...)] = replacementtext

Multi-line macro:
MACRO macroname [(prm1, prm2, ...)]
 [MACROTEMP ident1 [, ident2, ...]]
 DIM ident1 AS type [, ident2 AS type, ...]]
 {replacementtext}
 [EXIT MACRO]
 {replacementtext}
END MACRO

Macro function:
MACRO FUNCTION macroname [(prm1, prm2, ...)]
 [MACROTEMP ident1 [, ident2, ...]
 DIM ident1 AS type [, ident2 AS type, ...]]
 {replacementtext}
 [EXIT MACRO]
 {replacementtext}
END MACRO = returnexpression

Remarks Macro is a powerful text substitution construct that may take a single-line or multi-line
format. It generates absolutely no executable code unless it is referenced, and effectively
allows the programmer to design a part of the PowerBASIC language to his/her own
needs and requirements. For example, a simple single-line macro can allow PowerBASIC
to emulate the CONST syntax used in Visual Basic - see the box-out below for more
information.

A macro must always be defined before it is referenced, and the parameter count must
always match the definition. When a macro is referenced, the occurrence of the name is
replaced by the defined replacement text, expanded with parameter substitution. The first
line of a MACRO definition is termed the macro prototype, and this line may not be split
into multiple logical lines with the underscore (_) line continuation character. Likewise,
the END MACRO = returnexpression may not be split with underscores either. A Macro
also cannot end with a line continuation character.

Macros may be nested, and may forward-reference other macros. However, care should
be exercised to avoid circular references.

A single-line macro or a macro function may be referenced at any source code position
which, when expanded, will be syntactically correct (also see the Restrictions section

PowerBASIC Compiler for Windows Version 10

1686 / 2126

below). Consider the following simplistic example:

MACRO concatenate(prm1,prm2) = prm1 & $SPC & prm2
' more code here
A$ = concatenate("Hello","World")

During compilation, PowerBASIC would internally expand this code to become:

A$ = "Hello" & $SPC & "World"

A multi-line macro, while more powerful in terms of coding, may be referenced only in the
"statement" position, which is the first position on a line. That single reference is
internally expanded into multiple lines of inline code to perform a complex task. For
example:

MACRO Display6times(prm1)
 CALL Display(prm1) : CALL Display(prm1)
 CALL Display(prm1) : CALL Display(prm1)
 CALL Display(prm1) : CALL Display(prm1)
END MACRO
' more code here
Display6times("This is very cool...")

The single-line MACRO offers a cunning way to retain the CONST syntax used
in MSBASIC and Visual Basic in your PowerBASIC code, while maintaining
the low overhead advantage of PowerBASIC. For example:

MACRO CONST = MACRO
' more code here
CONST Version = 1&
CONST AppTitle = "My Application"
' more code here
a$ = AppTitle & " v" & FORMAT$(Version)

During compilation, the CONST keyword is replaced by the MACRO keyword,
dynamically creating a new macro that, in turn, defines a numeric or string literal. When
the real macro name is referenced in the code, the literal is substituted directly.

MACROTEMP The MACROTEMP statement may be used to specify a list of one or more identifiers,
each of which is automatically made unique to each expansion of a multi-line macro. This
is done by internally appending the digits 0001, 0002, etc, to the identifier upon each
expansion of the macro.

A text identifier may represent a variable, label, or any other word, which expands
appropriately to avoid a duplicate name conflict in your code.

MACROTEMP just creates a symbol name. If this symbol is a variable name, the variable
must still be formally declared with an appropriate DIM (or LOCAL) statement. For
example:

MACRO CopyUntilNul(ptr1,ptr2)
 MACROTEMP LoopPoint, ByteVar
 DIM ByteVar AS BYTE
LoopPoint:
 ByteVar = @ptr1
 @ptr2 = ByteVar
 INCR ptr1
 INCR ptr2
 IF ByteVar <> 0 THEN LoopPoint
END MACRO

Using that MACRO definition, the code "CopyUntilNul(Source, Dest)" would expand to
something like this:

DIM ByteVar0001 AS BYTE
LoopPoint0001:
 ByteVar0001 = @Source
 @Dest = ByteVar0001
 INCR Source

PowerBASIC Compiler for Windows Version 10

1687 / 2126

 INCR Dest
 IF ByteVar0001 <> 0 THEN LoopPoint0001

If the MACROTEMP statement were not used, serious naming conflicts would occur most
any time that a macro was expanded more than once in a program. MACROTEMP
statements may appear 0, 1, or more times in a macro definition, but they must always
precede any other text in the macro.

MACROTEMP statements should be used with any label in a macro that may be
expanded more than once in a program, and with any variable that should not be shared
with any other expansion of the macro.

EXIT MACRO EXIT MACRO may be used to terminate execution of code in the current macro
expansion. It is functionally identical to the imaginary concept of GOTO END-MACRO.

END MACRO A macro function block can return a value with the END MACRO = returnexpression
statement.

Restrictions A macro definition may contain replacement text up to approximately 4000 characters.
Macros may specify up to 240 parameters, which may occupy up to approximately 2000
bytes total expanded space per macro.

Macro Function substitutions are limited to an expanded total of approximately 16000
characters per line of original source code.

Macro parameters are substituted directly, so whitespace characters in the passed macro
parameters may cause unexpected problems if the expanded code is syntactically
incorrect with the additional whitespace. For example, this can be important when
specifying UDT variables as macro parameters. Consider the following code:

TYPE MyType
 lCount AS LONG
 szText AS ASCIIZ * 256
END TYPE

MACRO PresetUDT(u)
 u.lCount = 1
 u.szText = SPACE$(256)
END MACRO

FUNCTION PBMAIN
 DIM x AS MyType
 PresetUDT(x)
 PresetUDT(x) ' This line causes an Error 526
END FUNCTION

In the code above, the second macro expansion fails to compile because the trailing
space in the passed macro parameter becomes part of the expanded code. In this
situation, this additional space character breaks the syntax of the UDT variable reference
within the expanded macro, triggering a compile-time Error 526 ("Period not allowed"). If
we examine how the two expanded macro statements would appear, the problem
becomes immediately obvious:

x .lCount = 1
 ^
x .szText = SPACE$(256)
 ^

(Please note that the caret symbols ()̂ above have been added purely to illustrate the
exact position of the problem)

When using single-line macros that contain numeric expressions, use parentheses
around the macro body to guard against unexpected order of precedence problems when
the macro is used within an expression. For example, consider the following macro and
expansion:

MACRO Calculate(p1, p2, p3) = (p1 * p2) \ p3
' more code here

PowerBASIC Compiler for Windows Version 10

1688 / 2126

x = Calculate(a,b,c) ^ 3

When this macro is expanded, the expression would be calculated as follows:

x = (a * b) \ c ^ 3

However, if the macro body was enclosed in parentheses:

MACRO Calculate(p1, p2, p3) = ((p1 * p2) \ p3)

…then the expanded expression would be calculated thus:

x = ((a * b) \ c) ^ 3

MACRO prototypes (those beginning with the MACRO keyword) and END MACRO =
returnexpression lines must be constructed on a single line of source code. That is, they
may not be split across multiple lines of source code with line continuation characters,
since these interfere with the text substitution process. For example, the following
prototype is invalid:

MACRO FUNCTION MyMacro1(sParam1, sParam2, sParam3, sParam4)

If a macro expands directly to a Function call, the macro can be called using the SUB-
style syntax, automatically discarding the function return value. For example:

MACRO sm(Msg) = SendMessage(a, Msg, b, c)

…can be called like this (if the return value is not required):

sm(x)

A macro cannot expand directly to a REMark, because REM and ' are processed before
the macro is assigned. So, MACRO hello = REM winds up as an invalid, blank macro.

Finally, it should be noted that the Integrated Debugger appears to step over macro
references as if they were conventional BASIC statements. This occurs because macro
expansion takes place during the compilation process and the original source code is not
affected or altered by the compile-time expansion.

See also EXIT, FUNCTION/END FUNCTION, METHOD, PROPERTY, SUB/END SUB

Example ' Single-line macro:
MACRO muldivide(p1, p2, p3) = ((p1 * p2) / p3)
' more code here
x = muldivide(3,3,2) + 10

' Multi-line macro and macro function example:
MACRO FUNCTION HowDidIGetHere
 MACROTEMP i, a
 DIM i AS LONG, a$
 FOR i = CALLSTKCOUNT TO 1 STEP -1
 A$ = A$ + CALLSTK$(i) + ", "
 NEXT
END MACRO = RTRIM$(A$, ANY ", ")

MACRO DisplayText(txt)
 #IF %DEF(%PB_CC32)
 PRINT txt
 #ELSE
 MSGBOX txt
 #ENDIF
END MACRO

SUB Testing2(r AS LONG,z AS ASCIIZ)
 DisplayText(HowDidIGetHere)
END SUB

SUB testing1(z AS ASCIIZ)
 DisplayText(HowDidIGetHere)
 CALL Testing2(1,z)
END SUB

PowerBASIC Compiler for Windows Version 10

1689 / 2126

FUNCTION PBMAIN
 DisplayText(HowDidIGetHere)
 CALL Testing1("This is a test")
END FUNCTION

' Useful Macro functions
MACRO Pi = 3.141592653589793##
MACRO DegreesToRadians(dpDegrees) = (dpDegrees * 0.0174532925199433##)
MACRO RadiansToDegrees(dpRadians) = (dpRadians * 57.29577951308232##)

MAK function

MAK function
Purpose Create an

 value of a specified data type.
Syntax resultvar = MAK(datatype, loworderval, highorderval)

Remarks Create an integral class value of a specified data type (WORD, DWORD,

, INTEGER, LONG, QUAD) from a low-order and a high-order part.
The complements to this function are the HI and LO functions, which may be used to
split a single 32-bit value into two 16-bit components.

Restrictions MAK supercedes the MAKWRD, MAKDWD, and MAKPTR functions. Those functions are
no longer supported, so update your code to use the new syntax.

See also HI, LO

Example dwResult = MAK(DWORD, x??, y??)

MAT statement

MAT statement
Purpose To simplify Matrix Algebra calculations.

Syntax MAT a1() = CON 'Set all elements of a1() to one
MAT a1() = CON(expr) 'Set all elements of a1() to value of expr
MAT a1() = IDN 'Establish a1() as an identity matrix
MAT a1() = ZER 'Set all elements of a1() to zero
MAT a1() = a2() + a3() 'Addition
MAT a1() = a2() 'Assignment
MAT a1() = INV(a2()) 'Inversion
MAT a1() = (expr) * a2() 'Scalar Multiplication
MAT a1() = a2() - a3() 'Subtraction
MAT a1() = a2() * a3() 'Multiplication
MAT a1() = TRN(a2()) 'Transposition

Remarks Array names with the MAT statements may optionally include a set of empty
parentheses. The following are both equally valid, but the inclusion of the parentheses
improves clarity of the code:

MAT a1 = CON
MAT a1() = CON

MAT CON, IDN ZER + - = and TRN operations are valid with Byte, Word, Double-word,
Integer, Long-integer, Quad-integer, Single-precision, Double-precision and Extended-
precision arrays.

Matrix * and INV operations support all

PowerBASIC Compiler for Windows Version 10

1690 / 2126

 types.
It is the programmer's responsibility to ensure that arrays used with MAT are of the
appropriate size and type. All operations involving two or more arrays require that they be
of exactly the same size and type, without exception. Failure to adhere causes undefined
results. In the interest of execution speed, no error checking is performed at run-time.

Every scalar value denoted here as 'expr' must be enclosed in parentheses. Although
Matrix operations tend to imply a two-dimensional array, unless otherwise noted (such as
with MAT IDN, *, TRN), MAT may be used with arrays of one to eight dimensions. It is
permissible to specify one array for multiple MAT parameters.

Example MAT array1() = IDN

This establishes array1 as an identity matrix, with all diagonal elements as 1 and all
others as zero. This produces undefined results if array1 is not a "square" matrix.
MAT array1() = (expr) * array2()

Each element of array2 is multiplied by the scalar value of the expr, then assigned to
array1.

MAT array1() = TRN(array2())

Transposes the row and columns from array2 to array1. Arrays must be equivalent:
array1(5,2) and array2(2,5). Only a square matrix may be transposed to itself.

MAT array1() = INV(array2())

Inverts the array from array2 to array1. Only a square matrix may be inverted. Proof: If
array1 is then multiplied by array2, the resulting "array3" will be equal to an Identify Matrix,
(MAT array3 = array1 * array2 ' array3 should now be equal to "MAT array3 IDN").

MAT a() = b() * c()

Array multiplication occurs as follows:

' Row Column assumption:
' array [a]l,n = [b]l,m * [c]m,n

FOR i = 1 TO l ' Row [a]l = Row [b]l
 FOR j = 1 TO n ' Column [a]n = Column [c]n
 a(i,j) = 0# ' # if Double-precision
 FOR k = 1 TO m ' Column [b]m = Row [c]m
 a(i,j) = a(i,j) + b(l,k) * c(k,j)
 NEXT
 NEXT
NEXT

MAX function

MAX function
Purpose Return the argument with the largest (maximum) value.

Syntax y = MAX(arg [, arg] ...)
y& = MAX&(arg& [, arg&] ...)
y$ = MAX$(arg$ [, arg$] ...)

Remarks These functions take any number of arguments and return the argument with the largest
(maximum) value. MAX handles arguments of any

 type.
MAX& handles arguments which evaluate to Long-integers (MAX& is more efficient than
MAX).

MAX$ handles

 arguments.
If any arguments of MAX& are outside of the range of Long-integers, the result is

PowerBASIC Compiler for Windows Version 10

1691 / 2126

undefined. Any

 arguments of MAX& will be rounded to Long-integers before the comparison begins.
MAX% is recognized as a valid synonym for MAX&.

See also CHOOSE, CHOOSE&, CHOOSE$, IIF, IIF&, IIF$, MIN, MIN&, MIN$, SWITCH,
SWITCH&, SWITCH$

Example x% = MAX&(A, B, C, D)
x$ = MAX$("abacadabra", "cad", A$, B$(4), C$+D$+LEFT$(E$,5))
x## = MAX(1.1@@, A%/B!, C#(x)^D, E##, SIN(F&))

MCASE$ function

MCASE$ function
Purpose Return a mixed case version of its

 argument.
Syntax s$ = MCASE$(string_expression [,ANSI | OEM])

Remarks MCASE$ returns a string equivalent to string_expression, except that the first letter of
each word is capitalized, while the remaining characters are forced to lowercase. A word
is considered to be a consecutive series of letters. The optional ANSI or OEM parameter
specifies whether the conversion is made using the ANSI charset for the system, or the
original IBM OEM charset. If no charset is specified, PowerBASIC for Windows uses the
system ANSI charset, while PB/CC uses the IBM OEM charset. Only "International"
characters in the range of CHR$(128) to CHR$(255) are affected by this parameter.

The OEM charset is based upon the original IBM OEM charset to ensure compatibility
with programs written for all previous versions of the PowerBASIC compiler.

See also LCASE$, UCASE$

Example x$ = MCASE$("Cats aren't AL.WAYS good.")

Result Cats Aren'T Al.Ways Good.

ME pseudo-variable

Keyword Template
Purpose

Syntax

Remarks

See also

Example

ME pseudo-variable
Purpose A pseudo object variable to reference the current object.

Syntax ME.Method1(param)

Remarks ME is a pseudo-variable, which PowerBASIC automatically defines in every Method and
Property. It is treated as a reference to the current object. Using ME, it's possible to call
any other Method or Property which is a member of the class: var = ME.Method1(param)

ME can also be assigned to an appropriate object variable, or used as a
Sub/Function/Method/Property parameter.

http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

1692 / 2126

See also CLASS, INTERFACE (Direct), INTERFACE (IDBind), METHOD, PROPERTY, What is an
object, anyway?

MEMORY COPY statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

MEMORY statement
Purpose Copy, Swap, or Fill blocks of memory.

Syntax MEMORY COPY Source&, Dest&, Count&
MEMORY SWAP Source&, Dest&, Count&
MEMORY FILL Dest&, Count&, BYTE|WORD|DWORD IntegralExpr
MEMORY FILL Dest&, Count&, StrgExpr

Remarks The MEMORY statement may be used to copy, swap, or fill a block of memory with very
high efficiency. PowerBASIC will automatically take into account the possibility that the
source and destination blocks overlap and avoid corruption from that fact.

In the first form, Count& bytes of memory at the address specified by Source& is copied
to the address specified by Dest&. In the second form, Count& bytes of memory at the
address specified by Source& is exchanged with the data at the address specified by
Dest&.

In the third form, Count& bytes of memory at Dest& are filled with one or more copies of
the BYTE, WORD, or DWORD value specified by the value of IntegralExpr.

In the fourth form, Count& bytes of memory at Dest& are filled with one or more copies of
the string StrgExpr.

See also GLOBALMEM, PEEK$, POKE$, STRPTR, VARPTR

MEMORY FILL statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

MEMORY statement
Purpose Copy, Swap, or Fill blocks of memory.

Syntax MEMORY COPY Source&, Dest&, Count&

PowerBASIC Compiler for Windows Version 10

1693 / 2126

MEMORY SWAP Source&, Dest&, Count&
MEMORY FILL Dest&, Count&, BYTE|WORD|DWORD IntegralExpr
MEMORY FILL Dest&, Count&, StrgExpr

Remarks The MEMORY statement may be used to copy, swap, or fill a block of memory with very
high efficiency. PowerBASIC will automatically take into account the possibility that the
source and destination blocks overlap and avoid corruption from that fact.

In the first form, Count& bytes of memory at the address specified by Source& is copied
to the address specified by Dest&. In the second form, Count& bytes of memory at the
address specified by Source& is exchanged with the data at the address specified by
Dest&.

In the third form, Count& bytes of memory at Dest& are filled with one or more copies of
the BYTE, WORD, or DWORD value specified by the value of IntegralExpr.

In the fourth form, Count& bytes of memory at Dest& are filled with one or more copies of
the string StrgExpr.

See also GLOBALMEM, PEEK$, POKE$, STRPTR, VARPTR

MEMORY SWAP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

MEMORY statement
Purpose Copy, Swap, or Fill blocks of memory.

Syntax MEMORY COPY Source&, Dest&, Count&
MEMORY SWAP Source&, Dest&, Count&
MEMORY FILL Dest&, Count&, BYTE|WORD|DWORD IntegralExpr
MEMORY FILL Dest&, Count&, StrgExpr

Remarks The MEMORY statement may be used to copy, swap, or fill a block of memory with very
high efficiency. PowerBASIC will automatically take into account the possibility that the
source and destination blocks overlap and avoid corruption from that fact.

In the first form, Count& bytes of memory at the address specified by Source& is copied
to the address specified by Dest&. In the second form, Count& bytes of memory at the
address specified by Source& is exchanged with the data at the address specified by
Dest&.

In the third form, Count& bytes of memory at Dest& are filled with one or more copies of
the BYTE, WORD, or DWORD value specified by the value of IntegralExpr.

In the fourth form, Count& bytes of memory at Dest& are filled with one or more copies of
the string StrgExpr.

See also GLOBALMEM, PEEK$, POKE$, STRPTR, VARPTR

MENU ADD POPUP statement

PowerBASIC Compiler for Windows Version 10

1694 / 2126

MENU ADD POPUP statement
Purpose Add a popup child menu to an existing menu.

Syntax MENU ADD POPUP, hMenu, txt$, hPopup [AS id], state& [, AT [BYCMD]
position&]

Remarks A popup menu is a small window that "pops up" when a menu item is highlighted. This
allows nesting, and gives the user an opportunity to choose from "sub-menu" items.

hMenu Handle of the parent menu which holds the popup.

txt$ Text displayed in the parent menu. An ampersand (&) may be used in the

 to make the following letter into a control accelerator (hot-key). The letter appears
underscored to signify that it is an accelerator.

hPopup Handle of the child popup menu to be added.

id If the option AS ID is included, id is a unique numeric identifier for this popup menu. id
may be used later with a BYCMD option to reference this popup. id is an integral numeric
value in the range of -32768 to +32767.

state& The initial state of the menu item. It can be one of the following:

%
MFS_DISABLED

Disable the item so that it cannot be selected.

%
MFS_ENABLED

Enable the item so that it can be selected.

position& Indicates the position in the parent menu where the popup child menu is to be inserted. If
the BYCMD option is used, the popup menu is inserted prior to the menu item ID
specified by position&. Otherwise, the popup menu is inserted at the physical position&
within the parent menu, where position& = 1 for the first position, position& = 2 for the
second, and so on. If position is not specified then the popup menu is appended to the
end of the menu.

See also Dynamic Dialog Tools, ACCEL ATTACH, Menus, MENU ADD STRING, MENU ATTACH,
MENU CONTEXT, MENU DELETE, MENU DRAW BAR, MENU GET STATE,
MENU GET TEXT, MENU NEW BAR, MENU NEW POPUP, MENU SET STATE,
MENU SET TEXT

Example See Menu Example.

MENU ADD STRING statement

MENU ADD STRING statement
Purpose Add a

 or separator to an existing menu.
Syntax MENU ADD STRING, hMenu, txt$, id&, state& [, AT [BYCMD] position&] [, CALL

callback]

Remarks A string may contain an optional command accelerator key, and also describe an
equivalent keyboard accelerator combination.

hMenu Handle of the parent menu to which the string should be added.

txt$ Text to display in the parent menu. An ampersand (&) may be used in the string to make
the following letter into a command accelerator (hot-key). The letter is underscored to
signify that it is an accelerator. To create a horizontal separator instead of a text string,
set txt$ = "-", id& = 0, state& = 0.

Keyboard accelerators, as described in the ACCEL ATTACH statement, can be indicated
in the text of a menu item, for the reference of the user. To include a keyboard accelerator
description in a menu string, separate it from the menu item text with a $TAB {CHR$(9)}

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1695 / 2126

character. For example:

MENU ADD STRING, hMenu, "Cu&t" & $TAB & "CTRL+X", id&, mstate&

id& The unique

 identifier for the menu item. When a menu item is selected, id& is sent to the parent
dialog Callback Function to notify the dialog which option was selected.

state& The initial state of the menu item. It can be one or more of the following, combined
together with the OR operator to form a bitmask:

%
MFS_CHECKED

Place a checkmark next to the item.

%
MFS_DEFAULT

The default menu item, displayed in bold. Only one item may be
the default.

%
MFS_DISABLED

Disable the menu item so that it cannot be selected.

%
MFS_ENABLED

Enable the menu item so that it can be selected.

%
MFS_GRAYED

Disable the menu item so that it cannot be selected, and draw it
in a "grayed" state to indicate this.

%MFS_HILITE Highlight the menu item.

%
MFS_UNCHECK
ED

Do not place a checkmark next to the item.

%
MFS_UNHILITE

Item is not highlighted.

A state value of zero (0) provides %mfs_enabled, %mfs_unchecked, and %mfs_unhilite.

position& Optional position in the parent menu, where the menu item should be inserted. If the
BYCMD option is used, the menu item is inserted prior to the menu item ID specified by
position&. Otherwise, the menu item is inserted at the physical position& within the
parent menu, where position& = 1 for the first position, position& = 2 for the second, and
so on. If position is not specified then the popup menu is appended to the end of the
menu.

callback Optional name of a Callback Function that will be called when the menu item is selected.
 This callback will be ignored when used with MENU CONTEXT as it returns the id of the
selected menu item.

Restrictions The application must call the MENU DRAW BAR statement whenever a menu changes,
whether or not the menu is in a displayed dialog.

See also Dynamic Dialog Tools, ACCEL ATTACH, Menus, MENU ADD POPUP, MENU ATTACH,
MENU CONTEXT, MENU DELETE, MENU DRAW BAR, MENU GET STATE,
MENU GET TEXT, MENU NEW BAR, MENU NEW POPUP, MENU SET STATE,
MENU SET TEXT

Example See Menu Example.

MENU ATTACH statement

MENU ATTACH statement
Purpose Attach a menu to a given dialog.

Syntax MENU ATTACH hMenu, hDlg

Remarks Attaches a menu to a dialog, replacing any existing menu. The dialog is redrawn to
accommodate the new menu.

hMenu Handle of the menu to be attached.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1696 / 2126

hDlg Handle of the dialog which holds the menu.

See also Dynamic Dialog Tools, ACCEL ATTACH, Menus, MENU ADD POPUP,
MENU ADD STRING, MENU DELETE, MENU DRAW BAR, MENU GET STATE,
MENU GET TEXT, MENU NEW BAR, MENU NEW POPUP, MENU SET STATE,
MENU SET TEXT

Example See Menu Example.

MENU CONTEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

MENU CONTEXT statement
Purpose Create a floating context menu.

Syntax MENU CONTEXT hContext, x&, y&, flags& TO CmdVar

Remarks A context menu is a floating popup menu which is shown until the user makes a selection
or dismisses it. It can appear anywhere on the screen.

hContext Handle of a menu created with MENU NEW POPUP.

x&, y& The parameters x& and y& specify the location of the context menu, in pixels, relative to
the upper left corner of the desktop.

flags& May be combined, as appropriate, to specify the characteristics of the context menu.

%
TPM_LEFTBUTT
ON

Tracks the left button.

%
TPM_RIGHTBUTT
ON

Tracks the right button.

%
TPM_LEFTALIGN

Left side of the menu is aligned with x&.

%
TPM_CENTERALI
GN

Centers horizontally with x&.

%
TPM_RIGHTALIG
N

Right side of the menu is aligned with x&.

%
TPM_TOPALIGN

Top of the menu is aligned with y&.

%
TPM_VCENTERA
LIGN

Centers vertically with y&.

%
TPM_BOTTOMAL
IGN

Bottom of the menu is aligned with y&.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1697 / 2126

CmdVar Long integer variable where the id of the selected menu item is returned. If an optional
callback is defined for a menu item with MENU ADD STRING it will be ignored when used
with MENU CONTEXT.

See also Dynamic Dialog Tools, Menus, MENU ADD STRING, MENU ADD POPUP, MENU NEW
POPUP

Example MENU NEW POPUP TO hPop&
MENU ADD STRING, hPop&, "one", 1, %mf_enabled
MENU ADD STRING, hPop&, "two", 2, %mf_enabled
MENU ADD STRING, hPop&, "three", 3, %mf_enabled
MENU CONTEXT hPop&, 500, 500, %tpm_leftbutton TO CommandVar&

MENU DELETE statement

MENU DELETE statement
Purpose Delete a menu item from an existing menu.

Syntax MENU DELETE hMenu, [BYCMD] position&

Remarks If the menu item is a popup child menu, the menu is destroyed and its memory is
released.

hMenu Handle of the menu holding the item you are deleting.

position& Position of the item within the menu. If BYCMD is specified, position& refers to the unique
menu identifier. Otherwise, position& is the position of the menu item, where position& =
1 for the first position, position& = 2 for the second, and so on.

See also Dynamic Dialog Tools, Menus, MENU ADD POPUP, MENU ADD STRING,
MENU ATTACH, MENU DRAW BAR, MENU GET STATE, MENU GET TEXT,
MENU NEW BAR, MENU NEW POPUP, MENU SET STATE, MENU SET TEXT

MENU DRAW BAR statement

MENU DRAW BAR statement
Purpose Redraw the menu bar for a given dialog.

Syntax MENU DRAW BAR hDlg

Remarks This operation should be performed when a menu is altered dynamically after the dialog
has been initially created, without regard to the visible state of the dialog.

hDlg Handle of the dialog that owns the menu to be redrawn.

See also Dynamic Dialog Tools, Menus, MENU ADD POPUP, MENU ADD STRING,
MENU ATTACH, MENU DELETE, MENU GET STATE, MENU GET TEXT,
MENU NEW BAR, MENU NEW POPUP, MENU SET STATE, MENU SET TEXT

MENU GET STATE statement

MENU GET STATE statement
Purpose Return the state of a specified menu item.

Syntax MENU GET STATE hMenu, [BYCMD] position& TO state&

Remarks Retrieves the menu flags associated with the specified menu item.

hMenu Handle of the menu containing the item to examine.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1698 / 2126

position& Position within the menu of the menu item to examine. If the BYCMD option is specified,
position& specifies the unique menu item identifier of the item to examine. Otherwise,
position& indicates the physical position of the menu item within the menu, where
position& = 1 for the first position, position& = 2 for the second position, and so on.

state& Long integer variable where the menu state will be placed. If the item does not exist, the
result is -1. Otherwise the result is a bitmask containing one or more of the following,
combined together with the OR operator to form the bitmask:

%MFS_CHECKED Menu item has a checkmark next to it.

%MFS_DEFAULT Menu item is the default item.

%MFS_DISABLED Menu item is disabled and cannot be selected.

%MFS_ENABLED Menu item is enabled and can be selected.

%MFS_GRAYED Menu item is disabled and cannot be selected, and is drawn
in a "grayed" state.

%MFS_HILITE Menu item is highlighted.

%
MFS_UNCHECKED

Menu item does not have a checkmark next to it.

%MFS_UNHILITE Menu item is not highlighted.

See also Dynamic Dialog Tools, Menus, MENU ADD POPUP, MENU ADD STRING,
MENU ATTACH, MENU DELETE, MENU DRAW BAR, MENU GET TEXT,
MENU NEW BAR, MENU NEW POPUP, MENU SET STATE, MENU SET TEXT

MENU GET TEXT statement

MENU GET TEXT statement
Purpose Return the text associated with a given menu item.

Syntax MENU GET TEXT hMenu, [BYCMD] position& TO txt$

Remarks Return the text displayed in the menu item identified by position&.

hMenu Handle of the menu that contains the menu item to be examined.

position& Position of the menu item to examine. If BYCMD is specified, position& refers to the
unique menu item identifier of the item to examine. Otherwise, position& indicates the
physical position of the menu item within the menu, where position& = 1 for the first
position, position& = 2 for the second position, and so on.

txt$ variable where the text from the menu item will be placed.

See also Dynamic Dialog Tools, Menus, MENU ADD POPUP, MENU ADD STRING,
MENU ATTACH, MENU DELETE, MENU DRAW BAR, MENU GET STATE,
MENU NEW BAR, MENU NEW POPUP, MENU SET STATE, MENU SET TEXT

MENU NEW BAR statement

MENU NEW BAR statement
Purpose Create a new menu bar.

Syntax MENU NEW BAR TO hMenu

Remarks Items may be added to the menu using the MENU ADD POPUP and
MENU ADD STRING statements.

hMenu Double-word or Long-integer variable where the handle of the new menu bar will be placed.

See also Dynamic Dialog Tools, Menus, MENU ADD POPUP, MENU ADD STRING,

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1699 / 2126

MENU ATTACH, MENU DELETE, MENU DRAW BAR, MENU GET STATE,
MENU GET TEXT, MENU NEW POPUP, MENU SET STATE, MENU SET TEXT

Example See Menu Example.

MENU NEW POPUP statement

MENU NEW POPUP statement
Purpose Create a new popup menu.

Syntax MENU NEW POPUP TO hPopup

Remarks Once created, items may be added to the popup menu using the MENU ADD POPUP
and MENU ADD STRING statements.

hPopup Double-word or Long-integer variable where the handle of the new popup menu will be
placed.

See also Dynamic Dialog Tools, Menus, MENU ADD POPUP, MENU ADD STRING,
MENU ATTACH, MENU CONTEXT, MENU DELETE, MENU DRAW BAR,
MENU GET STATE, MENU GET TEXT, MENU NEW BAR, MENU SET STATE,
MENU SET TEXT

Example See Menu Example.

MENU SET STATE statement

MENU SET STATE statement
Purpose Set the state of a specified menu item.

Syntax MENU SET STATE hMenu, [BYCMD] position&, state&

Remarks Change the state of the menu item identified by position&.

hMenu Double-word or Long-integer variable containing the handle of the menu that contains the
item to change.

position& Position within the menu, of the menu item to be changed. If the BYCMD option is
specified, position& refers to the unique menu item identifier of the item. Otherwise,
position& indicates the physical position of the menu item within the menu, where
position& = 1 for the first position, position& = 2 for the second position, and so on.

state& The new state of the menu item. This must be one or more of the following items,
combined together with the OR operator to form a bitmask:

%MFS_CHECKED Place a checkmark next to the item.

%MFS_DEFAULT The default menu item, displayed in bold. Only one item may
be the default.

%MFS_DISABLED Disable the menu item so that it cannot be selected.

%MFS_ENABLED Enable the menu item so that it can be selected.

%MFS_GRAYED Disable the menu item so that it cannot be selected, and draw
it in a "grayed" state to indicate this.

%MFS_HILITE Highlight the menu item.

%
MFS_UNCHECKED

Removes any checkmark next to the item.

%MFS_UNHILITE Removes the highlight from the item.

See also Dynamic Dialog Tools, Menus, MENU ADD POPUP, MENU ADD STRING,
MENU ATTACH, MENU CONTEXT, MENU DELETE, MENU DRAW BAR,

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1700 / 2126

MENU GET STATE, MENU GET TEXT, MENU NEW BAR, MENU NEW POPUP,
MENU SET TEXT

MENU SET TEXT statement

MENU SET TEXT statement
Purpose Set the text of a menu item.

Syntax MENU SET TEXT hMenu, [BYCMD] position&, txt$

Remarks Set the text of the menu item identified by position&.

hMenu Handle of the menu that contains the menu item to change.

position& Position within the menu, of the menu item to be changed. If the BYCMD option is used,
position& specifies the unique menu item identifier of the item to change. Otherwise,
position& indicates the physical position of the menu item within the menu, where
position& = 1 for the first position, position& = 2 for the second position, and so on.

txt$ The new text for the menu item.

See also Dynamic Dialog Tools, Menus, MENU ADD POPUP, MENU ADD STRING,
MENU ATTACH, MENU CONTEXT, MENU DELETE, MENU DRAW BAR,
MENU GET STATE, MENU GET TEXT, MENU NEW BAR, MENU NEW POPUP,
MENU SET STATE

METHOD / END METHOD statements

Keyword Template
Purpose

Syntax

Remarks

See also

Example

METHOD/END METHOD statements
Purpose Define a METHOD procedure within a class.

Syntax [CLASS|OVERRIDE] METHOD name [<DispID>] [ALIAS "altname"] (var AS type...)
[THREADSAFE] [AS type]
 [statements]
 METHOD = expression
END METHOD

Remarks METHOD/END METHOD is used to define a METHOD procedure within a class.
 Standard methods can only be called through a virtual function table on a valid object.

A METHOD is a block of code, very similar to a user-defined function. Optionally, it can
return a value, like a FUNCTION, or merely act as a subroutine, like a SUB. If the
optional "AS type" is included, the method returns a value set by "Method=expr", or
defaults to a return value of zero (0) or nul

, depending upon the type. METHOD parameters may be any variable type,
including VARIANT variables. Methods may be called using any of the five following
forms:

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1701 / 2126

DIM ObjVar AS MyInterface
LET ObjVar = NEWCOM Prgid$
1. ObjVar.Method1(param)
2. CALL ObjVar.Method1(param)
3. ObjVar.Method1(param) TO var
4. CALL ObjVar.Method1(param) TO var
5. var = ObjVar.Method1(param)

Forms 1 and 2 assume that the Method does not return a value, or you simply wish to
discard it. Forms 3, 4, and 5 require that the Method return a value compatible with the
type of variable specified as var. Parentheses enclosing parameters are optional in forms
1 and 3.

Methods may be declared (using AS type...) to return a string, any of the

 types, a specific class of object variable (AS MyClass), a Variant, or a user defined
Type.

Type Libraries only support the following data types: BYTE, WORD, DWORD,
INTEGER, LONG, QUAD, SINGLE, DOUBLE, CURRENCY, OBJECT, STRING, and
VARIANT. If any Methods or Properties use data types not supported by Type
Libraries, you will receive a Error 581 - Type Library creation error, when
using the #COM TLIB ON metastatement.

In addition to the explicit return value which you declare, all Methods and Properties on an
IAutomation or IDispatch interface have another "Hidden Return Value", which is
cryptically named hResult. While the name would imply a handle for a result, it's really
not a handle at all, but just a long integer value, used to indicate success or failure of the
Method. After calling a Method or Property, you can retrieve the hResult value with the
PowerBASIC function OBJRESULT. The most significant bit of the value is known as the
severity bit. That bit is 0 (value is positive) for success, or 1 (value is negative) for failure.
The remaining bits are used to convey error codes and additional status information. If
you call any object Method/Property (either Dispatch or Direct), and the severity bit of
hResult is set, PowerBASIC generates Run-Time error 99: Object error. When you create
a Method or Property, PowerBASIC automatically returns an hResult of zero, which
implies success. You can return a non-zero hResult value by executing a METHOD
OBJRESULT = expr within a Method, or PROPERTY OBJRESULT = expr within a
Property.

Class Methods

A CLASS METHOD is one which is private to the class in which it is located. That is, it
may only be called from a METHOD or PROPERTY in the same class. The CLASS
METHOD must be located within a CLASS block, but outside of any INTERFACE blocks.
 This shows it is a direct member of the class, rather than a member of an interface.

CLASS MyClass
 INSTANCE MyVar AS LONG

 CLASS METHOD MyClassMethod(BYVAL param AS LONG) AS STRING
 METHOD = "My" + STR$(param + MyVar)
 END METHOD

 INTERFACE MyInterface
 INHERIT IUNKNOWN
 METHOD MyMethod()
 Result$ = ME.MyClassMethod(66)
 END METHOD
 END INTERFACE
END CLASS

In the above example, MyClassMethod() is a CLASS METHOD, and is always accessed
using the pseudo-object ME (in this case ME.MyClassMethod). Class methods are never
accessible from outside a class, nor are they ever described or published in a type library.

PowerBASIC Compiler for Windows Version 10

1702 / 2126

 By definition, there is no reason to have a private PROPERTY, so PowerBASIC does not
offer a CLASS PROPERTY structure.

Constructors and Destructors

There are two special class methods which you may optionally add to a class. They
meet a very specific need: automatic initialization when an object is created, and cleanup
when an object is destroyed. Technically, they are known as constructor and destructor
methods, and can perform almost any functionality needed by your object: initialization of
variables, reading/writing data to/from disk, etc. You do not call these methods directly
from your code. If they are present in your class, PowerBASIC automatically calls them
each time an object of that class is created or destroyed. If you choose to use them,
these special class methods must be named CREATE and DESTROY. They may take
no parameters, and may not return a result. They are defined at the class level, so they
may never appear within an INTERFACE definition.

CLASS MyClass
 INSTANCE MyVar AS LONG

 CLASS METHOD CREATE()
 ' Do initialization
 END METHOD

 CLASS METHOD Destroy()
 ' Do cleanup
 END METHOD

 INTERFACE MyInterface
 INHERIT IUNKNOWN
 METHOD MyMethod()
 ' Do things
 END METHOD
 END INTERFACE
END CLASS

As displayed above, CREATE and DESTROY must be placed at the class level, but
outside of any interface block. You should note that it's not possible to name any
standard method (one that's accessible through an interface) as CREATE or DESTROY.
 That's just to help you remember the rules for a constructor or destructor. However, you
may use these names as needed to describe a method external to your program.

A very important caution: You must never create an object of the current class in a
CREATE method. To do so will cause CREATE to be executed again and again until all
available memory is consumed. This is a fatal error, from which recovery is impossible.

Override Methods

You can add to, or replace, the functionality of a particular method or property of an
inherited base class by coding a replacement which is preceded by the word OVERRIDE.
The overriding method must have the same name and signature (parameters, return value,
etc.) as the one it replaces.

Dispatch ID

Every method and property in a dual interface needs a positive, long integer value to
identify it. That integer value is known as a DispID (Dispatch ID), and it's used internally
by COM services to call the correct function on a Dispatch interface. You can optionally
specify a particular DispID by enclosing it in angle brackets immediately following the
Method/Property name:

METHOD MethodOne <76> ()

If you don't specify a DispID, PowerBASIC will assign a random value for you. This is fine
for internal objects, but may cause a failure for published COM objects, as the DispID

PowerBASIC Compiler for Windows Version 10

1703 / 2126

could change each time you compile your program. It is particularly important that you
specify a DispID for each Method/Property in a COM Event Interface.

BYREF and BYVAL attributes

Just like a SUB or FUNCTION, PowerBASIC uses

 parameters as the default form, unless you specify a override. Either key word can
be placed before the parameter name, along with IN, OUT, and INOUT, as
described later.

BYVA
L

A copy of the data value is placed on the stack as a parameter. The copy is
destroyed when the METHOD ends. BYVAL parameters default to an IN
parameter, if no explicit direction is specified.

BYR
EF

A pointer to the data is placed on the stack as a parameter. If the data is a
variable, any changes to the parameter are passed back to the caller in the
variable. If the data is an expression, it is destroyed when the METHOD
ends. BYREF parameters default to an INOUT parameter, if no explicit
direction is specified.

Direction attributes

METHOD parameters may also specify the direction in which data is passed between the
caller and callee:

IN Data is passed from the caller to the METHOD. Generally speaking, you'll
find that almost all IN parameters are passed BYVAL, and that is highly
recommended. However, it is possible to pass them BYREF if necessary.

OUT Data is passed from the METHOD back to the caller. All OUT parameters
must be passed BYREF.

INOU
T

Data is passed from the caller to the METHOD, and results are returned to
the caller in the same parameter. All INOUT parameters must be passed
BYREF.

In many cases, the direction of a parameter can be inferred directly from the
BYVAL/BYREF attribute (BYVAL=IN, BYREF=OUT). However, we recommend that you
include the direction attribute as an added means of self-documentation. Each METHOD
parameter name may be preceded by one of BYVAL/BYREF, and one of IN/OUT/INOUT,
in any sequence.

You should note an interesting rule of COM objects: IN parameters are read-only.
 They may not be altered.

IN parameters are considered by COM rules to be "constant" which may not be altered,
because they are values which are not returned to the caller. However, since this is not a
rule normally applied to a standard SUB or FUNCTION, it can allow programming bugs
which are most difficult to find and correct. For this reason, PowerBASIC automatically
protects you from this issue with no action needed on your part. When writing METHOD
or PROPERTY code in PowerBASIC, you may freely assign new values to BYVAL/IN
parameters. They will simply be discarded when the METHOD exits. Of course, not
every programming language protects you in this way, so you must use caution if you
create a COM METHOD in another compiler.

Using OPTIONAL/OPT

METHOD statements may specify one or more parameters as optional by preceding the
parameter with either the keyword

 (or the abbreviation OPT). When a parameter is declared optional, all subsequent
parameters in the declaration are optional as well, whether or not they specify an
explicit OPTIONAL or OPT directive.
VARIANT variables are particularly well suited for use as an optional parameter. If the

PowerBASIC Compiler for Windows Version 10

1704 / 2126

calling code omits an optional VARIANT parameter, (BYVAL or BYREF), PowerBASIC
(and most other compilers) substitute a variant of type %VT_ERROR which contains an
error value of %DISP_E_PARAMNOTFOUND (&H80020004). In this case, you can check
for this value directly, or use the ISMISSING function to determine whether the parameter
was physically passed or not.

When optional parameters (other than VARIANT) are omitted from the calling code, the
stack area normally reserved for those parameters is zero-filled.

If the parameter is defined as a BYVAL parameter, it will have the value zero. For TYPE
or UNION variables passed BYVAL, the compiler will pass a string of binary zeroes of
length SIZEOF(Type_or_union_var).

If the parameter is defined as a BYREF parameter, VARPTR(Varname) will equal zero;
when this is true, any attempt to use Varname in your code will result in a General
Protection Fault or memory corruption. You should use the ISMISSING() function first to
determine whether it is safe to access the parameter.

THREADSAFE Option Descriptor

If you include the option THREADSAFE, PowerBASIC automatically establishes a
semaphore which allows only one

 to execute it at a time. Others must wait until the first thread exits the
THREADSAFE procedure before they are allowed to begin.

See also #COM, CLASS, INSTANCE, INTERFACE (Direct), ISMISSING, Just what is COM?, ME,
PROPERTY, What is an object, anyway?

METRICS function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

METRICS function
Purpose Retrieves information or dimensions of system elements.

Syntax MetricVar = METRICS(MetricName)

Remarks Returns information about the particular system metric specified by the parameter
MetricName. All dimensions are specified in pixels. For example:

MetricVar& = METRICS(Scroll.Horz)

The above example retrieves the height (in pixels) of a horizontal scrollbar, and assigns it
to the variable MetricVar&.

MetricName MetricName Description

BORDER.X The width of a window border.

BORDER.Y The height of a window border.

CAPTION The height of a normal caption area.

EDGE.X The width of a 3-D border.

EDGE.Y The height of a 3-D border.

FRAME.FIXED.X The thickness of the horizontal frame of a window which is fixed

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1705 / 2126

size (one which cannot be resized).

FRAME.FIXED.Y The thickness of the vertical frame of a window which is fixed
size (one which cannot be resized).

FRAME.RESIZE.
X

The thickness of the horizontal frame of a window which can be
resized.

FRAME.RESIZE.
Y

The thickness of the vertical frame of a window which can be
resized.

ICON.X The default width of an icon.

ICON.Y The default height of an icon.

ICONSPACE.X The width of a grid cell for items in large icon view.

ICONSPACE.Y The height of a grid cell for items in large icon view.

MAXIMIZED.X The width of a maximized top-level window.

MAXIMIZED.Y The height of a maximized top-level window.

MENUBAR The height of a single-line menu bar.

MINIMUM.X The minimum width of a window.

MINIMUM.Y The minimum height of a window.

SCROLL.HORZ The height of a horizontal scrollbar.

SCROLL.VERT The width of a vertical scrollbar.

MID$ function

MID$ function
Purpose Returns a part of a

.
Syntax s$ = MID$(StringExpr, Start& [, Count&])

s$ = MID$(StringExpr, Start& TO End&)

Remarks The MID$ function returns a part of a string expression. The first form tells the number of
characters to extract, while the second form tells the start and end position instead. Both
forms provide the same functionality, so the choice is just a matter of programmer
convenience.

Start& and End& are positions in the string, starting with 1 as the first character. Count&
tells the number of characters to extract. For example, both of the following examples
return "wer".

a$ = MID$("PowerBASIC", 3, 3)
a$ = MID$("PowerBASIC", 3 TO 5)

If Count& is omitted, or there aren't enough characters in StringExpr, all remaining
characters are returned. If there are no characters at the Start& position, an empty string
is returned.

If Start& or End& are negative, the positions are counted backwards from the end of the
string (-1 is the last character). If Count& is negative, it is interpreted as
LEN(string_expression)-ABS(Count&).

See also EXTRACT$, INSTR, LEFT$, LTRIM$, MID$ statement, RIGHT$, RTRIM$, SPLIT, TALLY,
TRIM$, VERIFY

Example a$ = MID$("PowerBASIC", 4, 2) ' returns "er"
a$ = MID$("PowerBASIC", 4) ' returns "erBASIC"
a$ = MID$("PowerBASIC", 20) ' returns a null string
a$ = MID$("1234567890",3,-4) ' returns "345678"
a$ = MID$("abcde", -3, 2) ' returns "cd"
a$ = MID$("PowerBASIC", 4 TO 6) ' returns "erB"
a$ = MID$("PowerBASIC", 4 TO 99) ' returns "erBASIC"

PowerBASIC Compiler for Windows Version 10

1706 / 2126

MID$ statement

MID$ statement
Purpose Replace characters in a

 variable.
Syntax MID$(StringVar, Start& [, Count&]) = replacement

MID$(StringVar, Start& TO End& = replacement

Remarks The MID$ statement replaces characters in a string variable. The first form tells the
number of characters to replace, while the second form tells the start and end position
instead. Both forms provide the same functionality, so the choice is just a matter of
programmer convenience.

Start& and End& are positions in the string, starting with 1 as the first character. Count&
tells the number of characters to replace.

If Count& is omitted, or there aren't enough characters in StringVar, all remaining
characters are replaced. If there are no characters at the Start& position, no operation is
performed.

If Start& or End& are negative, the positions are counted backwards from the end of the
string (-1 is the last character). If Count& is negative, it is interpreted as
LEN(string_expression)-ABS(Count&).

The replacement will never extend past the end of StringVar. In other words, MID$ cannot
alter the length of a string.

Restrictions If Start& evaluates to a position outside of the string on either side, or if Start& is zero, no
operation is performed.

See also BUILD$, INSTR, LTRIM$, MID$ function, REMOVE$, REPLACE, RTRIM$, TALLY, TRIM$,
VERIFY

Example DummyString$ = "1234567890"
FOR M = 1 TO 10
 TestString$ = DummyString$
 MID$(TestString$,1,M) = "PowerBASIC"
NEXT M

Result P234567890
Po34567890
Pow4567890
Powe567890
 ...
PowerBAS90
PowerBASI0
PowerBASIC

MIN function

MIN function
Purpose Return the argument with the smallest (minimum) value.

Syntax y = MIN(arg, arg [, arg] ...)
y& = MIN&(arg&, arg& [, arg&] ...)
y$ = MIN$(arg$, arg$ [, arg$] ...)

Remarks These functions take any number of arguments and return the argument with the smallest
(minimum) value. MIN handles arguments of any

PowerBASIC Compiler for Windows Version 10

1707 / 2126

 type.
MIN& handles arguments that evaluate to Integers and Long-integers (MIN& is more
efficient than MIN).

MIN$ handles

 arguments.
If any arguments of MIN& are outside of the range of Long-integers, the result is
undefined. Any

 arguments of MIN& will be rounded to Long-integers before the comparison begins.
MIN% is recognized as a valid synonym for MIN&.

See also CHOOSE, CHOOSE&, CHOOSE$, IIF, IIF&, IIF$, MAX, MAX&, MAX$, SWITCH,
SWITCH&, SWITCH$

Example x& = MIN&(A, B, C, D)
x$ = MIN$("abacadabra","cad", A$, B$(4), C$ + D$ + LEFT$(E$,5))
x## = MIN(1.1@@, A%/B!, C#(x)^D, E##, SIN(F&))

MKBYT$ function

MKBYT$, MKCUR$, MKCUX$, MKD$, MKDWD$,
MKE$, MKI$, MKL$, MKQ$, MKS$ and MKWRD$
functions
Purpose Converts a

 value into an ANSI .
Syntax AnsiStringVar$ = MKBYT$(byte_expr)

AnsiStringVar$ = MKCUR$(currency_expr)
AnsiStringVar$ = MKCUX$(extended_currency_expr)
AnsiStringVar$ = MKD$(double_precision_expr)
AnsiStringVar$ = MKDWD$(double_word_expr)
AnsiStringVar$ = MKE$(extended_precision_expr)
AnsiStringVar$ = MKI$(integer_expr)
AnsiStringVar$ = MKL$(long_integer_expr)
AnsiStringVar$ = MKQ$(quad_integer_expr)
AnsiStringVar$ = MKS$(single_precision_expr)
AnsiStringVar$ = MKWRD$(word_expr)

Remarks The MKx functions return the binary representations of a number as a set of bytes in an
ANSI string. Do not confuse these functions with the STR$ or FORMAT$ functions, which
return a printable string.

In all but the most extreme cases, the returned string should only be stored as an ANSI
string or UDT which consist of single bytes. WIDE (Unicode) strings consist of a series of
2-byte words which will generally yield undefined results.

The CVx functions are complementary to the MKx functions. They convert the binary
representation in a string to an actual numeric value:

Function Converts to From
MKBYT$ 1-byte string Byte
MKCUR$ 8-byte string Currency
MKCUX$ 8-byte string Extended-currency
MKD$ 8-byte string Double-precision
MKDWD$ 4-byte string Double-word
MKE$ 10-byte string Extended-precision
MKI$ 2-byte string Integer

PowerBASIC Compiler for Windows Version 10

1708 / 2126

MKL$ 4-byte string Long-integer
MKQ$ 8-byte string Quad-integer
MKS$ 4-byte string Single-precision
MKWRD$ 2-byte string Word

See also CVI and associated functions

MKCUR$ function

MKBYT$, MKCUR$, MKCUX$, MKD$, MKDWD$,
MKE$, MKI$, MKL$, MKQ$, MKS$ and MKWRD$
functions
Purpose Converts a

 value into an ANSI .
Syntax AnsiStringVar$ = MKBYT$(byte_expr)

AnsiStringVar$ = MKCUR$(currency_expr)
AnsiStringVar$ = MKCUX$(extended_currency_expr)
AnsiStringVar$ = MKD$(double_precision_expr)
AnsiStringVar$ = MKDWD$(double_word_expr)
AnsiStringVar$ = MKE$(extended_precision_expr)
AnsiStringVar$ = MKI$(integer_expr)
AnsiStringVar$ = MKL$(long_integer_expr)
AnsiStringVar$ = MKQ$(quad_integer_expr)
AnsiStringVar$ = MKS$(single_precision_expr)
AnsiStringVar$ = MKWRD$(word_expr)

Remarks The MKx functions return the binary representations of a number as a set of bytes in an
ANSI string. Do not confuse these functions with the STR$ or FORMAT$ functions, which
return a printable string.

In all but the most extreme cases, the returned string should only be stored as an ANSI
string or UDT which consist of single bytes. WIDE (Unicode) strings consist of a series of
2-byte words which will generally yield undefined results.

The CVx functions are complementary to the MKx functions. They convert the binary
representation in a string to an actual numeric value:

Function Converts to From
MKBYT$ 1-byte string Byte
MKCUR$ 8-byte string Currency
MKCUX$ 8-byte string Extended-currency
MKD$ 8-byte string Double-precision
MKDWD$ 4-byte string Double-word
MKE$ 10-byte string Extended-precision
MKI$ 2-byte string Integer
MKL$ 4-byte string Long-integer
MKQ$ 8-byte string Quad-integer
MKS$ 4-byte string Single-precision
MKWRD$ 2-byte string Word

See also CVI and associated functions

PowerBASIC Compiler for Windows Version 10

1709 / 2126

MKCUX$ function

MKBYT$, MKCUR$, MKCUX$, MKD$, MKDWD$,
MKE$, MKI$, MKL$, MKQ$, MKS$ and MKWRD$
functions
Purpose Converts a

 value into an ANSI .
Syntax AnsiStringVar$ = MKBYT$(byte_expr)

AnsiStringVar$ = MKCUR$(currency_expr)
AnsiStringVar$ = MKCUX$(extended_currency_expr)
AnsiStringVar$ = MKD$(double_precision_expr)
AnsiStringVar$ = MKDWD$(double_word_expr)
AnsiStringVar$ = MKE$(extended_precision_expr)
AnsiStringVar$ = MKI$(integer_expr)
AnsiStringVar$ = MKL$(long_integer_expr)
AnsiStringVar$ = MKQ$(quad_integer_expr)
AnsiStringVar$ = MKS$(single_precision_expr)
AnsiStringVar$ = MKWRD$(word_expr)

Remarks The MKx functions return the binary representations of a number as a set of bytes in an
ANSI string. Do not confuse these functions with the STR$ or FORMAT$ functions, which
return a printable string.

In all but the most extreme cases, the returned string should only be stored as an ANSI
string or UDT which consist of single bytes. WIDE (Unicode) strings consist of a series of
2-byte words which will generally yield undefined results.

The CVx functions are complementary to the MKx functions. They convert the binary
representation in a string to an actual numeric value:

Function Converts to From
MKBYT$ 1-byte string Byte
MKCUR$ 8-byte string Currency
MKCUX$ 8-byte string Extended-currency
MKD$ 8-byte string Double-precision
MKDWD$ 4-byte string Double-word
MKE$ 10-byte string Extended-precision
MKI$ 2-byte string Integer
MKL$ 4-byte string Long-integer
MKQ$ 8-byte string Quad-integer
MKS$ 4-byte string Single-precision
MKWRD$ 2-byte string Word

See also CVI and associated functions

MKD$ function

MKBYT$, MKCUR$, MKCUX$, MKD$, MKDWD$,
MKE$, MKI$, MKL$, MKQ$, MKS$ and MKWRD$
functions
Purpose Converts a

PowerBASIC Compiler for Windows Version 10

1710 / 2126

 value into an ANSI .
Syntax AnsiStringVar$ = MKBYT$(byte_expr)

AnsiStringVar$ = MKCUR$(currency_expr)
AnsiStringVar$ = MKCUX$(extended_currency_expr)
AnsiStringVar$ = MKD$(double_precision_expr)
AnsiStringVar$ = MKDWD$(double_word_expr)
AnsiStringVar$ = MKE$(extended_precision_expr)
AnsiStringVar$ = MKI$(integer_expr)
AnsiStringVar$ = MKL$(long_integer_expr)
AnsiStringVar$ = MKQ$(quad_integer_expr)
AnsiStringVar$ = MKS$(single_precision_expr)
AnsiStringVar$ = MKWRD$(word_expr)

Remarks The MKx functions return the binary representations of a number as a set of bytes in an
ANSI string. Do not confuse these functions with the STR$ or FORMAT$ functions, which
return a printable string.

In all but the most extreme cases, the returned string should only be stored as an ANSI
string or UDT which consist of single bytes. WIDE (Unicode) strings consist of a series of
2-byte words which will generally yield undefined results.

The CVx functions are complementary to the MKx functions. They convert the binary
representation in a string to an actual numeric value:

Function Converts to From
MKBYT$ 1-byte string Byte
MKCUR$ 8-byte string Currency
MKCUX$ 8-byte string Extended-currency
MKD$ 8-byte string Double-precision
MKDWD$ 4-byte string Double-word
MKE$ 10-byte string Extended-precision
MKI$ 2-byte string Integer
MKL$ 4-byte string Long-integer
MKQ$ 8-byte string Quad-integer
MKS$ 4-byte string Single-precision
MKWRD$ 2-byte string Word

See also CVI and associated functions

MKDIR statement

MKDIR statement
Purpose Create a subdirectory/folder (like the DOS MKDIR command).

Syntax MKDIR path$

Remarks path$ is a string expression describing the directory to be created.

MKDIR (make directory) creates the subdirectory specified by path$. If you try to create
a directory that already exists, a run-time Error 75 occurs ("Path/file access error"). If
path$ includes an parent folder that does not exist, a run-time Error 76 occurs ("Path not
found").

MKDIR can use Long File Names (LFNs).

See also CHDIR, RMDIR

Example MKDIR "C:\Program Files\Company\Application Data"

PowerBASIC Compiler for Windows Version 10

1711 / 2126

MKDWD$ function

MKBYT$, MKCUR$, MKCUX$, MKD$, MKDWD$,
MKE$, MKI$, MKL$, MKQ$, MKS$ and MKWRD$
functions
Purpose Converts a

 value into an ANSI .
Syntax AnsiStringVar$ = MKBYT$(byte_expr)

AnsiStringVar$ = MKCUR$(currency_expr)
AnsiStringVar$ = MKCUX$(extended_currency_expr)
AnsiStringVar$ = MKD$(double_precision_expr)
AnsiStringVar$ = MKDWD$(double_word_expr)
AnsiStringVar$ = MKE$(extended_precision_expr)
AnsiStringVar$ = MKI$(integer_expr)
AnsiStringVar$ = MKL$(long_integer_expr)
AnsiStringVar$ = MKQ$(quad_integer_expr)
AnsiStringVar$ = MKS$(single_precision_expr)
AnsiStringVar$ = MKWRD$(word_expr)

Remarks The MKx functions return the binary representations of a number as a set of bytes in an
ANSI string. Do not confuse these functions with the STR$ or FORMAT$ functions, which
return a printable string.

In all but the most extreme cases, the returned string should only be stored as an ANSI
string or UDT which consist of single bytes. WIDE (Unicode) strings consist of a series of
2-byte words which will generally yield undefined results.

The CVx functions are complementary to the MKx functions. They convert the binary
representation in a string to an actual numeric value:

Function Converts to From
MKBYT$ 1-byte string Byte
MKCUR$ 8-byte string Currency
MKCUX$ 8-byte string Extended-currency
MKD$ 8-byte string Double-precision
MKDWD$ 4-byte string Double-word
MKE$ 10-byte string Extended-precision
MKI$ 2-byte string Integer
MKL$ 4-byte string Long-integer
MKQ$ 8-byte string Quad-integer
MKS$ 4-byte string Single-precision
MKWRD$ 2-byte string Word

See also CVI and associated functions

MKE$ function

MKBYT$, MKCUR$, MKCUX$, MKD$, MKDWD$,
MKE$, MKI$, MKL$, MKQ$, MKS$ and MKWRD$
functions
Purpose Converts a

PowerBASIC Compiler for Windows Version 10

1712 / 2126

 value into an ANSI .
Syntax AnsiStringVar$ = MKBYT$(byte_expr)

AnsiStringVar$ = MKCUR$(currency_expr)
AnsiStringVar$ = MKCUX$(extended_currency_expr)
AnsiStringVar$ = MKD$(double_precision_expr)
AnsiStringVar$ = MKDWD$(double_word_expr)
AnsiStringVar$ = MKE$(extended_precision_expr)
AnsiStringVar$ = MKI$(integer_expr)
AnsiStringVar$ = MKL$(long_integer_expr)
AnsiStringVar$ = MKQ$(quad_integer_expr)
AnsiStringVar$ = MKS$(single_precision_expr)
AnsiStringVar$ = MKWRD$(word_expr)

Remarks The MKx functions return the binary representations of a number as a set of bytes in an
ANSI string. Do not confuse these functions with the STR$ or FORMAT$ functions, which
return a printable string.

In all but the most extreme cases, the returned string should only be stored as an ANSI
string or UDT which consist of single bytes. WIDE (Unicode) strings consist of a series of
2-byte words which will generally yield undefined results.

The CVx functions are complementary to the MKx functions. They convert the binary
representation in a string to an actual numeric value:

Function Converts to From
MKBYT$ 1-byte string Byte
MKCUR$ 8-byte string Currency
MKCUX$ 8-byte string Extended-currency
MKD$ 8-byte string Double-precision
MKDWD$ 4-byte string Double-word
MKE$ 10-byte string Extended-precision
MKI$ 2-byte string Integer
MKL$ 4-byte string Long-integer
MKQ$ 8-byte string Quad-integer
MKS$ 4-byte string Single-precision
MKWRD$ 2-byte string Word

See also CVI and associated functions

MKI$ function

MKBYT$, MKCUR$, MKCUX$, MKD$, MKDWD$,
MKE$, MKI$, MKL$, MKQ$, MKS$ and MKWRD$
functions
Purpose Converts a

 value into an ANSI .
Syntax AnsiStringVar$ = MKBYT$(byte_expr)

AnsiStringVar$ = MKCUR$(currency_expr)
AnsiStringVar$ = MKCUX$(extended_currency_expr)
AnsiStringVar$ = MKD$(double_precision_expr)
AnsiStringVar$ = MKDWD$(double_word_expr)
AnsiStringVar$ = MKE$(extended_precision_expr)
AnsiStringVar$ = MKI$(integer_expr)
AnsiStringVar$ = MKL$(long_integer_expr)
AnsiStringVar$ = MKQ$(quad_integer_expr)

PowerBASIC Compiler for Windows Version 10

1713 / 2126

AnsiStringVar$ = MKS$(single_precision_expr)
AnsiStringVar$ = MKWRD$(word_expr)

Remarks The MKx functions return the binary representations of a number as a set of bytes in an
ANSI string. Do not confuse these functions with the STR$ or FORMAT$ functions, which
return a printable string.

In all but the most extreme cases, the returned string should only be stored as an ANSI
string or UDT which consist of single bytes. WIDE (Unicode) strings consist of a series of
2-byte words which will generally yield undefined results.

The CVx functions are complementary to the MKx functions. They convert the binary
representation in a string to an actual numeric value:

Function Converts to From
MKBYT$ 1-byte string Byte
MKCUR$ 8-byte string Currency
MKCUX$ 8-byte string Extended-currency
MKD$ 8-byte string Double-precision
MKDWD$ 4-byte string Double-word
MKE$ 10-byte string Extended-precision
MKI$ 2-byte string Integer
MKL$ 4-byte string Long-integer
MKQ$ 8-byte string Quad-integer
MKS$ 4-byte string Single-precision
MKWRD$ 2-byte string Word

See also CVI and associated functions

MKL$ function

MKBYT$, MKCUR$, MKCUX$, MKD$, MKDWD$,
MKE$, MKI$, MKL$, MKQ$, MKS$ and MKWRD$
functions
Purpose Converts a

 value into an ANSI .
Syntax AnsiStringVar$ = MKBYT$(byte_expr)

AnsiStringVar$ = MKCUR$(currency_expr)
AnsiStringVar$ = MKCUX$(extended_currency_expr)
AnsiStringVar$ = MKD$(double_precision_expr)
AnsiStringVar$ = MKDWD$(double_word_expr)
AnsiStringVar$ = MKE$(extended_precision_expr)
AnsiStringVar$ = MKI$(integer_expr)
AnsiStringVar$ = MKL$(long_integer_expr)
AnsiStringVar$ = MKQ$(quad_integer_expr)
AnsiStringVar$ = MKS$(single_precision_expr)
AnsiStringVar$ = MKWRD$(word_expr)

Remarks The MKx functions return the binary representations of a number as a set of bytes in an
ANSI string. Do not confuse these functions with the STR$ or FORMAT$ functions, which
return a printable string.

In all but the most extreme cases, the returned string should only be stored as an ANSI
string or UDT which consist of single bytes. WIDE (Unicode) strings consist of a series of
2-byte words which will generally yield undefined results.

The CVx functions are complementary to the MKx functions. They convert the binary

PowerBASIC Compiler for Windows Version 10

1714 / 2126

representation in a string to an actual numeric value:

Function Converts to From
MKBYT$ 1-byte string Byte
MKCUR$ 8-byte string Currency
MKCUX$ 8-byte string Extended-currency
MKD$ 8-byte string Double-precision
MKDWD$ 4-byte string Double-word
MKE$ 10-byte string Extended-precision
MKI$ 2-byte string Integer
MKL$ 4-byte string Long-integer
MKQ$ 8-byte string Quad-integer
MKS$ 4-byte string Single-precision
MKWRD$ 2-byte string Word

See also CVI and associated functions

MKQ$ function

MKBYT$, MKCUR$, MKCUX$, MKD$, MKDWD$,
MKE$, MKI$, MKL$, MKQ$, MKS$ and MKWRD$
functions
Purpose Converts a

 value into an ANSI .
Syntax AnsiStringVar$ = MKBYT$(byte_expr)

AnsiStringVar$ = MKCUR$(currency_expr)
AnsiStringVar$ = MKCUX$(extended_currency_expr)
AnsiStringVar$ = MKD$(double_precision_expr)
AnsiStringVar$ = MKDWD$(double_word_expr)
AnsiStringVar$ = MKE$(extended_precision_expr)
AnsiStringVar$ = MKI$(integer_expr)
AnsiStringVar$ = MKL$(long_integer_expr)
AnsiStringVar$ = MKQ$(quad_integer_expr)
AnsiStringVar$ = MKS$(single_precision_expr)
AnsiStringVar$ = MKWRD$(word_expr)

Remarks The MKx functions return the binary representations of a number as a set of bytes in an
ANSI string. Do not confuse these functions with the STR$ or FORMAT$ functions, which
return a printable string.

In all but the most extreme cases, the returned string should only be stored as an ANSI
string or UDT which consist of single bytes. WIDE (Unicode) strings consist of a series of
2-byte words which will generally yield undefined results.

The CVx functions are complementary to the MKx functions. They convert the binary
representation in a string to an actual numeric value:

Function Converts to From
MKBYT$ 1-byte string Byte
MKCUR$ 8-byte string Currency
MKCUX$ 8-byte string Extended-currency
MKD$ 8-byte string Double-precision
MKDWD$ 4-byte string Double-word
MKE$ 10-byte string Extended-precision
MKI$ 2-byte string Integer

PowerBASIC Compiler for Windows Version 10

1715 / 2126

MKL$ 4-byte string Long-integer
MKQ$ 8-byte string Quad-integer
MKS$ 4-byte string Single-precision
MKWRD$ 2-byte string Word

See also CVI and associated functions

MKS$ function

MKBYT$, MKCUR$, MKCUX$, MKD$, MKDWD$,
MKE$, MKI$, MKL$, MKQ$, MKS$ and MKWRD$
functions
Purpose Converts a

 value into an ANSI .
Syntax AnsiStringVar$ = MKBYT$(byte_expr)

AnsiStringVar$ = MKCUR$(currency_expr)
AnsiStringVar$ = MKCUX$(extended_currency_expr)
AnsiStringVar$ = MKD$(double_precision_expr)
AnsiStringVar$ = MKDWD$(double_word_expr)
AnsiStringVar$ = MKE$(extended_precision_expr)
AnsiStringVar$ = MKI$(integer_expr)
AnsiStringVar$ = MKL$(long_integer_expr)
AnsiStringVar$ = MKQ$(quad_integer_expr)
AnsiStringVar$ = MKS$(single_precision_expr)
AnsiStringVar$ = MKWRD$(word_expr)

Remarks The MKx functions return the binary representations of a number as a set of bytes in an
ANSI string. Do not confuse these functions with the STR$ or FORMAT$ functions, which
return a printable string.

In all but the most extreme cases, the returned string should only be stored as an ANSI
string or UDT which consist of single bytes. WIDE (Unicode) strings consist of a series of
2-byte words which will generally yield undefined results.

The CVx functions are complementary to the MKx functions. They convert the binary
representation in a string to an actual numeric value:

Function Converts to From
MKBYT$ 1-byte string Byte
MKCUR$ 8-byte string Currency
MKCUX$ 8-byte string Extended-currency
MKD$ 8-byte string Double-precision
MKDWD$ 4-byte string Double-word
MKE$ 10-byte string Extended-precision
MKI$ 2-byte string Integer
MKL$ 4-byte string Long-integer
MKQ$ 8-byte string Quad-integer
MKS$ 4-byte string Single-precision
MKWRD$ 2-byte string Word

See also CVI and associated functions

PowerBASIC Compiler for Windows Version 10

1716 / 2126

MKWRD$ function

MKBYT$, MKCUR$, MKCUX$, MKD$, MKDWD$,
MKE$, MKI$, MKL$, MKQ$, MKS$ and MKWRD$
functions
Purpose Converts a

 value into an ANSI .
Syntax AnsiStringVar$ = MKBYT$(byte_expr)

AnsiStringVar$ = MKCUR$(currency_expr)
AnsiStringVar$ = MKCUX$(extended_currency_expr)
AnsiStringVar$ = MKD$(double_precision_expr)
AnsiStringVar$ = MKDWD$(double_word_expr)
AnsiStringVar$ = MKE$(extended_precision_expr)
AnsiStringVar$ = MKI$(integer_expr)
AnsiStringVar$ = MKL$(long_integer_expr)
AnsiStringVar$ = MKQ$(quad_integer_expr)
AnsiStringVar$ = MKS$(single_precision_expr)
AnsiStringVar$ = MKWRD$(word_expr)

Remarks The MKx functions return the binary representations of a number as a set of bytes in an
ANSI string. Do not confuse these functions with the STR$ or FORMAT$ functions, which
return a printable string.

In all but the most extreme cases, the returned string should only be stored as an ANSI
string or UDT which consist of single bytes. WIDE (Unicode) strings consist of a series of
2-byte words which will generally yield undefined results.

The CVx functions are complementary to the MKx functions. They convert the binary
representation in a string to an actual numeric value:

Function Converts to From
MKBYT$ 1-byte string Byte
MKCUR$ 8-byte string Currency
MKCUX$ 8-byte string Extended-currency
MKD$ 8-byte string Double-precision
MKDWD$ 4-byte string Double-word
MKE$ 10-byte string Extended-precision
MKI$ 2-byte string Integer
MKL$ 4-byte string Long-integer
MKQ$ 8-byte string Quad-integer
MKS$ 4-byte string Single-precision
MKWRD$ 2-byte string Word

See also CVI and associated functions

MOD operator

MOD operator
Purpose Return the remainder of the division between two numbers.

Syntax p MOD q

Remarks The MOD operator divides the two operands, p and q, and returns the remainder of that
division. The result of the initial division is truncated to an

PowerBASIC Compiler for Windows Version 10

1717 / 2126

 value, before the remainder is calculated. See the example below.
The remainder may be a

 value. MOD is often considered to complement integral division.
See Also LET

Example lResult1& = 10& MOD 3& ' Returns 1&
fResult2! = 13! MOD 2.7! ' Returns 2.2!

iStack& = 1023&
HiStack& = iStack& \ 256& ' Returns 3&
LoStack& = iStack& MOD 256 ' Returns 255&

' c! and d! are calculated equivalently
a! = 13
b! = 2.7
c! = a! MOD b!
d! = a! - FIX(a! / b!) * b!

CurrentLine = 1
WHILE CurrentLine < Lines
 PrintLine txt$(CurrentLine)
 IF (CurrentLine MOD 55) = 0 THEN DoFormFeed
 INCR CurrentLine
WEND

MONTHNAME$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

MONTHNAME$ function
Purpose Converts a Month number to the associated name.

Syntax s$ = MONTHNAME$(MonthNumber&)

Remarks The MONTHNAME$ function converts a Month number into a

 representing its associated name. The argument must be in the range of 1 through 12,
representing the names January, February, etc.

See also DATE$, DAYNAME$, POWERTIME

MOUSEPTR statement

MOUSEPTR statement
Purpose Change the mouse pointer (cursor) to a new shape.

Syntax MOUSEPTR style [TO var&]

PowerBASIC Compiler for Windows Version 10

1718 / 2126

Remarks If the optional TO clause is included, the handle of the previous cursor is assigned to
var&. If the operation fails, the value zero is assigned to var&. Normally, the Long integer
or DWORD value style should be in the range of 1 through 13 to choose one of the stock
cursor shapes as follows:

style
&

Definition

0 Hide mouse pointer **

1 Arrow

2 Cross

3 I-Beam

4 Arrow

5 Sizing pointer (all directions)

6 Sizing pointer (NE-SW diagonal)

7 Sizing pointer (vertical)

8 Sizing pointer (NW-SE diagonal)

9 Sizing pointer (horizontal)

10 Up arrow

11 Hourglass ("Busy" or "Wait" pointer)

12 No mouse pointer

13 App Starting (arrow with an hourglass)

** If style& = 0 then the OS may restore the cursor if it is moved.

If style is outside the range 0 through 13, it must contain a valid handle to a cursor, such
as the value which was returned by a prior invocation of MOUSEPTR. This allows the
programmer to restore a previous cursor style.

The mouse pointer is only changed for dialogs and windows in your application. If the
mouse pointer is moved over another application or the desktop, the pointer will change to
the default for that application/process. In GUI applications, MOUSEPTR can be useful in
%WM_SETCURSOR message handler routines that override the default cursor handling.

MSGBOX function

MSGBOX function
Purpose Display a message box containing a text

 and an optional title, using one or more styles, and returning the button selected by the
user.

Syntax lResult& = MSGBOX(txt$ [, [style&], title$])

Remarks The MSGBOX function is comprised of the following elements:

txt$ Indicates the text to display within the message box.

style& Optional parameter which determines the appearance of the message box. Some styles
may be combined (OR'ed together) to specify the button and icon displayed in the
message box. If style& is omitted, PowerBASIC substitutes %MB_OK. The following
styles are defined in WIN32API.INC, in the form of numeric equates:

%MB_OK Display OK button (default)

%MB_OKCANCEL Display OK and Cancel buttons

%MB_ABORTRETRYIGNORE Display Abort, Retry and Ignore

%MB_YESNOCANCEL Display Yes, No and Cancel

%MB_YESNO Display Yes and No buttons

%MB_RETRYCANCEL Display Retry and Cancel buttons

javascript:void(0);
WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

1719 / 2126

%MB_ICONERROR Display Error icon (stop sign)

%MB_ICONINFORMATION Display Information icon ("i")

%MB_ICONQUESTION Display Query icon (question mark)

%MB_ICONWARNING Display Warning icon (exclamation)

%MB_DEFBUTTON1 Default to 1st button (default)

%MB_DEFBUTTON2 Default to 2nd button

%MB_DEFBUTTON3 Default to 3rd button

%MB_APPLMODAL Application Modal - Despite the name, the user can
continue to interact with other dialogs without
dismissing the MSGBOX. (default)

%MB_SYSTEMMODAL System Modal - Operates identically to %
MB_APPLMODAL, except the MSGBOX is given
the %WS_EX_TOPMOST style so that it remains
above all other windows and dialogs.

%MB_TASKMODAL Task Modal - All top-level windows belonging to the
current application are disabled until the MSGBOX
is dismissed. %MB_TASKMODAL is commonly
used to display a truly modal MSGBOX.

title$ Optional title to be displayed in the caption of the message box. If title$ is not specified,
"PowerBASIC" is used automatically.

lResult& Identifies the Button selected by the user. This will be equal to one of the following
equates:

%IDOK OK button

%IDCANCEL Cancel button

%IDABORT Abort button

%IDRETRY Retry button

%IDIGNORE Ignore button

%IDYES Yes button

%IDNO No button

Additional styles may be found in WIN32API.INC in the section prefixed with %MB_. If
you are not interested in which button the user selects, use a MSGBOX statement rather
than a MSGBOX function.

A question mark may be used as an abbreviation for the MSGBOX statement.

Restrictions Strings displayed by the MSGBOX function are displayed only up to the first $NUL
character, if any.

See also INPUTBOX$, MSGBOX statement, TXT pseudo-object

Example lResult& = MSGBOX("Overwrite registry file?", %MB_OKCANCEL OR %
MB_DEFBUTTON2 _
 OR %MB_TASKMODAL, "Critical Warning")

MSGBOX statement

MSGBOX statement
Purpose Display a message box containing a text

 and optional title, using one or more styles.
Syntax MSGBOX txt$ [, [style%], title$]

? txt$ [, [style%], title$]

Remarks The MSGBOX statement comprises the following elements:

txt$ Text to display within the message box.

PowerBASIC Compiler for Windows Version 10

1720 / 2126

style& Optional parameter which determines the appearance of the message box. Some styles
may be combined (OR'ed together) to specify the button and icon displayed in the
message box. If style& is omitted, PowerBASIC substitutes %MB_OK. The following are
some of the more common styles used with the MSGBOX statement (also see the
MSGBOX function for more information):

%MB_OK Display OK button (default)

%MB_ICONERROR Display Error icon (stop sign)

%MB_ICONINFORMATION Display Information icon ("i")

%MB_ICONWARNING Display Warning icon (exclamation)

%MB_APPLMODAL Application Modal - Despite the name, the user can
continue to interact with other dialogs without
dismissing the MSGBOX. (default)

%MB_SYSTEMMODAL System Modal - Operates identically to %
MB_APPLMODAL, except the MSGBOX is given
the %WS_EX_TOPMOST style so that it remains
above all other windows and dialogs.

%MB_TASKMODAL Task Modal - All top-level windows belonging to the
current application are disabled until the MSGBOX
is dismissed. %MB_TASKMODAL is commonly
used to display a truly modal MSGBOX.

Additional styles may be found in WIN32API.INC, in the section prefixed with %MB_. If
you are interested in which button the user selects, use a MSGBOX function rather than a
MSGBOX statement.

title$ Determines the title to be displayed in the caption of the message box. If title$ is not
specified, "PowerBASIC" is used automatically.

The MSGBOX statement may be represented by the query (?) character as a shortcut.
This is similar to the behavior in the PowerBASIC Console Compiler (PB/CC), where the
query character is recognized as a synonym for the PRINT statement. This can simplify
the creation of certain test code, since the query character provides similar functionality in
both compilers.

Restrictions Strings displayed by the MSGBOX function are displayed only up to the first $NUL
character, if any.

See also INPUTBOX$, MSGBOX function, TXT pseudo-object

Example MSGBOX "Got here, hit OK to continue",, "Title of subroutine 123"
MSGBOX "Current value of X% is: " & STR$(x%)
MSGBOX "Paused, click OK to continue!"
MSGBOX "Click OK to reboot the universe…", %MB_TASKMODAL OR %MB_ICONERROR,
"Reality has crashed!"

MYBASE pseudo-variable

Keyword Template
Purpose

Syntax

Remarks

See also

Example

MYBASE pseudo-variable

WIN32API_INC_Updates.htm
http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

1721 / 2126

Purpose A pseudo object variable to reference the inherited parent object.

Syntax MYBASE.Method1(param)

Remarks MYBASE is a pseudo-variable, which PowerBASIC automatically defines in every Method
and Property on an inherited interface. It is treated as a reference to the original, inherited
object. Using MYBASE, it's possible to call the original Methods and Properties so you
can modify or build upon them in the derived interface.

MYBASE may not be assigned to an object variable, nor may it be used as a
Sub/Function/Method/Property parameter.

See also CLASS, INTERFACE (Direct), INTERFACE (IDBind), ME, METHOD, PROPERTY, What
is an object, anyway?, What is inheritance?

NAME statement

NAME statement
Purpose Rename a file or a directory (like the DOS REN command).

Syntax NAME filespec1$ AS filespec2$

Remarks The NAME statement comprises the following elements:

filespec1$ The current name of a file or directory. The file must not be currently opened or locked.
filespec1$ may be either a Short File Name (SFN) or a Long File Name (LFN).

filespec2$ The desired name of the file or directory, and may use Long File Name (LFN) naming
conventions.

Each filespec may contain drive and path specifications as well as a file or directory
name.

If filespec1 does not exist, run-time Error 53 ("File not found") occurs. If filespec2 already
exists, run-time Error 58 occurs ("File already exists"). If filespec1 has been opened or
locked by your application and not closed, an Error 51 can occur ("Internal system
error"). You should never rename a file that has been opened by your code and not (yet)
closed.

Restrictions It is possible to move a file from one directory, drive, or partition, to another. It is not
possible to move directories between drives or partitions. Wildcard characters are not
permitted in the file names.

Example OldName$ = "MYFILE.EXE"
NewName$ = "YOURFILE.EXE"
NAME OldName$ AS NewName$

NEXT statement

FOR/NEXT statements
Purpose Define a loop of program statements whose execution is controlled by an automatically

incrementing or decrementing counter.

Syntax FOR Counter = start TO stop [STEP increment]
 [statements]
 [EXIT FOR]
 [statements]
 [ITERATE FOR]
 [statements]
NEXT [Counter]

Remarks Counter is a numeric variable serving as the loop counter.

PowerBASIC Compiler for Windows Version 10

1722 / 2126

start is a numeric expression specifying the value initially assigned to Counter.

stop is a numeric expression giving the value that Counter must reach for the loop to be
terminated.

increment is an optional numeric expression defining the amount by which Counter is
incremented with each loop execution. If not specified, increment defaults to 1.

Note that increment must be the same data type or in the same range as Counter. For
example:

FOR x?? = 50 TO 1 STEP -1

will fail because -1 is not within the range of an unsigned Word variable.

When a FOR statement is encountered, start is assigned to Counter, and Counter is
tested to see if it is greater than (or, for negative increment, less than) stop. If not, the
statements within the FOR/NEXT loop are executed, increment is added to Counter, and
Counter again tested against stop. The statements in the loop are executed repeatedly
until the test fails, at which time control passes to the statement immediately following
the NEXT.

If increment is equal to the maximum value of a variable class (255 for a byte, 32767 for
an Integer, 65535 for a Word, etc), the compiler will generate an error. If step is zero, an
infinite loop can be created.

When using

 values with FOR/NEXT, be sure to allow for round-off errors when mixing numbers
of different precision. Using constants or variables of the same type throughout will
help solve this problem:

FOR n# = 1.0 TO 1.5 STEP 0.1
 x$ = STR$(n#)
NEXT n#

executes 5 times and returns:

1
1.10000000149012
1.20000000298023
1.30000000447035
1.40000000596046

while:

FOR n@ = 1.0@ TO 1.5@ STEP 0.1@
 x$ = STR$(n@)
NEXT n@

executes 6 times and returns:

1
1.1
1.2
1.3
1.4
1.5

FOR/NEXT loops run fastest when Counter is a Long-integer variable, and start and
increment are Long-integer constants. The value of Counter is available like any other
variable within the loop. It is wise to avoid explicitly modifying the value of Counter within
the loop. If you need to exit the loop prematurely, use an EXIT FOR statement. Keep
range considerations in mind. For example, if Counter is an Integer variable, you may not
use the maximum value for an Integer for stop, as Counter would be incremented outside
the Integer range at the end of the loop.

The body of the loop is skipped altogether if the initial value of Counter is greater than stop
(or, for a negative increment, if Counter is less than stop).

FOR/NEXT loops can be nested within other FOR/NEXT loops. Be sure to use unique

PowerBASIC Compiler for Windows Version 10

1723 / 2126

counter variables. Note that PowerBASIC allows the Counter in the NEXT keyword simply
as a comment, which is ignored. For example, the following will compile, even though the
counter variables are "crossed":

FOR n = 1 TO 10
 FOR m = 1 TO 20
 .
 .
 .
 NEXT n
NEXT m

You can omit the counter variable in the NEXT statement altogether. For example:

FOR n = 1 TO 10
 .
 .
 .
NEXT

If a NEXT is encountered without a corresponding FOR (or vice versa), a compile-time
error is generated.

Previous version of PowerBASIC supported a single NEXT statement used with
multiple nested FOR/NEXT loops, such as NEXT c, b, a. This is no longer
supported and you will need to update your code to use multiple NEXT
statements.

In certain situations, previous versions of PowerBASIC optimized FOR/NEXT loops to
count down instead of up for improved execution speed. This optimization could cause
the counter variable to contain a value which was not expected when execution of the loop
was complete. This optimization has been improved so that the counter variable value is
always correct upon loop completion, even if EXIT FOR was used to force an early
termination.

Although the compiler does not care about such things, it is considered good
programming practice to indent the statements between FOR and NEXT by two or three
spaces to set off the structure of the loop.

For additional performance, use a REGISTER variable for the loop counter variable.

Restrictions The counter variable must be a simple numeric scalar variable, such as LOCAL, STATIC,
GLOBAL, or REGISTER. This aids in maintaining high performance levels for a simple
loop structure. Variables which require multiple operations to access are specifically
disallowed: THREADED, INSTANCE,

 Parameters, POINTER Targets, and ARRAY.
See also #OPTIMIZE, #REGISTER, DO/LOOP, EXIT, FOR EACH/NEXT, ITERATE, WHILE/WEND,

REGISTER

NOT operator

NOT operator
Purpose The NOT operator works as a bitwise arithmetic operator.

Syntax NOT p

Remarks PowerBASIC's NOT operator returns the one's-complement of an

 expression. When dealing with the absolute values 0 and -1, the NOT operator
"reverses" the two values, performing a Boolean-like operation.
PowerBASIC accepts any non-zero value as a logical TRUE value; therefore, subtle logic
problems can arise in a program when the NOT operator is used to perform Boolean logic
tests with operand values that are not limited to just 0 and -1.

PowerBASIC Compiler for Windows Version 10

1724 / 2126

Consider the following two test conditions:

test1 = 0 ' test1 is FALSE (zero)
IF NOT test1 THEN ' TRUE (-1 is non-zero)

test2 = 1 ' test2 is TRUE (1 is non-zero)
IF NOT test2 THEN ' still TRUE (-2 is non-zero)

Because NOT performs a bitwise operation on test2, it does not reverse the logical
TRUE/FALSE value of test2, rather, it returns -2 (the one's-complement of 1) and this is
evaluated as a logical TRUE value.

In cases where a proper logical (Boolean) evaluation is required, and the operand may be
a value other than 0 and -1, the ISFALSE operator should be used in place of the NOT
operator:

test3 = 1 ' test3 is TRUE (non-zero)
IF ISFALSE test3 THEN ' ISFALSE detects test3 is
[statements] ' TRUE so the IF test fails

The two's-complement of a value can be obtained with the following algorithm:

y = (NOT x) + 1
Using NOT as a logical operator

NOT returns 0 (FALSE) if and only if its operand is exactly -1 (TRUE). Generally, you
should use the ISFALSE operator instead of NOT, when you are testing for logical falsity.

Truth table
x NOT x
 0 -1
-1 0

Using NOT as a bitwise arithmetic operator

NOT performs a one's-complement or bit reversal of each bit in an integral-class value.
Here is a sample:

x% = NOT 16383% ' Result is -16384

See also Arithmetic Operators, AND, EQV, IMP, ISFALSE, ISTRUE, OR, Short-circuit evaluation,
XOR

NUL$ function

NUL$ function
Purpose Return a

 consisting of a specified number of $NUL (CHR$(0)) characters.
Syntax sResult$ = NUL$(count)

Remarks NUL$ returns a count character string of $NUL characters.

See also CHR$, REPEAT$, SPACE$, STRING$

OBJACTIVE function

OBJACTIVE function
Purpose Return TRUE/FALSE as an indication of the running state of an initialized COM object

(EXE based).

PowerBASIC Compiler for Windows Version 10

1725 / 2126

Syntax lResult& = OBJACTIVE(prgid$)

Remarks OBJACTIVE can provide information that may prove useful in determining whether to use
the NEWCOM or GETCOM options with the LET (with Objects) statement. OBJACTIVE
may only be used on COM objects that are in EXE format, not DLL/OCX/etc. In the latter
case, OBJACTIVE returns FALSE (0).

prgid$ The registered program ID string for the COM object. For example, "Word.Application.8",
or a version-independent program ID such as "Word.Application". A valid program ID string
can be obtained from a 16-byte class ID string using the PROGID$ function, or derived
from a 38 character GUID string using PROGID$ and GUID$.

See also DIM, CLSID$, GUID$, GUIDTXT$, INTERFACE (Direct), INTERFACE (IDBind),
ISNOTHING, ISOBJECT, Just what is COM?, LET (with Objects), OBJECT, OBJEQUAL,
OBJPTR, OBJRESULT, PROGID$, What is a COM component?

Example ' Create a reference to the MSWORD object
LOCAL oWord AS IDISPATCH ' use late-binding
LOCAL i AS LONG

IF OBJACTIVE("Word.Application") THEN
 ' Word is already active, use the existing instance
 oWord = GETCOM "Word.Application"
ELSE
 ' Word is not active, create a new instance
 oWord = NEWCOM "Word.Application"
END IF
' Set MS Word to a normal visible state
i = 0
OBJECT LET oWord.WindowState = i
' more code here

OBJECT statement

OBJECT statement
Purpose Communicate with a COM object through the dispatch interface.

Syntax OBJECT GET interface.member[.member.] [([[paramname =] param1 [, ...]])]
TO ResultVar
OBJECT LET interface.member[.member.] [([[paramname =] param1 [, ...]])] =
ValueVar
OBJECT SET interface.member[.member.] [([[paramname =] param1 [, ...]])] =
ValueVar
OBJECT CALL interface.member[.member.] [([[paramname =] param1 [, ...]])]
[TO ResultVar]
OBJECT RAISEEVENT [interface.]member[([[paramname =] param1 [, ...]])]

Remarks There are five general forms of the OBJECT statement which are used to communicate
through a Dispatch interface to an object.

OBJECT GET Retrieve or read the value of an Interface member Property. This
is similar to retrieving the value of a variable.

OBJECT LET Assign or write a value to an Interface member Property. This is
similar to assigning a value to a variable.

OBJECT SET Assign or write a value to an Interface member Property that
contains a reference to an object. For example, a reference to
another Interface.

OBJECT CALL Call or execute a member Method of an Interface. This is
equivalent to calling a Sub or Function.

OBJECT RAISEEVENT Call or execute a member Method of a Dispatch event
Interface. Because the Dispatch event interface is pre-defined,
you are not required to specify the interface name in this form

PowerBASIC Compiler for Windows Version 10

1726 / 2126

of the statement. However, including it aids in self-
documentation of your program. If your program is using a
Direct, V-Table event handler you should use the RAISEEVENT
statement instead. See the EVENT SOURCE statement for an
OBJECT RAISEEVENT example.

All parameters, return values, and assignment values must be in the form of COM-
compatible variables. Literals and expressions are not allowed. COM-compatible
variables include BYTE, WORD, DWORD, INTEGER, LONG, QUAD, SINGLE, DOUBLE,
CURRENCY,

, and VARIANT. You should use caution passing string data since COM Objects
require that unicode format be used. When string data is contained in a VARIANT
variable, conversion to/from unicode is automatic, and no intervention is needed from
the programmer. However, if you pass data in a dynamic string variable, you must use
the ACODE$() and UCODE$() functions to convert the data to an appropriate
format. For this reason, we recommend that string data be passed using VARIANT
variables.
Dispatch OBJECT Method calls may be bound at run-time using late binding, which
requires no declaration of Properties and Methods. However, for this very reason, the
validity of these references can not be verified by PowerBASIC at the time the program is
compiled.

The OBJECT statement can use both positional and named parameters, but you should
keep in mind that not all COM Dispatch Servers support named parameters. Positional
parameters are universally supported.

A positional parameter is simply a variable containing an appropriate value. It is identified
by its position in the parameter list, just as in a traditional SUB or FUNCTION. A named
parameter consists of a parameter identifier (a name), an equal (=) sign, and a variable
containing an appropriate value. Positional parameters must precede any and all named
parameters, but named parameters may be specified in any sequence.

Each time you call a Method or Property using the OBJECT statement, a status code is
returned in a hidden parameter to indicate the success or failure of the operation. You
can retrieve information about this status code with the OBJRESULT function, and also by
using the IDISPINFO Dispatch Information Object. If the failure was severe, then a
PowerBASIC error 99 (Object Error) is also generated and the ERR system variable is
set. You can find more information about these items by referring to OBJRESULT,
IDISPINFO, and ERR. This information can be very useful for both debugging and
handling run-time errors.

Restrictions All parameters, return values, and assignment values must be in the form of COM-
compatible variables. Use of the wrong member mode
(GET/LET/SET/CALL/RAISEEVENT) can sometimes result in unexpected and fatal run-
time errors. So, it's usually prudent to test the result code in OBJRESULT after every
OBJECT statement.

See also ACODE$, DIM, CLASS, CLSID$, EVENT SOURCE, IDISPINFO, GUID$, GUIDTXT$, ID
Binding, INTERFACE (Direct), INTERFACE (IDBind), ISINTERFACE, ISNOTHING,
ISOBJECT, Just what is COM?, Late Binding, LET (with Objects), METHOD,
OBJACTIVE, OBJPTR, OBJRESULT, PROGID$, PROPERTY, UCODE$, What is an
object, anyway?, What is DISPATCH?

Example ' Assumes Interface definitions have been
' declared for the Microsoft Agent Control
LOCAL AgentCtrlEx AS IAgentCtlEx
LOCAL StartX AS LONG
LOCAL StartY AS LONG
LOCAL CharW AS LONG
LOCAL CharH AS LONG
LOCAL Connected AS LONG
LOCAL AgentName AS STRING

PowerBASIC Compiler for Windows Version 10

1727 / 2126

LOCAL AgentFile AS STRING

' Create a new instance of the COM Object
AgentCtrlEx = NEWCOM $PROGID_Agent2
IF ISFALSE(ISOBJECT(AgentCtrlEx)) THEN EXIT FUNCTION

' Set the connected property
Connected = 1
OBJECT LET AgentCtrlEx.Connected = Connected

' Load the Merlin Agent Character
AgentName = UCODE$("Merlin")
AgentFile = UCODE$("Merlin.acs")
OBJECT CALL AgentCtrlEx.Characters.Load(AgentName, AgentFile)

' Display the Merlin Agent Character on the screen
OBJECT CALL AgentCtrlEx.Characters.Character(AgentName).Show

' Find the center of the screen for the Character Agent
OBJECT GET AgentCtrlEx.Characters.Character(AgentName).Width TO CharW
OBJECT GET AgentCtrlEx.Characters.Character(AgentName).Height TO CharH
DESKTOP GET CLIENT TO StartX, StartY
StartX = (StartX - CharW)\2
StartY = (StartY - CharH)\2

' Move the Character to the center of the screen
OBJECT CALL AgentCtrlEx.Characters.Character(AgentName).MoveTo(StartX,
StartY)
' more code here

OBJEQUAL function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

OBJEQUAL function
Purpose Check if object variables refer to the same object.

Syntax Result = OBJEQUAL(ObjectVar1, ObjectVar2)

Remarks Compares two object variables to determine if they refer to the same object. It returns
true (-1) if both refer to the same object (or both refer to NOTHING); otherwise it returns
false (0).

If the two object variables refer to the same class, but not the same specific object, false
(0) is returned.

See also BITSE

PowerBASIC Compiler for Windows Version 10

1728 / 2126

OBJPTR function

OBJPTR function
Purpose Return an object pointer contained in the specified object variable.

Syntax ObjectPointer??? = OBJPTR(objectvar)

Remarks OBJPTR returns the object pointer as a Double-word (DWORD) value.

See also DIM, CLSID$, GUID$, GUIDTXT$, INTERFACE (Direct), INTERFACE (IDBind),
ISINTERFACE, ISNOTHING, ISOBJECT, LET (with Objects), OBJECT, OBJACTIVE,
OBJEQUAL, OBJRESULT, PROGID$, What is an object, anyway?

OBJRESULT function

OBJRESULT function
Purpose Returns a status code (hResult) to describe the success or failure of the most recent

METHOD or PROPERTY procedure.

Syntax lResult& = OBJRESULT

Remarks An Automation procedure is a METHOD or PROPERTY on an IAUTOMATION,
IDISPATCH, or DUAL interface. By definition, an Automation procedure always returns a
hidden result code which is cryptically called an hResult. OBJRESULT the most recent
hResult generated by the program, and can be used to identify the success or failure of
an operation.

If an Automation procedure fails with a severe error, the ERR system variable is set to an
appropriate PowerBASIC error code. This is usually Error 99 ("Object error"). In such
cases, you can use the OBJRESULT function to return the result (hResult&) of the last
run-time OBJECT statement or direct METHOD/PROPERTY reference.

Numeric equates for most OBJRESULT errors can be found in the WIN32API.INC file, and
are mostly prefixed with %E_, %CO_, %OLE_, and %DISP_. The following list includes
the most common codes that may be returned by a direct call of a Method or Property:

%S_OK = &H0
%S_FALSE = &H1
%E_UNEXPECTED = &H8000FFFF&
%E_NOTIMPL = &H80004001&
%E_NOINTERFACE = &H80004002&
%E_POINTER = &H80004003&
%E_ABORT = &H80004004&
%E_FAIL = &H80004005&
%E_ACCESSDENIED = &H80070005&
%E_HANDLE = &H80070006&
%E_OUTOFMEMORY = &H8007000E&
%E_INVALIDARG = &H80070057&

This list tells the most common status codes which may be returned by a DISPATCH call
using the OBJECT statement:

%S_OK = &H0
%DISP_E_ARRAYISLOCKED = &H8002000D
%DISP_E_BADINDEX: = &H8002000B
%DISP_E_BADPARAMCOUNT = &H8002000E
%DISP_E_BADVARTYPE = &H80020008
%DISP_E_EXCEPTION = &H80020009
%DISP_E_MEMBERNOTFOUND = &H80020003
%DISP_E_NONAMEDARGS = &H80020007
%DISP_E_OVERFLOW = &H8002000A

WIN32API_INC_Updates.htm

PowerBASIC Compiler for Windows Version 10

1729 / 2126

%DISP_E_PARAMNOTFOUND = &H80020004
%DISP_E_TYPEMISMATCH = &H80020005
%DISP_E_UNKNOWNINTERFACE = &H80020001
%DISP_E_UNKNOWNLCID = &H8002000C
%DISP_E_UNKNOWNNAME = &H80020006
%DISP_E_PARAMNOTOPTIONAL = &H8002000F

If the status code %DISP_E_EXCEPTION is returned, you can use the IDISPINFO object
to secure much additional information about the status. This includes a more specific
error code, a description, help file information, etc. If the status code %
DISP_E_PARAMNOTFOUND or %DISP_E_TYPEMISMATCH, you can use
IDISPINFO.PARAM to determine which parameter actually caused the problem. Please
refer to the IDISPINFO section for more details.

As can be seen from the above lists, a large numeric status code can be cryptic.
 However, you can translate the OBJRESULT code into a descriptive message using the
OBJRESULT$ function. This can be most helpful, especially during application
development and debugging.

Restrictions Methods and Properties on a custom interface (a direct interface based upon IUnknown
rather than IDispatch) do not support OLE Automation, and do not return an OBJRESULT
(hResult).

See also DIM, CLASS, CLSID$, IDISPINFO, GUID$, GUIDTXT$, INTERFACE (Direct), INTERFACE
(IDBind), ISINTERFACE, ISNOTHING, ISOBJECT, LET (with Objects), METHOD,
PROPERTY, OBJECT, OBJACTIVE, OBJEQUAL, OBJPTR, OBJRESULT$, PROGID$,
What is an hResult?, What is an object, anyway?

OBJRESULT$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

OBJRESULT$ function
Purpose Returns a string which describes an OBJRESULT (hResult) code.

Syntax text$ = OBJRESULT$([nexp&])

Remarks This function returns a text

 which describes the hResult code specified by nexp&. If the parameter nexp& is
omitted, it is replaced by the most recent OBJRESULT value. That is,
OBJRESULT$() is identical to OBJRESULT$(OBJRESULT).

See also DIM, CLASS, CLSID$, IDISPINFO, GUID$, GUIDTXT$, INTERFACE (Direct), INTERFACE
(IDBind), ISINTERFACE, ISNOTHING, ISOBJECT, LET (with Objects), METHOD,
PROPERTY, OBJECT, OBJACTIVE, OBJPTR, OBJRESULT, PROGID$, What is an
hResult?, What is an object, anyway?

OCT$ function

PowerBASIC Compiler for Windows Version 10

1730 / 2126

OCT$ function
Purpose Convert an integral value to an octal

.
Syntax s$ = OCT$(IntVal [, Digits, LeadSpaces, TrailSpaces])

Remarks IntVal is a

 expression in the range of a 64-bit Quad Integer (-9223372036854775808 to
+9223372036854775807). Any fractional part of the value is rounded. The result
string is always formatted as an integral number using all the significant digits in IntVal.
 It is never expressed in scientific notation.
If Digits is 0 (or not given), no leading characters will be added to the numeric field. If
Digits is a positive number greater than 0, the result string will be prepended with leading
zeros to achieve the desired length. If Digits is a negative number, leading spaces are
added to reach the absolute length. Digits may be in the range of -22 to +22.

LeadSpaces specifies additional leading spaces to be prepended, regardless of the length
of the numeric portion of the string.

TrailSpaces specifies additional trailing spaces to be appended to the end of the string.

See also BIN$, DEC$, FORMAT$, HEX$, STR$, TRIM$, USING$, VAL

OemToChr$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

OemToChr$ function
Purpose Translates a byte

 of OEM characters into ANSI/WIDE characters.
Syntax a$ = OemToChr$(OemExpr$)

a$$ = OemToChr$(GRAPHIC, OemExpr$)

Remarks OemExpr$ contains a series of byte (8-bit) characters in OEM format. OemToChr$
translates it into either ANSI multi-byte equivalent characters or WIDE (16-bit) Unicode
characters, depending upon the context of the source code. PowerBASIC will always
choose the correct form with no intervention needed by the programmer. Control codes,
CHR$(0) to CHR$(31) and CHR$(127), are handled uniquely, as they are normally
considered to be non-printing characters. By default, they are just copied, without any
translation.

GRAPHIC If the option GRAPHIC is included, it indicates you want to convert control codes into the
codes which will display the graphic symbols defined in the original IBM OEM character
set. Most of these codes are only available as wide Unicode characters.

See also ChrToOem$, ChrToUtf8$, Utf8ToChr$

PowerBASIC Compiler for Windows Version 10

1731 / 2126

ON ERROR statement

ON ERROR statement
Purpose Specify an error handling routine; enable or disable error trapping.

Syntax ON ERROR GOTO {label | line_number}
ON ERROR RESUME NEXT
ON ERROR GOTO 0

Remarks label or line_number identifies the first line of the error trapping routine. Once error
handling has been turned on with this statement, all run-time errors result in a jump to
your error handling code. When the error handler begins execution, additional error
trapping is temporarily suspended. When your error handling is complete, you must use
the RESUME statement (any form) to continue execution. RESUME reactivates the
temporary suspension of error trapping.

You must use additional care when you trap an error within a GOSUB block of code,
because a RETURN address has been saved on the system stack. If you use a form of
RESUME which re-enters the GOSUB block, a RETURN will still be executed later, and
the stack will be balanced. However, if RESUME <Label> or RESUME FLUSH redirects
execution elsewhere, you must use RETURN FLUSH to remove the return address from
the stack.

To disable error trapping, use ON ERROR GOTO 0 or ON ERROR RESUME NEXT. You
can use this technique if an error occurs for which you have not defined a recovery path;
you can also choose to display the contents of ERR or ERRCLEAR at this time.

The default for error trapping is disabled. If an error occurs while error trapping is disabled,
the error code is placed into the ERR system variable, and execution continues. Errors
can still be trapped by checking the value of the ERR or ERRCLEAR variable with

 ERR THEN or SELECT CASE ERR statements.
Error trapping is local to each Sub, Function, Method, and Property. PowerBASIC does
not support global error trapping.

Numeric errors such as Divide-by-zero, Overflow and Underflow are not trapped. Array
out-of-bounds and null-pointer trapping are only enabled if #DEBUG ERROR ON is used.

If you're running a program with error trapping turned off, a run-time error may cause a
General Protection Fault (GPF). A GPF cannot be trapped with ON ERROR.

It is not possible to branch to an error handler from within an expression. The compiler
tests for an error only after the statement is completed. This means that a statement
such as:

ON ERROR GOTO ErrorHandlerLabel
IF GETATTR(sFile) THEN
 ' Do something
END IF

will generate an Error 53 when sFile does not exist, but will not branch to the
ErrorHandlerLabel. This is because the GETATTR(sFile) is an expression in the IF/ END
IF block. You could do a

ON ERROR GOTO ErrorHandlerLabel
a& = GETATTR(sFile)f
IF a& THEN
 ' Do something
END IF

which will branch to the ErrorHandlerLabel if sFile does not exists. You could also check
the value of the ERR variable or use a TRY/ END TRY block to see if an error occurred
when checking for errors that occur during an expression.

See also #DEBUG DISPLAY, #DEBUG ERROR, ERR, ERRCLEAR, ERROR,
Error Overview, ERROR$, Errors and Error Trapping, RESUME

PowerBASIC Compiler for Windows Version 10

1732 / 2126

ON GOSUB statement

ON GOSUB statement
Purpose Call one of several subroutines according to the value of a numeric expression.

Syntax ON n GOSUB {label | line_number} [, {label | line_number}] ...

Remarks n is a numeric expression ranging from 1 to 255, and each label or line number identifies
a statement to branch to. When this statement is encountered, the nth label in the list is
branched to; for example, if n equals 4, the fourth label in the list receives control. If n is
less than one or greater than the number of labels, no branch occurs, and PowerBASIC
continues execution with the statement immediately following the ON GOSUB statement.

Each subroutine should end with RETURN, which causes execution to resume with the
statement immediately following the ON GOSUB statement. ON GOSUB can only
branch to labels or line numbers that have the same scope as the ON GOSUB statement.

The SELECT and IF blocks also perform multiple branching and are more flexible than ON
GOSUB.

Note that ON GOSUB (and ON GOTO) have been internally optimized to produce greater
run-time performance than was possible with previous versions of PowerBASIC.

See also GOSUB, FUNCTION/END FUNCTION, IF block, METHOD, ON GOTO, PROPERTY,
RETURN, SELECT, SUB/END SUB

Example FOR I& = 1 TO 3
 ON I& GOSUB OneHandler, TwoHandler, ThreeHandler
NEXT I&

OneHandler:
 Message$ = "Handler number" + STR$(I&)
 RETURN

TwoHandler:
 Message$ = "Handler number" + STR$(I&)
 RETURN

ThreeHandler:
 Message$ = "Handler number" + STR$(I&)
 RETURN

Result Handler number 1
Handler number 2
Handler number 3

ON GOTO statement

ON GOTO statement
Purpose Send program flow to one of several possible destinations based on the value of a

 expression.
Syntax ON n GOTO {label | line_number} [, {label | line_number}] ...

Remarks n is a numeric expression ranging from 1 to 255, and label or line_number identifies a
statement in the program to branch to. The nth label is branched to; for example, if n
equals 4, the fourth label in the list receives control. If n is less than one or greater than
the number of labels in the list, program execution continues with the statement that
immediately follows the ON GOTO statement.

PowerBASIC Compiler for Windows Version 10

1733 / 2126

ON GOTO behaves exactly like ON GOSUB, except that it performs a GOTO rather than
a GOSUB. This means that the program retains no memory of where the branch
originated. ON GOTO can only branch to labels or line numbers that have the same
scope as the ON GOTO statement.

The SELECT and IF blocks also perform multiple branching, and are more flexible than
ON GOTO. See the GOTO entry for a discussion of ways to avoid using GOTOs in your
programs.

Note that ON GOTO (and ON GOSUB) have been internally optimized to produce greater
run-time performance than was possible with previous versions of PowerBASIC.

See also GOTO, IF block, ON GOSUB, SELECT

Example SUB MainEx
 FOR I& = 1 TO 3
 ON I& GOTO OneHandler, TwoHandler, ThreeHandler
 Back:
 NEXT I&
 EXIT SUB

OneHandler:
 Message$ = "Handler number" + STR$(I&)
 GOTO Back

TwoHandler:
 Message$ = "Handler number" + STR$(I&)
 GOTO Back

ThreeHandler:
 Message$ = "Handler number" + STR$(I&)
 GOTO Back
END SUB

Result Handler number 1
Handler number 2
Handler number 3

OPEN statement

OPEN statement
Purpose Prepare a file or device for reading or writing.

Syntax OPEN filespec [FOR mode] [ACCESS access] [LOCK lock] AS _
 [#] filenum& [LEN = record_size] [BASE = base] [CHR = ANSI|WIDE]
OPEN HANDLE filehandle [FOR mode] [ACCESS access] [LOCK lock] AS _
 [#] filenum& [LEN = record_size] [BASE = base] [CHR = ANSI|WIDE]

Remarks The main function of OPEN is to associate a file number (filenum&) with a file or physical
device and to prepare that device for reading and/or writing. This file number is then used,
rather than its name, in every statement that refers to the file. The FREEFILE function
can be used to determine the next unused file number, or you can pick one yourself. An
OPEN statement is usually balanced by a matching CLOSE statement. The OPEN
statement comprises the following elements:

filespec A string expression specifying the name of the file to be opened, and may optionally
include a drive and/or path specification. filespec may be either a Short File Name (SFN)
or a Long File Name (LFN). filespec has a limit of 259 characters (%MAX_PATH - 1),
although the file name portion of filespec may be no more than 255 characters (%
MAX_FNAME - 1).

mode Specifies the file organization and style of access (sequential, random access, or binary)

PowerBASIC Compiler for Windows Version 10

1734 / 2126

for reading, writing (or both), or appending. If mode is not specified, the default is
RANDOM access.

Mode File type Action
INPUT Sequential Read from
OUTPUT Sequential Write to
APPEND Sequential Append to
BINARY Binary Reading or writing
RANDOM Random Reading or writing (default)

access Specifies the type of access this process will have to the file. By default, the file may be
written to and read from.

Access Description
READ Only read operations allowed
WRITE Only write operations allowed
READ WRITE Both read and write operations allowed (default)

Note that APPEND mode requires READ/WRITE access.

lock Specifies the type of access other processes will have to the file. If a LOCK clause is not
specified in the OPEN statement, the default LOCK READ WRITE mode is applied. This
mode ensures exclusive access to the file, and enables PowerBASIC to optimize its
internal buffering for utmost I/O performance. If other processes or threads are to be
permitted WRITE access to the file (LOCK SHARED or LOCK READ), internal buffering is
disabled. Whilst performance may be marginally lower, it ensures that data read from the
file is completely up-to-date.

Lock Description
SHARED Both read and write operations allowed
WRITE Prevent write operations
READ Prevent read operations
READ WRITE Neither read nor write operations allowed (default)

To open a text file for OUTPUT and allow other processes to only read the file, use the
following:

OPEN "MYFILE.TXT" FOR OUTPUT LOCK WRITE AS #1

It is possible for an application to open more than one copy of a given file at the same
time. In this case, each OPEN statement must use a unique file number, and LOCK
READ WRITE mode should not be used.

filenum& A unique integer value identifying the file, in the range 1 to 32767. Typically, this value is
obtained from the FREEFILE function.

record_size Specifies the size of each record of a random access file. The default record length is
128 if not specified. If record_size is specified for a sequential file, it instructs
PowerBASIC to use internal buffering to improve I/O performance. A random access file is
limited to 32768 bytes per record, to ensure consistent behavior across all Win32
platforms.

base Specifies the number of the first record in a random access file, or the number of the first
byte in a sequential or binary file. It can be either zero (0) or one (1). The default value for
base is 1, if not specified.

Chr Specifies the character mode for this file: ANSI or WIDE (Unicode). Since sequential files
consist of text alone, the selected mode is enforced by PowerBASIC. All data read or
written to the file is automatically forced to the selected mode, regardless of the type of
variables or expressions used. With binary or random files, this specification has no
effect, but it may be included in your code for self-documentation purposes.

ANSI characters in the U.S. range of CHR$(0) to CHR$(127) are known as ASCII, and are
always represented by a single byte. International ANSI characters in the range of
CHR$(128) to CHR$(255) may be followed by one or more additional bytes in order to
accurately represent non-U.S. characters. The exact definition of these characters
depends upon the character set in use. WIDE characters are always represented by two
bytes per character. If the Chr option is not specified, the default mode is ANSI.

PowerBASIC Compiler for Windows Version 10

1735 / 2126

HANDLE The HANDLE option allows you to access files that have already been opened by another
process, DLL, or API function. The filehandle specified here must be a valid Win32
operating system file handle.

When PowerBASIC closes a file opened with OPEN HANDLE, the Win32 handle is
simply detached from the internal PowerBASIC handle table. The file is not physically
closed since PowerBASIC did not originally open it. In PowerBASIC, the FILEATTR
function can be used to obtain the operating system file handle for a file opened with the
OPEN statement.

Restrictions Attempting to OPEN a file for INPUT that does not exist causes a run-time Error 53 ("File
not found"). Attempting to open a file that is locked can result in either an Error 70
("Permission denied"), or an Error 75 ("Path/file access error").

Similarly, attempting to OPEN a file using a file number that is already in use will result in
a run-time Error 55 ("File is already open "). For this reason, programs that use hard-
coded file numbers should take special care to close files before the file number is used
again. In addition, code that may be used by more than one thread should use FREEFILE
and avoid hard-coded file numbers.

If you try to open a nonexistent file for OUTPUT, APPEND, RANDOM, or BINARY
operations, a new file is automatically created. For this reason, files on Read-only
network drives may only be opened in INPUT mode.

See also CLOSE, FILEATTR, FILENAME$, FILESCAN, FREEFILE, TCP OPEN, UDP OPEN

Example This program is divided into five procedures. The difference between each procedure is
the mode in which the file is opened, and the way the data in the file is manipulated:

SUB SequentialOutput
 ' The file is opened for sequential output,
 ' and some data is written to it. If the file
 ' exists, it is over-written.
 OPEN "OPEN.DTA" FOR OUTPUT AS #1
 IntegerVar% = 12345
 TempStr$ = "History is made at night."
 WRITE #1, TempStr$, IntegerVar%*2, TempStr$, IntegerVar% \ 2
 CLOSE #1
END SUB ' end procedure Sequential Output

SUB SequentialAppend
 ' The file is opened for sequential output, and
 ' data in this case is added to the end of file.
 ' If the file does not exist, it is created.
 OPEN "OPEN.DTA" FOR APPEND AS #1
 IntegerVar% = 32123
 TempStr$ = "I am not a number!"
 WRITE #1, TempStr$, IntegerVar% * 0.2
 CLOSE #1
END SUB ' end procedure Sequential Append

SUB SequentialInput
 ' The file is opened for sequential input,
 ' and data is read from the file.
 DIM a$
 OPEN "OPEN.DTA" FOR INPUT AS #1
 LINE INPUT #1, TempStr$
 TempStr$ = ""
 WHILE ISFALSE EOF(1) ' check if at end of file
 LINE INPUT #1, a$
 TempStr$ = TempStr$ + a$
 WEND
 CLOSE #1
END SUB ' end procedure SequentialInput

PowerBASIC Compiler for Windows Version 10

1736 / 2126

SUB BinaryIO
 ' The file is opened for binary I/O. Data is
 ' read 'using GET$. SEEK explicitly moves the
 ' file pointer to 'the end of file, and the
 ' same data is written back to 'the file.
 OPEN "OPEN.DTA" FOR BINARY AS #1
 TempStr$ = ""
 WHILE ISFALSE EOF(1)
 GET$ #1, 1, Char$
 TempStr$ = TempStr$ + Char$
 WEND
 SEEK #1, LOF(1)
 FOR I& = 1 TO LEN(TempStr$)
 PUT$ #1, MID$(TempStr$,I&,1)
 NEXT I&
 CLOSE 1
END SUB ' end procedure BinaryIO

SUB RandomIO
 ' Open file for random I/O. GET and PUT read
 ' and write the data.
 OPEN "OPEN.DTA" FOR RANDOM AS #1 LEN = 1
 TempStr$ = ""
 TempSize& = LOF(1) ' save file size
 ' using GET, read in the entire file
 FOR I& = 1 TO TempSize&
 GET #1, I&, Char$
 TempStr$ = TempStr$ + Char$
 NEXT I&
 ' PUT copies the data in reverse into the
 ' random access file.
 SEEK #1, 1
 FOR I& = TempSize& TO 1 STEP -1
 LSET Char$ = MID$(TempStr$,I&,1)
 PUT #1,, Char$
 NEXT I&
 CLOSE #1
END SUB ' end procedure RandomIO

OPTION EXPLICIT statement

OPTION EXPLICIT statement
Purpose Force explicit declaration of all variables.

Syntax OPTION EXPLICIT

Remarks Using OPTION EXPLICIT in a program has the same effect as using the #DIM ALL
metastatement. That is, it requires that all variables be declared before they are used.

When this option is used, the compiler generates a compile-time error if a variable or array
is used without being explicitly declared.

See also #DIM

OR operator

PowerBASIC Compiler for Windows Version 10

1737 / 2126

OR operator
Purpose The OR operator works as both a logical and a bitwise arithmetic operator.

Syntax p OR q

Remarks Using OR as a logical operator

OR returns TRUE (non-zero) if and only if either or both of its operands is TRUE. Here is
OR's truth table:

Truth table
x y x OR y
T T T
T F T
F T T
F F F

Using OR as a bitwise arithmetic operator

An OR mask sets selected bits of an

 value without affecting the other bits. To set the most significant 2 bits in &H9700,
use OR with a mask of &HC000; that is, the mask contains all 0s, except for the bit
positions you wish to force to 1:

See also Arithmetic Operators, AND, EQV, IMP, ISFALSE, ISTRUE, LET, NOT, XOR

PARSE statement

PARSE statement
Purpose Parse an entire

 and extract all delimited fields into an array.
Syntax PARSE start$, target$() [, {[ANY] delim$ | BINARY}]

Remarks PARSE parses the entire string or string expression specified by start$, assigning each
delimited sub-string to successive elements of target$. The array specified by target$
may be a dynamic string array, a fixed-length string array, or a nul-terminated string array.

The field delimiter is defined by delim$, which may be one or more characters long. To be
valid, the entire delimiter must match exactly, but the delimiter itself is never assigned as
a part of the delimited field.

If delim$ is not specified or is null (zero-length), standard comma-delimited (optionally
quoted) fields are presumed. In this case only, the following parsing rules apply. If a
standard field is enclosed in optional quotes, they are removed. If any characters appear
between a quoted field and the next comma delimiter, they are discarded. If no leading
quote is found, any leading or trailing blank spaces are trimmed before the field is
returned.

ANY If the ANY option is chosen, each appearance of any single character comprising delim$
is considered a valid delimiter.

BINARY The BINARY option presumes that the string_expr was created with the JOIN$/BINARY
function, or its equivalent, which creates a string as a binary image or in the PowerBASIC
and/or Visual Basic packed string format: If a string is shorter than 65535 bytes, it starts

PowerBASIC Compiler for Windows Version 10

1738 / 2126

with a 2-byte length WORD followed by the string data. Otherwise it will start a 2-byte
value of 65535, followed by a DWORD indicating the string length, then finally the string
data itself.

It is usually advantageous to dimension target$ to the correct size with the use of the
PARSECOUNT function. The PARSE statement is typically much more efficient, as a
whole, than repeated use of the PARSE$ function when it is necessary to parse an entire
string expression.

The JOIN$ function is the natural complement to the PARSE statement.

See also JOIN$, PARSE$, PARSECOUNT, PATHNAME$, PATHSCAN$

Example a$ = "Trevor, Bob, Bruce, Dan, Simon, Jenny"
DIM b$(1 TO PARSECOUNT(a$))
PARSE a$, b$()
ARRAY SORT b$()

Result b$(1) = "Bob"
b$(2) = "Bruce"
b$(3) = "Dan"
b$(4) = "Jenny"
b$(5) = "Simon"
b$(6) = "Trevor"

PARSE$ function

PARSE$ function
Purpose Return a delimited field from a string expression.

Syntax a$ = PARSE$(string_expr [, {[ANY] string_delimiter | BINARY}], index&)

Remarks PARSE$ uses the following parameters:

string_expr The

 to parse. If string_expr is empty (a null string) or contains no delimiter character(s),
the string is considered to contain exactly one field. In this case, PARSE$ will return
string_expr.

string_delimiter Contains delimiter character(s). A delimiter is a character, list of characters, or string,
that is used to mark the end of a field in string_expr. For example, if you consider a
sentence to be a list of words, the delimiter between the works is a space (or perhaps
punctuation). Text files typically consist of lines that are delimited by CR/LF ($CRLF or
CHR$(13,10)) characters; a database file may consist of items separated by commas;
etc. A delimiter is not considered part of a field, but as the divider between fields, so the
delimiter is never returned by PARSE$.

If delim$ is not specified or is null (zero-length), standard comma-delimited (optionally
quoted) fields are presumed. In this case only, the following parsing rules apply. If a
standard field is enclosed in optional quotes, they are removed. If any characters appear
between a quoted field and the next comma delimiter, they are discarded. If no leading
quote is found, any leading or trailing blank spaces are trimmed before the field is
returned.

Delimiters are case-sensitive, so capitalization may be a consideration.

ANY If the ANY keyword is used, string_delimiter contains a set of characters, any of which
may act as a delimiter character. If the ANY keyword is omitted, the entire
string_delimiter string acts as a single delimiter.

BINARY The BINARY option presumes that string_expr was created with the JOIN$/BINARY
function, or its equivalent, which creates a string as a binary image or in the PowerBASIC
and/or Visual Basic packed string format: If a string is shorter than 65535 bytes, it starts
with a 2-byte length WORD followed by the string data. Otherwise it will start a 2-byte

PowerBASIC Compiler for Windows Version 10

1739 / 2126

value of 65535, followed by a DWORD indicating the string length, then finally the string
data itself.

index& An

 variable or expression that specifies the delimited field number to return. The first
field is 1, and so on up to the maximum number of fields contained in string_expr,
which may be determined with the PARSECOUNT function. If index& is negative,
string_expr is parsed from right to left. In this case, index& = -1 returns the last field
in string_expr, -2 returns the second to last, etc. If index& evaluates to zero, or is
outside of the actual field count, an empty string is returned.

See also JOIN$, PARSE, PARSECOUNT, PATHNAME$, PATHSCAN$

Example a$ = PARSE$("one,two,three", 2) ' returns "two"
a$ = PARSE$("one;two,three", 2) ' returns "three"
a$ = PARSE$("one",2) ' returns ""
a$ = PARSE$("xyz",1) ' returns "xyz"
a$ = PARSE$("xx1x","x",3) ' returns "1"
a$ = PARSE$("1;2,3", ANY ",;", 2) ' returns "2"

PARSECOUNT function

PARSECOUNT function
Purpose Return the count of delimited strings in a string expression.

Syntax x& = PARSECOUNT(string_expr [, {[ANY] string_delimiter | BINARY}])

Remarks PARSECOUNT uses the same rules as PARSE$ in the determination of fields within
string_expr. Individual fields within string_expr are evaluated, and the tally of the fields
forms the result value.

It is important to note that PARSECOUNT may only be used with string data which
contains variable length sub-fields, each of which is separated by a delimiter. To
determine the count of fixed length data, divide the StringExpr length by the sub-field
length. If this function is used with fixed length data, the results are undefined.

string_expr This is the

 to examine and parse. If StringExpr is empty (a null string) or contains no delimiter
character(s), the string is considered to contain exactly one sub-field. In this case,
PARSECOUNT returns the value 1.

string_delimiter This defines one or more characters to use as a delimiter. To be valid, the entire delimiter
must match exactly, but the delimiter itself is never returned as part of the field.

If string_delimiter is not specified, or contains an empty string, special rules apply. The
delimiter is assumed to be a comma. Fields may optionally be enclosed in quotes, and
are ignored before the result string is returned. Any characters that appear between a
quote mark and the next comma delimiter character are discarded. If no leading quote is
found, any leading or trailing quotes are trimmed before the result string is returned.

ANY If the ANY keyword is used, string_delimiter contains a set of characters, any of which
may act as a delimiter character. If the ANY keyword is omitted, the entire
string_delimiter string acts as a single delimiter.

BINARY The BINARY option returns the number of sub-fields and presumes that StringExpr was
created with the JOIN$/BINARY function, or its equivalent, which creates a string in the
PowerBASIC and/or Visual Basic packed string format: If a string is shorter than 65535
bytes, it starts with a 2-byte length WORD followed by the string data. Otherwise it will
start with a 2-byte value of 65535, followed by a DWORD indicating the string length, then
the actual string data.

See also JOIN$, PARSE, PARSE$, PATHNAME$, PATHSCAN$

PowerBASIC Compiler for Windows Version 10

1740 / 2126

Example a& = PARSECOUNT("one,two,three") ' returns 3
a& = PARSECOUNT("one;two,three") ' returns 2
a& = PARSECOUNT("") ' returns 1
a& = PARSECOUNT("xx1x","x") ' returns 4
a& = PARSECOUNT("1;2,3", ANY ",;") ' returns 3

PATHNAME$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PATHNAME$ function
Purpose Parse a path/file name to extract component parts

Syntax fil$ = PATHNAME$(director, filespec$)

Remarks The PATHNAME$ function evaluates a text path/file text name, and returns a requested
part of the name. The functionality is strictly one of

 parsing alone. No attempt is made to find the file on disk. If you wish to scan for a
particular file on disk, you should use the companion function PATHSCAN$.

director This is one of the following words which is used to specify the requested part:

FULL Returns the full path/file name, just as given in the filespec$ parameter.
 This is really a non-operation, but is included for symmetry with the
companion function PATHSCAN$.

PATH Returns the path portion of the path/file name. That is the text up to and
including the last backslash (\) or colon (:).

NAME Return the name portion of the path/file name. That is the text to the right
of the last backslash (\) or colon (:), ending just before the last period (.).

EXTN Returns the extension portion of the path/file name. That is the last period
(.) in the string plus the text to the right of it.

NAME
X

Returns the NAME and the EXTN parts combined.

filespec$ A path/file name which does not necessarily exist on disk.

See also DIR$, EXE, PATHSCAN$, PARSE, PARSE$, PARSECOUNT

Example PATHNAME$(PATH, "C:\PB\XXX.TXT") ' returns "C:\PB\"
PATHNAME$(NAME, "C:\PB\XXX.TXT") ' returns "XXX"
PATHNAME$(NAMEX, "C:\PB\XXX.TXT") ' returns "XXX.TXT"
PATHNAME$(EXTN, "C:\PB\XXX.TXT") ' returns ".TXT"

PATHSCAN$ function

Keyword Template
Purpose

Syntax

PowerBASIC Compiler for Windows Version 10

1741 / 2126

Remarks

See also

Example

PATHSCAN$ function
Purpose Find a file on disk and return the path and/or file name parts.

Syntax fil$ = PATHSCAN$(director, filespec$[, pathspec$])

Remarks The PATHSCAN$ function scans specified directories to find a particular file. If the file is
found, it returns either the full path/file name, or a selected part of it. If the file is not
found, a nul (zero-length)

 is returned. If you wish to simply parse a text file name, without regard to its
validation on disk, you should use the companion function PATHNAME$.

director This is one of the following words which is used to specify the requested part:

FULL Return the full drive/path/file name.

PATH Return the path portion of the path/file name. That is the text up to and
including the last backslash (\).

NAME Return the name portion of the path/file name. That is the text to the right
of the last backslash (\), ending just before the last period (.) in the string.

EXTN Return the extension portion of the path/file name. That is the last period (.)
in the string plus the text to the right of it.

NAME
X

Return the NAME and the EXTN parts combined.

filespec$ A file name which is expected to exist on disk. It must not be an ambiguous name -- that
is, it may not include a query (?) or an asterisk (*) character.

pathspec$ An optional path string which includes one or more paths to be searched to find filespec$.
 If multiple path names are included in this string, they must each be separated by a
semicolon (;) delimiter. If pathspec$ is not given, or it is a nul (zero-length) string, the
following directories are searched:

1. The directory from which the application was loaded.

2. The current directory.

3. The Windows System32 directory.

4. The Windows System16 directory.

5. The Windows directory.

6. The directories in the PATH environment variable.

See also DIR$, EXE, PATHNAME$, PARSE, PARSE$, PARSECOUNT

Example The following information assumes that the file named "MyFile.txt" currently exists in the
directory "C:\PB".

f$ = "MyFile.txt" : p$ = "C:\MyDir;C:\PB"

PATHSCAN$(FULL, f$, p$) ' returns "C:\PB\MyFile.txt"
PATHSCAN$(PATH, f$, p$) ' returns "C:\PB\"
PATHSCAN$(NAME, f$, p$) ' returns "MyFile"
PATHSCAN$(EXTN, f$, p$) ' returns ".txt"
PATHSCAN$(NAMEX,f$, p$) ' returns "MyFile.txt"

PBLIBMAIN function

PowerBASIC Compiler for Windows Version 10

1742 / 2126

PBLIBMAIN function
Purpose PBLIBMAIN performs a similar task to DLLMAIN and LIBMAIN, except that PBLIBMAIN

takes no parameters.

In 32-bit Windows, PBLIBMAIN is called each time a DLL is loaded or
unloaded by an application or process, and (usually) if a thread is started and
stopped. Your code should never call PBLIBMAIN.

Syntax FUNCTION PBLIBMAIN [()] [AS LONG]

Remarks See LIBMAIN / DLLMAIN for more information.

See also DLLMAIN, LIBMAIN, PBMAIN, THREAD CREATE, WINMAIN

PBMAIN function

PBMAIN function
Purpose PBMAIN is a user-defined function called by Windows to begin running an executable

application. Every PowerBASIC executable (EXE) must contain either a PBMAIN or a
WINMAIN function.

Syntax FUNCTION PBMAIN [()] [AS LONG]

Remarks Either a PBMAIN or WINMAIN function is required in every PowerBASIC application
(.EXE). If you use PBMAIN, no parameters are passed, and you cannot directly obtain the
instance handle of your application or the pointer to any command-line parameters.

However, you can use COMMAND$ to get the command-line passed to your program,
and the GetModuleHandle API function to get the application instance handle.

Return The return value of PBMAIN has an effective range of 0 to 255. Batch files may act on the
result through the IF [NOT] ERRORLEVEL batch command.

Restrictions DLLs created with PowerBASIC should contain a DLLMAIN, LIBMAIN, or PBLIBMAIN
function instead of PBMAIN/WINMAIN.

See also COMMAND$, DLLMAIN, LIBMAIN, PBLIBMAIN, WINMAIN

Example #COMPILE EXE
FUNCTION PBMAIN
 MSGBOX "This is my program!"
 'Return an error level of 15
 FUNCTION = 15 ' or you can use PBMAIN = 15
END FUNCTION

PEEK function

PEEK, PEEK$, and PEEK$$ functions
Purpose Returns a byte or sequence of bytes at a specified memory location.

Syntax numvar = PEEK([datatype,] address???)
ansivar = PEEK$([STRINGZ,] address???, count&)
widevar = PEEK$$([WSTRINGZ,] address???, count&)

Remarks The PEEK functions and complementary POKE statements are low-level methods of
accessing individual bytes in memory. The data is retrieved from memory, starting at the
specified 32-bit address???.

PEEK retrieves a

 value starting at a specified memory address.

PowerBASIC Compiler for Windows Version 10

1743 / 2126

PEEK$ retrieves count& consecutive bytes and returns them as a

. If STRINGZ (or ASCIIZ) is specified, PEEK$ reads successive characters from
memory, up to the specified size, until a terminating $NUL (CHR$(0)) byte is found.
 Since STRINGZ strings must contain a terminating $NUL, the maximum length of the
returned string is 1 character less than count&.
PEEK$$ retrieves count& consecutive 2-byte wide characters, and returns them as a wide
character string. If WSTRINGZ is specified, PEEK$$ reads successive characters from
memory, up to the specified size, until a terminating $NUL (CHR$(0)) character is found.
 Since WSTRINGZ strings must contain a terminating $NUL, the maximum length of the
returned string is 1 character less than count&.

Contrary to intuitive notions, PEEK and POKE execute at the same high performance
levels as pointer variables. They offer an excellent alternative to pointers in many
situations.

datatype The numeric data type to retrieve, which may be any one of BYTE, WORD, DWORD,
INTEGER, LONG, QUAD, SINGLE, DOUBLE, EXT, CUR, CUX. If a data type is not
specified, BYTE is assumed.

address??? A valid 32-bit memory address specifying the location in memory where data retrieval
should begin.

count& A numeric expression that specifies the number of consecutive characters to be read from
memory.

Restrictions If address??? (or any memory in the range covered by count&) references an invalid
address (memory that is not allocated to the application), Windows will generate a
General Protection Fault (GPF) and terminate the application. GPFs cannot be trapped
with an ON ERROR error handler.

See also , POKE, STRPTR, VARPTR

Example One common application for PEEK$ and POKE$ is to perform fast array and memory
block copy operations by simply copying the entire block of memory which contains the
array data, rather than storing each element individually with an assignment statement:

Elements& = 2000 ' 2000 elements in each array
DIM OriginalArray%(1 TO Elements&)
DIM NewArray%(1 TO Elements&)

'Method 1: assign each element individually
FOR Index& = 1 TO Elements&
 NewArray%(Index&) = OriginalArray%(Index&)
NEXT Index&

'Method 2: block copy with PEEK$ and POKE$ (faster)
Source& = VARPTR(OriginalArray%(1))
Dest& = VARPTR(NewArray%(1))
ArrayLen& = Elements& * 2 'byte length of array
POKE$ Dest&, PEEK$(Source&, ArrayLen&) 'copy block

PEEK$ function

PEEK, PEEK$, and PEEK$$ functions
Purpose Returns a byte or sequence of bytes at a specified memory location.

Syntax numvar = PEEK([datatype,] address???)
ansivar = PEEK$([STRINGZ,] address???, count&)
widevar = PEEK$$([WSTRINGZ,] address???, count&)

Remarks The PEEK functions and complementary POKE statements are low-level methods of

PowerBASIC Compiler for Windows Version 10

1744 / 2126

accessing individual bytes in memory. The data is retrieved from memory, starting at the
specified 32-bit address???.

PEEK retrieves a

 value starting at a specified memory address.
PEEK$ retrieves count& consecutive bytes and returns them as a

. If STRINGZ (or ASCIIZ) is specified, PEEK$ reads successive characters from
memory, up to the specified size, until a terminating $NUL (CHR$(0)) byte is found.
 Since STRINGZ strings must contain a terminating $NUL, the maximum length of the
returned string is 1 character less than count&.
PEEK$$ retrieves count& consecutive 2-byte wide characters, and returns them as a wide
character string. If WSTRINGZ is specified, PEEK$$ reads successive characters from
memory, up to the specified size, until a terminating $NUL (CHR$(0)) character is found.
 Since WSTRINGZ strings must contain a terminating $NUL, the maximum length of the
returned string is 1 character less than count&.

Contrary to intuitive notions, PEEK and POKE execute at the same high performance
levels as pointer variables. They offer an excellent alternative to pointers in many
situations.

datatype The numeric data type to retrieve, which may be any one of BYTE, WORD, DWORD,
INTEGER, LONG, QUAD, SINGLE, DOUBLE, EXT, CUR, CUX. If a data type is not
specified, BYTE is assumed.

address??? A valid 32-bit memory address specifying the location in memory where data retrieval
should begin.

count& A numeric expression that specifies the number of consecutive characters to be read from
memory.

Restrictions If address??? (or any memory in the range covered by count&) references an invalid
address (memory that is not allocated to the application), Windows will generate a
General Protection Fault (GPF) and terminate the application. GPFs cannot be trapped
with an ON ERROR error handler.

See also , POKE, STRPTR, VARPTR

Example One common application for PEEK$ and POKE$ is to perform fast array and memory
block copy operations by simply copying the entire block of memory which contains the
array data, rather than storing each element individually with an assignment statement:

Elements& = 2000 ' 2000 elements in each array
DIM OriginalArray%(1 TO Elements&)
DIM NewArray%(1 TO Elements&)

'Method 1: assign each element individually
FOR Index& = 1 TO Elements&
 NewArray%(Index&) = OriginalArray%(Index&)
NEXT Index&

'Method 2: block copy with PEEK$ and POKE$ (faster)
Source& = VARPTR(OriginalArray%(1))
Dest& = VARPTR(NewArray%(1))
ArrayLen& = Elements& * 2 'byte length of array
POKE$ Dest&, PEEK$(Source&, ArrayLen&) 'copy block

PEEK$$ function

PEEK, PEEK$, and PEEK$$ functions
Purpose Returns a byte or sequence of bytes at a specified memory location.

PowerBASIC Compiler for Windows Version 10

1745 / 2126

Syntax numvar = PEEK([datatype,] address???)
ansivar = PEEK$([STRINGZ,] address???, count&)
widevar = PEEK$$([WSTRINGZ,] address???, count&)

Remarks The PEEK functions and complementary POKE statements are low-level methods of
accessing individual bytes in memory. The data is retrieved from memory, starting at the
specified 32-bit address???.

PEEK retrieves a

 value starting at a specified memory address.
PEEK$ retrieves count& consecutive bytes and returns them as a

. If STRINGZ (or ASCIIZ) is specified, PEEK$ reads successive characters from
memory, up to the specified size, until a terminating $NUL (CHR$(0)) byte is found.
 Since STRINGZ strings must contain a terminating $NUL, the maximum length of the
returned string is 1 character less than count&.
PEEK$$ retrieves count& consecutive 2-byte wide characters, and returns them as a wide
character string. If WSTRINGZ is specified, PEEK$$ reads successive characters from
memory, up to the specified size, until a terminating $NUL (CHR$(0)) character is found.
 Since WSTRINGZ strings must contain a terminating $NUL, the maximum length of the
returned string is 1 character less than count&.

Contrary to intuitive notions, PEEK and POKE execute at the same high performance
levels as pointer variables. They offer an excellent alternative to pointers in many
situations.

datatype The numeric data type to retrieve, which may be any one of BYTE, WORD, DWORD,
INTEGER, LONG, QUAD, SINGLE, DOUBLE, EXT, CUR, CUX. If a data type is not
specified, BYTE is assumed.

address??? A valid 32-bit memory address specifying the location in memory where data retrieval
should begin.

count& A numeric expression that specifies the number of consecutive characters to be read from
memory.

Restrictions If address??? (or any memory in the range covered by count&) references an invalid
address (memory that is not allocated to the application), Windows will generate a
General Protection Fault (GPF) and terminate the application. GPFs cannot be trapped
with an ON ERROR error handler.

See also , POKE, STRPTR, VARPTR

Example One common application for PEEK$ and POKE$ is to perform fast array and memory
block copy operations by simply copying the entire block of memory which contains the
array data, rather than storing each element individually with an assignment statement:

Elements& = 2000 ' 2000 elements in each array
DIM OriginalArray%(1 TO Elements&)
DIM NewArray%(1 TO Elements&)

'Method 1: assign each element individually
FOR Index& = 1 TO Elements&
 NewArray%(Index&) = OriginalArray%(Index&)
NEXT Index&

'Method 2: block copy with PEEK$ and POKE$ (faster)
Source& = VARPTR(OriginalArray%(1))
Dest& = VARPTR(NewArray%(1))
ArrayLen& = Elements& * 2 'byte length of array
POKE$ Dest&, PEEK$(Source&, ArrayLen&) 'copy block

PowerBASIC Compiler for Windows Version 10

1746 / 2126

PLAY WAVE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PLAY statement
Purpose Play a sound under program control.

Syntax PLAY WAVE ResourceID$ [,descriptors...] [TO ResultVar&]
PLAY WAVE END

Remarks The PLAY statement allows you to play a previously created WAVE resource or WAVE
file. It's generally advantageous to use the resource form. Access is typically faster and
the need for extra files is reduced. The first form of PLAY WAVE starts the sound, while
PLAY WAVE END stops any waveform sound which is currently playing.

ResourceID$ is a string expression which tells either the Resource ID of the waveform
data, or the disk file where it can be found. If the resource ID is numeric, just precede the
number with #, such as "#12345". If the Resource ID contains a period, it is presumed to
be the name of a disk file. Otherwise, an attempt is made to load it from a resource -- if
not found, it is then presumed to be a disk file. If the waveform data cannot be found, an
error 53 (File Not Found) is generated.

If you include the optional TO clause, a success value is assigned to the ResultVar&. If
the operation succeeds, the value True (non-zero) is assigned. If it fails, the value False
(zero) is assigned.

The default method is to play the waveform data in the background. That is, the Play
statement returns immediately so the application can execute other code while the sound
is playing.

By default, the new sound takes precedence over any other sound currently playing.
 When PLAY WAVE is executed, any other sound playing is stopped immediately. The
new sound is played to replace it. This default methodology can be altered with options
described later.

The optional descriptor words (one or more) may be added to control the way in which the
sound is played. The descriptors available are:

Loop The sound is played repeatedly in the background. It plays forever,
until PLAY WAVE END is executed, or the program terminates.

NoStop If another sound is playing, the new sound is discarded and not
played. The value False (zero) is returned to the ResultVar& to let you
know that the operation failed. You can try again to play the new
sound at your convenience.

Synch The sound plays in synchronous mode, commonly known as the
foreground. The application waits for the sound to complete before
continuing execution of other code. The sound and the code are
synchronized.

YieldMS(Ti
meOut&)

If another sound is playing, the new sound yields and allows the first
sound to complete. The numeric expression TimeOut& tells the
maximum number of milliseconds (approximate) to wait before giving
up. If the Timeout period expires and the first sound is still playing,

PowerBASIC Compiler for Windows Version 10

1747 / 2126

the new sound is aborted. If the Timeout period is zero (0), the
program will wait an unlimited amount of time for the first sound to
finish. The maximum TimeOut& permitted is one hour.

See also #RESOURCE

PLAY WAVE END statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PLAY statement
Purpose Play a sound under program control.

Syntax PLAY WAVE ResourceID$ [,descriptors...] [TO ResultVar&]
PLAY WAVE END

Remarks The PLAY statement allows you to play a previously created WAVE resource or WAVE
file. It's generally advantageous to use the resource form. Access is typically faster and
the need for extra files is reduced. The first form of PLAY WAVE starts the sound, while
PLAY WAVE END stops any waveform sound which is currently playing.

ResourceID$ is a string expression which tells either the Resource ID of the waveform
data, or the disk file where it can be found. If the resource ID is numeric, just precede the
number with #, such as "#12345". If the Resource ID contains a period, it is presumed to
be the name of a disk file. Otherwise, an attempt is made to load it from a resource -- if
not found, it is then presumed to be a disk file. If the waveform data cannot be found, an
error 53 (File Not Found) is generated.

If you include the optional TO clause, a success value is assigned to the ResultVar&. If
the operation succeeds, the value True (non-zero) is assigned. If it fails, the value False
(zero) is assigned.

The default method is to play the waveform data in the background. That is, the Play
statement returns immediately so the application can execute other code while the sound
is playing.

By default, the new sound takes precedence over any other sound currently playing.
 When PLAY WAVE is executed, any other sound playing is stopped immediately. The
new sound is played to replace it. This default methodology can be altered with options
described later.

The optional descriptor words (one or more) may be added to control the way in which the
sound is played. The descriptors available are:

Loop The sound is played repeatedly in the background. It plays forever,
until PLAY WAVE END is executed, or the program terminates.

NoStop If another sound is playing, the new sound is discarded and not
played. The value False (zero) is returned to the ResultVar& to let you
know that the operation failed. You can try again to play the new
sound at your convenience.

Synch The sound plays in synchronous mode, commonly known as the
foreground. The application waits for the sound to complete before

PowerBASIC Compiler for Windows Version 10

1748 / 2126

continuing execution of other code. The sound and the code are
synchronized.

YieldMS(Ti
meOut&)

If another sound is playing, the new sound yields and allows the first
sound to complete. The numeric expression TimeOut& tells the
maximum number of milliseconds (approximate) to wait before giving
up. If the Timeout period expires and the first sound is still playing,
the new sound is aborted. If the Timeout period is zero (0), the
program will wait an unlimited amount of time for the first sound to
finish. The maximum TimeOut& permitted is one hour.

See also #RESOURCE

POKE statement

POKE, POKE$, and POKE$$ statements
Purpose Store a byte or sequence of bytes at a specified memory location.

Syntax POKE [DataType,] Address???, DataValue [, DataValue...]
POKE$ [STRINGZ,] Address???, StringExpr
POKE$$ [WSTRINGZ,] Address???, StringExpr

Remarks The POKE statements and complementary PEEK functions are low-level methods of
accessing individual bytes in memory. The data is stored to memory starting at the
specified 32-bit address.

In its classic form, the POKE statement stores a single byte (8 bits) whose value ranges
from 0 to 255. In its enhanced form, POKE provides the functionality of a dynamic
pointer: the DataType parameter specifies the data type and hence the size of the target
data to write to the target memory address. DataType can be any one of BYTE, WORD,
DWORD, INTEGER, LONG, QUAD, SINGLE, DOUBLE, EXT, CUR, CUX. If a DataType is
not specified, BYTE is assumed. If you specify more than one DataValue, they are
stored in successive memory locations.

POKE$ stores the bytes of StringExpr in consecutive bytes of memory. If STRINGZ (or
ASCIIZ) is specified, POKE$ writes successive characters to memory, up to the specified
size, until a terminating $NUL byte is found in the source string. If no $NUL is found in
the string, one is automatically appended. It is the programmer's responsibility to ensure
that POKE$ does not overrun the target memory area to avoid data corruption or
protection faults.

POKE$$ stores the characters of StringExpr as consecutive 2-byte words of memory. If
WSTRINGZ is specified, POKE$$ writes successive wide characters, up to the specified
size, until a terminating $NUL is found in the source string. If no $NUL is found in the
string, one is automatically added. It is the programmer's responsibility to ensure that
POKE$$ does not overrun the target memory area to avoid data corruption or protection
faults.

Contrarary to intuitive notions, PEEK and POKE execute at the same high performance
levels as pointer variables. They offer an excellent alternative to pointers in many
situations.

Address??? A valid 32-bit memory address specifying the location in memory where data storage
should begin.

Datavalue The data value to be stored at Address???.

StringExpr A string constant, literal or expression that specifies the sequence of characters to be
stored in memory, starting at by Address???.

Restrictions If POKE attempts to access memory that is not allocated to the application, Windows will
generate a General Protection Fault (GPF) and terminate the application. GPFs cannot
be trapped.

PowerBASIC Compiler for Windows Version 10

1749 / 2126

See also GLOBALMEM ALLOC, MEMORY,

, PEEK, STRPTR, VARPTR

POKE$ statement

POKE, POKE$, and POKE$$ statements
Purpose Store a byte or sequence of bytes at a specified memory location.

Syntax POKE [DataType,] Address???, DataValue [, DataValue...]
POKE$ [STRINGZ,] Address???, StringExpr
POKE$$ [WSTRINGZ,] Address???, StringExpr

Remarks The POKE statements and complementary PEEK functions are low-level methods of
accessing individual bytes in memory. The data is stored to memory starting at the
specified 32-bit address.

In its classic form, the POKE statement stores a single byte (8 bits) whose value ranges
from 0 to 255. In its enhanced form, POKE provides the functionality of a dynamic
pointer: the DataType parameter specifies the data type and hence the size of the target
data to write to the target memory address. DataType can be any one of BYTE, WORD,
DWORD, INTEGER, LONG, QUAD, SINGLE, DOUBLE, EXT, CUR, CUX. If a DataType is
not specified, BYTE is assumed. If you specify more than one DataValue, they are
stored in successive memory locations.

POKE$ stores the bytes of StringExpr in consecutive bytes of memory. If STRINGZ (or
ASCIIZ) is specified, POKE$ writes successive characters to memory, up to the specified
size, until a terminating $NUL byte is found in the source string. If no $NUL is found in
the string, one is automatically appended. It is the programmer's responsibility to ensure
that POKE$ does not overrun the target memory area to avoid data corruption or
protection faults.

POKE$$ stores the characters of StringExpr as consecutive 2-byte words of memory. If
WSTRINGZ is specified, POKE$$ writes successive wide characters, up to the specified
size, until a terminating $NUL is found in the source string. If no $NUL is found in the
string, one is automatically added. It is the programmer's responsibility to ensure that
POKE$$ does not overrun the target memory area to avoid data corruption or protection
faults.

Contrarary to intuitive notions, PEEK and POKE execute at the same high performance
levels as pointer variables. They offer an excellent alternative to pointers in many
situations.

Address??? A valid 32-bit memory address specifying the location in memory where data storage
should begin.

Datavalue The data value to be stored at Address???.

StringExpr A string constant, literal or expression that specifies the sequence of characters to be
stored in memory, starting at by Address???.

Restrictions If POKE attempts to access memory that is not allocated to the application, Windows will
generate a General Protection Fault (GPF) and terminate the application. GPFs cannot
be trapped.

See also GLOBALMEM ALLOC, MEMORY,

, PEEK, STRPTR, VARPTR

POKE$$ statement

POKE, POKE$, and POKE$$ statements

PowerBASIC Compiler for Windows Version 10

1750 / 2126

Purpose Store a byte or sequence of bytes at a specified memory location.

Syntax POKE [DataType,] Address???, DataValue [, DataValue...]
POKE$ [STRINGZ,] Address???, StringExpr
POKE$$ [WSTRINGZ,] Address???, StringExpr

Remarks The POKE statements and complementary PEEK functions are low-level methods of
accessing individual bytes in memory. The data is stored to memory starting at the
specified 32-bit address.

In its classic form, the POKE statement stores a single byte (8 bits) whose value ranges
from 0 to 255. In its enhanced form, POKE provides the functionality of a dynamic
pointer: the DataType parameter specifies the data type and hence the size of the target
data to write to the target memory address. DataType can be any one of BYTE, WORD,
DWORD, INTEGER, LONG, QUAD, SINGLE, DOUBLE, EXT, CUR, CUX. If a DataType is
not specified, BYTE is assumed. If you specify more than one DataValue, they are
stored in successive memory locations.

POKE$ stores the bytes of StringExpr in consecutive bytes of memory. If STRINGZ (or
ASCIIZ) is specified, POKE$ writes successive characters to memory, up to the specified
size, until a terminating $NUL byte is found in the source string. If no $NUL is found in
the string, one is automatically appended. It is the programmer's responsibility to ensure
that POKE$ does not overrun the target memory area to avoid data corruption or
protection faults.

POKE$$ stores the characters of StringExpr as consecutive 2-byte words of memory. If
WSTRINGZ is specified, POKE$$ writes successive wide characters, up to the specified
size, until a terminating $NUL is found in the source string. If no $NUL is found in the
string, one is automatically added. It is the programmer's responsibility to ensure that
POKE$$ does not overrun the target memory area to avoid data corruption or protection
faults.

Contrarary to intuitive notions, PEEK and POKE execute at the same high performance
levels as pointer variables. They offer an excellent alternative to pointers in many
situations.

Address??? A valid 32-bit memory address specifying the location in memory where data storage
should begin.

Datavalue The data value to be stored at Address???.

StringExpr A string constant, literal or expression that specifies the sequence of characters to be
stored in memory, starting at by Address???.

Restrictions If POKE attempts to access memory that is not allocated to the application, Windows will
generate a General Protection Fault (GPF) and terminate the application. GPFs cannot
be trapped.

See also GLOBALMEM ALLOC, MEMORY,

, PEEK, STRPTR, VARPTR

POWERARRAY Object

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1751 / 2126

POWERARRAY Object
Purpose The PowerArray object encapsulates the Windows SAFEARRAY structure. Each object

contains exactly one SAFEARRAY, and allows you to read, write, and manipulate the
elements easily.

The SAFEARRAY is generally considered to be the lowest common denominator of
arrays. It's not as fast as a standard PowerBASIC array, but it serves an excellent
purpose: It's a "standard" form of array data which can be used to transfer data between
programs, modules, and even DLLs created with different versions of the compiler. Other
than the possibility of added data types, we do not expect to see the internal format to
change in the foreseeable future.

A SAFEARRAY is frequently contained in a VARIANT variable. However, you'll usually
find that the array is referenced and identified by a 32-bit pointer to its array descriptor.

Remarks All array operations are executed with METHOD and PROPERTY invocations on a
PowerArray object. When you create or examine a PowerArray, the specific data type is
identified by the following VT codes. All of them are predefined in the compiler. VT codes
numbered above 200 are unique to PowerBASIC. Other programming languages will not
recognize them, giving undefined results.

 %vt_i2 = 2 %vt_ui4 = 19
 %vt_i4 = 3 %vt_i8 = 20
 %vt_r4 = 4 %vt_int = 22
 %vt_r8 = 5 %vt_uint = 23
 %vt_cy = 6 %vt_ptr = 26
 %vt_date = 7 %vt_userdefined = 29
 %vt_bstr = 8 %vt_filetime = 64
 %vt_dispatch = 9 %vt_astr = 201
 %vt_bool = 11 %vt_stringfix = 203
 %vt_variant = 12 %vt_wstringfix = 204
 %vt_unknown = 13 %vt_stringz = 205
 %vt_decimal = 14 %vt_wstringz = 206
 %vt_i1 = 16 %vt_type = 211
 %vt_ui1 = 17 %vt_ext = 221
 %vt_ui2 = 18 %vt_curx = 222

The array dimensions are stated at the time the array is created by executing the DIM
method. The ByRef Bounds parameter refers to a PowerBounds UDT which is predefined
in the compiler. Bound is a PowerBOUND UDT for use with RedimPreserve. It is also
predefined in the compiler.

TYPE PowerBounds
 Elements1 AS LONG
 LowBound1 AS LONG
 Elements2 AS LONG
 LowBound2 AS LONG
 Elements3 AS LONG
 LowBound3 AS LONG
 Elements4 AS LONG
 LowBound4 AS LONG
END TYPE

TYPE PowerBound
 Elements AS LONG
 LowBound AS LONG
END TYPE

This class is named PowerArray, and the interface is named IPowerArray. If any of the
following operations should fail, the OBJRESULT function will return a non-zero result
rather than %S_OK (zero).

IPowerArray Methods/Properties
METHOD ARRAYBASE () AS DWORD <1>

This method returns the address of the first element of the array.

METHOD ARRAYDESC () AS DWORD <2>

PowerBASIC Compiler for Windows Version 10

1752 / 2126

This method returns the address of the SAFEARRAY descriptor.

PROPERTY GET ARRAYINFO () AS WString <3>

You can attach a wide text string to an array for informational or documentation. This Get
Property retrieves the info string, if one is present.

PROPERTY SET ARRAYINFO () = WString <3>

You can attach a wide text string to an array for informational or documentation. This Set
Property assigns a wide dynamic string to the array.

METHOD CLONE (PowerArray) <4>

The parameter PowerArray is another object of the same class as this object, which is
PowerArray. An exact duplicate of the SafeArray in the parameter is created, and stored
in this object.

METHOD COPYFROMVARIANT (ByRef Variant) <5>

An exact copy is made of the SafeArray contained in the parameter Variant. The array
copy is stored in this PowerArray object.

METHOD COPYTOVARIANT (ByRef Variant) <6>

An exact copy is made of the SafeArray in this object. The array copy is stored in the
parameter Variant. Only arrays of data items which are Automation compatible may be
stored in a Variant. Data types which are PowerBASIC-Specific cannot be copied.

METHOD DIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <9>

Dimensions (creates) a new array. The VT& parameter is specified by one of the %VT
values listed in remarks. Subscripts& is the number of dimensions (1 to 4), Bounds is a
PowerBounds UDT which is prefilled with the lower bound and size of each dimension.
The optional parameter SIZE tells the size (in bytes) of each element. SIZE is only used
with %vt_stringfix, %vt_wstringfix, %vt_stringz, %vt_wstringz, and %vt_type.

METHOD ERASE () <10>

The contained array is destroyed and the object is then considered empty.

METHOD ELEMENTPTR (ByVal Index1&, Opt ByVal Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&)
AS LONG <11>

Calculates and retrieves the address of the data element specified by the Index
parameter(s).

METHOD ELEMENTSIZE () <12>

Retrieves the storage size (in bytes) of each data element of the array.

METHOD LBOUND (Subscript&) AS LONG <13>

Retrieves the lower bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD LOCK () <14>

Increments the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD MOVEFROMVARIANT (ByRef Variant) <17>

Transfers ownership of the SafeArray contained in the variant parameter to this
PowerArray object. The variant is then changed to %vt_empty.

METHOD MOVETOVARIANT (ByRef Variant) <18>

Transfers ownership of the SafeArray contained in this PowerArray object to the variant
parameter. The PowerArray object is then changed to empty.

METHOD REDIM (ByVal VT&, ByVal Subscripts&, ByRef Bounds,
OPTIONAL ByVal SIZE) <19>

REDIM allows the SafeArray to be erased and re-dimensioned to a new size. It is really
just a shortcut for the two-step process of ERASE, followed by DIM. The VT& parameter

PowerBASIC Compiler for Windows Version 10

1753 / 2126

is specified by one of the %VT values listed in remarks. Subscripts& is the number of
dimensions (1 to 4), Bounds is a PowerBounds UDT which is prefilled with the lower
bound and size of each dimension. The optional parameter SIZE tells the size (in bytes)
of each element. SIZE is only used with %vt_stringfix, %vt_wstringfix, %vt_stringz, %
vt_wstringz, and %vt_type.

METHOD REDIMPRESERVE (ByRef Bound) <20>

REDIMPRESERVE allows the least significant (rightmost) bound to be changed to a new
size. The remaining data items in the array are preserved. Bound is a PowerBound UDT
which is prefilled with the lower bound and size of the dimension to be changed.

METHOD RESET () <21>

All elements in the SafeArray are set back to their initial, default value. Numerics are set
to zero, strings to zero-length, variants to %vt_empty, and object variables are set to
nothing. The array memory is not deallocated.

METHOD SUBSCRIPTS () <22>

Retrieves the number of dimensions (subscripts) for this array.

METHOD UBOUND (Subscript&) AS LONG <23>

Retrieves the upper bound number for the dimension specified by the Subscript&
parameter. The first subscript is 1, the second is 2, etc.

METHOD UNLOCK () <24>

Decrements the lock count of the SAFEARRAY. Locks can be nested, but there must be
an equal number of Unlocks executed.

METHOD VALUEGET (ByRef GetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <25>

Calculates and retrieves the value of the array element specified by the Index
parameter(s). This value is then assigned to the GetVar variable. It is the programmer's
responsibility to ensure that the type of GetVar matches the type of the array precisely.

METHOD VALUESET (ByRef SetVar, ByVal Index1&, Opt ByVal
Index2&, _
 Opt ByVal Index3&, Opt ByVal Index4&) AS
LONG <26>

Assigns the value of the SetVar variable to the array element specified by the Index
parameter(s). It is the programmer's responsibility to ensure that the type of SetVar
matches the type of the array precisely.

METHOD VALUETYPE () <27>

Retrieves the %VT code which describes the data contained in this array. The %VT
codes are listed in the Remark section above.

See Also ARRAY ASSIGN, ARRAY DELETE, ARRAY INSERT, ARRAY SCAN, ARRAY SORT,
DIM, LBOUND, REDIM, UBOUND

POWERTIME object

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1754 / 2126

PowerTime Object
Purpose A PowerTime Object contains a date and time value, allowing easy calculations. The

internal representation emulates the Windows FILETIME structure as a quad-integer.
 This value represents the number of 100-nanosecond intervals since January 1, 1601. A
nanosecond is one-billionth of a second.

You create a PowerTime object the same way you create other objects, but using a
predefined internal class and a predefined internal interface.

LOCAL MyTime AS IPowerTime
LET MyTime = CLASS "PowerTime"

Once you have created a PowerTime object, you can manipulate it using the member
methods. The IPowerTime interface is DUAL -- member methods may be referenced
using either Direct or Dispatch form.

Remarks The Dispatch ID (DispID) for each member method is displayed within angle brackets.

An immediate use for the PowerTime Object is the built-in numeric equate %
PB_COMPILETIME. Each time you compile your program, this equate is filled with the
current date and time of the compilation in PowerTime binary format. You can use the
PowerTIME Class to convert it to a text equivalent for use in your application.

LOCAL Built AS IPowerTime
LET Built = CLASS "PowerTime"
Built.FileTime = %PB_COMPILETIME
MSGBOX Built.DateString
MSGBOX Built.TimeString

POWERTIME Methods

AddDays <1> (ByVal Days&)

Adds the specified number of days to the value of this object. You can subtract days by
using a negative number.

AddHours <2> (ByVal Hours&)

Adds the specified number of hours to the value of this object. You can subtract hours by
using a negative number.

AddMinutes <3> (ByVal Minutes&)

Adds the specified number of minutes to the value of this object. You can subtract
minutes by using a negative number.

AddMonths <4> (ByVal Months&)

Adds the specified number of months to the value of this object. You can subtract
months by using a negative number.

AddMSeconds <5> (ByVal Milliseconds&)

Adds the specified number of milliseconds to the value of this object. You can subtract
milliseconds by using a negative number.

AddSeconds <6> (ByVal Seconds&)

Adds the specified number of seconds to the value of this object. You can subtract
seconds by using a negative number.

AddTicks <7> (ByVal Ticks&)

Adds the specified number of ticks to the value of this object. You can subtract ticks by
using a negative number.

AddYears <8> (ByVal Years&)

Adds the specified number of years to the value of this object. You can subtract years by
using a negative number.

DateDiff <11> (PowerTime, Sign&, Years&, Months&, Days&)

PowerBASIC Compiler for Windows Version 10

1755 / 2126

The date part of the internal PowerTime object is compared to the date part of the
specified external PowerTime object. The time-of-day part of each is ignored. The
difference is assigned to the parameter variables you provide. Sign& is -1 if the internal
value is smaller. Sign& is 0 if the values are equal. Sign& is +1 if the internal value is
larger. The other parameters tell the difference as positive integer values. If parameters
are invalid, an appropriate error code is returned in OBJRESULT.

DateString <12> (OPT ByVal LCID&) AS String

Returns the Date component of the PowerTime object expressed as a

. The date is formatted for the locale, based upon the LCID& parameter. If LCID&
is zero, or not given, the default LCID for the user is substituted.
DateStringLong <13> (OPT ByVal LCID&) AS WString

Returns the Date component of the PowerTime object, expressed as a string, with a full
alphabetic month name. The date is formatted for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

Day <15> () AS Long

Returns the Day component of the PowerTime object. It is a

 value in the range of 1-31.
DayOfWeek <16> () AS Long

Returns the Day-of-Week component of the PowerTime object. It is a numeric value in the
range of 0-6 (representing Sunday through Saturday).

DayOfWeekString <17> (OPT ByVal LCID&) AS WString

Returns the Day-of-Week name of the PowerTime object, expressed as a string (Sunday,
Monday...). The day name is appropriate for the locale, based upon the LCID&
parameter. If LCID& is zero, or not given, the default LCID for the user is substituted.

DaysInMonth <18> () AS Long

Returns the number of days which comprise the month of the date of the PowerTime
object. This is a numeric value in the range of 28-31.

PROPERTY GET FileTime <20> () AS Quad

Returns a Quad-Integer value of the PowerTime object as a FileTime.

PROPERTY SET FileTime <20> (ByVal FileTime&&)

The FileTime Quad-Integer value specified by the parameter is assigned as the
PowerTime object value.

Hour <21> () as Long

Returns the Hour component of the PowerTime object. It is a numeric value in the range
of 0-23.

IsLeapYear <22> () as Long

Returns true/false (-1/0) to tell if the PowerTime object year is a leap year.

Minute <23> () as Long

Returns the Minute component of the PowerTime object. This is a numeric value in the
range of 0-59.

Month <24> () as Long

Returns the Month component of the PowerTime object. This is a numeric value in the
range of 1-12.

MonthString <25> () AS String

Returns the Month component of the PowerTime object, expressed as a string (January,
February...).

MSecond <26> () as Long

Returns the millisecond component of the PowerTime object. This is a numeric value in
the range of 0-999.

NewDate <27> (ByVal Year&, Opt ByVal Month&, Opt ByVal

PowerBASIC Compiler for Windows Version 10

1756 / 2126

Day&)

The date component of the PowerTime object is assigned a new value based upon the
specified parameters. The time component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

NewTime <28> (ByVal Hour&, Opt ByVal Min&, Opt ByVal
Sec&, Opt ByVal MSec&, Opt ByVal Tick&)

The time component of the PowerTime object is assigned a new value based upon the
specified parameters. The date component is unchanged. If parameters are invalid, an
appropriate error code is returned in OBJRESULT.

Now <29> ()

The current local date and time on this computer is assigned to this PowerTime object.

NowUTC <30> ()

The current Coordinated Universal date and time (UTC) is assigned to this PowerTime
object.

Second <31> () as Long

Returns the Second component of the PowerTime object. This is a numeric value in the
range of 0-59.

Tick <32> () as Long

Returns the Tick component of the PowerTime object. This is a numeric value in the range
of 0-999.

TimeDiff <33> (PowerTime, Sign&, Days&, OPT Hours&, OPT
Minutes&, OPT Seconds&, OPT MSeconds&&, OPT Ticks&&)

The internal PowerTime object is compared to the specified external PowerTime object.
 The difference is assigned to the parameter variables you provide. Sign& is -1 if the
internal value is smaller. Sign& is 0 if the values are equal. Sign is +1 if the internal value
is larger. The other parameters tell the difference as positive integer values. If you wish
to return the time difference in units smaller than days, fill the unwanted parameters with
BYVAL 0 and they will be ignored. For example:

ThisObject.TimeDiff(ThatObject, Sign&, BYVAL 0, BYVAL 0, Minutes&)

In the above, if the difference was precisely one day, the value 1440 would be assigned to
Minutes& (24 hours * 60 minutes). If parameters are invalid, an appropriate error code is
returned in OBJRESULT.

TimeString <34> () AS String

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm AM/PM.

TimeString24 <35> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm in 24-hour notation.

TimeStringFull <36> () AS WString

Returns the Time component of the PowerTime object expressed as a string. The time is
formatted as hh:mm:ss.mmm in 24-hour notation.

Today <38> ()

The current local date on this computer is assigned to this PowerTime object. This is
suitable for applications that work with dates only.

ToLocalTime <39> ()

The PowerTime object is converted to local time. It is assumed that the previous value
was in Coordinated Universal Time (UTC).

ToUTC <40> ()

The PowerTime object is converted to Coordinated Universal Time (UTC). It is assumed
that previous value was in local time.

Year <42> () as Long

PowerBASIC Compiler for Windows Version 10

1757 / 2126

Returns the Year component of the PowerTime object as a numeric value.

See also DATE$, DAYNAME$, MONTHNAME$, TIME$

PREFIX/END PREFIX statements

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PREFIX/END PREFIX statements
Purpose Executes a series of statements, each of which utilizes pre-defined source code.

Syntax PREFIX "source code"
 [additional statements]
END PREFIX

Remarks PREFIX/END PREFIX statements enclose a set of statements, each of which has the
same specified "source code" prepended. The "source code" (in languages which
support it) is usually required to be the name of an object variable. However, in
PowerBASIC, this definition has been expanded greatly to allow virtually any code to be
used. This reduces repetitive typing and reduces the risk of typing errors. For example:

PREFIX/END
PREFIX

Compiles as:

PREFIX
"MyObject."
 Init(xx)
 Sleep(2)
END PREFIX

MyObject.Init(xx)
MyObject.Sleep(2)

PREFIX "MyStruc."
 Height = 220
 Width = 345
 Color = %Blue

END PREFIX

MyStruc.Height = 220
MyStruc.Width = 345
MyStruc.Color = %Blue

PREFIX "ASM "
 Mov Eax, Ebx
 Mov Ecx, &H14
 IMul Eax, Esi
END PREFIX

ASM Mov Eax, Ebx
ASM Mov Ecx, &H14
ASM IMul Eax, Esi

If the "source code" prefix refers to an object variable or a UDT structure variable, be sure
it ends with a period (.) to reference members of that item. Otherwise, be sure it contains
whole words. Just as with macros and line continuations, you cannot put half a word on
one line, and half a word on another. For example, the following code is illegal and will
generate an exception:

PREFIX "PRI"
 NT #1, "Hello World"
END PREFIX

PREFIX/END PREFIX structures may not be nested.

PowerBASIC Compiler for Windows Version 10

1758 / 2126

See Also ASM ALIGN

PRINT# statement

PRINT# statement
Purpose Write data to a device or sequential file.

Syntax PRINT # fNum&
PRINT # fNum&, [ExpList] [SPC(n)] [TAB(n)] [,] [;] [...]
PRINT # fNum&, array$()

Remarks The first form of the PRINT# statement (with or without a trailing comma) outputs a blank
line to the file (i.e. a CR/LF only).

The second form of the PRINT# statement has the following parts, which may occur in
any order and quantity, within a single PRINT# statement:

fNum& Number used in an OPEN statement to open a sequential file. It can be
any numeric expression that evaluates to the number of an open file. Note
that the Number symbol (#) preceding fNum& is not optional.

ExpList and/or string expression(s) to be written to the file.
SPC(n) An optional function used to insert n spaces into the printed output.

Multiple use of the SPC argument is permitted in the PRINT statement, for
example, between expressions. Values of n less than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing ExpList.
Multiple use of the TAB argument is permitted in the PRINT, for example,
to position arguments in columns. Values of n less than 1 are ignored.

{;|,} Character that determines the position of the next character printed. A
semicolon (;) means the next character is printed immediately after the
last character; a comma (,) means the next character is printed at the
start of the next print zone. Print zones begin every 14 columns.

If the final argument of a PRINT# statement is a semicolon or comma, PRINT# will not
append the (default) CR/LF byte pair to the data as it is written to the file. For
example:

PRINT #1, "Hello";
PRINT #1, " world!"

...produces the contiguous string "Hello world!" in the disk file.

If you omit all arguments, the PRINT# statement prints a blank line in the file (i.e., a
CR/LF pair only), but you must include the comma after the file number. Because
PRINT# writes an image of the data to the file, you must delimit the data so it is
printed correctly. If you use commas as delimiters, PRINT# also writes the blanks
between print fields to the file. Also, remember that spacing of data displayed on a
text screen using monospaced characters may not work well when the data is
redisplayed in a graphical environment using proportionally spaced characters.

If you are not careful, you can waste a lot of disk space with unnecessary spaces, or
worse, put fields so close together that you cannot tell them apart when they are later
input with INPUT#. For example:

PRINT #1,1,2,3

sends:

1 2 3

to file #1. Because of the 14-column print zones between characters, superfluous
spaces are sent to the file. On the other hand:

PRINT #1,1;2;3

sends:

PowerBASIC Compiler for Windows Version 10

1759 / 2126

1 2 3

to the file, and you cannot read the separate numeric values from this record because
INPUT# requires commas as delimiters. The best way to delimit fields is to put a
comma between each field, like so:

PRINT #1, 1 "," 2 "," 3

which writes:

1, 2, 3

to the file, and wastes the least possible space and is easy to read with an INPUT#
statement. The WRITE# statement delimits fields with commas automatically.

PRINT# is advantageous when writing a single

 or on each line in a file. Use PRINT# followed by a comma but no arguments to
write a blank line (carriage return/linefeed) to a file:

PRINT #1, 'writes a blank line to file #1

array$() When PRINT# specifies an array name with empty parentheses, the entire
array is written to the disk file as text strings, with each element delimited
by a CR/LF ($CRLF or CHR$(13,10)). Numeric arrays are converted to the
ASCII text equivalent.

Restrictions Arrays of User-Defined Types (UDTs) may not be used with the array form of the PRINT#
statement.

See also GET, GET$, GET$$, INPUT#, LINE INPUT#, PUT, PUT$, PUT$$, WRITE#

Example ' Classic PRINT# statement example
SUB MakeFile
 ' opens a sequential file for output. Using PRINT #,
 ' it writes lines of different data types to the file.
 x& = FREEFILE
 OPEN "INPUT#.DTA" FOR OUTPUT AS #x&
 StringVariable$ = "I'll be back."
 IntegerVar% = 1000
 FloatingPoint! = 30000.12
 ' Write a line of text to the sequential file.
 PRINT #x&, StringVariable$
 PRINT #x&, IntegerVar%
 PRINT #x&, FloatingPoint!
 CLOSE #x& ' close file variable
END SUB ' end procedure MakeFile

SUB ReadFile
 ' Opens a sequential file for input. Using INPUT #,
 ' reads lines of different types of data from the file.
 x& = FREEFILE
 OPEN "INPUT#.DTA" FOR INPUT AS #x&
 RESET StringVariable$
 RESET IntegerVar%
 RESET FloatingPoint!
 ' Read a line of text from the sequential file.
 INPUT #x&, StringVariable$
 INPUT #x&, IntegerVar%
 INPUT #x&, FloatingPoint!
 CLOSE #x& ' close file variable
END SUB ' end procedure ReadFile

' Array mode PRINT# statement example
a$ = "Trevor, Bob, Bruce, Dave, Simon, Jenny"
DIM b$(1 TO PARSECOUNT(a$))
PARSE a$, b$()
ARRAY SORT b$()

PowerBASIC Compiler for Windows Version 10

1760 / 2126

OPEN "filename.txt" FOR OUTPUT AS #1
PRINT #1, b$()
CLOSE #1

PRINTER$ function

PRINTER$ function
Purpose Retrieve printer names and printer port names.

Syntax device$ = PRINTER$([NAME | PORT], printernum&)

Remarks printernum& specifies the printer number, from 1 to PRINTERCOUNT. If the NAME option
is specified in the first position, the printer name is returned. If the PORT option is
specified instead, the port name (e.g., LPT1) is returned.

See also LPRINT ATTACH, PRINTERCOUNT, XPRINT ATTACH

PRINTERCOUNT function

PRINTERCOUNT function
Purpose Retrieve the number of available (installed) printers.

Syntax ncPrinters& = PRINTERCOUNT

See also LPRINT ATTACH, PRINTER$, XPRINT ATTACH

Example FUNCTION PBMAIN
 LOCAL ix AS LONG, sPrinters AS STRING
 FOR ix = 1 TO PRINTERCOUNT
 sPrinters = sPrinters & PRINTER$(NAME, ix) & $CRLF
 NEXT
 MSGBOX sPrinters
END FUNCTION

PROCESS GET PRIORITY statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PROCESS GET PRIORITY statement
Purpose Retrieve the Priority Value for the current process.

Syntax PROCESS GET PRIORITY TO lResult&

Remarks PROCESS GET PRIORITY retrieves the priority value for the current process. The
retrieved priority value is assigned to the long or dword variable designated by lResult&.

The process priority value is one of the following:

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1761 / 2126

%IDLE_PRIORITY_CLASS = &H00000040

Indicates a process whose
 run only when the system is idle and are preempted by the threads of any process
running in a higher priority class. An example is a screen saver. The idle priority
class is inherited by child processes.

%NORMAL_PRIORITY_CLASS = &H00000020

Indicates a normal process with no special scheduling needs.

%HIGH_PRIORITY_CLASS = &H00000080

Indicates a process that performs time-critical tasks that must be executed
immediately for it to run correctly. The threads of a high-priority class process preempt
the threads of normal or idle priority class processes. An example is Windows Task
List, which must respond quickly when called by the user, regardless of the load on
the operating system. Use extreme care when using the high-priority class, because a
high-priority class CPU-bound application can use nearly all available cycles.

%REALTIME_PRIORITY_CLASS = &H00000100

Indicates a process that has the highest possible priority. The threads of a real-time
priority class process preempt the threads of all other processes, including operating
system processes performing important tasks. For example, a real-time process that
executes for more than a very brief interval can cause disk caches not to flush or
cause the mouse to be unresponsive.

See also PROCESS SET PRIORITY, THREAD GET PRIORITY, THREAD SET PRIORITY

PROCESS SET PRIORITY statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PROCESS SET PRIORITY statement
Purpose Sets the Priority Value for the current process.

Syntax PROCESS SET PRIORITY Priority&

Remarks PROCESS SET PRIORITY assigns a new priority value to the current process.

The process priority value must be one of the following:

%IDLE_PRIORITY_CLASS = &H00000040

Indicates a process whose
 run only when the system is idle and are preempted by the threads of any process
running in a higher priority class. An example is a screen saver. The idle priority
class is inherited by child processes.

%NORMAL_PRIORITY_CLASS = &H00000020

Indicates a normal process with no special scheduling needs.

%HIGH_PRIORITY_CLASS = &H00000080

Indicates a process that performs time-critical tasks that must be executed
immediately for it to run correctly. The threads of a high-priority class process preempt

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1762 / 2126

the threads of normal or idle priority class processes. An example is Windows Task
List, which must respond quickly when called by the user, regardless of the load on
the operating system. Use extreme care when using the high-priority class, because a
high-priority class CPU-bound application can use nearly all available cycles.

%REALTIME_PRIORITY_CLASS = &H00000100

Indicates a process that has the highest possible priority. The threads of a real-time
priority class process preempt the threads of all other processes, including operating
system processes performing important tasks. For example, a real-time process that
executes for more than a very brief interval can cause disk caches not to flush or
cause the mouse to be unresponsive.

See also PROCESS GET PRIORITY, THREAD GET PRIORITY, THREAD SET PRIORITY

PROFILE statement

PROFILE statement
Purpose Capture a profile report detailing total execution times of the Subs , Functions, Methods,

and Properties in a program and write it to a disk file.

Syntax PROFILE diskfilename$

Remarks At the time the PROFILE statement is executed, a standard sequential file of the
specified file name diskfilename$ is created. For the best results in executable files, the
PROFILE statement should be the last statement executed in the PBMAIN/WINMAIN
function.

The profile report contains a list of every procedure within the same module (EXE or DLL),
the number of times it was called, and the total elapsed time (in milliseconds) spent
executing all instances of the procedure. These statistics appear in the disk file in that
specific order on each line:

<Procedure Name>, <Call Count>, <Time mSec>

The profile report only describes procedures that physically reside within the module (EXE
or DLL) where the PROFILE statement is located. Procedures in an external EXE or DLL
are not profiled individually; however, the time taken to call other procedures and DLL/API
functions is included in the accumulated execution time of the calling procedure.

It is highly recommended that you close all other applications when profiling a
PowerBASIC application. When an application is being profiled, PowerBASIC must
generate a considerable amount of extra code to gather all of the needed information.
This extra code is generated whenever a valid PROFILE statement appears in your
program, regardless of whether it is actually executed.

For final production code, use the #TOOLS OFF metastatement is used to ensure the
highest performance levels.

Interpreting a profile report

The execution time of nested procedures needs to be understood in order to obtain a clear
"picture" of the execution times. For example, consider the following results:

Procedure calls time

MySubA, 1, 11016

MySubB, 100, 10014

At first glance, these results may suggest a "bottleneck" in MySubA since it took
MySubA 11016 milliseconds to execute just one call, whereas the average time for
MySubB was only about 100 milliseconds per call (10014 mSec / 100 calls = 100.14
mSec).

However, if MySubB is actually called by MySubA, the results need to be assessed
differently. For example, we could say: "MySubB took 10014 milliseconds of the 11016

PowerBASIC Compiler for Windows Version 10

1763 / 2126

milliseconds of the time spent in MySubA". Or to put it another way: "Of the 11016
milliseconds MySubA took to execute, 10014 milliseconds of that time was spent
executing MySubB".

Interpolating these results, it can be easily calculated that the code in MySubA only took
1002 milliseconds to run, yet this blossomed to 11016 milliseconds because of its
dependence on MySubB.

Therefore, improving the performance of MySubB would clearly improve the overall speed
of MySubA, and the profile results of both functions would be improved accordingly.

Restrictions Profiling is "enabled" when the first procedure that contains a PROFILE statement begins
execution. All procedures subsequently executed from within that procedure are profiled.

It is not possible to profile the actual PBMAIN or WINMAIN functions. If a PROFILE
statement occurs within PBMAIN/WINMAIN, all procedures that are called from
PBMAIN/LIBMAIN are profiled normally.

Therefore, if PBMAIN/WINMAIN contains code that requires profiling, simply rename the
function and create a new PBMAIN/WINMAIN function that immediately calls the renamed
function and then executes a PROFILE statement. See the example below.

For application code with nested and lengthy procedure calls, adding up the total number
of milliseconds in the last column of a PROFILE disk file will usually produce a number
that is far larger than the actual time it took your program to execute.

The time resolution of the profile report is limited by the Quantum supported by the
operating system (Win95/98 is 54 mSec, and WinNT/2000/XP is 10 mSec), and can be
influenced by any other applications which run concurrently. Nonetheless, PROFILE can
offer a great insight as to which code may be consuming the most CPU time, and where
optimization efforts should be concentrated.

See also #TOOLS, CALLSTK, CALLSTK$, CALLSTKCOUNT, FUNCNAME$, TRACE

Example SUB B1
 SLEEP 1000
END SUB

SUB A1
 SLEEP 250
 CALL B1
END SUB

FUNCTION PBMAIN
 CALL A1
 PROFILE "Profile Results.txt" ' Profile at end
END FUNCTION

Result A1, 1, 1252

B1, 1, 1002

PBMAIN, 1, 0

PROGID$ function

PROGID$ function
Purpose Return the unique alphanumeric PROGID

 (text) associated with a unique CLSID string of a COM object or component. A
COM object/component must include an alphanumeric PROGID string in order to be
used by PowerBASIC (and Visual Basic).

Syntax a$ = PROGID$(ClassID$)

Remarks A PROGID string is the unique alphanumeric text name associated with a given COM

PowerBASIC Compiler for Windows Version 10

1764 / 2126

object/component. For example, "Word.Application.8".

You convert the 16-byte (128-bit) binary class ID of a COM object/component into a
PROGID string with the PROGID$ function.

PROGID$ takes the (16-byte) binary string ClassID$ representing the GUID or UUID of a
COM object/component, and examines the system registry in order to determine the
PROGID string associated with the ClassID$ string. ClassID$ may be a dynamic string
or fixed-length string of at least 16 bytes, or (typically) a GUID variable.

If the ClassID$ cannot be found, or any error occurs in the lookup process, PROGID$ will
not set the ERR system variable, but will return an empty string.

PROGID$ is the complement to the CLSID$ function. Using these two functions together,
it is possible to extract the precise capitalization of the PROGID from the system
registry. See the example below.

See also DIM, CLSID$, GUID$, GUIDTXT$, INTERFACE (Direct), INTERFACE (IDBind),
ISINTERFACE, ISNOTHING, ISOBJECT, Just what is COM?, LET (with Objects),
METHOD, OBJECT, OBJACTIVE, OBJPTR, OBJRESULT, PROPERTY, What is an
object, anyway?

Example DIM MSWordClassID AS GUID
MSWordClassID = CLSID$("Word.Application")
IF TRIM$(MSWordClassID, $NUL) <> "" THEN
 'Success getting the CLSID$ of MSWord
 a$ = PROGID$(MSWordClassID)
 'a$ now contains "Word.Application.8"
 b$ = GUIDTXT$(MSWordClassID)
 'b$ holds "{000209FF-0000-0000-C000-000000000046}"
END IF

PROGRESSBAR GET POS statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PROGRESSBAR statement
Purpose Manipulate a PROGRESSBAR control. A ProgressBar is a rectangle that is gradually

filled, left to right, as some work progresses.

Syntax PROGRESSBAR GET POS hDlg, id& TO datav&
PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&
PROGRESSBAR SET POS hDlg, id&, position&
PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&
PROGRESSBAR SET STEP hDlg, id&, stepval&
PROGRESSBAR STEP hDlg, id& [,incramt&]

hDlg Handle of the dialog that owns the ProgressBar.

id& The control identifier assigned with CONTROL ADD PROGRESSBAR.

Remarks In each of the following samples and descriptions, the PROGRESSBAR control that is
the subject of the statement is identified by the handle of the dialog that owns the

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1765 / 2126

ProgressBar (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD PROGRESSBAR. To alter the color of the bar or the background, use
CONTROL SET COLOR.

PROGRESSBAR GET POS hDlg, id& TO datav&

The current position of the ProgressBar is retrieved and assigned to the variable
designated by datav&.

PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ProgressBar is retrieved and assigned to the variables designated
by LoDatav& and HiDatav&. Upon ProgressBar creation, the default range is 0 to 100.

PROGRESSBAR SET POS hDlg, id&, position&

The current position of the ProgressBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ProgressBar is specified to be from lolimit& to hilimit&. If lolimit& is
greater than hilimit&, the results are undefined.

PROGRESSBAR SET STEP hDlg, id&, step&

The default increment value to be used by PROGRESSBAR STEP is specified by the
stepval& parameter.

PROGRESSBAR STEP hDlg, id& [,incramt&]

The ProgressBar is "stepped". The current position is advanced by the step increment,
and the bar is redrawn to reflect the new position. If the optional incramt& expression is
included, the position is advanced by that amount instead. The default step increment is
10, and the default range is from 0 to 100.

See also Dynamic Dialog Tools, CONTROL ADD PROGRESSBAR, CONTROL SET COLOR,
CONTROL SET FONT

PROGRESSBAR GET RANGE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PROGRESSBAR statement
Purpose Manipulate a PROGRESSBAR control. A ProgressBar is a rectangle that is gradually

filled, left to right, as some work progresses.

Syntax PROGRESSBAR GET POS hDlg, id& TO datav&
PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&
PROGRESSBAR SET POS hDlg, id&, position&
PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&

PowerBASIC Compiler for Windows Version 10

1766 / 2126

PROGRESSBAR SET STEP hDlg, id&, stepval&
PROGRESSBAR STEP hDlg, id& [,incramt&]

hDlg Handle of the dialog that owns the ProgressBar.

id& The control identifier assigned with CONTROL ADD PROGRESSBAR.

Remarks In each of the following samples and descriptions, the PROGRESSBAR control that is
the subject of the statement is identified by the handle of the dialog that owns the
ProgressBar (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD PROGRESSBAR. To alter the color of the bar or the background, use
CONTROL SET COLOR.

PROGRESSBAR GET POS hDlg, id& TO datav&

The current position of the ProgressBar is retrieved and assigned to the variable
designated by datav&.

PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ProgressBar is retrieved and assigned to the variables designated
by LoDatav& and HiDatav&. Upon ProgressBar creation, the default range is 0 to 100.

PROGRESSBAR SET POS hDlg, id&, position&

The current position of the ProgressBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ProgressBar is specified to be from lolimit& to hilimit&. If lolimit& is
greater than hilimit&, the results are undefined.

PROGRESSBAR SET STEP hDlg, id&, step&

The default increment value to be used by PROGRESSBAR STEP is specified by the
stepval& parameter.

PROGRESSBAR STEP hDlg, id& [,incramt&]

The ProgressBar is "stepped". The current position is advanced by the step increment,
and the bar is redrawn to reflect the new position. If the optional incramt& expression is
included, the position is advanced by that amount instead. The default step increment is
10, and the default range is from 0 to 100.

See also Dynamic Dialog Tools, CONTROL ADD PROGRESSBAR, CONTROL SET COLOR,
CONTROL SET FONT

PROGRESSBAR SET POS statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1767 / 2126

PROGRESSBAR statement
Purpose Manipulate a PROGRESSBAR control. A ProgressBar is a rectangle that is gradually

filled, left to right, as some work progresses.

Syntax PROGRESSBAR GET POS hDlg, id& TO datav&
PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&
PROGRESSBAR SET POS hDlg, id&, position&
PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&
PROGRESSBAR SET STEP hDlg, id&, stepval&
PROGRESSBAR STEP hDlg, id& [,incramt&]

hDlg Handle of the dialog that owns the ProgressBar.

id& The control identifier assigned with CONTROL ADD PROGRESSBAR.

Remarks In each of the following samples and descriptions, the PROGRESSBAR control that is
the subject of the statement is identified by the handle of the dialog that owns the
ProgressBar (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD PROGRESSBAR. To alter the color of the bar or the background, use
CONTROL SET COLOR.

PROGRESSBAR GET POS hDlg, id& TO datav&

The current position of the ProgressBar is retrieved and assigned to the variable
designated by datav&.

PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ProgressBar is retrieved and assigned to the variables designated
by LoDatav& and HiDatav&. Upon ProgressBar creation, the default range is 0 to 100.

PROGRESSBAR SET POS hDlg, id&, position&

The current position of the ProgressBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ProgressBar is specified to be from lolimit& to hilimit&. If lolimit& is
greater than hilimit&, the results are undefined.

PROGRESSBAR SET STEP hDlg, id&, step&

The default increment value to be used by PROGRESSBAR STEP is specified by the
stepval& parameter.

PROGRESSBAR STEP hDlg, id& [,incramt&]

The ProgressBar is "stepped". The current position is advanced by the step increment,
and the bar is redrawn to reflect the new position. If the optional incramt& expression is
included, the position is advanced by that amount instead. The default step increment is
10, and the default range is from 0 to 100.

See also Dynamic Dialog Tools, CONTROL ADD PROGRESSBAR, CONTROL SET COLOR,
CONTROL SET FONT

PROGRESSBAR SET RANGE statement

Keyword Template
Purpose

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1768 / 2126

Syntax

Remarks

See also

Example

PROGRESSBAR statement
Purpose Manipulate a PROGRESSBAR control. A ProgressBar is a rectangle that is gradually

filled, left to right, as some work progresses.

Syntax PROGRESSBAR GET POS hDlg, id& TO datav&
PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&
PROGRESSBAR SET POS hDlg, id&, position&
PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&
PROGRESSBAR SET STEP hDlg, id&, stepval&
PROGRESSBAR STEP hDlg, id& [,incramt&]

hDlg Handle of the dialog that owns the ProgressBar.

id& The control identifier assigned with CONTROL ADD PROGRESSBAR.

Remarks In each of the following samples and descriptions, the PROGRESSBAR control that is
the subject of the statement is identified by the handle of the dialog that owns the
ProgressBar (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD PROGRESSBAR. To alter the color of the bar or the background, use
CONTROL SET COLOR.

PROGRESSBAR GET POS hDlg, id& TO datav&

The current position of the ProgressBar is retrieved and assigned to the variable
designated by datav&.

PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ProgressBar is retrieved and assigned to the variables designated
by LoDatav& and HiDatav&. Upon ProgressBar creation, the default range is 0 to 100.

PROGRESSBAR SET POS hDlg, id&, position&

The current position of the ProgressBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ProgressBar is specified to be from lolimit& to hilimit&. If lolimit& is
greater than hilimit&, the results are undefined.

PROGRESSBAR SET STEP hDlg, id&, step&

The default increment value to be used by PROGRESSBAR STEP is specified by the
stepval& parameter.

PROGRESSBAR STEP hDlg, id& [,incramt&]

The ProgressBar is "stepped". The current position is advanced by the step increment,
and the bar is redrawn to reflect the new position. If the optional incramt& expression is
included, the position is advanced by that amount instead. The default step increment is
10, and the default range is from 0 to 100.

See also Dynamic Dialog Tools, CONTROL ADD PROGRESSBAR, CONTROL SET COLOR,
CONTROL SET FONT

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1769 / 2126

PROGRESSBAR SET STEP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PROGRESSBAR statement
Purpose Manipulate a PROGRESSBAR control. A ProgressBar is a rectangle that is gradually

filled, left to right, as some work progresses.

Syntax PROGRESSBAR GET POS hDlg, id& TO datav&
PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&
PROGRESSBAR SET POS hDlg, id&, position&
PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&
PROGRESSBAR SET STEP hDlg, id&, stepval&
PROGRESSBAR STEP hDlg, id& [,incramt&]

hDlg Handle of the dialog that owns the ProgressBar.

id& The control identifier assigned with CONTROL ADD PROGRESSBAR.

Remarks In each of the following samples and descriptions, the PROGRESSBAR control that is
the subject of the statement is identified by the handle of the dialog that owns the
ProgressBar (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD PROGRESSBAR. To alter the color of the bar or the background, use
CONTROL SET COLOR.

PROGRESSBAR GET POS hDlg, id& TO datav&

The current position of the ProgressBar is retrieved and assigned to the variable
designated by datav&.

PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ProgressBar is retrieved and assigned to the variables designated
by LoDatav& and HiDatav&. Upon ProgressBar creation, the default range is 0 to 100.

PROGRESSBAR SET POS hDlg, id&, position&

The current position of the ProgressBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ProgressBar is specified to be from lolimit& to hilimit&. If lolimit& is
greater than hilimit&, the results are undefined.

PROGRESSBAR SET STEP hDlg, id&, step&

The default increment value to be used by PROGRESSBAR STEP is specified by the
stepval& parameter.

PROGRESSBAR STEP hDlg, id& [,incramt&]

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1770 / 2126

The ProgressBar is "stepped". The current position is advanced by the step increment,
and the bar is redrawn to reflect the new position. If the optional incramt& expression is
included, the position is advanced by that amount instead. The default step increment is
10, and the default range is from 0 to 100.

See also Dynamic Dialog Tools, CONTROL ADD PROGRESSBAR, CONTROL SET COLOR,
CONTROL SET FONT

PROGRESSBAR STEP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PROGRESSBAR statement
Purpose Manipulate a PROGRESSBAR control. A ProgressBar is a rectangle that is gradually

filled, left to right, as some work progresses.

Syntax PROGRESSBAR GET POS hDlg, id& TO datav&
PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&
PROGRESSBAR SET POS hDlg, id&, position&
PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&
PROGRESSBAR SET STEP hDlg, id&, stepval&
PROGRESSBAR STEP hDlg, id& [,incramt&]

hDlg Handle of the dialog that owns the ProgressBar.

id& The control identifier assigned with CONTROL ADD PROGRESSBAR.

Remarks In each of the following samples and descriptions, the PROGRESSBAR control that is
the subject of the statement is identified by the handle of the dialog that owns the
ProgressBar (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD PROGRESSBAR. To alter the color of the bar or the background, use
CONTROL SET COLOR.

PROGRESSBAR GET POS hDlg, id& TO datav&

The current position of the ProgressBar is retrieved and assigned to the variable
designated by datav&.

PROGRESSBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ProgressBar is retrieved and assigned to the variables designated
by LoDatav& and HiDatav&. Upon ProgressBar creation, the default range is 0 to 100.

PROGRESSBAR SET POS hDlg, id&, position&

The current position of the ProgressBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

PROGRESSBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ProgressBar is specified to be from lolimit& to hilimit&. If lolimit& is
greater than hilimit&, the results are undefined.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1771 / 2126

PROGRESSBAR SET STEP hDlg, id&, step&

The default increment value to be used by PROGRESSBAR STEP is specified by the
stepval& parameter.

PROGRESSBAR STEP hDlg, id& [,incramt&]

The ProgressBar is "stepped". The current position is advanced by the step increment,
and the bar is redrawn to reflect the new position. If the optional incramt& expression is
included, the position is advanced by that amount instead. The default step increment is
10, and the default range is from 0 to 100.

See also Dynamic Dialog Tools, CONTROL ADD PROGRESSBAR, CONTROL SET COLOR,
CONTROL SET FONT

PROPERTY / END PROPERTY statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PROPERTY/END PROPERTY statements
Purpose Define a PROPERTY procedure within a class.

Syntax [OVERRIDE] PROPERTY GET|SET name [<DispID>] [ALIAS "altname"] (var AS
type...) [THREADSAFE] [AS type]
 [statements]
 PROPERTY = expression
END PROPERTY

Remarks PROPERTY/END PROPERTY is used to define a PROPERTY procedure within a class.
Properties can only be called through a virtual function table on an active object. A
PROPERTY is a special type of METHOD, which is only used to set or retrieve data in an
object. While the work of a PROPERTY could readily be accomplished with a standard
METHOD, this distinction is convenient to emphasize the concept of encapsulation of
instance data within an object. There are two forms of PROPERTY procedures:
PROPERTY GET and PROPERTY SET. As implied by the names, the first form is used
to retrieve a data value from the object, while the second form is used to assign a value.
 Properties must be defined within a CLASS Block, and may only be declared within a
DECLARE CLASS Block. Properties are defined:

PROPERTY GET name [ALIAS "altname"] (BYVAL var AS type...) [THREADSAFE]
AS type
 [statements]
 PROPERTY = expression
END PROPERTY

PROPERTY SET name [ALIAS "altname"] (BYVAL var AS type...) [THREADSAFE]
 [statements]
 variable = value
END PROPERTY

When you use PROPERTY SET, the value to be assigned is passed to the right of an

PowerBASIC Compiler for Windows Version 10

1772 / 2126

equal sign, just like a normal assignment to a variable:

Properties can only be called through a virtual function table on an active object. Property
parameters may be of any variable type.

ObjVar.Prop1 = NewValue

A PROPERTY may be considered "Read-Only" or "Write-Only" by simply omitting one of
the two definitions. However, if both GET and SET forms are defined for a particular
property, all parameters and the property data type must be identical in both forms, and
they must be paired. That is, the PROPERTY SET must immediately follow the
PROPERTY GET.

Property parameters may be of any variable type.

You can access a PROPERTY GET with:

DIM ObjVar AS MyInterface
LET ObjVar = NEWCOM Prgid$
1. ObjVar.Prop1(param) TO var
2. CALL ObjVar.Prop1(param) TO var
3. var = ObjVar.Prop1(param)

You can access a PROPERTY SET with:

DIM ObjVar AS MyInterface
LET ObjVar = NEWCOM Prgid$
1. ObjVar.Prop1(param) = expr
2. CALL ObjVar.Prop1(param) = expr

Note that the choice of Property procedure is syntax directed. In other words, depending
upon the way you use the name, PowerBASIC will automatically decide whether the GET
or SET PROPERTY should be called.

In every Method and Property, PowerBASIC automatically defines a pseudo-variable
named ME, which is treated as a reference to the current object. Using ME, it's possible
to call any other Method or Property which is a member of the class: var =
ME.Method1(param)

Methods may be declared (using AS type...) to return a

, any of the types, a specific class of object variable (AS MyClass), a Variant, or a
user defined Type.

Type Libraries only support the following data types: BYTE, WORD, DWORD,
INTEGER, LONG, QUAD, SINGLE, DOUBLE, CURRENCY, OBJECT, STRING, and
VARIANT. If any Methods or Properties use data types not supported by Type
Libraries, you will receive a Error 581 - Type Library creation error, when
using the #COM TLIB ON metastatement.

In addition to the explicit return value which you declare, all COM Methods and Properties
have another "Hidden Return Value", which is cryptically named hResult. While the name
would imply a handle for a result, it's really not a handle at all, but just a long integer
value, used to indicate success or failure of the Method. After calling a Method or
Property, you can retrieve the hResult value with the PowerBASIC function OBJRESULT.
 The most significant bit of the value is known as the severity bit. That bit is 0 (value is
positive) for success, or 1 (value is negative) for failure. The remaining bits are used to
convey error codes and additional status information. If you call any object
Method/Property (either Dispatch or Direct), and the severity bit in the returned hResult is
set, PowerBASIC generates Run-Time error 99: Object error. When you create a Method
or Property, PowerBASIC automatically returns an hResult of zero, which implies
success. You can return a non-zero hResult value by executing a METHOD OBJRESULT
= expr within a Method, or PROPERTY OBJRESULT = expr within a Property.

Every method and property in a dual interface needs a positive, long integer value to
identify it. That integer value is known as a DispID (Dispatch ID), and it's used internally
by COM services to call the correct function on a Dispatch interface. You can optionally
specify particular DispID by enclosing it in angle brackets immediately following the

PowerBASIC Compiler for Windows Version 10

1773 / 2126

Method/Property name:

METHOD MethodOne <76> ()

If you don't specify a DispID, PowerBASIC will assign a random value for you. This is fine
for internal objects, but may cause a failure for published COM objects, as the DispID
could change each time you compile your program. It is particularly important that you
specify a DispID for each Method/Property in a COM Event Interface.

Override Properties

You can add to, or replace, the functionality of a particular method or property of an
inherited base class by coding a replacement which is preceded by the word OVERRIDE.
The overriding method must have the same name and signature (parameters, return value,
etc.) as the one it replaces.

BYREF and BYVAL parameters

BYVA
L

A copy of the data value is placed on the stack as a parameter. The copy is
destroyed when the PROPERTY ends. BYVAL parameters default to an IN
attribute, if no explicit direction is specified.

BYR
EF

A pointer to the data is placed on the stack as a parameter. This option may
not be used with an internal PROPERTY parameter.

Direction attributes

PROPERTY parameters also specify the direction in which data is passed between the
caller and callee:

IN Data is passed from the caller to the PROPERTY. Generally speaking, you'll
find that almost all IN parameters are passed BYVAL, and that is highly
recommended. However, it is possible to pass them BYREF if necessary.

OUT Data is passed from the PROPERTY back to the caller. All OUT parameters
must be passed BYREF.

INOU
T

Data is passed from the caller to the PROPERTY, and results are returned
to the caller in the same parameter. All INOUT parameters must be passed
BYREF.

In many cases, the direction of a parameter can be inferred directly from the
BYVAL/BYREF attribute (BYVAL=IN, BYREF=OUT). However, we recommend that you
include the direction attribute as an added means of self-documentation. Each METHOD
parameter name may be preceded by one of BYVAL/BYREF, and one of IN/OUT/INOUT,
in any sequence.

You should note an interesting rule of COM objects: IN parameters are read-only.
 They may not be altered.

IN parameters are considered by COM rules to be "constant" which may not be altered,
because they are values which are not returned to the caller. However, since this is not a
rule normally applied to a standard SUB or FUNCTION, it can allow programming bugs
which are most difficult to find and correct. For this reason, PowerBASIC automatically
protects you from this issue with no action needed on your part. When writing METHOD
or PROPERTY code in PowerBASIC, you may freely assign new values to BYVAL/IN
parameters. They will simply be discarded when the METHOD exits. Of course, not
every programming language protects you in this way, so you must use caution if you
create a COM METHOD in another compiler.

Using OPTIONAL/OPT

PROPERTY statements may specify one or more parameters as optional by preceding
the parameter with either the keyword

 (or the abbreviation OPT). When a parameter is declared optional, all subsequent
parameters in the declaration are optional as well, whether or not they specify an

PowerBASIC Compiler for Windows Version 10

1774 / 2126

explicit OPTIONAL or OPT directive.
VARIANT variables are particularly well suited for use as an optional parameter. If the
calling code omits an optional VARIANT parameter, (BYVAL or BYREF), PowerBASIC
(and most other compilers) substitute a variant of type %VT_ERROR which contains an
error value of %DISP_E_PARAMNOTFOUND (&H80020004). In this case, you can check
for this value directly, or use the ISMISSING function to determine whether the parameter
was physically passed or not.

When optional parameters (other than VARIANT) are omitted from the calling code, the
stack area normally reserved for those parameters is zero-filled.

If the parameter is defined as a BYVAL parameter, it will have the value zero. For TYPE
or UNION variables passed BYVAL, the compiler will pass a string of binary zeroes of
length SIZEOF(Type_or_union_var).

If the parameter is defined as a BYREF parameter, VARPTR(Varname) will equal zero;
when this is true, any attempt to use Varname in your code will result in a General
Protection Fault or memory corruption. You should use the ISMISSING() function first to
determine whether it is safe to access the parameter.

THREADSAFE Option Descriptor

If you include the option THREADSAFE, PowerBASIC automatically establishes a
semaphore which allows only one

 to execute it at a time. Others must wait until the first thread exits the
THREADSAFE procedure before they are allowed to begin.

See also #COM, CLASS, INSTANCE, INTERFACE (Direct), INTERFACE (IDBind), ISINTERFACE,
ISNOTHING, ISMISSING, ISOBJECT, Just what is COM?, LET (with Objects), ME,
METHOD, OBJACTIVE, OBJPTR, OBJRESULT, What is an object, anyway?

Example CLASS cMyClass
 INSTANCE Value AS LONG

 INTERFACE iMyClass
 INHERIT IDISPATCH

 PROPERTY GET Value <1> AS LONG
 PROPERTY = Value
 END PROPERTY

 PROPERTY SET Value <1> (BYVAL NewValue AS LONG)
 Value = NewValue
 END PROPERTY

 END INTERFACE
END CLASS

PUT statement

PUT statement
Purpose Write a record to a random-access file or a variable/array to a binary file.

Syntax Random-Access and Binary files:
PUT [#] FileNum&, [RecPos], [ABS] Var
PUT [#] FileNum& [, RecPos]
Binary files:
PUT [#] FileNum&, [RecPos], Arr()

Remarks If a

PowerBASIC Compiler for Windows Version 10

1775 / 2126

 variable is specified as Var, the CHR mode of the variable determines whether the
data is written as ANSI or WIDE characters. That is, ANSI string variables are
always written as 1-byte characters, while WIDE string variables are written as 2-byte
WIDE characters. The data is always written to the file in the same format as it
appears in the variable.

FileNum& The file number under which the file was opened.

RecPos Identifies the position in the file to write the data. If RecPos is greater than the number of
existing records or bytes in the file, the file is extended to the appropriate length, and the
record is written at the specified position.

For random access files, RecPos is the record to be written, in the range 1 to (2 6̂3)-1.
If RecPos is omitted, the next record in sequence (following the one specified by the most
recent GET, PUT or SEEK) is written. If the file was only just opened, the first record is
written.

For binary files, RecPos is the starting byte position where VarName should be written.
The default byte position is 1, unless the BASE = 0 clause was used in the OPEN
statement. RecPos may be no larger than 2 6̂3-1. RecPos is optional. If it is omitted,
PowerBASIC uses the current file pointer position.

Var The name of a variable to write to the file. VarName can specify a simple variable, an
element in an array, or a variable of User-Defined Type (UDT).

When writing a dynamic string to a random access file, PUT writes a 2-byte descriptor
containing the string's length, before the actual string data. This descriptor reduces the
available space in a record by two bytes. The descriptor is written as a WORD value. If
Var contains more characters than record, Var is truncated at record length less two
bytes, and the descriptor is written to reflect the truncated string size.

When writing a dynamic string to a binary file, PUT only writes the actual string data: no
length descriptor is written.

PUT is complementary to GET; it writes one record to a file. It is possible to PUT to
records out of contiguous order, as in:

PUT #1, 1, MyVar
PUT #1, 100, MyVar

which creates a random-access file 100 records long. The data in records 2 through 99,
however, are undefined until you explicitly PUT something there. PUT writes the contents
of Var to the specified record or byte positions.

(no VarName) When the second form of PUT is used (without a VarName source string), PUT writes the
data from an internal buffer into the file at the point where the file pointer indicates. This
data must first be assigned to the file buffer using FIELD string variables.

ABS When PUT is used to write a dynamic string to a random file, it normally precedes the
actual data with a two-byte binary length Word to define the number of valid bytes in the
record. If you precede the variable name with ABS (i.e., PUT #1, , ABS x$), no length
Word is written: only the actual data, subject to the defined random record length. This
offers greater compatibility with the actual operation of other versions of BASIC, such as
PowerBASIC for DOS.

The record length in a random access file is limited to 32768 bytes, in order to
ensure consistent behavior across all Win32 platforms.

Arr() When PUT is used on a binary file, the entire array specified by Arr() is written to the file.
With dynamic strings, the file is written in the PowerBASIC and/or VB packed string
format. If the string is shorter than 65535 bytes, a 2-byte length Word is followed by the
string data. Otherwise, a 2-byte value of 65535 is followed by a length Double-word
(DWORD), then finally the string data.

With other data types, the entire data area is written as a single block.In either case, it is
presumed the file will be read with the complementary GET Array statement.

See also CSET, CSET$, FIELD, GET, GET$, GET$$, LOF, LSET, PUT$, PUT$$, RSET, SETEOF,

http://www.powerbasic.com/products/pbdos/

PowerBASIC Compiler for Windows Version 10

1776 / 2126

TYPE, WRITE#

Example ' Random-access PUT example
TYPE TestRec
 uName AS STRING * 10
 uNumber AS INTEGER
END TYPE

DIM Rec AS TestRec, Record AS QUAD

OPEN "RANDOM.DTA" FOR RANDOM AS #1 LEN = LEN(TestRec)

FOR Record = 1 TO 100
 Rec.uName = "Joe" + STR$(Record)
 Rec.uNumber = Record
 PUT #1,Record, Rec
NEXT Record

CLOSE #1

' Binary PUT Array example
DIM TheData$(1 TO count&)
TheData$(1) = "text"
' Assign more array values...
OPEN "Data file to write.dat" FOR BINARY AS #1
PUT #1, 1, TheData$()
CLOSE #1

PUT$ statement

PUT$ statement
Purpose Writes an ANSI

 to a file opened in binary mode.
Syntax PUT$ [#] filenum&, StrgExpr

Remarks PUT$ first evaluates the string expression. If it results in a WIDE Unicode string, it is
converted to ANSI byte characters. PUT$ then writes the ANSI string to the file specified
by FileNum& at the current file pointer position. GET$, PUT$, and SEEK provide a low-
level alternative to sequential and random-access file processing techniques, allowing you
to deal with files on a byte by byte basis.

File filenum& must have been opened in binary mode. Bytes are written starting at the
current file pointer position, which can be set with the SEEK statement. When the file is
first opened, the pointer is at the beginning of the file (position 1, by default, unless
BASE=0 was specified in the OPEN statement). After PUT$, the file pointer position is
automatically advanced to the point which immediately follows the just written data. You
can use

 to retrieve or change the file pointer position.
Filenum& The file number under which the file was opened.

StrgExpr A string expression which is written to the file.

See also GET, GET$, GET$$, OPEN, PUT, PUT$$, SEEK function, SEEK statement, SETEOF,
WRITE#

Example ' Open a binary file and write the alphabet to it
OPEN "SEEK.DTA" FOR BINARY AS #1 BASE = 1
FOR I& = ASC("A") TO ASC("Z") ' 65 TO 90
 PUT$ #1, CHR$(I&)

PowerBASIC Compiler for Windows Version 10

1777 / 2126

NEXT
CLOSE #1

PUT$$ statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PUT$$ statement
Purpose Writes a WIDE Unicode

 to a file opened in binary mode.
Syntax PUT$$ [#] filenum&, StrgExpr

Remarks PUT$$ first evaluates the string expression. If it results in an ANSI string, it is converted
to WIDE Unicode characters. PUT$$ then writes the WIDE string to the file specified by
FileNum& at the current file pointer position. GET$$ and PUT$$ provide a low-level
alternative to sequential and random-access file processing techniques, allowing you to
deal with files on a character by character basis.

File filenum& must have been opened in binary mode. Characters are written starting at
the current file pointer position, which can be set with the SEEK statement. When the
file is first opened, the pointer is at the beginning of the file (position 1, by default, unless
BASE=0 was specified in the OPEN statement). After PUT$$, the file pointer position is
automatically advanced to the point which immediately follows the just written data. You
can use

 to retrieve or change the file pointer position.
Filenum& The file number under which the file was opened.

StrgExpr A string expression which is written to the file.

See also GET, GET$, GET$$, OPEN, PUT, PUT$, SEEK function, SEEK statement, SETEOF,
WRITE#

RAISEEVENT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

RAISEEVENT statement
Purpose Call Event Handler code.

PowerBASIC Compiler for Windows Version 10

1778 / 2126

Syntax RAISEEVENT ObjVar.Method()

Remarks The RAISEEVENT statement is used to call event handler code from an Event Source.
 RAISEEVENT may only appear within a class which declares the Event Source
interface. The concept of RAISEEVENT is very similar to the CALL statement, but it may
only be used to execute event procedures:

RaiseEvent Status.Progress(10) ' advise the code is 10% done

It should be noted that RAISEEVENT does not reference an object variable at all,
because it calls any and all Direct, V-Table event handlers which are currently subscribed
to these events. Instead, it references the interface name (in this case "Status"), followed
by the name of the Event Method to be executed (in this case "Progress"). If your
program is using a Dispatch event handler you should use the OBJECT RAISEEVENT
statement instead.

See also CLASS, EVENT SOURCE. EVENTS, INTERFACE (Direct), INTERFACE (IDBind), Just
what is COM?, EVENTS, OBJECT RAISEEVENT, What is an object, anyway?, What are
Connection Points?

Example See the EVENT SOURCE statement for an example of RAISEEVENT.

RANDOMIZE statement

RANDOMIZE statement
Purpose Seed the random number generator.

Syntax RANDOMIZE [number]

Remarks number is a seed value that may be any

 type. If number is not specified, the value returned by the TIMER function is used.
Values returned by the random number generator (RND) depend on an initial seed value.
For a given seed value, RND always returns the same sequence of values, yielding a
predictable pseudo-random number sequence. Thus, any program that depends on RND
will run exactly the same way each time unless a different seed is given.

The default seed can be duplicated with the following statement:

RANDOMIZE CVS(CHR$(255,255,255,255))

Note that each thread has its own, independent random number seed.

See also RND, TIMER

Example ' Seed generator and get 5 random values
RANDOMIZE 1.5!
FOR I& = 1 TO 5
 Table(I&) = RND(1,100)
NEXT I&

' Reseeding with the same starting value
' means you get the same sequence of values!
RANDOMIZE 1.5!
FOR I& = 1 TO 5
 Table(I&) = RND(1,100)
NEXT I&

' Now reseed from the TIMER and we get
' a completely different set of values:
RANDOMIZE TIMER
FOR I& = 1 TO 5
 Table(I&) = RND(1,100)
NEXT I&

PowerBASIC Compiler for Windows Version 10

1779 / 2126

READ$ function

READ$ function
Purpose Retrieve

 data from a local DATA list.
Syntax value$ = READ$(n%)

Remarks The READ$ function is used to retrieve a specified string data item from a local DATA list,
and returns the data in string format. READ$ offers a simple technique for random-
access of local DATA.

n% An

 expression, constant, or variable, which specifies an index position in the local DATA
list. n% = 1 for the first data item, n% = 2 for the second, and so on. READ$
accesses the DATA statements in the order in which they appear in the source
program, from left to right.
If n% is greater than DATACOUNT, READ$ returns an empty string, but no run-time error
occurs.

value$ READ$ places the DATA string into value$.

If the target DATA statement is enclosed in quotes, READ$ preserves any leading or
trailing spaces that it may contain; otherwise, READ$ trims leading and trailing spaces
and returns a trimmed string. See DATA for more information on data item formatting.

If numeric data needs to be stored in DATA statements and retrieved with READ$, the
VAL function can be used to convert the return values from READ$ into numeric values.

Restrictions There is a limit of 64 Kilobytes and 16384 separate data items per Sub, Function,
Method, or Property, and it is not possible to read DATA from outside of the scope of
current procedure. Restrictions apply to using colon and underscore characters in DATA
statements - see DATA for more information.

See also DATA, DATACOUNT

Example ' The following returns the day of the week string.
FUNCTION WeekDayName$(BYVAL DayNum%)
 IF DayNum% < 1 OR DayNum% > DATACOUNT THEN
 WeekDayName$ = ""
 ELSE
 WeekDayName$ = READ$(DayNum%)
 END IF
 DATA Sun, Mon, Tue, Wed, Thu, Fri, Sat
END FUNCTION

REDIM statement

REDIM statement
Purpose Used at the

 to declare dynamic array variables and allocate, deallocate, or reallocate storage
space.

Syntax REDIM [PRESERVE] array([subscripts]) [AS type] [AT address] [, ...]

Remarks The REDIM statement allows dynamic arrays (including string arrays) to be erased and
re-dimensioned. It is really just a shortcut for the two-step process ERASE x(), followed
by DIM x(). REDIM uses the same basic syntax as the DIM statement.

PowerBASIC Compiler for Windows Version 10

1780 / 2126

array is the name of the array, and subscripts is either a group of single integers (one per
dimension of a particular array), or a group of ranges (REDIM arr1(5 TO 25, 1 TO 4, 3 TO
8)), separated by commas.

AS type The AS type clause is optional, but recommended for the purposes of clarity.

AT address The AT address clause indicates the array is to be an absolute array. Absolute arrays are
not reset by the REDIM statement, nor are they reset when the
Sub/Function/Method/Property exits, but they can be reset with the RESET statement.
See the discussion in the DIM topic for more information on absolute arrays.

PRESERVE The PRESERVE keyword tells the compiler to preserve the values of all existing elements
in the array. For example, if you REDIM PRESERVE an array with 10 elements to 20
elements, the first 10 elements will retain their original value. The remaining 10 elements
will be initialized to zero (or null/empty in the case of a string array). If the array is
resized to be smaller, the specified number of elements is preserved, and the remaining
elements are discarded. When PRESERVE is specified, you can resize only the
upper boundary of the last (outer) dimension of the array. Arrays of only one
dimension can always be resized.

In a procedure, you can use REDIM to re-dimension an array that was passed as an
argument. That is, when the complete array was passed to the procedure:

CALL RemoveDuplicates(CustomerNames$())
' more code here
SUB RemoveDuplicates(a$())
 ' Remove duplicate array values
 REDIM PRESERVE a$(1 TO NewCount&)
END SUB

REDIM may also be used to alter the size of Static, Global, and Instance arrays.

When used with no subscript parameters, REDIM will erase all contents of an array and
deallocate the memory used:

REDIM xyz&() ' Equivalent to ERASE xyz&()

Restrictions When PRESERVE is specified, only the upper bound of the last (outer) dimension
may be redefined.

When a REDIM statement is executed, the location of the array elements always moves
in memory; however, the array's Descriptor location (VARPTR(arrayname()) will remain
fixed at the original location. When using REDIM, your code must be sure to refresh any
pointers that target the array data memory locations (STRPTR(arrayname(subscript)) for
dynamic string arrays, and VARPTR(arrayname(subscript)) for all other array types).

While PowerBASIC supports lower boundary values that are non-zero, PowerBASIC
generates the most efficient code if the lower boundary parameter is omitted (i.e., the
array uses the default lower boundary of zero).

See also ARRAYATTR, DIM, ERASE, RESET

Example DIM MyData(40), Names$(100)
REDIM MyData(5 TO 50), Names$(10)

REGEXPR statement

REGEXPR statement
Purpose Scan a

 for a matching "wildcard" or regular expression.
Syntax REGEXPR mask$ IN target$ [AT start&] TO iPos& [, iLen&]

Remarks REGEXPR scans target$ for a matching expression specified in mask$. If found, it
returns the position of the match in the iPos& variable (indexed to the first character
position), and optionally, the length of the matching expression in iLen&.

PowerBASIC Compiler for Windows Version 10

1781 / 2126

If a match is made, the iPos& and iLen& results can be immediately used with
subsequent string operations such as MID$ to extract the matched portion of target$,
and/or to continue the search through the remainder of target$. If no matching expression
is found, both iPos& (and iLen& if specified) are set to zero.

If specified, the search begins at the character position target& in target$; however, start&
must be between 1 and the length of target$. If start& is less than 1, the start&
parameter is ignored.

While it is possible for more than one match to be found in a particular target string,
REGEXPR first selects one or more matches which start at the leftmost possible position,
then returns the longest of those. Use the \s special escape operator to force a match on
the shortest match (see below).

The ̂and $ operators match on both the actual string start/end, or the previous/next
embedded line-delimiter characters (CHR$(13,10) or $CRLF) in target$. This enables
REGEXPR to treat the target$ string as containing a set of "logical lines" of text. In this
situation, the start& character position plays a crucial role in identifying which logical
delimited line that should be examined by REGEXPR.

By default, search expressions are assumed to be case-insensitive, so capitalization is
ignored.

mask$ The regular (wildcard) expression specified in mask$ may contain a combination of
standard text characters and/or the metacharacters which are defined as follows:

Char Definition
. (period) Matches any character, except

the end-of-line.

^ (caret) Matches the actual beginning-of-
line position or the preceding line-delimiter
character pair (CHR$(13,10) or $CRLF),
as taken from the start& character
position. The line-delimiter characters
themselves are not included in the iLen&
result. (also see []̂ below for usage
within a character class definition).

$ (dollar) Matches the end-of-line position,
which may be either the first line-delimiter
character pair (CHR$(13,10) or $CRLF)
that is encountered in the search to the
right of the start& position, or the actual
end of the target$ string, whichever occurs
first. The line-delimiter characters
themselves are not included in the iLen&
result.

| (stile) Specifies alternation (the OR
operator), so that an expression on either
side can match. Precedence is from left-
to-right, as encountered in the expression.

? (question mark) Specifies that zero or
one match of the preceding sub-pattern is
allowed. Cannot be used with a Tag.

+ (plus) Specifies that one or more matches
of the preceding sub-pattern are allowed.
Cannot be used with a Tag.

* (asterisk) Specifies that zero or more
matches of the preceding sub-pattern are
allowed. Cannot be used with a Tag.

PowerBASIC Compiler for Windows Version 10

1782 / 2126

Character classes
[] (square brackets) Identifies a user-defined class of characters, any of which will

match: [abc] will match a, b, or c. Only three special metacharacters are
recognized within a class definition, the caret ̂for complemented characters, the
hyphen - for a range of characters, or one of the following \ backslash escape
sequences:

 \\ \- \] \e \f \n \q \r \t \v \x##
 Any other use of a backslash within a class definition yields an undefined

operation that should be avoided.
 [-] (hyphen) The hyphen identifies a range of characters to match. For example,

[a-f] will match a, b, c, d, e, or f.
 Characters in an individual range must occur in the natural order as they appear

in the character set. For example, [f-a] will match nothing.
 Lists of characters, and one or more ranges of characters, may be intermixed in

a single class definition. The start and end of a range may be specified by a
literal character, or one of the \ backslash escape sequences:

 \\ \- \] \e \f \n \q \r \t \v \x##
 Any other use of a backslash within a class definition yields an undefined

operation.
 Multiple ranges in a class are valid. For example, [a-d2-5] matches a, b, c, d, 2,

3, 4, or 5.
 When the hyphen is escaped, it is treated as a literal. For example, [a\-c] is a

list, not a range, and matches a, -, or c due to the \ backslash escape
sequence.

[]̂ (caret) When the caret appears as the first item in a class definition, it identifies
a complemented class of characters, which will not match. For example, [âbc]
matches any character except a, b, or c.

 A range can also be specified for the complemented class. For example, [â-z]
matches any character except a through z.

 A caret located in any position other than the first is treated as a literal character.
Tags/sub-patterns
() (parentheses) Parentheses are used to match a Tag, or sub-pattern, within the

full search pattern, and remember the match. The matched sub-pattern can be
retrieved later in the mask (or in a replace operation with REGREPL), with \01
through \99, based upon the left-to-right position of the opening parentheses.

 Parentheses may also be used to force precedence of evaluation with the
alternation operator. For example, "(Begin)|(End)File" would match either
"BeginFile" or "EndFile", but without the Tag designations, "Begin|EndFile" would
only match either "BeginndFile" or "BegiEndFile".

Escaped characters
\ (backslash). The escape operator (single-character quote). The following

character will be treated as a literal value rather than being interpreted as a
special character. Note that the character following the backslash must actually
be a special character, as follows:

\b A word boundary. The start or end of a word, where a word is defined as one
or more characters that include an alphabetic character (A-Z or a-z), a numeric
character (0-9), and an underscore. For example, "abc_123" is considered a
single word and "abc-123" is considered two words.

\c Case-sensitive search. Without the \c operator, the default is to ignore case
when matching. Unlike some other implementations of regular expressions,
case-insensitivity is recognized in all operations, even a range of characters such
as "[6-Z]". The \c operator may appear at any position in the mask.

\e Escape character: CHR$(27) or $ESC.
\f Formfeed character: CHR$(12) or $FF.
\n Linefeed (or new-line) character: CHR$(10) or $LF.
\q Double-quote mark ("): CHR$(34) or $DQ. \q is included for ease of inclusion

within a literal string. For example: "\qHello\q".
\r Carriage-return character: CHR$(13) or $CR.

PowerBASIC Compiler for Windows Version 10

1783 / 2126

\s Shortest match character: The \s flag causes the shortest matching string to
be returned, rather than the longest (the default). For example, when searching
for the mask "abc.*abc" in "abcdabcabc", the default setting would return
position 1 and length 10. With the \s switch set, it returns position 1 and length
7. This option may cause a slight increase in processing time. The \s flag must
appear at the beginning of the mask string.

\t Horizontal tab character: CHR$(9) or $TAB.
\v Vertical tab character: CHR$(11) or $VT.
\x## Hex character code: Indicates that an ASCII code follows, given by two

hexadecimal digits. For example, \xFF = CHR$(&HFF) (which is equivalent to
CHR$(255)). XX must be in the range 0 through 255.

Restrictions To maximize performance, avoid overuse of the *, + and ? metacharacters.

See also REGREPL, Online Regular Expression Tester

Example a$ = "please send email to support@powerbasic.com"
b$ = "([a-z0-9._/+-]+)(@[a-z0-9.-]+)"
REGEXPR b$ IN a$ TO position&, length&
email_address$ = MID$(a$, position&, length&)

a$ = "Amount owed: $42.75 and is overdue!"
b$ = "\$[0-9.,]+"
REGEXPR b$ IN a$ TO position&, length&
amount$ = MID$(a$, position&, length&)

a$ = "Open 24 Hours"
b$ = "[^a-z]+"
REGEXPR b$ IN a$ TO position&, length&
hours$ = MID$(a$, position&, length&)

a$ = "Line 1" + $CRLF + "Line 2" + $CRLF
b$ = "([0-9])$"
RESET position& : RESET length&
DO
 position& = position& + length&
 REGEXPR b$ IN a$ AT position& TO _
 position&, length&
 c$ = "Match at " + STR$(position&)
LOOP WHILE position&

REGISTER statement

REGISTER statement
Purpose To define Register variables, which are local to a Sub, Function, Method, or Property. The

REGISTER statement provides an optimization hint to the compiler.

Syntax REGISTER variable [AS type] [, variable [AS type]]

Remarks The REGISTER statement is used to define certain local variables as Register variables -
that is, variables which are stored directly in specific CPU registers, rather than in
application memory. Since data in a CPU register can be accessed much faster, and
with less code, Register variables are valuable optimization tools.

Register variables are always local to the procedure where they appear. In the current
version of PowerBASIC, there may be up to two integral-class variables
(Word/Dword/Integer/Long) and up to four Extended-precision floats. It is possible that
future versions of the compiler will change these limits, so you may declare an unlimited
number of them. Any "extra" Register variables are automatically reclassified as locals
during compilation.

http://www.powerbasic.com/bin/regexpr.exe?from=pbwin

PowerBASIC Compiler for Windows Version 10

1784 / 2126

The REGISTER statement allows you to choose which variables will be classified as
Register variables. If you do not make the choice in a particular procedure, the compiler
will attempt to choose for you. By default, the compiler will always assign any integral-
class local variables available. Extended-precision float variables will be automatically
assigned only in Functions that contain no external Function calls.

Integral class Register variables are most efficient for variables that are updated or used
often, such as For/Next loop counter variables, and variables that are used repeatedly as
array indexes.

Floating-point Register variables should generally be chosen with a bit more caution,
since the compiler must generate code to save and restore them to conventional memory
around each call to a procedure. In some rather rare cases, it is possible that floating-
point Register variables could actually reduce execution speed. However, they are
extremely valuable with intensive floating-point calculations in Functions that have few
references to other procedures.

Due to the design of FPUs (floating point units), and the instruction sets available, the first
float register variable declared in your program has far more optimization possibilities than
the others do. Use care in choosing the variable which is used most within floating-point
expressions (that is, on the right side of the '=' assignment operator), in order to gain the
greatest advantage in execution speed. Also, remember it is typically valuable to assign
floating-point constants to Register variables when they are used in repetitive or intensive
calculations.

You must use care with Inline Assembler floating-point opcodes in Functions that enable
Register variables. Floating-point Register variables may occupy up to four of the FPU
registers, so you must limit your use of the x87 registers to the remaining four. Further,
floating-point Register variables may never be referenced by name from Inline Assembler
code, as the compiler cannot always track the register locations with absolute certainty.

Restrictions VARPTR cannot be used on a Register variable.

PowerBASIC transparently prevents the automatic register conversion of the variable used
in the TO clause of the DIALOG SHOW MODAL and DIALOG SHOW MODELESS
statements. If the target variable is explicitly declared as a register variable, PowerBASIC
raises a compile-time Error 491 ("Invalid register variable"). This is necessary as the
result values stored in such variables may be assigned from the context of other
procedures, and this may only occur with a memory variable.

See also #REGISTER, Optimizing your code

Example SUB ReindexDatabase() AS LONG
 #REGISTER NONE ' I'll choose my own register vars.
 REGISTER i AS LONG
 REGISTER fVar AS EXT
 ' do something
END FUNCTION

REGREPL statement

REGREPL statement
Purpose Scan a

 for a matching "wildcard" or regular expression, and replace it with a new value.
Syntax REGREPL mask$ IN target$ WITH repl$ [AT start&] TO iPos&, newtarget$

Remarks REGREPL scans target$ for a matching regular expression specified in mask$. If a
match is made, REGREPL replaces the matched text with the contents of repl$, and
assigns the new text to newtarget$. Additionally, REGREPL sets iPos& to reflect the
character position immediately following the matched text in newtarget$, so the operation
can be repeated, if desired.

PowerBASIC Compiler for Windows Version 10

1785 / 2126

If no matching expression is found, iPos& will be set to zero, and newtarget$ receives a
direct copy of target$. In either case, target$ remains unchanged.

mask$ may contain literal characters and metacharacters (wildcards) to form the regular
expression, and repl$ may only contain literal characters and tags specified by \##. Each
tag from \01 through \99 is replaced by the text actually matched for that tag. \00 is
replaced by the entire matched text.

If specified, the search begins at the character position start& in target$; however, start&
must be between 1 and the length of target$. If start& is less than 1, the start&
parameter is ignored.

While it is possible for more than one match to be found in a particular target string,
REGREPL first selects one or more matches which start at the leftmost possible position,
then returns the longest of those. Use the \s special escape operator to force a match on
the shortest match (see below).

The ̂and $ operators match on both the actual string start/end, or the previous/next
embedded line-delimiter characters (CHR$(13,10) or $CRLF) in target$. This enables
REGREPL to treat the target$ string as containing a set of "logical lines" of text. In this
situation, the start& character position plays a crucial role in identifying which logical
delimited line that should be examined by REGREPL.

By default, search expressions are assumed to be case-insensitive, so capitalization is
ignored.

mask$ The regular (wildcard) expression specified in mask$ may contain a combination of
standard text characters and/or the metacharacters which are defined as follows:

Char Definition
. (period) Matches any character, except

the end-of-line.
^ (caret) Matches the actual beginning-of-

line position or the preceding line-delimiter
character pair (CHR$(13,10) or $CRLF), as
taken from the start& character position.
The line-delimiter characters themselves
are not replaced by repl$. (also see []̂
below for usage within a character class
definition).

$ (dollar) Matches the end-of-line position,
which may be the either the first line-
delimiter character pair (CHR$(13,10) or
$CRLF) that is encountered in the search
to the right of the start& position, or the
actual end of the target$ string, whichever
occurs first. The line-delimiter characters
themselves are not replaced by repl$.

| (stile) Specifies alternation (the OR
operator), so that an expression on either
side can match. Precedence is from left-
to-right, as encountered in the expression.

? (question mark) Specifies that zero or one
match of the preceding sub-pattern is
allowed. Cannot be used with a Tag.

+ (plus) Specifies that one or more matches
of the preceding sub-pattern are allowed.
Cannot be used with a Tag.

* (asterisk) Specifies that zero or more
matches of the preceding sub-pattern are
allowed. Cannot be used with a Tag.

Character classes
[] (square brackets) Identifies a user-defined

PowerBASIC Compiler for Windows Version 10

1786 / 2126

class of characters, any of which will
match: [abc] will match a, b, or c. Only
three special metacharacters are
recognized within a class definition, the
caret ()̂ for complemented characters, the
hyphen (-) for a range of characters, or one
of the following \ backslash escape
sequences:

 \\ \- \] \e \f \n \q \r \t \v \x##
 Any other use of a backslash within a

class definition yields an undefined
operation that should be avoided.

 [-] (hyphen) The hyphen identifies a range of
characters to match. For example, [a-f]
will match a, b, c, d, e, or f.

 Characters in an individual range must
occur in the natural order as they appear in
the character set. For example, [f-a] will
match nothing.

 Lists of characters, and one or more
ranges of characters, may be intermixed in
a single class definition. The start and end
of a range may be specified by a literal
character, or one of the \ backslash escape
sequences:

 \\ \- \] \e \f \n \q \r \t \v \x##
 Any other use of a backslash within a

class definition yields an undefined
operation.

 Multiple ranges in a class are valid. For
example, [a-d2-5] matches a, b, c, d, 2, 3,
4, or 5.

 When the hyphen is escaped, it is treated
as a literal. For example, [a\-c] is a list,
not a range, and matches a, -, or c due to
the \ backslash escape sequence.

[]̂ (caret) When the caret appears as the first
item in a class definition, it identifies a
complemented class of characters, which
will not match. For example, [âbc]
matches any character except a, b, or c.

 A range can also be specified for the
complemented class. For example, [â-z]
matches any character except a through z.

 A caret located in any position other than
the first is treated as a literal character.

Tags/sub-patterns
() (parentheses) Parentheses are used to

match a Tag, or sub-pattern, within the full
search pattern, and remember the match.
The matched sub-pattern can be retrieved
later in the mask, or in a replace operation,
with \01 through \99, based upon the left-to-
right position of the opening parentheses.

 Parentheses may also be used to force
precedence of evaluation with the
alternation operator. For example,
"(Begin)|(End)File" would match either
"BeginFile" or "EndFile", but without the

PowerBASIC Compiler for Windows Version 10

1787 / 2126

Tag designations, "Begin|EndFile" would
only match either "BeginndFile" or
"BegiEndFile".

 Note: Parentheses may not be used with ?
+ * as any match repetition could cause
the tag value to be ambiguous. To match
repeated expressions, use parentheses
followed by \01*.

Escaped characters
\ (backslash). The escape operator (single-

character quote). The following character
will be treated as a literal value rather than
being interpreted as a special character.
Note that the character following the
backslash must actually be a special
character, as follows:

\b A word boundary. The start or end of a
word, where a word is defined as one or
more characters that include an alphabetic
character (A-Z or a-z), a numeric character
(0-9), and an underscore. For example,
"abc_123" is considered a single word and
"abc-123" is considered two words.

\ c Case-sensitive search. Without the \c
operator, the default is to ignore case when
matching. Unlike some other
implementations of regular expressions,
case-insensitivity is recognized in all
operations, even a range of characters
such as "[6-Z]". The \c operator may
appear at any position in the mask.

\e Escape character: CHR$(27) or $ESC.
\f Formfeed character: CHR$(12) or $FF.
\n Linefeed (or newline) character:

CHR$(10) or $LF.
\q Double-quote mark ("): CHR$(34) or

$DQ. \q is included for ease of inclusion
within a literal string. For example:
"\qHello\q".

\r Carriage-return character: CHR$(13) or
$CR.

\s Shortest match character: The \s flag
causes the shortest matching string to be
returned, rather than the longest (the
default). For example, when searching for
the mask "abc.*abc" in "abcdabcabc", the
default setting would return position 1 and
length 10. With the \s switch set, it returns
position 1 and length 7. This option may
cause a slight increase in processing
time. The \S flag must appear at the
beginning of the mask string.

\t Horizontal tab character: CHR$(9) or
$TAB.

\v Vertical tab character: CHR$(11) or $VT.
\x## Hex character code: Indicates that an

ASCII code follows, given by two
hexadecimal digits. For example, \xFF =
CHR$(&HFF) (which is equivalent to

PowerBASIC Compiler for Windows Version 10

1788 / 2126

CHR$(255)). XX must be in the range 0
through 255.

\## Tag number: Evaluated as the characters
matched by tag number ## (where ## is in
the range 01 through 99, in decimal). Tags
are implicitly numbered from 01 through 99,
based upon the left-to-right position of the
left parenthesis. "(…)w\01" would match
"abcwabc" or "456w456".

Tags cannot be forward-referenced - that is, if a reference is made to any Tag that is not
yet defined, a non-match is presumed.

Restrictions To maximize performance, avoid overuse of the *, + and ? metacharacters.

See also REGEXPR

Example #COMPILE EXE
FUNCTION PBMAIN
 a$ = "please email support@powerbasic.com"
 b$ = "([a-z0-9._/+-]+)(@[a-z0-9.-]+)"
 c$ = "sales\02"
 REGREPL b$ IN a$ WITH c$ TO position&, d$
 ' d$ -> "please email sales@powerbasic.com"

 a$ = "Line 1" + $CRLF + "Line 2" + $CRLF
 b$ = "([0-9])$"
 c$ = "\01.0"
 position& = 1
 DO
 REGREPL b$ IN a$ WITH c$ AT position& TO position&, a$
 LOOP WHILE position&
 ' a$ -> " Line 1.0" + $CRLF + "Line 2.0" + $CRLF
END FUNCTION

REM statement

REM statement
Purpose Indicate that the remainder of a line in source code files is to be regarded as a Remark or

Comment, and excluded from the compiled code.

Syntax REM comment text
' comment text
; comment in an Inline Assembler statement

Remarks The PowerBASIC compiler ignores Remarks; they do not take up space in your generated
code, so use them abundantly - useful comments greatly increase the readability and
maintainability of source code.

Comment text is any sequence of characters. A comment can appear on a line with other
statements, but it must be the last thing on that line, and a colon must precede it. For
example, the assignment below will not be compiled or executed because the compiler
cannot tell where the comment ends and the statement begins:

REM now add the numbers: a = b + c

The following works:

a = b + c : REM now add the numbers

The apostrophe (') is an alternate form of REM. When you use an apostrophe, you do
not need a colon to separate the remark from the other statements on the same line.

When using the Inline Assembler, use the semi-colon (;) to indicate that the remainder of
the line should be ignored. An apostrophe (') can still be used for comments, however.

PowerBASIC Compiler for Windows Version 10

1789 / 2126

In addition, the compiler treats text that appears after the line continuation character as a
remark. However, we still recommend that such comments are preceded by a REM or an
apostrophe (') symbol to clearly distinguish remarks from the actual code. For example:

DECLARE FUNCTION Call32& _ The prototype
 LIB "CALL32.DLL" _ The DLL name
 ALIAS "Call32" _ ' The exported name
 (Param1 AS ANY, _ ' 1st parameter
 BYVAL id&) ' 2nd parameter

For situations where a large section of code needs to be REMmed out (yet preserved
within the source code file), it is often easier to enclose the code with #IF 0/#ENDIF
metastatements. For example:

#IF 0 ' Exclude the following lines
 Code and text in between the #IF 0 and #ENDIF
 metastatements is ignored by the compiler.
 DIM a$(1 TO 1000) ' This line is ignored too.
 INCR x& ' As is this line!
#ENDIF

Since the #IF expression evaluates to false (zero), this forces the compiler to exclude the
enclosed block of code from the compilation process, in exactly the same way as if a
REM statement had been prefixed to each line.

See also Long Lines

Example x% = 10 : REM This is a comment
y% = 20 ' This is another form of comment
! MOV EAX,"ABCD" ; An Inline Assembler comment

REMAIN$ function

REMAIN$ function
Purpose Return the portion of a

 following the first occurrence of a character or group of characters.
Syntax a$ = REMAIN$([Start,] MainStr, [ANY] MatchStr)

Remarks REMAIN$ is a complement to the EXTRACT$ function. MainStr is searched for the string
specified in MatchStr. If found, all characters after MatchStr are returned. If MatchStr is
not present in MainStr, or either string parameter is nul, then a nul (zero-length) is
returned.

Start is an optional starting position to begin searching. If Start is not specified, position
1 will be used. If Start is zero, a nul string is returned. If Start is negative, the starting
position is counted from right to left: if -1, the search begins at the last character; if -2, the
second to last, and so forth.

If the ANY keyword is included, MatchStr specifies a list of single characters to be
searched for individually. A match on any one of them will cause the operation to be
performed up to that character.

See also EXTRACT$, LEFT$, LTRIM$, MID$, REMOVE$, REPLACE, RIGHT$, RTRIM$, TALLY,
TRIM$, VERIFY

Example a$ = REMAIN$("I think, therefore I am hungry", ",")
Result " therefore I am hungry"

REMOVE$ function

REMOVE$ function

PowerBASIC Compiler for Windows Version 10

1790 / 2126

Purpose Return a copy of a

 with characters or strings removed.
Syntax x$ = REMOVE$(MainString, [ANY] MatchString)

Remarks The REMOVE$ function has the following parts:

MainString The string expression from which to remove characters.

MatchString The string expression to remove all occurrences of. If MatchString is not present in
MainString, all of MainString is returned intact.

ANY If the ANY keyword is included, MatchString specifies a list of single characters to be
searched for individually, a match on any one of which will cause that character to be
removed from the result.

Restrictions REMOVE is case-sensitive.

See also CLIP$, EXTRACT$, INSTR, LTRIM$, MID$, REPLACE, RETAIN$, RIGHT$, RTRIM$,
SHRINK$, TALLY, TRIM$, UNWRAP$, VERIFY

Example ' The following returns "aadabra",
' removing the string "bac"
x$ = REMOVE$("abacadabra", "bac")

' The following returns "dr",
' removing all "b", "a", and "c"
x$ = REMOVE$("abacadabra", ANY "bac")

REPEAT$ function

REPEAT$ function
Purpose Return a

 consisting of multiple copies of the specified string.
Syntax s$ = REPEAT$(count&, string_expr)

Remarks The REPEAT$ function has the following parts:

count& Is an

 expression, constant or variable, specifying the number of copies of string_expr to
be included in the result. REPEAT$ is very similar to STRING$ (which makes
multiple copies of a single character).

string_expr The string to be duplicated.

See also BUILD$, CHR$, GUID$, NUL$, SPACE$, STRING$

Example x$ = REPEAT$(5, "<*> ")

Result <*> <*> <*> <*> <*>

REPLACE statement

REPLACE statement
Purpose Within a specified

, replace all occurrences of one string with another string.
Syntax REPLACE [ANY] MatchString WITH NewString IN MainString

Remarks The REPLACE statement replaces all occurrences of MatchString in MainString with
NewString. The replacement can cause MainString to grow or condense in size.
MainString must be a string variable; MatchString and NewString may be string

PowerBASIC Compiler for Windows Version 10

1791 / 2126

expressions. REPLACE is case-sensitive. When a match is found, the scan for the next
match begins at the position immediately following the prior match.

ANY If you use the ANY option, within MainString, each occurrence of each character in
MatchString will be replaced with the corresponding character in NewString. In this case,
MatchString and NewString must be the same length, because there is a one-to-one
correspondence between their characters.

See also EXTRACT$, INSTR, LTRIM$, MID$, REMOVE$, RETAIN$, RIGHT$, RTRIM$, SHRINK$,
TALLY, TRIM$, UNWRAP$, VERIFY

Example A$ = "abacadabra"
'now replace "bac" with "----bac----"
REPLACE "bac" WITH "----bac----" IN A$

A$ = "abacadabra"
'now replace all "b", "a", and "c" with "*"
REPLACE ANY "bac" WITH "***" IN A$

RESET statement

RESET statement
Purpose Set a scalar (non-array) variable, Variant, User-Defined Type, individual array element (or

an entire array) to zero or null/empty. RESET does not deallocate the actual memory
used (with the exception of dynamic string array data, which is automatically
deallocated).

Syntax RESET variable [, ...]
RESET array() [, ...]
RESET array(index) [, ...]

Remarks If variable is numeric, it is set to zero. If variable is a dynamic string, it is set to null ("";
an empty string). If variable is a nul-terminated string, the first byte is set to nul ($NUL).
If variable is a fixed-length string or User-Defined Type/Union, all bytes in variable are set
to nul, or CHR$(0). If variable is a Variant, it is cleared and set to data type %
VT_EMPTY.

If array() is

, all elements are set to zero; otherwise all elements are set to zero/null. If an array
index value is specified within the parentheses, just that array element is set to
zero/null, as if it were a scalar (non-array) variable.
RESET also works with absolute arrays, clearing the contents to zeroes or empty
strings. For more information on absolute arrays, please refer to the DIM statement.

See also ARRAYATTR, DIM, ERASE, LET, LET (with Types), LET (with Variants), REDIM

RESOURCE$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1792 / 2126

RESOURCE$ function
Purpose Returns predefined resource data.

Syntax r$ = RESOURCE$(RCDATA, ResID)
s$$ = RESOURCE$(STRING, ResID%)

Remarks You can embed data into your EXE or DLL with the #RESOURCE metastatement. While
the data can be represented in several different data types, two are designed to be
retrieved directly for your own purposes: RCDATA and STRING. In both cases, this data
is returned as a variable-length string so you can manipulate it and use it as you wish.
 The specific resource you wish to retrieve is specified by the ResID. If the ID you
request is not present, a nul (zero-length) string is returned.

RCDATA This resource contains raw data of any type. It is always stored byte-by-byte, just as it
was originally created at the time of compilation. Generally speaking, this type of data
should be assigned to an ANSI string variable so no Unicode conversions are performed.
 The ResID which identifies this resource may be a numeric value between 0 and 65535,
or an alphanumeric label which is passed to the function as a string expression (string
literal, variable, etc.)

STRING This resource contains predefined strings in a string table. Each string is identified by a
resource ID number in the range of 0 to 65535. This number is used as the ResID% to
determine which string will be retrieved. Because of the format in which Windows stores
the strings in tables, only integral numeric ID's may be used. All resource strings are
saved internally in wide Unicode format.

See also #RESOURCE

RESUME statement

RESUME statement
Purpose Restart program execution after error handling with ON ERROR GOTO.

Syntax RESUME
RESUME NEXT
RESUME FLUSH
RESUME <Label>

Remarks The RESUME statement is used to continue execution of a program after a run-time error
has been trapped and processed with an ON ERROR handler. RESUME (in any form)
tells PowerBASIC that error processing has been completed, and it is now time to
continue normal execution of the programming. Whenever an error is trapped and
processed by ON ERROR GOTO, execution of a matching RESUME is mandatory.

RESUME

If the first form of RESUME is used (without any modifier), the statement which generated
the error is executed again and program flow continues normally. Be certain that you've
corrected the condition which generated the error in the first place before you do this!

RESUME NEXT

If you execute RESUME NEXT, program execution continues on the line immediately
following the one which generated the error. Program flow continues normally after that.
 Be certain that your error handler did whatever was necessary to substitute new actions
to replace what was expected from the code which errored.

RESUME FLUSH

If you execute RESUME FLUSH, there is no transfer of control to a different line.

PowerBASIC Compiler for Windows Version 10

1793 / 2126

 Program execution simply continues on the line immediately following the RESUME
FLUSH.

RESUME <Label>

If a label is specified, program execution continues at the specified label location. The
label must be "local"; that is, it must be located within the same procedure as the
RESUME.

Restrictions ON ERROR and RESUME may not be used within a TRY/END TRY block or a
FASTPROC procedure.

See also ERL, ERR, ERROR, Error Overview, ERROR$, Error Trapping, ON ERROR

Example See the examples in Error Trapping.

RESUME FLUSH statement

RESUME statement
Purpose Restart program execution after error handling with ON ERROR GOTO.

Syntax RESUME
RESUME NEXT
RESUME FLUSH
RESUME <Label>

Remarks The RESUME statement is used to continue execution of a program after a run-time error
has been trapped and processed with an ON ERROR handler. RESUME (in any form)
tells PowerBASIC that error processing has been completed, and it is now time to
continue normal execution of the programming. Whenever an error is trapped and
processed by ON ERROR GOTO, execution of a matching RESUME is mandatory.

RESUME

If the first form of RESUME is used (without any modifier), the statement which generated
the error is executed again and program flow continues normally. Be certain that you've
corrected the condition which generated the error in the first place before you do this!

RESUME NEXT

If you execute RESUME NEXT, program execution continues on the line immediately
following the one which generated the error. Program flow continues normally after that.
 Be certain that your error handler did whatever was necessary to substitute new actions
to replace what was expected from the code which errored.

RESUME FLUSH

If you execute RESUME FLUSH, there is no transfer of control to a different line.
 Program execution simply continues on the line immediately following the RESUME
FLUSH.

RESUME <Label>

If a label is specified, program execution continues at the specified label location. The
label must be "local"; that is, it must be located within the same procedure as the
RESUME.

Restrictions ON ERROR and RESUME may not be used within a TRY/END TRY block or a
FASTPROC procedure.

See also ERL, ERR, ERROR, Error Overview, ERROR$, Error Trapping, ON ERROR

Example See the examples in Error Trapping.

PowerBASIC Compiler for Windows Version 10

1794 / 2126

RESUME NEXT statement

RESUME statement
Purpose Restart program execution after error handling with ON ERROR GOTO.

Syntax RESUME
RESUME NEXT
RESUME FLUSH
RESUME <Label>

Remarks The RESUME statement is used to continue execution of a program after a run-time error
has been trapped and processed with an ON ERROR handler. RESUME (in any form)
tells PowerBASIC that error processing has been completed, and it is now time to
continue normal execution of the programming. Whenever an error is trapped and
processed by ON ERROR GOTO, execution of a matching RESUME is mandatory.

RESUME

If the first form of RESUME is used (without any modifier), the statement which generated
the error is executed again and program flow continues normally. Be certain that you've
corrected the condition which generated the error in the first place before you do this!

RESUME NEXT

If you execute RESUME NEXT, program execution continues on the line immediately
following the one which generated the error. Program flow continues normally after that.
 Be certain that your error handler did whatever was necessary to substitute new actions
to replace what was expected from the code which errored.

RESUME FLUSH

If you execute RESUME FLUSH, there is no transfer of control to a different line.
 Program execution simply continues on the line immediately following the RESUME
FLUSH.

RESUME <Label>

If a label is specified, program execution continues at the specified label location. The
label must be "local"; that is, it must be located within the same procedure as the
RESUME.

Restrictions ON ERROR and RESUME may not be used within a TRY/END TRY block or a
FASTPROC procedure.

See also ERL, ERR, ERROR, Error Overview, ERROR$, Error Trapping, ON ERROR

Example See the examples in Error Trapping.

RESUME <Label> statement

RESUME statement
Purpose Restart program execution after error handling with ON ERROR GOTO.

Syntax RESUME
RESUME NEXT
RESUME FLUSH
RESUME <Label>

PowerBASIC Compiler for Windows Version 10

1795 / 2126

Remarks The RESUME statement is used to continue execution of a program after a run-time error
has been trapped and processed with an ON ERROR handler. RESUME (in any form)
tells PowerBASIC that error processing has been completed, and it is now time to
continue normal execution of the programming. Whenever an error is trapped and
processed by ON ERROR GOTO, execution of a matching RESUME is mandatory.

RESUME

If the first form of RESUME is used (without any modifier), the statement which generated
the error is executed again and program flow continues normally. Be certain that you've
corrected the condition which generated the error in the first place before you do this!

RESUME NEXT

If you execute RESUME NEXT, program execution continues on the line immediately
following the one which generated the error. Program flow continues normally after that.
 Be certain that your error handler did whatever was necessary to substitute new actions
to replace what was expected from the code which errored.

RESUME FLUSH

If you execute RESUME FLUSH, there is no transfer of control to a different line.
 Program execution simply continues on the line immediately following the RESUME
FLUSH.

RESUME <Label>

If a label is specified, program execution continues at the specified label location. The
label must be "local"; that is, it must be located within the same procedure as the
RESUME.

Restrictions ON ERROR and RESUME may not be used within a TRY/END TRY block or a
FASTPROC procedure.

See also ERL, ERR, ERROR, Error Overview, ERROR$, Error Trapping, ON ERROR

Example See the examples in Error Trapping.

RETAIN$ function

RETAIN$ function
Purpose Return a

 containing only the characters contained in a specified match string. All other
characters are removed..

Syntax sResult$ = RETAIN$(mainstr$, [ANY] matchstr$)

Remarks RETAIN$ returns a string consisting of zero or more copies of the complete expression
matchstr$ which are found in mainstr$. All other characters are removed.

ANY If the ANY option is included, matchstr$ specifies a list of single characters to be
retained, if they are found in mainstr$.

Restrictions If matchstr$ is an empty string, RETAIN$ returns an empty string.

See also EXTRACT$, REMAIN$, REMOVE$, REPLACE

Example a$ ="<p>1234567890<ak;lk;l>1234567890</p>"
b$ = RETAIN$(a$, ANY "<;/p>")
c$ = RETAIN$(a$, ANY "0123456789")

Result b$ contains "<p><;;></p>"
c$ contains "12345678901234567890"

PowerBASIC Compiler for Windows Version 10

1796 / 2126

RETURN statement

RETURN statement
Purpose Return from a (GOSUB) subroutine to its caller.

Syntax RETURN
RETURN FLUSH

Remarks RETURN terminates the execution of a subroutine, and passes control to the statement
directly following the calling GOSUB statement.

RETURN FLUSH removes the most recent return address from the system stack and
program flow continues normally after the RETURN FLUSH.

Performing either form of RETURN without a corresponding GOSUB can cause
unpredictable behavior and difficult-to-track errors. This includes the possibility of a
General Protection Fault (GPF).

See also CALL, GOSUB, GOTO, ON ERROR, SUB/END SUB

Example See the example in GOSUB.

RETURN FLUSH statement

RETURN statement
Purpose Return from a (GOSUB) subroutine to its caller.

Syntax RETURN
RETURN FLUSH

Remarks RETURN terminates the execution of a subroutine, and passes control to the statement
directly following the calling GOSUB statement.

RETURN FLUSH removes the most recent return address from the system stack and
program flow continues normally after the RETURN FLUSH.

Performing either form of RETURN without a corresponding GOSUB can cause
unpredictable behavior and difficult-to-track errors. This includes the possibility of a
General Protection Fault (GPF).

See also CALL, GOSUB, GOTO, ON ERROR, SUB/END SUB

Example See the example in GOSUB.

RGB function

RGB function
Purpose Create an RGB color value from 3 primary color values or from a BGR value.

Syntax result& = RGB(red&, green&, blue&)
result& = RGB(bgrexpr&)

Remarks An RGB value is a long integer value in the range of 0 to &H00FFFFFF. It is used to
specify a very precise color to various PowerBASIC functions and Windows API functions.
 The lowest three bytes of the value each specify the intensity of a primary color which
combine to form the resultant color. Byte 1 (lowest) represents the red component, byte
2 the green, and byte 3 the blue. They can each take on a value in the range of 0 to 255.
 Byte 4 (highest) is always 0. When used with 3 parameters, the RGB() function creates

PowerBASIC Compiler for Windows Version 10

1797 / 2126

an RGB value from the three component values.

Some Windows API functions, namely those which reference Device Independent Bitmaps
(DIB), require that the colors be specified in the reverse sequence (Blue-Green-Red
instead of Red-Green-Blue). In order to maximize performance and execution speed,
PowerBASIC statements and functions which reference these structures also use the
BGR format. These include GRAPHIC GET BITS and GRAPHIC SET BITS.

When used with one parameter, this function translates a BGR value to its RGB
equivalent by swapping the first byte with the third byte, and returning the result.

For example, the BGR value of red is &HFF0000. RGB() translates it to &H0000FF.
 Calling BGR() with that value converts it back to &HFF0000.

See also Built In RGB Color Equates, BGR

RIGHT$ function

RIGHT$ function
Purpose Return the rightmost n characters of a

.
Syntax s$ = RIGHT$(string_expression, n&)

Remarks If n& is positive, RIGHT$ returns the indicated number of characters from the string,
starting from the right and working left. If n& greater than the length of string_expression,
all of string_expression is returned.

If n& is 0, RIGHT$ returns an empty string. If n& is negative, it is interpreted as
(LEN(string_expression) - ABS(n&)). For example, RIGHT$("1234567890", -2) returns
"34567890".

See also EXTRACT$, INSTR, LEFT$, LTRIM$, MID$, REMOVE$, REPLACE, RTRIM$, SPLIT,
TALLY, TRIM$, VERIFY

Example ' Demonstrate LEFT$ and RIGHT$ functions
DIM aString$, x$, n AS LONG
aString$ = "ABCDEFGHIJKLMNOP"
FOR n = 1 TO 14 STEP 2
 x$ = LEFT$(aString, n) + SPACE$(28 - n * 2) + RIGHT$(aString, n)
NEXT n

RMDIR statement

RMDIR statement
Purpose Delete a disk directory (like the DOS RMDIR command).

Syntax RMDIR path

Remarks path is a directory path, which may include a drive specification. RMDIR deletes the
directory indicated by path.

This statement works like the DOS "RMDIR" or "RD" commands. As with the DOS
commands, the path must specify a valid, empty directory, other than the default (current)
directory. Otherwise, a run-time Error 75 occurs ("Path/file access error").

RMDIR can use Long File Names (LFNs).

See also CHDIR, KILL, MKDIR

Example DirectoryName$ = "\TEMP"
RMDIR DirectoryName$

PowerBASIC Compiler for Windows Version 10

1798 / 2126

RND function

RND function
Purpose Return a random number.

Syntax y = RND
y = RND(a, b)
y = RND(numeric_expression)

Remarks Floating point mode: RND returns a random value that is less than 1, but greater than or
equal to 0. Numbers generated by RND aren't really random, but are the result of
applying a pseudo-random transformation algorithm to a starting ("seed") value. Given the
same seed, PowerBASIC's RND algorithm always produces the same sequence of
"random" numbers. The pseudo-random value is calculated internally as a single
precision value, but returned as an extended precision representation so it can be readily
used in any situation.

Integral Range mode: RND(a, b) returns a Long-integer in the range of a to b inclusive. a
and b can each be a numeric literal or a numeric expression that evaluates within the
range of a Long-integer (-2,147,483,648 to 2,147,483,647).

Special effects mode: When used with a single numeric expression argument, the value
returned by RND depends on the optional numeric value you supply as the argument, as
follows:

With no argument, or with a positive argument, RND generates the next number in
sequence based on the initial seed value. With an argument of 0, RND repeats the last
number generated. A negative argument causes the random number generator to be re-
seeded, so subsequent uses of RND with no argument or with a positive argument result
in a new sequence of values.

Do not use 0 or negative value arguments in special effects mode unless you are looking
for the special effects those argument values produce.

The random number generator can be reset back to the default seed using the following
statement:

RANDOMIZE CVS(CHR$(255,255,255,255))

Note that each thread has its own, independent random number seed. See the discussion
under RANDOMIZE for additional information on seeding the random number generator.

Example See the example under RANDOMIZE.

ROTATE statement

ROTATE statement
Purpose Rotate the bits in an

 variable.
Syntax ROTATE {LEFT | RIGHT} ivar, count

Remarks ivar must be one of the integral-class variable types: Byte, Word, Integer, Double-word,
Long-integer, or Quad-integer. count is the number of bits by which to rotate ivar.
ROTATE rotates all the bits in ivar without special regard to the sign bit of a signed
integral-class variable.

See also BIT function, BIT statement, BITS, SHIFT

Example i? = 221 ' binary: 1 1 0 1 1 1 0 1
ROTATE RIGHT i?, 1 ' binary: 1 1 1 0 1 1 1 0

PowerBASIC Compiler for Windows Version 10

1799 / 2126

ROUND function

ROUND function
Purpose Round a numeric value to a specified number of decimal places.

Syntax x = ROUND(numeric_expression, n)

Remarks n is an

 expression specifying the number of decimal places required in the result. ROUND is
especially useful in cases where you have a variable in Single, Double, or Extended-
precision, and you want to put it into a Currency variable or display it, rounded to a
specific number of decimal places.
Rounding is done according to the "banker's rounding" principle: if the fractional digit being
rounded off is exactly five, with no trailing digits, the number is rounded to the nearest
even number. This provides better results, on average, than the simple "round up at five"
approach.

A% = ROUND(0.5, 0) ' 0
A% = ROUND(1.5, 0) ' 2
A% = ROUND(2.5, 0) ' 2
A% = ROUND(2.51, 0) ' 3

See also CEIL, FIX, FORMAT$, INT, USING$

RSET statement

RSET statement
Purpose Right justify a

 into the space of a string variable or User-Defined Type.
Syntax RSET [ABS] result_var = string_expression [USING ustring_expression]

Remarks RSET right-aligns a string within the space of another string, or within a variable of a User-
Defined Type (UDT).

ABS If ABS is specified, or ustring_expression is null (empty), RSET leaves the padding
positions unchanged from their original content, rather than replacing them with spaces.

USING If string_expression is shorter then result_var, RSET right-justifies string_expression within
result_var, and pads remaining character positions on the left side using the first
character in ustring_expression or spaces if not specified or is null (empty).

If string_expression is longer than result_var, RSET truncates string_expression from the
right until it fits in result_var.

RSET can be used to assign the content of a User-Defined Type to a User-Defined Type
variable of a different class, or assign a dynamic string to a User-Defined Type. For
example:

RSET MyUDT = STRING$(LEN(MyUDT), 0)
RSET MyUDT = b$

LSET works in a similar manner, but left-aligns string_expression; CSET performs center-
justification.

See also CSET, CSET$, GET, LET, LET (with Types), LSET, LSET$, PUT, RESET, RSET$,
STRINSERT$, TYPE SET

Example a$ = SPACE$(20)
RSET a$ = "Right-align"
' result " Right-align"

PowerBASIC Compiler for Windows Version 10

1800 / 2126

RSET a$ = "Right-align" USING "*"
' result "*********Right-align"

RSET$ function

RSET$ function
Purpose Return a

 containing a right-justified (padded) string.
Syntax a$ = RSET$(string_expression, strlen& [USING ustring_expression])

Remarks RSET$ right-aligns the string string_expression into a string of strlen& characters.

USING If ustring_expression is null (empty) or is not specified, RSET$ pads string_expression
with space characters. Otherwise, RSET$ pads the string with the first character of
ustring_expression.

If string_expression is shorter then strlen&, RSET$ right-justifies string_expression within
the assigned string variable (a$), padding the left side as described above; otherwise,
RSET$ returns the left-most strlen& bytes of string_expression.

See also CSET, CSET$, GET, LET, LSET, LSET$, PUT, RESET, RSET, STRINSERT$, TYPE SET

Example a$ = RSET$("PowerBASIC", 20)
' result: " PowerBASIC"

a$ = RSET$("PowerBASIC",20 USING "*")
' result: "**********PowerBASIC"

RTRIM$ function

RTRIM$ function
Purpose Return a copy of a

 with trailing characters or strings removed.
Syntax x$ = RTRIM$(MainString [, [ANY] MatchString])

Remarks MainString is the string expression from which to remove characters, and MatchString is
the string expression specifying the characters that should be removed from the right
hand side of MainString.

If MatchString is not specified, RTRIM$ removes trailing spaces. RTRIM$ returns a sub-
string of MainString, from the beginning of the string to the character preceding the
consecutive occurrences of MatchString (or space), which continues to the end of the
original string. If MatchString (or a space) is not present at the end of MainString, all of
MainString is returned.

RTRIM$ is case-sensitive.

ANY If the ANY keyword is included, MatchString specifies a list of single characters to be
searched for individually - a match on any one of which as a trailing character will cause
the character to be removed from the result.

See also CLIP$, EXTRACT$, INSTR, LEFT$, LTRIM$, MID$, REMOVE$, REPLACE, RIGHT$,
STRDELETE$, STRINSERT$, STRREVERSE$, TALLY, TRIM$, VERIFY

Example ' returns "abacadabra" (match on spaces)
x$ = RTRIM$("abacadabra ")

' returns "abacadabra " (no match on " cad")
x$ = RTRIM$("abacadabra ", " cad")

PowerBASIC Compiler for Windows Version 10

1801 / 2126

' returns "abacadabr" (match on " " and "a")
x$ = RTRIM$("abacadabra ", ANY " cad")

SCROLLBAR GET PAGESIZE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

SCROLLBAR statement
Purpose Manipulate a SCROLLBAR control. A ScrollBar is a control that allows the user to scroll

a data object to bring into view portions of the object that extend beyond the borders of
the window.

Syntax SCROLLBAR GET PAGESIZE hDlg, id& TO datav&
SCROLLBAR GET POS hDlg, id& TO datav&
SCROLLBAR GET RANGE hDlg&, id& TO LoDatav&, HiDatav&
SCROLLBAR GET TRACKPOS hDlg, id& TO datav&
SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&
SCROLLBAR SET POS hDlg, id&, position&
SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

hDlg Handle of the dialog that owns the ScrollBar.

id& The control identifier assigned with CONTROL ADD SCROLLBAR.

Remarks In each of the following samples and descriptions, the SCROLLBAR control that is the
subject of the statement is identified by the handle of the dialog that owns the ScrollBar
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
SCROLLBAR. To alter the color of the bar or the background, use CONTROL SET
COLOR.

SCROLLBAR GET PAGESIZE hDlg, id& TO datav&

The current page size of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default page size is 10.

SCROLLBAR GET POS hDlg, id& TO datav&

The current position of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default position is 0.

SCROLLBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ScrollBar is retrieved and assigned to the variables designated by
LoDatav& and HiDatav&. Upon ScrollBar creation, the default ScrollBar range is 0 to 100.

SCROLLBAR GET TRACKPOS hDlg, id& TO datav&

The current position of the scroll box, being dragged by the user, is retrieved and
assigned to the variable designated by datav&. This is normally read while responding to
the %SB_THUMBPOSITION or the %SB_THUMBTRACK messages. The TRACKPOS is
then used to move the scroll position with SCROLLBAR SET POS.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1802 / 2126

SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&

The current page size of the ScrollBar is set to the value of the parameter pagesize&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET POS hDlg, id&, position&

The current position of the ScrollBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ScrollBar is specified to be from lolimit& to hilimit&. If lolimit& is greater
than hilimit&, the results are undefined.

See also Dynamic Dialog Tools, CONTROL ADD SCROLLBAR, CONTROL SET COLOR

SCROLLBAR GET POS statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

SCROLLBAR statement
Purpose Manipulate a SCROLLBAR control. A ScrollBar is a control that allows the user to scroll

a data object to bring into view portions of the object that extend beyond the borders of
the window.

Syntax SCROLLBAR GET PAGESIZE hDlg, id& TO datav&
SCROLLBAR GET POS hDlg, id& TO datav&
SCROLLBAR GET RANGE hDlg&, id& TO LoDatav&, HiDatav&
SCROLLBAR GET TRACKPOS hDlg, id& TO datav&
SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&
SCROLLBAR SET POS hDlg, id&, position&
SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

hDlg Handle of the dialog that owns the ScrollBar.

id& The control identifier assigned with CONTROL ADD SCROLLBAR.

Remarks In each of the following samples and descriptions, the SCROLLBAR control that is the
subject of the statement is identified by the handle of the dialog that owns the ScrollBar
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
SCROLLBAR. To alter the color of the bar or the background, use CONTROL SET
COLOR.

SCROLLBAR GET PAGESIZE hDlg, id& TO datav&

The current page size of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default page size is 10.

SCROLLBAR GET POS hDlg, id& TO datav&

The current position of the ScrollBar is retrieved and assigned to the variable designated

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1803 / 2126

by datav&. Upon ScrollBar creation, the default position is 0.

SCROLLBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ScrollBar is retrieved and assigned to the variables designated by
LoDatav& and HiDatav&. Upon ScrollBar creation, the default ScrollBar range is 0 to 100.

SCROLLBAR GET TRACKPOS hDlg, id& TO datav&

The current position of the scroll box, being dragged by the user, is retrieved and
assigned to the variable designated by datav&. This is normally read while responding to
the %SB_THUMBPOSITION or the %SB_THUMBTRACK messages. The TRACKPOS is
then used to move the scroll position with SCROLLBAR SET POS.

SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&

The current page size of the ScrollBar is set to the value of the parameter pagesize&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET POS hDlg, id&, position&

The current position of the ScrollBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ScrollBar is specified to be from lolimit& to hilimit&. If lolimit& is greater
than hilimit&, the results are undefined.

See also Dynamic Dialog Tools, CONTROL ADD SCROLLBAR, CONTROL SET COLOR

SCROLLBAR GET RANGE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

SCROLLBAR statement
Purpose Manipulate a SCROLLBAR control. A ScrollBar is a control that allows the user to scroll

a data object to bring into view portions of the object that extend beyond the borders of
the window.

Syntax SCROLLBAR GET PAGESIZE hDlg, id& TO datav&
SCROLLBAR GET POS hDlg, id& TO datav&
SCROLLBAR GET RANGE hDlg&, id& TO LoDatav&, HiDatav&
SCROLLBAR GET TRACKPOS hDlg, id& TO datav&
SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&
SCROLLBAR SET POS hDlg, id&, position&
SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

hDlg Handle of the dialog that owns the ScrollBar.

id& The control identifier assigned with CONTROL ADD SCROLLBAR.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1804 / 2126

Remarks In each of the following samples and descriptions, the SCROLLBAR control that is the
subject of the statement is identified by the handle of the dialog that owns the ScrollBar
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
SCROLLBAR. To alter the color of the bar or the background, use CONTROL SET
COLOR.

SCROLLBAR GET PAGESIZE hDlg, id& TO datav&

The current page size of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default page size is 10.

SCROLLBAR GET POS hDlg, id& TO datav&

The current position of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default position is 0.

SCROLLBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ScrollBar is retrieved and assigned to the variables designated by
LoDatav& and HiDatav&. Upon ScrollBar creation, the default ScrollBar range is 0 to 100.

SCROLLBAR GET TRACKPOS hDlg, id& TO datav&

The current position of the scroll box, being dragged by the user, is retrieved and
assigned to the variable designated by datav&. This is normally read while responding to
the %SB_THUMBPOSITION or the %SB_THUMBTRACK messages. The TRACKPOS is
then used to move the scroll position with SCROLLBAR SET POS.

SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&

The current page size of the ScrollBar is set to the value of the parameter pagesize&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET POS hDlg, id&, position&

The current position of the ScrollBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ScrollBar is specified to be from lolimit& to hilimit&. If lolimit& is greater
than hilimit&, the results are undefined.

See also Dynamic Dialog Tools, CONTROL ADD SCROLLBAR, CONTROL SET COLOR

SCROLLBAR GET TRACKPOS statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

SCROLLBAR statement

PowerBASIC Compiler for Windows Version 10

1805 / 2126

Purpose Manipulate a SCROLLBAR control. A ScrollBar is a control that allows the user to scroll
a data object to bring into view portions of the object that extend beyond the borders of
the window.

Syntax SCROLLBAR GET PAGESIZE hDlg, id& TO datav&
SCROLLBAR GET POS hDlg, id& TO datav&
SCROLLBAR GET RANGE hDlg&, id& TO LoDatav&, HiDatav&
SCROLLBAR GET TRACKPOS hDlg, id& TO datav&
SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&
SCROLLBAR SET POS hDlg, id&, position&
SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

hDlg Handle of the dialog that owns the ScrollBar.

id& The control identifier assigned with CONTROL ADD SCROLLBAR.

Remarks In each of the following samples and descriptions, the SCROLLBAR control that is the
subject of the statement is identified by the handle of the dialog that owns the ScrollBar
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
SCROLLBAR. To alter the color of the bar or the background, use CONTROL SET
COLOR.

SCROLLBAR GET PAGESIZE hDlg, id& TO datav&

The current page size of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default page size is 10.

SCROLLBAR GET POS hDlg, id& TO datav&

The current position of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default position is 0.

SCROLLBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ScrollBar is retrieved and assigned to the variables designated by
LoDatav& and HiDatav&. Upon ScrollBar creation, the default ScrollBar range is 0 to 100.

SCROLLBAR GET TRACKPOS hDlg, id& TO datav&

The current position of the scroll box, being dragged by the user, is retrieved and
assigned to the variable designated by datav&. This is normally read while responding to
the %SB_THUMBPOSITION or the %SB_THUMBTRACK messages. The TRACKPOS is
then used to move the scroll position with SCROLLBAR SET POS.

SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&

The current page size of the ScrollBar is set to the value of the parameter pagesize&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET POS hDlg, id&, position&

The current position of the ScrollBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ScrollBar is specified to be from lolimit& to hilimit&. If lolimit& is greater
than hilimit&, the results are undefined.

See also Dynamic Dialog Tools, CONTROL ADD SCROLLBAR, CONTROL SET COLOR

SCROLLBAR SET PAGESIZE statement

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1806 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

SCROLLBAR statement
Purpose Manipulate a SCROLLBAR control. A ScrollBar is a control that allows the user to scroll

a data object to bring into view portions of the object that extend beyond the borders of
the window.

Syntax SCROLLBAR GET PAGESIZE hDlg, id& TO datav&
SCROLLBAR GET POS hDlg, id& TO datav&
SCROLLBAR GET RANGE hDlg&, id& TO LoDatav&, HiDatav&
SCROLLBAR GET TRACKPOS hDlg, id& TO datav&
SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&
SCROLLBAR SET POS hDlg, id&, position&
SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

hDlg Handle of the dialog that owns the ScrollBar.

id& The control identifier assigned with CONTROL ADD SCROLLBAR.

Remarks In each of the following samples and descriptions, the SCROLLBAR control that is the
subject of the statement is identified by the handle of the dialog that owns the ScrollBar
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
SCROLLBAR. To alter the color of the bar or the background, use CONTROL SET
COLOR.

SCROLLBAR GET PAGESIZE hDlg, id& TO datav&

The current page size of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default page size is 10.

SCROLLBAR GET POS hDlg, id& TO datav&

The current position of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default position is 0.

SCROLLBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ScrollBar is retrieved and assigned to the variables designated by
LoDatav& and HiDatav&. Upon ScrollBar creation, the default ScrollBar range is 0 to 100.

SCROLLBAR GET TRACKPOS hDlg, id& TO datav&

The current position of the scroll box, being dragged by the user, is retrieved and
assigned to the variable designated by datav&. This is normally read while responding to
the %SB_THUMBPOSITION or the %SB_THUMBTRACK messages. The TRACKPOS is
then used to move the scroll position with SCROLLBAR SET POS.

SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&

The current page size of the ScrollBar is set to the value of the parameter pagesize&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET POS hDlg, id&, position&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1807 / 2126

The current position of the ScrollBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ScrollBar is specified to be from lolimit& to hilimit&. If lolimit& is greater
than hilimit&, the results are undefined.

See also Dynamic Dialog Tools, CONTROL ADD SCROLLBAR, CONTROL SET COLOR

SCROLLBAR SET POS statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

SCROLLBAR statement
Purpose Manipulate a SCROLLBAR control. A ScrollBar is a control that allows the user to scroll

a data object to bring into view portions of the object that extend beyond the borders of
the window.

Syntax SCROLLBAR GET PAGESIZE hDlg, id& TO datav&
SCROLLBAR GET POS hDlg, id& TO datav&
SCROLLBAR GET RANGE hDlg&, id& TO LoDatav&, HiDatav&
SCROLLBAR GET TRACKPOS hDlg, id& TO datav&
SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&
SCROLLBAR SET POS hDlg, id&, position&
SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

hDlg Handle of the dialog that owns the ScrollBar.

id& The control identifier assigned with CONTROL ADD SCROLLBAR.

Remarks In each of the following samples and descriptions, the SCROLLBAR control that is the
subject of the statement is identified by the handle of the dialog that owns the ScrollBar
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
SCROLLBAR. To alter the color of the bar or the background, use CONTROL SET
COLOR.

SCROLLBAR GET PAGESIZE hDlg, id& TO datav&

The current page size of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default page size is 10.

SCROLLBAR GET POS hDlg, id& TO datav&

The current position of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default position is 0.

SCROLLBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ScrollBar is retrieved and assigned to the variables designated by
LoDatav& and HiDatav&. Upon ScrollBar creation, the default ScrollBar range is 0 to 100.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1808 / 2126

SCROLLBAR GET TRACKPOS hDlg, id& TO datav&

The current position of the scroll box, being dragged by the user, is retrieved and
assigned to the variable designated by datav&. This is normally read while responding to
the %SB_THUMBPOSITION or the %SB_THUMBTRACK messages. The TRACKPOS is
then used to move the scroll position with SCROLLBAR SET POS.

SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&

The current page size of the ScrollBar is set to the value of the parameter pagesize&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET POS hDlg, id&, position&

The current position of the ScrollBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ScrollBar is specified to be from lolimit& to hilimit&. If lolimit& is greater
than hilimit&, the results are undefined.

See also Dynamic Dialog Tools, CONTROL ADD SCROLLBAR, CONTROL SET COLOR

SCROLLBAR SET RANGE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

SCROLLBAR statement
Purpose Manipulate a SCROLLBAR control. A ScrollBar is a control that allows the user to scroll

a data object to bring into view portions of the object that extend beyond the borders of
the window.

Syntax SCROLLBAR GET PAGESIZE hDlg, id& TO datav&
SCROLLBAR GET POS hDlg, id& TO datav&
SCROLLBAR GET RANGE hDlg&, id& TO LoDatav&, HiDatav&
SCROLLBAR GET TRACKPOS hDlg, id& TO datav&
SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&
SCROLLBAR SET POS hDlg, id&, position&
SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

hDlg Handle of the dialog that owns the ScrollBar.

id& The control identifier assigned with CONTROL ADD SCROLLBAR.

Remarks In each of the following samples and descriptions, the SCROLLBAR control that is the
subject of the statement is identified by the handle of the dialog that owns the ScrollBar
(hDlg), and the unique control identifier you gave it upon creation in CONTROL ADD
SCROLLBAR. To alter the color of the bar or the background, use CONTROL SET
COLOR.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1809 / 2126

SCROLLBAR GET PAGESIZE hDlg, id& TO datav&

The current page size of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default page size is 10.

SCROLLBAR GET POS hDlg, id& TO datav&

The current position of the ScrollBar is retrieved and assigned to the variable designated
by datav&. Upon ScrollBar creation, the default position is 0.

SCROLLBAR GET RANGE hDlg, id& TO LoDatav&, HiDatav&

The current range of the ScrollBar is retrieved and assigned to the variables designated by
LoDatav& and HiDatav&. Upon ScrollBar creation, the default ScrollBar range is 0 to 100.

SCROLLBAR GET TRACKPOS hDlg, id& TO datav&

The current position of the scroll box, being dragged by the user, is retrieved and
assigned to the variable designated by datav&. This is normally read while responding to
the %SB_THUMBPOSITION or the %SB_THUMBTRACK messages. The TRACKPOS is
then used to move the scroll position with SCROLLBAR SET POS.

SCROLLBAR SET PAGESIZE hDlg, id&, pagesize&

The current page size of the ScrollBar is set to the value of the parameter pagesize&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET POS hDlg, id&, position&

The current position of the ScrollBar is set to the value of the parameter position&, and
the bar is redrawn to reflect the new position.

SCROLLBAR SET RANGE hDlg, id&, lolimit&, hilimit&

The range for the ScrollBar is specified to be from lolimit& to hilimit&. If lolimit& is greater
than hilimit&, the results are undefined.

See also Dynamic Dialog Tools, CONTROL ADD SCROLLBAR, CONTROL SET COLOR

SEEK function

SEEK function
Purpose Return the location within a file where the next I/O operation will take place.

Syntax position&& = SEEK([#] filenum&)

Remarks If file filenum& was opened in random-access mode, SEEK returns the record number of
the next record to be written or read as a Quad-integer (64-bit) value. If the file was
opened in any other mode, SEEK returns the byte position of the next byte to be written
or read, as a Quad-integer (64-bit) value. The Number symbol (#) is optional, but
recommended for clarity.

The beginning byte position (for binary and sequential files) or record position (for random-
access files) may be 0 or 1, depending on the BASE option used when the file was
initially Opened. The default, if no BASE is specified, is a starting position of 1.

PowerBASIC recommends using the SEEK function over the (more complex) LOC
function used in prior versions of PowerBASIC. LOC remains supported for compatibility
with older versions of BASIC, but it is likely that LOC may be removed in future versions of
PowerBASIC.

See also EOF, FILEATTR, GET$, GET$$, LOC, LOF, OPEN, PUT$, PUT$$, SEEK statement

PowerBASIC Compiler for Windows Version 10

1810 / 2126

Example RANDOMIZE TIMER
OPEN "OUTPUT.TXT" FOR OUTPUT AS #1
PRINT #1, STRING$(RND * 80, RND * 255);
position&& = SEEK(1)
CLOSE #1

SEEK statement

SEEK statement
Purpose Set the position in a file for the next input or output operation.

Syntax SEEK [#] filenum&, position&&

Remarks SEEK sets the file pointer position of file filenum& to position&&. position&& is a Quad-
integer variable, constant, or expression.

The next GET$ or PUT$ performed on the file filenum& will occur position&& bytes (or
records) deep into the file. If file filenum& was opened in binary or sequential mode,
position&& indicates the new file position in bytes; for random-access files, position is in
records.

The first byte position (for binary and sequential files) or record position (for random-
access files) may be 0 or 1, depending on the BASE option used when the file was
initially Opened. If no BASE was specified, the default position is 1.

Use the SEEK function to determine a binary file's current pointer position, and LOF to
determine its length. Seeking past the end of a file does not produce an error, but no data
can be read from beyond the true end of the file.

See also EOF, FILEATTR, GET$, GET$$, LOC, LOF, OPEN, PUT$, PUT$$,
SEEK function, SETEOF

Example SUB CreateFile
 ' Open a binary file and writes 75 chars to it.
 LOCAL I&
 OPEN "SEEK.DTA" FOR BINARY AS #1
 FOR I& = 48 TO 122
 PUT$ 1, CHR$(I&)
 NEXT I&
END SUB

FUNCTION ReadIt$(Start&&, qSize&&)
 ' SEEK to the correct position in the file,
 ' which was previously opened in the CreateFile SUB.
 SEEK 1, Start&&
 I&& = 1
 TempStr$ = ""
 ' Read in the indicated data - don't read past end of file.
 WHILE (ISFALSE EOF(1)) AND (I&& <= qSize&&)
 GET$ 1, 1, Char$
 TempStr$ = TempStr$ + Char$
 INCR I&&
 WEND
 ReadIt$ = TempStr$ ' assign function's result
END FUNCTION

SELECT CASE/END SELECT block

SELECT CASE/END SELECT block

PowerBASIC Compiler for Windows Version 10

1811 / 2126

Purpose Control program flow based on the value of an expression.

Syntax SELECT CASE [AS] [LONG | CONST | CONST$ | CONST$$] expression
CASE [IS] testlist
 [statements]
[CASE [IS] testlist
 [statements]]
[CASE ELSE
 [statements]]
END SELECT

Remarks testlist is one or more tests, separated by commas, to be performed on expression.
expression can be either

 or .
When a SELECT statement is encountered, expression is evaluated using the testlist in
the first CASE clause. If the evaluation is FALSE, the evaluation is repeated using the
next testlist. As soon as an evaluation is TRUE (non-zero), the statements following that
CASE clause are executed, up to the next CASE clause.

Execution then passes to the statement following the END SELECT statement. If none of
the evaluations is TRUE, the statements following the optional CASE ELSE clause are
executed.

The tests that may be performed by a CASE clause include: equality, inequality, greater
than, less than, and range ("from-to") testing. The SELECT CASE block can do string or
numeric tests, but these cannot be interchanged.

Examples of numeric CASE clause tests include:

SELECT CASE numeric_expression
 CASE > b ' relational; is expression > b?
 CASE 14 ' equality (= is assumed); is expression equal to
14?
 CASE b TO 99 ' range; is expression between the value of the
 ' variable b and 99 (inclusive)?
 CASE 14, b ' two equality tests; is expression equal to
 ' 14 or equal to b?
 CASE 25 TO 99,14 ' combination range and equality; is expression
 ' between 25 and 99 (inclusive) or equal to 14?

Examples of string CASE clause tests include:

SELECT CASE string_expression
 CASE > b$ ' relational; is expression > b$?
 CASE "X" ' equality (= is assumed); is expression equal
 ' to "X"?
 CASE "A" TO "C" ' range; is expression between "A" and
 ' "C"(inclusive)?
 CASE "Y", b$ ' two equality tests; is expression equal to
 ' "Y" or equal to b$?
 CASE "A" TO "C","Q" ' combination range and equality; is expression
 ' between "A" and "C" (inclusive) or equal
 ' to "Q"?

When a CASE clause contains multiple tests separated by commas, a logical OR is
performed. That is, if any one (or more) of the tests is TRUE, the entire clause is deemed
to be TRUE.

Use EXIT SELECT to jump out of a SELECT block prematurely.

PowerBASIC now offers four optional modifiers to provide highly optimized code
generation for specific circumstances. By default, numeric expressions are evaluated
either as

 values (to offer the widest range of compatibility for any possible circumstance) or as
 (for example, if PowerBASIC can establish that all case clauses are integer class

PowerBASIC Compiler for Windows Version 10

1812 / 2126

values, etc). Further, string expressions are evaluated dynamically to allow virtually
any data. However, if limits on the type and range of the data used for CASE
comparison are restricted, performance can be dramatically enhanced with the
LONG, CONST, CONST$, or CONST$$ clauses.

AS LONG In this case, the controlling expression and the CASE expressions must evaluate in the
range of a Long-integer. Each of these expressions are calculated dynamically, so all of
the normal operators are still available. Performance is enhanced by the integral class of
code generation, rather than floating-point. For example, DWORD values are treated as
Long-integer values, so &H0FFFFFFFF??? and -1& would be considered equal values.
This can help eliminate the need to use functions such as BITS when performing
comparisons between signed and unsigned values.

AS CONST In this case, the controlling expression must evaluate in the range of a Long-integer.
However, each of the case values must be strictly specified by a numeric literal (or
numeric equate) in the range of a Long-integer. Multiple case values may be given (CASE
2,3,7), but operators and ranges of values are not allowed. CASE ELSE is permitted.
Performance is enhanced by the internal creation of a vector jump table, one entry for
each number from the smallest to the largest case value.

While this form of the structure offers the utmost performance possible, the execution
speed must be carefully weighed against the increased program size, particularly when
using sparse case values. For example, with just two CASE values of 2 and 1000, the
generated jump table would need 999 table entries (3996 bytes in size). The largest
allowed jump table for this form is approximately 3200 entries (12K bytes). If exceeded,
an Error 402 is generated ("Statement too long/complex").

AS CONST$ In this case, the controlling expression must evaluate to an ANSI string of length zero
through 255 bytes. However, each of the case values must be strictly specified by a
string literal (a quoted ANSI string, or an ANSI string equate). Multiple case values may
be given (CASE "a","Bob",$value), but operators and ranges of values are not allowed.
 Performance is enhanced by the internal creation of a vectored scan table, eight bytes for
each case value specified.

AS CONST$$ In this case, the controlling expression must evaluate to a WIDE (Unicode) string of length
zero through 127 characters. However, each of the case values must be strictly specified
by a string literal (a quoted wide string, or a wide string equate). Multiple case values
may be given (CASE "a"$$,"Bob"$$,$$value), but operators and ranges of values are not
allowed. Performance is enhanced by the internal creation of a vectored scan table, eight
bytes for each case value specified.

See also CHOOSE, CHOOSE&, CHOOSE$, EXIT SELECT, IF, IF block, IIF, IIF&, IIF$, MAX,
MAX&, MAX$, MIN, MIN&, MIN$, ON GOTO, ON GOSUB, SWITCH, SWITCH&,
SWITCH$

Example DIM Dwrd AS DWORD
DIM Lint AS LONG

Dwrd = &H0FFFFFFFF???
Lint = -1&

SELECT CASE Lint
 CASE Dwrd
 a$ = "A Match!"
 CASE ELSE
 a$ = "*No Match"
END SELECT

SELECT CASE AS LONG Lint
 CASE Dwrd
 a$ = "*A Match!"
 CASE ELSE
 a$ = "No Match"

PowerBASIC Compiler for Windows Version 10

1813 / 2126

END SELECT

SELECT CASE AS CONST Dwrd
 CASE -1&
 a$ = "*A Match!"
 CASE 0
 a$ = "No Match"
END SELECT

Result *No Match
*A Match!
*A Match!

SETATTR statement

SETATTR statement
Purpose Set the file system attribute(s) of a disk file or directory.

Syntax SETATTR filespec$, attribute

Remarks filespec$ specifies a filename (optionally including a drive letter and directory path).
attribute is a standard operating system attribute code:

Attribute Description Equate
0 Normal %NORMAL
1 Read-only %READONLY
2 Hidden %HIDDEN
4 System %SYSTEM
32 Archived %ARCHIVE

The attribute code of a given file or directory may be constructed from a combination of
individual attribute values. For example, if you use an attribute of 0, filespec$ will be a
regular file: not read-only, not hidden, not system, and not archived.

See also DIR$, FILEATTR, GETATTR

Example Files$ = "MYTEST.DAT"
SETATTR Files$, %HIDDEN + %SYSTEM
IF ISFALSE ERR THEN a$ = Files$ + " has been hidden!"

SETEOF statement

SETEOF statement
Purpose Truncate or extend an open file to its current file pointer (read/write) position.

Syntax SETEOF [#] filenum&

Remarks SETEOF will truncate or extend an open file to its current file pointer (read/write) position,
which may be set explicitly with the SEEK statement.

Unlike 16-bit Windows and DOS BASIC, Win32 will not truncate a file if you simply write
an empty string to it, so the SETEOF statement is provided to cater for this need.

See also CLOSE, FILEATTR, FLUSH, OPEN, SEEK function, SEEK statement

Example FUNCTION PBMAIN
 OPEN "Temp.dat" FOR BINARY AS #1 BASE = 1
 A$ = SPACE$(50)
 PUT$ #1, A$
 ' File is now 50 bytes
 SEEK #1, 15
 ' Move to the 15th byte and truncate there

http://www.powerbasic.com/products/pbdos/

PowerBASIC Compiler for Windows Version 10

1814 / 2126

 SETEOF #1
 ' File is now 14 bytes
 CLOSE #1
END FUNCTION

SGN function

SGN function
Purpose Return the sign of a numeric expression.

Syntax y = SGN(numeric_expression)

Remarks If numeric_expression is positive, SGN returns 1. If numeric_expression is zero, SGN
returns 0. If numeric_expression is negative, SGN returns -1.

In conjunction with the ON GOTO and ON GOSUB statements, SGN can produce a
FORTRAN-like three-way branch:

ON SGN(balance) + 2 GOTO InTheRed, BreakingEven, InTheMoney

See also ABS, IF, ON GOSUB, ON GOTO, SELECT

Example ' ON SGN value, GOSUB appropriate subroutine
ON SGN (value) + 2 GOSUB Minus, Zero, Plus
' more code here
Minus:
x$ = "The product is negative" : RETURN
Zero:
x$ = "The product is zero" : RETURN
Plus:
x$ = "The product is positive" : RETURN

SHELL function

SHELL function
Purpose Run an executable program asynchronously (as a separate process), while execution of

the original application continues uninterrupted.

Syntax ProcessId??? = SHELL([HANDLES,] CmdString [, WndStyle])

Remarks The SHELL function has the following parts:

CmdString The name of the program to execute ("child process"), along with and any required
arguments or command-line switches.

WndStyle A number corresponding to the style of the window in which the child process is to be
executed. If WndStyle is omitted, the program is opened normal with focus, the same as
WndStyle = 1.

The following table identifies the values for WndStyle and the resulting style of window:

WndStyle Window style
0 Hide window
1 Normal with focus (default)
2 Minimized with focus
3 Maximized with focus
4 Normal without focus
6 Minimized without focus

SHELL returns the process id of the child process. The process id is a 32-bit LONG or
DWORD value that identifies the child process, if it's a 32-bit or 64-bit process. If the
process id is zero, the child process is not a 32-bit or 64-bit process, or an error occurred.

PowerBASIC Compiler for Windows Version 10

1815 / 2126

Use ERR to detect the success of the SHELL function. The HANDLES option allows the
child process to inherit the file handles opened by your program. This affects only
Windows handles, not PowerBASIC file identifiers. It is an advanced option, for those who
know it works and why they need it.

Restrictions Child processes run asynchronously, or independently of the program that SHELLs. So,
the child process is, probably, still running after control returns from SHELL to your
program. Also, if your program ends before the child process, the child process will
continue to run.

To use internal DOS commands like DIR and COPY, you must run the DOS command
processor, passing the DOS command as a parameter. See the example below.

If the program name in CmdString does not include an explicit path, Windows will search
for the file in the following paths: the directory where the current program is located, the
default directory, the 32-bit Windows system directory, the 16-bit Windows system
directory, the Windows directory, and any directories listed in the PATH environment
variable.

See also ERR, SHELL statement

Example pid??? = SHELL(MyApp$,1)
pid??? = SHELL(ENVIRON$("COMSPEC") + " /C DIR *.* > filename.txt")

SHELL statement

SHELL statement
Purpose Run an executable program synchronously. The SHELLing thread of the calling program

is suspended until the SHELLed program ends.

Syntax SHELL [HANDLES,] CmdString [, WndStyle, EXIT TO exitcode&]

Remarks The SHELL statement has the following parts:

HANDLES This option, if present, allows the child process to inherit (and access) the Windows file
handles of all open files in the parent process. These are not PowerBASIC file numbers,
but system file handles and you must use OPEN HANDLE to access them.

CmdString The name of the program to execute ("child process"), along with and any required
arguments or command-line switches.

WndStyle A number corresponding to the style of the window in which the program is to be
executed. If WndStyle is omitted, the program is opened normal with focus, the same as
WndStyle = 1.

The following table identifies the values for WndStyle and the resulting style of window:

WndStyle Window style
0 Hide window
1 Normal with focus (default)
2 Minimized with focus
3 Maximized with focus
4 Normal without focus
6 Minimized without focus

Use ERR to detect the success of the SHELL function. The HANDLES option allows the
child process to inherit the file handles opened by your program. This affects only
Windows handles, not PowerBASIC file identifiers. It is an advanced option, for those who
know it works and why they need it.

exitcode& The exit code of the child process (the value returned by the WinMain function) is
assigned to the long integer variable specified by exitcode&.

Restrictions The SHELL statement executes the child process synchronously. That is, SHELL will
not return control to your program until the child program finishes.

PowerBASIC Compiler for Windows Version 10

1816 / 2126

To use internal DOS commands like DIR and COPY, you must run the DOS command
processor, passing the DOS command as a parameter. See the example below.

If the program name in CmdString does not include an explicit path, Windows will search
for the file in the following paths: the directory where the current program is located, the
default directory, the 32-bit Windows system directory, the 16-bit Windows system
directory, the Windows directory, and any directories listed in the PATH environment
variable.

If the SHELL statement is not executed successfully, an appropriate error is generated.
 The ERR function can be used to detect it.

See also ERR, SHELL function

Example SHELL MyApp$,1, EXIT TO exitvar&
SHELL ENVIRON$("COMSPEC") + " /C DIR *.* > filename.txt"

SHIFT statement

SHIFT statement
Purpose Shift the bits in an

 variable.
Syntax SHIFT [SIGNED] {LEFT | RIGHT} ivar, countexpr

Remarks ivar must be one of the integral-class variable types: Byte, Word, Integer, Double-word,
Long-integer, or Quad-integer. countexpr is an integral-class expression specifying the
number of bits by which to shift ivar.

SHIFT shifts all the bits in ivar without special regard to the sign bit of a signed integral-
class variable.

SIGNED The SIGNED option shifts everything, but does not allow the sign (positive or negative) of
the value to change.

LEFT | RIGHT The LEFT or RIGHT option determines the direction of the bit SHIFT operation. SHIFT
LEFT shifts the bits toward the high-order end of ivar, and SHIFT RIGHT shifts bits toward
the low-order end of ivar.

See also AND, BIT function, BIT statement, BITS functions, NOT, OR, ROTATE, XOR

Example DIM i AS BYTE
n = 221
SHIFT LEFT n, 1 ' binary 1 1 0 1 1 1 0 1
' n = 186 ' binary 1 0 1 1 1 0 1 0

n = 221
SHIFT RIGHT n, 1 ' binary 1 1 0 1 1 1 0 1
' n = 110 ' binary 0 1 1 0 1 1 1 0

n = 221
SHIFT SIGNED RIGHT n, 1 ' binary 1 1 0 1 1 1 0 1
n = 238 ' binary 1 1 1 0 1 1 1 0

SHRINK$ function

Keyword Template
Purpose

Syntax

PowerBASIC Compiler for Windows Version 10

1817 / 2126

Remarks

See also

Example

SHRINK$ function
Purpose Shrink a

 to use a consistent single character delimiter.
Syntax NewString$ = SHRINK$(OldString$)

NewString$ = SHRINK$(OldString$, Mask$)

Remarks The purpose of this function is to create a string with consecutive data items (words)
separated by a consistent single character. This makes it very straightforward to parse
the results as needed.

In the first form, all leading spaces and trailing spaces are removed entirely. All
occurrences of two or more spaces are changed to a single space. Therefore, the new
string returned consists of zero or more words, each separated by a single space
character.

In the second form, Mask$ defines one or more delimiter characters to shrink. All leading
and trailing mask characters are removed entirely. All occurrences of one or more mask
characters are replaced with the first character of Mask$. Therefore, the new string
returned consists of zero or more words, each separated by the character found in the
first position of Mask$.

WhiteSpace is generally defined as the four common non-printing characters: Space,
Tab, Carriage-Return, and Line-Feed. This is pre-defined in PowerBASIC as string
equates for your convenience. The ANSI version is named $WHITESPACE, while the
WIDE version is $$WHITESPACE. This equate is particularly well suited to be used as
Mask$ in this function.

See also CLIP$, INSTR, LTRIM$, REMOVE$, REPLACE, RTRIM$, TRIM$, UNWRAP$

SIN function

SIN function
Purpose Return the sine of its argument.

Syntax y = SIN(numeric_expression)

Remarks numeric_expression is an angle specified in radians. SIN returns an Extended-precision
value between -1 and +1.

To convert radians to degrees, multiply by 57.29577951308232##. To convert degrees to
radians, multiply by 0.0174532925199433##. For more information on radians, see the
ATN function.

The Inverse Sine (ARCSIN) of a value can be calculated as follows:

ArcSin = ATN(Value / SQR(1 - Value * Value))

The Hyperbolic Sine (SINH) of a value can also be calculated:

SinH = (EXP(Value) - EXP(-Value)) / 2

The Inverse Hyperbolic Sine (ARCSINH) of a value can also be calculated:

ArcSinH = LOG(Value + SQR(Value * Value + 1))

' Useful Macro functions
MACRO Pi = 3.141592653589793##
MACRO DegreesToRadians(dpDegrees) = (dpDegrees * 0.0174532925199433##)

PowerBASIC Compiler for Windows Version 10

1818 / 2126

MACRO RadiansToDegrees(dpRadians) = (dpRadians * 57.29577951308232##)

See also ATN, COS, TAN

Example pi## = 3.141592653589793##
FOR I& = 0 TO 360 STEP 45
 x$ = "The Sine of " + FORMAT$(I&,"* 0") + _
 " degrees =" + FORMAT$(SIN(pi## / 180 * _
 I&),"* 0.00")
NEXT I&

Result The Sine of 0 degrees = 0.00
The Sine of 45 degrees = 0.71
The Sine of 90 degrees = 1.00
The Sine of 135 degrees = 0.71
The Sine of 180 degrees = 0.00
The Sine of 225 degrees = -0.71
The Sine of 270 degrees = -1.00
The Sine of 315 degrees = -0.71
The Sine of 360 degrees = 0.00

SIZEOF function

SIZEOF function
Purpose Return the total or physical length of any PowerBASIC variable.

Syntax x& = SIZEOF(target)

Remarks Particularly useful for determining the maximum length of a fixed-length string, nul-
terminated string, or User-Defined Type. It provides similar functionality to LEN, which
returns the current length of a data item.

target can be the name of any variable type (fixed-length string, nul-terminated string,
User-Defined Type (UDT) variable or definition, etc).

When measuring the size of a padded (aligned) UDT variable or definition with the SIZEOF
(or LEN) statement, the measured length includes any padding that was added to the
structure. For example, the following UDT structure:

TYPE LengthTestType DWORD
 a AS INTEGER
END TYPE
' more code here
DIM abc AS LengthTestType
x& = SIZEOF(abc) ' or use SIZEOF(LengthTestType)

Returns a length of 4 bytes in x&, since the UDT was padded with 2 additional bytes to
enforce DWORD alignment. Note that the SIZEOF of individual UDT members returns the
true size of the member without regard to padding or alignment. In the previous example,
SIZEOF(abc.a) returns 2.

When used on a dynamic (variable length) string, SIZEOF returns 4, which is the size of
the string handle. To obtain the length of the string data in the dynamic string, use the
LEN function. SIZEOF also returns 4 for pointer variables, since a pointer is always
stored as a DWORD.

Pointers

When used with a dereferenced pointer (i.e., SIZEOF(@p), SIZEOF returns the size of the
pointer target variable type, as defined in the DIM x AS y PTR [* pSize] statement.

For example, with a dynamic string pointer, SIZEOF returns 4. If the pointer target is a
fixed-length string, UDT, Union, or nul-terminated string, SIZEOF returns the size of the
target data structure. However, if the pointer is declared to reference an nul-terminated
with no specific target size (i.e., DIM a AS STRINGZ PTR), SIZEOF returns 0.

PowerBASIC Compiler for Windows Version 10

1819 / 2126

Likewise, if SIZEOF is used on a

 STRINGZ string that does not have an explicit length specification, SIZEOF will also
return 0. For example:

SUB ProcessData(BYREF szText AS STRINGZ)
 ' Within this Sub, SIZEOF(szText) will return 0 because there is no
explicit length specification

See also CHRBYTES, DIM, LEN

Example DIM Strval AS STRINGZ * 10
Strval = "test"
' SIZEOF(Strval) = 10, LEN(Strval) = 4

DIM Intval AS QUAD
Intval = 1
' SIZEOF(Intval) = 8, LEN(Strval) = 8

DIM CustName AS STRING
CustName = "Fred Dagg"
' SIZEOF(CustName) = 4, LEN(CustName) = 9

UNION Arrs
 m1(1 TO 1024) AS BYTE
END UNION
DIM p1 AS STRING PTR
DIM p2 AS STRING PTR * 1024
DIM p3 AS Arrs PTR
DIM p4 AS STRINGZ PTR
DIM p5 AS STRINGZ PTR * 64
' Results of SIZEOF on these pointers:
' SIZEOF(p1) = 4, SIZEOF(@p1) = 4
' SIZEOF(p2) = 4, SIZEOF(@p2) = 1024
' SIZEOF(p3) = 4, SIZEOF(@p3) = 1024
' SIZEOF(p4) = 4, SIZEOF(@p4) = 0
' SIZEOF(p5) = 4, SIZEOF(@p5) = 64
' SIZEOF(Arrs) = 1024

SLEEP statement

SLEEP statement
Purpose Pause the current thread of the application for a specified number of milliseconds (mSec),

allowing other processes (or threads) to continue.

Syntax SLEEP m&

Remarks m& is the number of milliseconds (1 millisecond = 1/1000th of a second) to pause the
application. Only the current

 pauses. If other threads are present, they will continue to execute. During the SLEEP
period, all time-slices for the current thread are given to other threads and processes.
If m& is zero, the remainder of the current time-slice is relinquished. If there are no other
threads of equal priority, execution continues immediately.

The time-slice duration (also known as the Quantum) can vary from version to version of
Windows, ranging from 20 mSec to 120 mSec. Therefore, the Quantum can affect the
performance of applications when SLEEP 0 is overused. That is, excessive use of
SLEEP 0 can cause an application to cede much of its available processor time, causing
a significant drop in application performance.

When code is running in a tight loop, it is quite possible to use up 100% of the available

PowerBASIC Compiler for Windows Version 10

1820 / 2126

CPU time, so the occasional use of SLEEP 0 within a tight loop is often beneficial to
overall performance of the target PC. For example, it may not be necessary to use
SLEEP 0 for every iteration of a loop, but every second or third instead.

See also THREAD CREATE, TIMER

Example ' Pause for 5 seconds
SLEEP 5000

' Release time-slice every 256 iterations
FOR x& = 0 TO &H0FFFFFFFF&
 ' code goes here
 IF x& MOD 256 = 0 THEN SLEEP 0
NEXT x&

SPACE$ function

SPACE$ function
Purpose Return a

 consisting of a specified number of spaces.
Syntax s$ = SPACE$(numeric_expression)

Remarks numeric_expression is a non-negative expression that specifies how many spaces the
function is to return. SPACE$ can be useful for formatting or prefilling strings.

See also BUILD$, CHR$, CSET, CSET$, LSET, NUL$, REPEAT$, RSET, STRING$

Example A$ = SPACE$(1000000) ' fill A$ with 1000000 spaces

SPLIT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

SPLIT statement
Purpose Splits a

 into two parts.
Syntax SPLIT [WORD] MainStr, Part1Len TO Part1Var, Part2Var

Remarks MainStr is separated into two parts, which are then assigned to the two string variables
specified by Part1Var and Part2Var. Part1Len is a

 expression which specifies the number of characters to be assigned to Part1, while
the remaining characters are assigned to Part2.

WORD If the WORD option is included, PowerBASIC guarantees that Part1 will not end on a
partial word. This may require that Part1Len is adjusted to a smaller value. In that case,
Part2Var would be assigned these characters to compensate. Depending upon the
nature of the operation, it may be necessary to remove leading spaces from Part2Var.

PowerBASIC Compiler for Windows Version 10

1821 / 2126

See also GRAPHIC SPLIT, LTRIM$, XPRINT SPLIT

SQR function

SQR function
Purpose Return the square root of its argument.

Syntax y = SQR(numeric_expression)

Remarks numeric_expression must be greater than or equal to zero. SQR calculates square roots
using an optimized algorithm. That is, y = SQR(x) takes less time to execute than y =
x 0̂.5.

Attempting to take the square root of a negative number does not produce any run-time
errors, but the results of such an operation are undefined.

SQR returns an Extended-precision result.

See also EXP, EXP2, EXP10, LOG, LOG2, LOG10

STATIC statement

STATIC statement
Purpose Declare static variables inside a Sub, Function, Method, or Property. Static variables

retain their values as long as the program is running.

Syntax STATIC variable[()] [AS type] [, variable[()]]
STATIC variable[()] [, variable[()]] [, ...] AS type

Remarks The STATIC statement is valid only inside a procedure. Static variables retain their values
even after the procedure ends. A static variable is local to its procedure, and can have the
same name as other variables in other parts of the program without conflict.

To declare an array as a static variable, use an empty set of parentheses in the variable
list: You can then use the DIM statement to dimension the array.

STATIC MyArray%()
STATIC StringArray() AS STRING

The STATIC statement may, optionally, accept a list of variables, all of which are defined
by the type descriptor keyword that follows them. For example:

STATIC aaa, bbb, ccc AS INTEGER
STATIC vptr, aptr() AS LONG PTR

Restrictions DEFtype has no effect on variables defined by a STATIC statement.

See also DIM, GLOBAL, LOCAL, THREADED

Example #COMPILE EXE
#DIM ALL
#INCLUDE "WIN32API.INC"

DECLARE SUB DoMessage ()

FUNCTION PBMAIN
 DIM z%
 FOR z% = 1 TO 5
 DoMessage
 NEXT z%
END FUNCTION

SUB DoMessage ()

PowerBASIC Compiler for Windows Version 10

1822 / 2126

 STATIC x AS INTEGER
 STATIC Message() AS ASCIIZ * 256
 DIM Message(1 TO 5) AS STATIC ASCIIZ * 256

 INCR x 'add one to x
 Message(x) = "X =" + STR$(x)

 #IF %DEF(%PB_CC32)
 PRINT Message(x)
 #ELSE
 MSGBOX Message(x)
 #ENDIF
END SUB

STATUSBAR SET PARTS statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STATUSBAR statement
Purpose Manipulate a STATUSBAR control. A StatusBar is a horizontal window, typically at the

bottom of a dialog client area, which displays various kinds of status information. It can
be divided into parts to display multiple items.

Syntax STATUSBAR SET PARTS hDlg, id&, x& [,x&...]
STATUSBAR SET TEXT hDlg, id&, item&, style&, text$

hDlg Handle of the dialog that owns the status bar.

id& The control identifier assigned with CONTROL ADD STATUSBAR.

item& Position of data on the STATUSBAR. First item=1, second=2...

style& Style bits which specify the appearance of the status bar.

text$ A string expression passed as a parameter.

Remarks In each of the following samples and descriptions, the STATUSBAR control which is the
subject of the statement is identified by the handle of the dialog that owns the
STATUSBAR (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD STATUSBAR.

The value item& refers to the position of the text data item on the STATUSBAR, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

STATUSBAR SET PARTS hDlg, id&, x& [,x&...]

The STATUSBAR control is partitioned into as many as 32 sections, each of which can
be used to display some particular status data to the user. The statement contains from 1
to 32 width parameters (x&), which specify the pixel or dialog unit size of that section.
 You can use a very large number for the last parameter to signify that the section should
extend all the way to the right side of the window.

STATUSBAR SET PARTS hDlg, id&, 50, 50, 9999

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1823 / 2126

For example, the above statement would create a status bar with 2 sections of 50 pixels
each, and a third section of the remaining width.

STATUSBAR SET TEXT hDlg, id&, item&, style&, text$

The text for the data item specified by item& is replaced with the new text in text$. The
value of item& = 1 for the first item, 2 for the second item, etc. The status bar style value
can be the default value of zero (0), or one of the other style values formed as a bitmask:

Zero (0) default Text with a border to appear lower than the window.

%SBT_NOBORDERS The text is drawn without any borders.

%SBT_POPOUT Text with a border to appear higher than the window.

See also Dynamic Dialog Tools, CONTROL ADD STATUSBAR, CONTROL SET FONT

STATUSBAR SET TEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STATUSBAR statement
Purpose Manipulate a STATUSBAR control. A StatusBar is a horizontal window, typically at the

bottom of a dialog client area, which displays various kinds of status information. It can
be divided into parts to display multiple items.

Syntax STATUSBAR SET PARTS hDlg, id&, x& [,x&...]
STATUSBAR SET TEXT hDlg, id&, item&, style&, text$

hDlg Handle of the dialog that owns the status bar.

id& The control identifier assigned with CONTROL ADD STATUSBAR.

item& Position of data on the STATUSBAR. First item=1, second=2...

style& Style bits which specify the appearance of the status bar.

text$ A string expression passed as a parameter.

Remarks In each of the following samples and descriptions, the STATUSBAR control which is the
subject of the statement is identified by the handle of the dialog that owns the
STATUSBAR (hDlg), and the unique control identifier you gave it upon creation in
CONTROL ADD STATUSBAR.

The value item& refers to the position of the text data item on the STATUSBAR, and is
always indexed to one. The first string is position 1, the second is position 2, and so
forth.

STATUSBAR SET PARTS hDlg, id&, x& [,x&...]

The STATUSBAR control is partitioned into as many as 32 sections, each of which can
be used to display some particular status data to the user. The statement contains from 1
to 32 width parameters (x&), which specify the pixel or dialog unit size of that section.
 You can use a very large number for the last parameter to signify that the section should
extend all the way to the right side of the window.

STATUSBAR SET PARTS hDlg, id&, 50, 50, 9999

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1824 / 2126

For example, the above statement would create a status bar with 2 sections of 50 pixels
each, and a third section of the remaining width.

STATUSBAR SET TEXT hDlg, id&, item&, style&, text$

The text for the data item specified by item& is replaced with the new text in text$. The
value of item& = 1 for the first item, 2 for the second item, etc. The status bar style value
can be the default value of zero (0), or one of the other style values formed as a bitmask:

Zero (0) default Text with a border to appear lower than the window.

%SBT_NOBORDERS The text is drawn without any borders.

%SBT_POPOUT Text with a border to appear higher than the window.

See also Dynamic Dialog Tools, CONTROL ADD STATUSBAR, CONTROL SET FONT

STR$ function

STR$ function
Purpose Return the

 representation of a number in printable form.
Syntax s$ = STR$(numeric_expression [, digits])

Remarks STR$ returns the string form of a

 variable or expression in printable text form. digits is an optional expression
specifying the maximum total number of digits to appear in the result. If
numeric_expression is greater than or equal to zero, STR$ adds a leading space
character; if numeric_expression is less than zero, STR$ adds a leading negation
(minus) character.
For example, STR$(14) returns a three-character string, of which the first character is a
space, and the second and third are the ASCII characters "1" and "4". LTRIM$ can be
used to remove leading space characters.

digits specifies the maximum number of significant digits (1 to 18) desired in the result.

STR$ can also be used to convert numeric values with more than 16 significant digits (i.e.,
Extended-precision floating-point and Quad-integers) to a printable form. For example:

a## = 2.0/3.0
x$ = STR$(a##,18)

returns 0.666666666666666667.

The complementary function is VAL, which takes a string argument and returns the
numeric equivalent. Thus, number = VAL(STR$(number)).

An integer-class numeric value may also be converted to a string with the FORMAT$ and
USING$ functions; however, FORMAT$ can easily return a string that is free from leading
space characters. For example, x$ = FORMAT$(a&).

See also BIN$, FORMAT$, HEX$, LTRIM$, OCT$, ROUND, USING$, VAL

Example x$ = STR$(-1,5)
x$ = STR$(5/3,2)
x$ = STR$(5/3,8)
x$ = STR$(100000## / 3##, 18)

Result -1
 1.7
 1.6666667
 33333.3333333333333

PowerBASIC Compiler for Windows Version 10

1825 / 2126

STRDELETE$ function

STRDELETE$ function
Purpose Delete a specified number of characters from a string expression.

Syntax s$ = STRDELETE$(string_expression, start&, count&)

Remarks Returns a

 based on copying string_expression, but with count& characters deleted starting at
position start&. The first character in the string is position 1, etc.

See also CLIP$, STRINSERT$, STRREVERSE$

Example a$ = STRDELETE$("PowerBASIC", 4, 2)

Result PowBASIC

STRING$ function

STRING$/STRING$$ function
Purpose Return a

 consisting of multiple copies of the specified character.
Syntax s$ = STRING$(Count&, Character%)

s$ = STRING$(Count&, Character$)
s$$ = STRING$$(Count&, Character%)
s$$ = STRING$$(Count&, Character$$)

Remarks This function creates a string which consists of multiple copies of a particular character.
 The STRING$() form creates a string of ANSI (1-byte) characters, or codes in the range of
0 to 255. The STRING$$() form of the function creates a string of WIDE (2-byte)
characters, or codes in the range of 0 to 65535.

Generally speaking, PowerBASIC handles ANSI/WIDE conversions for you, automatically
and transparently. However, there are just a few functions (CHR$, PEEK$, POKE$,
STRING$, etc) which are ambiguous, by definition, and require that the programmer
choose the appropriate result type (ANSI or WIDE). Use STRING$ for ANSI results, or
use STRING$$ for Unicode results. In the remainder of these remarks, STRING$ is used
to represent both STRING$ and STRING$$.

STRING$ with a

 argument returns a string of Count& copies of the character with the Character Code
of Character%. STRING$ with a string argument returns a string of Count& copies
of the first character in Character$ or Character$$.
The following functions all return a string of 8 spaces:

A$ = STRING$(8, 32)
A$ = STRING$(8, " ")
A$ = STRING$(8, $SPC)
A$ = SPACE$(8)
A$ = REPEAT$(8, " ")
A$ = REPEAT$(8, $SPC)

Use REPEAT$ to make multiple copies of a multiple-character string, and SPACE$ to
return a string of space characters.

See also ASC, BUILD$, CHR$, NUL$, REPEAT$, SPACE$

PowerBASIC Compiler for Windows Version 10

1826 / 2126

STRING$$ function

STRING$/STRING$$ function
Purpose Return a

 consisting of multiple copies of the specified character.
Syntax s$ = STRING$(Count&, Character%)

s$ = STRING$(Count&, Character$)
s$$ = STRING$$(Count&, Character%)
s$$ = STRING$$(Count&, Character$$)

Remarks This function creates a string which consists of multiple copies of a particular character.
 The STRING$() form creates a string of ANSI (1-byte) characters, or codes in the range of
0 to 255. The STRING$$() form of the function creates a string of WIDE (2-byte)
characters, or codes in the range of 0 to 65535.

Generally speaking, PowerBASIC handles ANSI/WIDE conversions for you, automatically
and transparently. However, there are just a few functions (CHR$, PEEK$, POKE$,
STRING$, etc) which are ambiguous, by definition, and require that the programmer
choose the appropriate result type (ANSI or WIDE). Use STRING$ for ANSI results, or
use STRING$$ for Unicode results. In the remainder of these remarks, STRING$ is used
to represent both STRING$ and STRING$$.

STRING$ with a

 argument returns a string of Count& copies of the character with the Character Code
of Character%. STRING$ with a string argument returns a string of Count& copies
of the first character in Character$ or Character$$.
The following functions all return a string of 8 spaces:

A$ = STRING$(8, 32)
A$ = STRING$(8, " ")
A$ = STRING$(8, $SPC)
A$ = SPACE$(8)
A$ = REPEAT$(8, " ")
A$ = REPEAT$(8, $SPC)

Use REPEAT$ to make multiple copies of a multiple-character string, and SPACE$ to
return a string of space characters.

See also ASC, BUILD$, CHR$, NUL$, REPEAT$, SPACE$

STRINSERT$ function

STRINSERT$ function
Purpose Insert a

 at a specified position within another string expression.
Syntax s$ = STRINSERT$(MainStr$, NewStr$, position&)

Remarks Returns a string consisting of the string expression MainStr$, with the string expression
NewStr$ inserted at position&. If position& is greater than the length of MainStr$,
NewStr$ is appended to MainStr$. The first character in the string is position 1, etc.

See also BUILD$, CLIP$, CSET, CSET$, LSET, RSET, STRDELETE$, STRREVERSE$, WRAP$

Example a$ = STRINSERT$("PowerBASIC", "ful", 6)

Result PowerfulBASIC

PowerBASIC Compiler for Windows Version 10

1827 / 2126

STRINGBUILDER Object

Keyword Template
Purpose

Syntax

Remarks

See also

Example

STRINGBUILDER Object
Purpose The StringBuilder object offers the ability to concatenate many

 sections at a very high level of performance. The speed of execution is particularly
noticeable when the concatenation is performed in many separate operations over a
period of time. If all of the string sections are known and available at once, the use of
the BUILD$() function could be a better choice. However, both options offer a very
large boost as compared to the standard concatenation operators (& or +). In
addition to concatenation, the StringBuilder Class also offers a few additional string
operations to assist in building the string.

Remarks There are two forms of the StringBuilder object, one for ANSI strings, and one for WIDE
(Unicode) strings. While they could have been combined into a single hybrid object, that
would have added additional overhead not acceptable for PowerBASIC. To concatenate
ANSI strings, use the StringBuilderA class and the IStringBuilderA interface. To
concatenate WIDE (Unicode) strings, use the StringBuilderW class and the
IStringBuilderW interface. The methods and mode of operation are identical for both
forms.

If you choose the ANSI form, parameter strings must be ANSI, and result strings will be
ANSI. With the WIDE (Unicode) form, parameter strings must be wide, and result strings
will be wide. Keep those requirements in mind when reviewing the following method
definitions. The Dispatch ID (DispID) for each member method is displayed within angle
brackets.

When you create a StringBuilder object, a dynamic string buffer is created to hold the
target string. If you know the size of the result string (or even an approximation), it's
usually prudent to use the CAPACITY method first, to establish a size at least as large as
the final string. If it's not known, PowerBASIC will try to make appropriate decisions for
you. Once the object is created, the ADD method is used to append string sections as
many times as necessary. Finally, the STRING method is used to extract the combined
items.

StringBuilder Methods/Properties
ADD (PowerString$) Method<1>

The PowerString$ parameter is appended to the string held in the StringBuilder object. If
the internal string buffer overflows, PowerBASIC will automatically extend it to an
appropriate size. If a necessary buffer extension fails, an HResult of E_OUTOFMEMORY
(&H8007000E) is returned, and an Object Error (99) is generated.

CAPACITY () AS Long Get Property<2>

The size of the internal string buffer is retrieved and returned to the caller. The size is the
number of characters which can be stored without further expansion.

CAPACITY () = Long Set Property<2>

The internal string buffer is expanded to the number of characters specified by the Long

PowerBASIC Compiler for Windows Version 10

1828 / 2126

Integer. If the new capacity is smaller or equal to the current capacity, no operation is
performed.

CHAR (Index&) AS Long Get Property<3>

The numeric character code of the character at the position Index& is retrieved and
returned to the caller. Index&=1 for the first character, 2 for the second, etc. If Index& is
beyond the current length of the string, the value -1 is returned.

CHAR (Index&) = Long Set Property<3>

The character at the position Index& is changed to that specified by the Long Integer
character code. Index&=1 for the first character, 2 for the second, etc.

CLEAR Method<4>

All data in the object is erased.

DELETE (Index&, Count&) Method<5>

Count& characters are removed starting at the position given by Index&. Index&=1 for the
first character, 2 for the second, etc.

INSERT (PowerString$, Index&) Method<6>

The PowerString$ parameter is inserted in the string starting at the position given by
Index&. Index&=1 for the first character, 2 for the second, etc. If Index& is beyond the
current length of the string, no operation is performed.

LEN () AS Long Method<7>

The number of characters currently stored in the object is returned as a long integer value.

STRING AS String Method<8>

The string stored in the object is returned to the caller. This string will contain LEN
characters.

See also BUILD$, CHR$, CSET, CSET$, JOIN$, LSET, LSET$, REPEAT$, RSET, RSET$,
STRING$, STRINSERT$, WRAP$

STRPTR function

STRPTR function
Purpose Return the 32-bit DWORD address of the memory block used to store the data held by a

dynamic (variable length) string.

Syntax xPtr = STRPTR(StringVar)

Remarks StringVar is the name of a string variable. STRPTR returns the 32-bit address in memory,
where the contents of StringVar are stored.

Note that STRPTR differs from VARPTR. When used with a string variable, VARPTR
returns the address of the string's handle, while STRPTR returns the address of the actual
string data. Similarly, a STRING POINTER (or STRING PTR) is a pointer to a string
handle - this important distinction should be recognized when working with the VARPTR
and STRPTR operations.

STRPTR may not be used with fixed-length or nul-terminated strings, because they do not
use string handles. Use VARPTR with fixed-length and nul-terminated strings.

When a dynamic string content is changed, the address of the string data will also
change, but the string handle will remain in the same location. Therefore, it is important
that your code refresh any pointers that target the string data memory locations directly.

See also CODEPTR, POKE$, PEEK$, VARPTR

Example DIM x AS ASCIIZ PTR, A$
A$ = "PowerBASIC"
x = STRPTR(A$) ' address of the string data
Message$ = A$ ' returns A$
Message$ = @x ' returns A$ as the target of x

PowerBASIC Compiler for Windows Version 10

1829 / 2126

A$ = "The power of BASIC!"
x = STRPTR(A$) ' Update string pointer address
Message$ = @x ' returns the target of x

Result As the code above runs, Message$ is assigned the following strings:

PowerBASIC
PowerBASIC
The power of BASIC!

STRREVERSE$ function

STRREVERSE$ function
Purpose Reverse the contents of a

 expression.
Syntax s$ = STRREVERSE$(MainStr$)

Remarks Reverses the contents of MainStr$ and returns the result.

See also STRDELETE$, STRINSERT$

Example a$ = STRREVERSE$("PowerBASIC")

Result CISABrewoP

SUB/END SUB statements

SUB/END SUB statements
Purpose Define a Sub code section.

Syntax SUB ProcName [ALIAS "AliasName"] [(arguments)] <Descriptors>
 [statements]
END SUB

Remarks All executable code must reside in a Sub, Function. Method, Property, or FastProc
block. Subs may not be nested. That is, you cannot define a code block (Sub, Function,
Method, FastProc, Property) inside another code block.

SUB and END SUB define a subroutine-like block of statements called a procedure (or
subprogram), which is invoked with the CALL statement, and may be passed parameters
by value or by reference. A Sub may also be invoked without the use of the CALL
statement. If the CALL word is omitted, the parentheses around the arguments list must
also be omitted.

Previous versions of PowerBASIC required that you create an explicit DECLARE
statement if you wished to execute a SUB or FUNCTION which did not physically precede
the reference to it. This extra work is no longer required, as PowerBASIC resolves all
forward references to internal procedures automatically.

DECLARE statements for a Sub/Function imported from a DLL must still precede any
reference to the procedure.

ProcName The name of the Sub. ProcName must be unique: no other variable, Function, Sub,
Method, Property, FastProc or label can share it.

ALIAS String literal that identifies a case-sensitive alternative name for the sub. This lets you
export a Sub by a different unique name. This can be useful if you want to abbreviate a
long name, provide a more descriptive name, or if the exported name needs to contain
characters that are illegal in PowerBASIC. AliasName is the routines actual name as it
appears in the export table, and ProcName is the title that you can use in PowerBASIC.
 For example:

SUB ShortName ALIAS "LongProcName" () EXPORT STATIC

PowerBASIC Compiler for Windows Version 10

1830 / 2126

The ALIAS clause is very important when exporting procedures. Omitting the
ALIAS clause or incorrectly capitalizing the alias name are common causes of
"Missing Export" errors. Please refer to the DECLARE topic for more
information.

 Descriptors

 You may optionally add one or more descriptor words (Export, Common, Private,
ThreadSafe, Local, Static, BDecl, CDecl, SDecl) to provide specific functionality. They
may be added to the SUB as a comma delimited list. You should note that some of them
are mutually exclusive.

EXPORT This descriptor identifies a Sub or Function which may be accessed between Dynamic
Link Libraries (DLLs), and/or the main executable which links them. If a procedure is not
marked EXPORT, it is hidden from these other modules. The EXPORT attribute may be
added to a Sub/Function defined elsewhere, by specifying EXPORT in a DECLARE
statement. EXPORT can even be added to a Sub/Function in an SLL with a DECLARE in
the host module.

COMMON A COMMON Sub/Function is one which may be referenced by and between linked unit
modules (Host or SLL). If you DECLARE a Common Sub or Function which is not
present in this module, it is presumed to be found in a separate linked module (Host or
SLL).

PRIVATE A PRIVATE Sub/Function is one which may only be accessed from within the current
PowerBASIC program or library. Even if not specified, this is the default mode of
operation.

THREADSAFE With the THREADSAFE option, PowerBASIC automatically establishes a semaphore
which allows only one

 to execute the Sub/Function at a time. Other callers must wait until the first thread
exits the THREADSAFE procedure before they are allowed to begin.

LOCAL This descriptor specifies that all undeclared variables in a sub are LOCAL. This is the
default condition if neither LOCAL nor STATIC is specified.

Local variables and arrays variables are automatically deallocated when the procedure
terminates. LOCAL scalar variables (except dynamic strings) are stored on the stack,
and visible only within the sub.

STATIC This descriptor specifies that all undeclared variables in a sub are STATIC. Static
variables retain their values as long as the program is running. They are visible only within
the sub.

BDECL Specifies that the declared procedure uses the legacy BASIC/Pascal calling convention.
 Parameters are pushed on the stack from left to right, and the called procedure is
responsible for removing them. BDECL should only be used when necessary to match
outside modules.

CDECL Specifies that the declared procedure uses the C calling convention. Parameters are
pushed on the stack from right to left, and the calling code is responsible for removing
them. CDECL should only be used when necessary to match outside modules.

SDECL This is the default convention, and should be used whenever possible. SDECL (and its
synonym STDCALL), specifies the "Standard Calling Convention" for Windows.
 Parameters are pushed on the stack from right to left, and the called procedure is
responsible for removing them.

 Passing Parameters

Arguments An optional, comma-delimited sequence of formal parameters. The parameters used in
the arguments list serve only to define the Function; they have no relationship to other
variables in the calling code with the same name.

Normally, PowerBASIC passes parameters to a Sub either by reference (BYREF) or by
value (BYVAL). If you do not need to modify the parameters (true in many cases), you
can speed up your calls by passing the parameters by value using the BYVAL keyword.

PowerBASIC Compiler for Windows Version 10

1831 / 2126

 You can clarify that a parameter is passed by reference by using the optional BYREF
keyword.

The type of the parameter is specified either by appending a type-specifier character to
the name or by using an AS clause. For example:

SUB Test(A AS INTEGER) ' integer passed by reference
SUB Test(A%) ' integer passed by reference
SUB Test(BYREF A%) ' integer passed by reference
SUB Test(BYVAL A%) ' integer passed by value

 Parameter Restrictions

 PowerBASIC compilers have a limit of 32 parameters per Sub. To pass more than 32
parameters to a FUNCTION, construct a User-Defined Type (UDT) and pass the UDT by
reference (BYREF) instead.

 Pointer Parameters

 When a Sub definition specifies either a BYREF parameter or a pointer variable
parameter, the calling code may freely pass a BYVAL DWORD or a Pointer instead.
 Pointer variable parameters must always be declared as BYVAL parameters.

' Integer Pointer (passed by value)
SUB Test(BYVAL A AS INTEGER PTR)
 @A = 56
END SUB

Additional information on BYVAL/BYREF/BYCOPY parameter passing can be found in
the CALL statement topic.

 Using OPTIONAL/OPT

 SUB statements may specify one or more parameters as optional by preceding the
parameter with either the keyword OPTIONAL or OPT. Optional parameters are only
allowed with CDECL or SDECL calling conventions, not BDECL.

When a parameter is declared optional, all subsequent parameters in the declaration are
optional as well, whether or not they specify an explicit OPTIONAL or OPT directive. The
following two lines are equivalent, with both second and third parameters being optional:

SUB sABC(a&, OPTIONAL BYVAL b&, OPTIONAL BYVAL c&)
SUB sABC(a&, OPT BYVAL b&, BYVAL c&)

VARIANT variables are particularly well suited for use as an optional parameter. If the
calling code omits an optional VARIANT parameter, (BYVAL or BYREF), PowerBASIC
(and most other compilers) substitute a variant of type VT_ERROR which contains an
error value of %DISP_E_PARAMNOTFOUND (&H80020004). In this case, you can check
for this value directly, or use the ISMISSING() function to determine whether the
parameter was physically passed or not.

When optional parameters (other than a VARIANT) are omitted in the calling code, the
stack area normally reserved for those parameters is zero-filled. This allows you to test if
an optional parameter was passed or not.

If the parameter is defined as a BYVAL parameter, it will have the value zero. For TYPE
or UNION variables passed BYVAL, the compiler will pass a string of binary zeroes of
length SIZEOF(Type_or_union_var).

If the parameter is defined as a BYREF parameter, VARPTR (varname) will equal zero;
when this is true, any attempt to use varname in your code will result in Error #9 (null
pointer); failure to detect this error using error-trapping may result in a General Protection
Fault or memory corruption. You should use the ISMISSING() function first to determine
whether it is safe to access the parameter.

Because the FUNCTION, SUB, FASTPROC, METHOD, or PROPERTY being called does
not know how many parameters are being passed at the time it is called, you should pass
the number of parameters as one of the required parameters in the list.

 Variables within Subs

PowerBASIC Compiler for Windows Version 10

1832 / 2126

 LOCAL variables are created within the procedure stack frame. If a LOCAL variable
exceeds the amount of stack space available, it may become necessary to use a STATIC
or GLOBAL variable instead. For example, creating a LOCAL nul-terminated or LOCAL
fixed-length string that is very large (say, approaching 1 MB) can trigger a General
Protection Fault (GPF) because it may overrun the stack frame.

 Procedure definitions and program flow

 The position of procedure definitions is mostly immaterial. They are usually grouped
together in one region of the source code, but you cannot nest procedure definitions. That
is, you cannot define a procedure within another procedure (although a procedure
definition can contain calls to other procedures). Unlike subroutines (see GOSUB),
program execution cannot accidentally "fall into" a procedure, even if it is located before
the PBMAIN or WINMAIN Function in your code. For example:

 #COMPILE EXE
SUB DisplayInfo(a$)
 ' Code goes here
END SUB
...
FUNCTION PBMAIN
 ' Main program code goes here
END FUNCTION

When this program is executed, the code in DisplayInfo is only executed if the procedure
is explicitly called, even though it is located earlier in the source code file. Procedure
definitions should be treated like isolated islands of code; do not jump in or out of them
with GOTO, GOSUB or RETURN. Within a procedure block, such statements are legal.

See also CALL, DECLARE, EXIT SUB, FASTPROC, FUNCNAME$, FUNCTION/END FUNCTION,
GLOBAL, GOSUB, ISMISSING, LOCAL, RETURN, STATIC

Example SUB TestProcedure(I%, L&, S!, D#, E##, A())
 ' Code to process parameters
END SUB ' end procedure TestProcedure

DIM MyArray(20) ' declare array of numbers
IntegerVar% = 1
LongInt& = 2
SinglePre! = 3
DoublePre# = 4
MyArray(3) = 5
CALL TestProcedure(IntegerVar%, LongInt&, SinglePre!, DoublePre#,
IntegerVar%^2, MyArray())

SWAP statement

SWAP statement
Purpose Exchange the values of two variables of the same

.
Syntax SWAP var1, var2

Remarks var1 and var2 are two variables of the same type. If you try to swap variables of differing
types (for example,

 and , or Single-precision and Double-precision), a compile-time Error 482 occurs
("Data type mismatch").
SWAP is handy because a simple trading of values in two consecutive assignment
statements does not get the job done:

a = b
b = a

PowerBASIC Compiler for Windows Version 10

1833 / 2126

By the time you make the second assignment, variable a does not contain the value it
used to. To do this without the SWAP statement requires a temporary variable and a third
assignment:

temp = a
a = b
b = temp

SWAP can be used to swap the target values of pointers. In addition, SWAP can also be
used to swap the values of pointers themselves.

SWITCH function

SWITCH function
Purpose Return one of a series of values based upon a TRUE/FALSE evaluation of a corresponding

series of expressions.

Syntax var = SWITCH(expr1, val1 [[, expr2, val2], ...])
var& = SWITCH&(expr1, val1& [[, expr2, val2&], ...])
var$ = SWITCH$(expr1, val1$ [[, expr2, val2$], ...])

Remarks SWITCH expects values of any

 type. SWITCH& expects values optimized for Long-integer type. SWITCH$
expects values of type.
If expr1 evaluates TRUE, val1 is returned, if expr2 evaluates TRUE, val2 is returned, etc.

Each control expression in the series is evaluated as a typical PowerBASIC Boolean
expression, which offers short-circuit expression evaluation as needed. To force a bitwise
evaluation of an expression, enclose it in parentheses. The value parameters may be
expressions, literals or variables of the appropriate data type for the SWITCH function in
use.

SWITCH returns the matching value parameter from the first TRUE evaluation of the
control expressions, evaluated from left to right in the list. Therefore, it would be wise to
place the most likely selections at the front of the SWITCH list to achieve the utmost
efficiency. If no expressions evaluate to TRUE, then zero (0) is returned.

Restrictions Contrary to the implementation in some other languages, only the chosen value (one of
val1, val2, val3…) is evaluated at run-time; the other value parameters are not. This
ensures optimum execution speed, as well as the elimination of unanticipated side
effects.

See also CHOOSE, IF, IIF, SELECT

Example ' SWITCH with simple expressions
A$ = SWITCH$(x%=1, "Bob", x%=20, "Bruce", x% > 20, "Dan", x% < 1,
"Nobody!")

' SWITCH with complex expressions
FUNCTION z(i&) AS LONG
 INCR i&
 FUNCTION = i&
END FUNCTION

FUNCTION PBMAIN
 x& = -1
 Choice& = SWITCH&(z(x&), 1, z(x&), 2, z(x&), 3)
 ' Choice& will equal 2
END FUNCTION

PowerBASIC Compiler for Windows Version 10

1834 / 2126

TAB$ function

TAB$ function
Purpose Return a

 with embedded TAB ($TAB) characters expanded with spaces to a given tab stop.
Syntax sResult$ = TAB$(strtotab$, tabstop&)

Remarks All TAB (CHR$(9) or $TAB) characters in strtotab$ are replaced with spaces to pad the
resulting string to the tab stop position specified in tabstop&. strtotab$ and tabstop&
may be variables, literals, or expressions.

Restrictions If the tab stop specified in tabstop& is less than 1 or greater than 256, the original string
is returned unchanged.

See also PARSE$, REPLACE

Example a$ = "Hello" & $TAB & "World" & $TAB & _
 "From PB, Inc."
b$ = TAB$(a$,8)

Result b$ contains "Hello World From PB, Inc."

TAB DELETE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)

PowerBASIC Compiler for Windows Version 10

1835 / 2126

PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1836 / 2126

of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TAB GET COUNT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&

PowerBASIC Compiler for Windows Version 10

1837 / 2126

TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1838 / 2126

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TAB GET DIALOG statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&

PowerBASIC Compiler for Windows Version 10

1839 / 2126

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1840 / 2126

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TAB GET IMAGE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1841 / 2126

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1842 / 2126

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TAB GET PAGE statement

Keyword Template

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1843 / 2126

Purpose

Syntax

Remarks

See also

Example

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1844 / 2126

by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1845 / 2126

PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TAB GET SELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1846 / 2126

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1847 / 2126

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TAB GET TEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1848 / 2126

number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1849 / 2126

TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TAB INSERT PAGE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)

PowerBASIC Compiler for Windows Version 10

1850 / 2126

PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1851 / 2126

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TAB RESET statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&

PowerBASIC Compiler for Windows Version 10

1852 / 2126

TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1853 / 2126

TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TAB SELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

PowerBASIC Compiler for Windows Version 10

1854 / 2126

TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1855 / 2126

assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TAB SET IMAGE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TAB statement

PowerBASIC Compiler for Windows Version 10

1856 / 2126

Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,
selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1857 / 2126

variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TAB SET IMAGELIST statement

Keyword Template
Purpose

Syntax

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1858 / 2126

Remarks

See also

Example

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer
variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1859 / 2126

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET
IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1860 / 2126

TAB SET TEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TAB statement
Purpose A Tab Control is analogous to the dividers in a notebook. It displays one particular page,

selecting it from multiple pages, when the user chooses the corresponding tab. The TAB
statement is used to manipulate a TAB control.

Syntax TAB DELETE hDlg, ID&, PageNum&
TAB GET COUNT hDlg, ID& TO CountVar&
TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&
TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&
TAB GET PAGE PageDlg TO PageNumVar&
TAB GET SELECT hDlg, ID& TO PageNumVar&
TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$
TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack] TO
PageDlgVar&
TAB RESET hDlg, ID&
TAB SELECT hDlg, ID&, PageNum&
TAB SET IMAGE hDlg, ID&, PageNum&, Image&
TAB SET IMAGELIST hDlg, ID&, hLst
TAB SET TEXT hDlg, ID&, PageNum&, Text$

Function Form:
CountVar& = TAB(COUNT, hDlg, ID&)
PageDlgVar& = TAB(DIALOG, hDlg, ID&, PageNum&)
ImageVar& = TAB(IMAGE, hDlg, ID&, PageNum&)
PageNumVar& = TAB(PAGE, PageDlg&)
PageNumVar& = TAB(SELECT, hDlg, ID&)
TextVar$ = TAB$(TEXT, hDlg, ID&, PageNum&)

hDlg Handle of the dialog that owns the Tab Control.

id& The control identifier assigned with CONTROL ADD TAB.

Remarks In each of the following descriptions, the Tab Control that is the subject of the statement
is identified by the handle of the dialog that owns the Tab Control (hDlg), and the unique
control ID you gave it upon creation in CONTROL ADD TAB. Whenever a TAB page
number or IMAGELIST image number is referenced, it is indexed to one. That is, the first
item is 1, the second item is 2, etc. Variations of TAB which return a single value may be
written in the optional Function Form, as shown above. These functions may be
embedded in an expression of any complexity.

TAB DELETE hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is deleted from the Tab Control.

TAB GET COUNT hDlg, id& TO CountVar&

The number of pages in the TAB Control is retrieved, and assigned to the long integer

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1861 / 2126

variable specified by CountVar&.

TAB GET DIALOG hDlg, ID&, PageNum& TO PageDlgVar&

The handle of the child dialog attached to a TAB Control page is retrieved and assigned to
the variable designated by PageDlgVar&. The dialog handle to be returned is determined
by the value of the parameter PageNum&. If that page/dialog not exist, the value zero is
returned.

TAB GET IMAGE hDlg, ID&, PageNum& TO ImageVar&

The index of the image displayed on the specified TAB page is retrieved, and assigned to
the variable specified by ImageVar&. If no image is displayed, the value zero (0) is
assigned.

TAB GET PAGE PageDlg TO PageNumVar&

Given the handle of a TAB Page Dialog, the PageNum is retrieved, and assigned to the
variable specified by PageNumVar&. This may be particularly useful when you process
CallBack messages for Tab Page Dialogs. If you also need Parent and ID information,
you can use WINDOW GET.

TAB GET SELECT hDlg, id& TO SelectVar&

The index of the currently selected page in the Tab Control is retrieved, and assigned to
the variable specified by SelectVar&. If there is no current selection, the value zero (0) is
assigned.

TAB GET TEXT hDlg, ID&, PageNum& TO TextVar$

The text displayed on the specified page tab is retrieved, and assigned to the variable
specified by TextVar$.

TAB INSERT PAGE hDlg, ID&, PageNum&, Image&, Text$ [CALL CallBack]
TO PageDlgVar&

A page is added to this TAB Control. The parameter PageNum& specifies the position of
the page to be inserted. An optional image to be displayed on the tab area is selected
from the attached IMAGELIST, based upon the parameter Image&. Set Image& to 0 if no
image is desired. The Text$ parameter specifies the text to be displayed on the tab area.
 CallBack is the name of a callback procedure to be used for the page dialog. The handle
of the newly created dialog is assigned to the variable designated by PageDlgVar&.

TAB RESET hDlg, id&

All pages in the specified Tab Control are deleted.

TAB SELECT hDlg, ID&, PageNum&

The page specified by the PageNum& parameter is chosen as the selected page for the
TAB control, and the associated dialog is displayed.

TAB SET IMAGE hDlg, ID&, PageNum&, Image&

The image specified by the parameter Image& is displayed on the page tab specified by
the parameter PageNum&.

TAB SET IMAGELIST hDlg, ID&, hLst

The IMAGELIST specified by hLst is attached to this TAB control. The graphical images
contained in the IMAGELIST are displayed on the tabs of this control. The image to be
displayed is determined by the specification made in TAB INSERT PAGE or TAB SET

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1862 / 2126

IMAGE. When the TAB control is destroyed, any attached IMAGELIST is automatically
destroyed.

TAB SET TEXT hDlg, ID&, PageNum&, Text$

The text in the parameter Text$ is displayed on the tab of the page specified by
PageNum&.

See also Dynamic Dialog Tools, CONTROL ADD TAB, CONTROL SET FONT, IMAGELIST

TALLY function

TALLY function
Purpose Count the number of occurrences of specified characters or strings within a

.
Syntax x& = TALLY(MainString, [ANY] MatchString)

Remarks MainString is the string expression in which to count characters. MatchString is the
string expression to count all occurrences of. If MatchString is not present in MainString,
zero is returned. When a match is found, the scan for the next match begins at the
position immediately following the prior match.

ANY If the ANY keyword is included, MatchString specifies a list of single characters to be
searched for individually: a match on any one of which will cause the count to be
incremented for each occurrence of that character. Note that repeated characters in
MatchString will not increase the tally. For example:

X = TALLY("ABCD", ANY "BDB") ' returns 2, not 3

Restrictions TALLY is case-sensitive, so be wary of capitalization.

See also INSTR, JOIN$, LCASE$, LTRIM$, MID$, PARSE, PARSE$, PARSECOUNT, REMOVE$,
REPLACE, RIGHT$, RTRIM$, TRIM$, UCASE$, VERIFY

Example ' Returns 1, counting the string "bac"
x& = TALLY("abacadabra", "bac")

'returns 8, counting all "b", "a", and "c" characters
x& = TALLY("abacadabra", ANY "bac")

TAN function

TAN function
Purpose Return the tangent of its argument.

Syntax y = TAN(numeric_expression)

Remarks numeric_expression is an angle specified in radians. To convert radians to degrees,
multiply by 57.29577951308232##. To convert degrees to radians, multiply by
0.0174532925199433##. For more information on radians, see ATN.

TAN returns an Extended-precision result.

TAN is approximated with the expression:

TAN = SIN(Value) / COS(Value)

The Inverse Tangent (ARCTAN) of a value can be easily calculated with the ATN function.

The Hyperbolic Tangent (TANH) of a value can be calculated:

TanH = (EXP(2 * Value) - 1) / (EXP(2 * Value) + 1)

The Inverse Hyperbolic Tangent (ARCTANH) of a value can be calculated:

PowerBASIC Compiler for Windows Version 10

1863 / 2126

ArcTanH = LOG((1 + Value) / (1 - Value)) / 2

' Useful Macro functions
MACRO Pi = 3.141592653589793##
MACRO DegreesToRadians(dpDegrees) = (dpDegrees * 0.0174532925199433##)
MACRO RadiansToDegrees(dpRadians) = (dpRadians * 57.29577951308232##)

See also ATN, COS, SIN

Example pi# = 3.141592653589793##
FOR I& = 5 TO 45 STEP 5
 x$ = "The Tangent of " + FORMAT$(I&,"* ") + _
 " degrees = " + FORMAT$(TAN(pi## / 180 * _
 I&),"0.00")
NEXT I&

Result The Tangent of 5 degrees = 0.09
The Tangent of 10 degrees = 0.18
The Tangent of 15 degrees = 0.27
The Tangent of 20 degrees = 0.36
The Tangent of 25 degrees = 0.47
The Tangent of 30 degrees = 0.58
The Tangent of 35 degrees = 0.70
The Tangent of 40 degrees = 0.84
The Tangent of 45 degrees = 1.00

TCP ACCEPT statement

TCP ACCEPT statement
Purpose Accept an incoming request for communication from a specified TCP/IP port.

Syntax TCP ACCEPT [#] fNum& AS newfNum&

Remarks Accept an incoming connection request to the fNum& socket, and create a newfNum&
socket handle to communicate with the new connection.

TCP ACCEPT is only valid with sockets opened using TCP OPEN SERVER.

See also TCP and UDP communications, TCP CLOSE, TCP LINE INPUT, TCP NOTIFY,
TCP OPEN, TCP PRINT, TCP RECV, TCP SEND, UDP OPEN

TCP CLOSE statement

TCP CLOSE statement
Purpose Close a previously opened TCP/IP port.

Syntax TCP CLOSE [#] fNum&

Remarks Close the previously opened TCP/IP port specified by fNum&.

See also TCP and UDP communications, TCP ACCEPT, TCP LINE INPUT, TCP NOTIFY,
TCP OPEN, TCP PRINT, TCP RECV, TCP SEND, UDP CLOSE

TCP LINE INPUT statement

TCP LINE INPUT statement
Purpose Receive a line of text from a specified TCP/IP port.

PowerBASIC Compiler for Windows Version 10

1864 / 2126

Syntax TCP LINE [INPUT] [#] fNum&, Buffer$

Remarks Receive a line of text from the fNum& TCP/IP port, and place the data in Buffer$. If no
bytes are available, Buffer$ will be empty (a null string). If TCP LINE did not receive a
complete line of text (terminated by a $CRLF character pair), EOF(fNum&) will return
TRUE (non-zero).

If a time-out occurs, ERR will be set to indicate a run-time Error 24 ("Device timeout").
See TCP OPEN to specify the TCP socket timeout value.

The EOF function may also be used with TCP LINE (and COMM LINE) to detect that an
incomplete line was received. Normally, the TCP LINE statement reads data until a
$CRLF character pair is found, and in that case, EOF will return false (zero). However,
even if no $CRLF has been found, TCP LINE will return if no additional data is available. In
that case, TCP LINE will return whatever data has been accumulated, and set EOF to
logical TRUE (non-zero).

In many cases, it would be prudent to test EOF after every TCP LINE statement to verify
that a full line has been received. In some cases, you may wish to execute the statement
one or more additional times, combining the data, in order to obtain a full line of text.

See also TCP and UDP communications, EOF, TCP ACCEPT, TCP CLOSE, TCP NOTIFY,
TCP OPEN, TCP PRINT, TCP RECV, TCP SEND, UDP RECV

TCP NOTIFY statement

TCP NOTIFY statement
Purpose Designate which TCP/IP events will generate a notification message.

Syntax TCP NOTIFY [#] fNum&, {SEND | RECV | ACCEPT | CONNECT | CLOSE} TO hWnd& AS
wMsg&

Remarks Designates which events (SEND, RECV, ACCEPT, CONNECT and CLOSE) will generate
a wMsg& notification message to the window procedure (callback) of the GUI window or
dialog whose window handle is contained in hWnd&.

Your program defines the wMsg& value, and this value should be equal or larger than %
WM_USER + 500 to avoid conflict with other (common) callback message values.

When the nominated callback function receives the wMsg& notification, the wParam&
parameter identifies the operating system's handle of the socket (see FILEATTR), the low-
order Word of lParam& specifies the code of the event (see table below), and the high-
order Word of lParam& contains the error code (if any).

LO(WORD, lParam&) Definition
%FD_READ Data is available to be read from the socket.
%FD_WRITE The socket is ready for data to be written.
%FD_ACCEPT The socket is able to accept a new connection.
%FD_CONNECT The connection has been established.
%FD_CLOSE The socket has been closed.

Notification messages do not arrive in unabated or continuous streams. That is, once a
particular notification message arrives, it will not be sent again until the initial message is
acted upon. For example, if a %FD_READ notification is received, it will not be resent
until after a TCP RECV statement is executed.

The Winsock error codes are listed in WINSOCK2.INC, prefixed with %WSAE.

See also TCP and UDP communications, TCP ACCEPT, TCP CLOSE, TCP LINE INPUT,
TCP OPEN, TCP PRINT, TCP RECV, TCP SEND, UDP NOTIFY

PowerBASIC Compiler for Windows Version 10

1865 / 2126

TCP OPEN statement

TCP OPEN statement
Purpose Enable an application to communicate with a TCP/IP server or client using the TCP

protocol over Winsock.

Syntax As a client:
TCP OPEN {PORT p& | srvc$} AT address$ AS [#] fNum& [TIMEOUT timeoutval&]

As a server:
TCP OPEN SERVER [ADDR ip&] {PORT p& | srvc$} AS [#] fNum& [TIMEOUT
timeoutval&]

Remarks Open a TCP/IP port or service for communication, either as a client or as a server.

SERVER If the keyword server is included, the TCP port is opened as a TCP/IP server; otherwise, it
is opened as a TCP/IP client.

ADDR ip& As a server, if you specify the optional ADDR ip&, the TCP server monitors connections at
the specified ip& address. Otherwise, the primary IP address for the computer is used by
default.

PORT p& As a client, PORT identifies the server port that the client attempts to connect to. As a
server, PORT identifies the port the server will monitor for connection requests. You may
specify either a port number or a service name, but not both.

srvc$ If the port number is not specified, a service name must be specified instead. A service
name takes the form of "http", "smtp", or "ftp", etc. You may specify either a port number
or a service name, but not both.

AT address$ As a client, address$ identifies the address to connect with. address$ can be a domain
such as "powerbasic.com", or a dotted IP address in string form, such as "127.0.0.1".

fNum& A file number such as #1, or a variable with a value obtained using the FREEFILE
function.

TIMEOUT The optional TIMEOUT value allows you to specify how long a TCP SEND, RECV, PRINT,
or LINE operation should wait for completion, in milliseconds (mSec). If the specified
number of milliseconds elapses without a response, the TCP operation will fail, and the
ERR system variable will be set to indicate a run-time Error 24 ("Device timeout"). The
default timeout is 60000 milliseconds (60 seconds).

See also TCP and UDP communications, FREEFILE, TCP ACCEPT, TCP CLOSE,
TCP LINE INPUT, TCP NOTIFY, TCP PRINT, TCP RECV, TCP SEND, UDP OPEN

Example ' Client TCP/IP example - retrieve a web page
#COMPILE EXE

FUNCTION PBMAIN() AS LONG
 LOCAL Buffer$, Site$, File$, Entire_page$
 LOCAL Length&

 Site$ = "www.powerbasic.com"
 File$ =
"http://www.powerbasic.com/support/forums/Forum2/HTML/000031.html"

 ' Connecting...
 TCP OPEN "http" AT Site$ AS #1 TIMEOUT 60000

 ' Could we connect to site?
 IF ERR THEN
 BEEP
 EXIT FUNCTION
 END IF

PowerBASIC Compiler for Windows Version 10

1866 / 2126

 ' Send the GET request...
 TCP PRINT #1, "GET " & File$ & " HTTP/1.0"
 TCP PRINT #1, "Referer: http://www.powerbasic.com/"
 TCP PRINT #1, "User-Agent: TCP OPEN Example (www.powerbasic.com)
 TCP PRINT #1, ""

 ' Retrieve the page...
 DO
 TCP RECV #1, 4096, Buffer$
 Entire_page = Entire_page + Buffer$
 LOOP WHILE ISTRUE LEN(Buffer$) AND ISFALSE ERR

 ' Close the TCP/IP port...
 TCP CLOSE #1
END FUNCTION

TCP PRINT statement

TCP PRINT statement
Purpose Write a string to a nominated TCP/IP port.

Syntax TCP PRINT [#] fNum&, string_expression[;]

Remarks Write the data in string_expression to the fNum& TCP/IP port. If the optional semi-colon
is not specified, a carriage-return and linefeed pair ($CRLF or CHR$(13,10)) is also sent.

The TCP PRINT statement does not return until string_expression has been sent, or an
error occurs. That is, TCP PRINT is a synchronous or "blocking" statement. If a time-out
occurs, ERR will be set to indicate a run-time Error 24 ("Device timeout"). See
TCP OPEN to specify the TCP socket timeout value.

See also TCP and UDP communications, TCP ACCEPT, TCP CLOSE, TCP LINE INPUT,
TCP NOTIFY, TCP OPEN, TCP RECV, TCP SEND, UDP OPEN

TCP RECV statement

TCP RECV statement
Purpose Receive data from a specified TCP/IP port.

Syntax TCP RECV [#] fNum&, count&, Buffer$

Remarks Receive count& bytes from the fNum& TCP/IP port and place them in Buffer$. If count&
bytes are not available, Buffer$ will receive whatever bytes are available and EOF(fNum&)
will return TRUE (non-zero).

Typically used in a

 to retrieve a stream of data, a TCP RECV loop should be terminated if Buffer$
returns an empty , or if EOF(fNum&) returns TRUE, or if ERR becomes set. If a
time-out occurs, ERR will be set to indicate a run-time Error 24 ("Device timeout").
See TCP OPEN to specify the TCP socket timeout value.

See also TCP and UDP communications, EOF, TCP ACCEPT, TCP CLOSE, TCP LINE INPUT,
TCP NOTIFY, TCP OPEN, TCP PRINT, TCP SEND, UDP RECV

TCP SEND statement

PowerBASIC Compiler for Windows Version 10

1867 / 2126

TCP SEND statement
Purpose Write a string to a nominated TCP/IP port.

Syntax TCP SEND [#] fNum&, string_expression

Remarks Write the specified string_expression to the TCP/IP port specified by fNum&.

The TCP SEND statement does not return until string_expression has been sent, or an
error occurs. That is, TCP SEND is a synchronous or "blocking" statement. If a time-out
occurs, ERR will be set to indicate a run-time Error 24 ("Device timeout"). See
TCP OPEN to specify the TCP socket timeout value.

See also TCP and UDP communications, TCP ACCEPT, TCP CLOSE, TCP LINE INPUT,
TCP NOTIFY, TCP OPEN, TCP PRINT, TCP RECV, UDP SEND

THREAD CLOSE statement

THREAD CLOSE statement
Purpose Release the handle of a running thread.

Syntax THREAD CLOSE hThread TO lResult&

Remarks THREAD CLOSE releases the thread handle of the thread identified by the DWORD value
hThread (see THREAD CREATE).

If successful, lResult& is TRUE (non-zero); otherwise, it is FALSE (zero). If a thread is
not closed once it has completed, it will continue to take up memory and CPU
resources. Note that THREAD CLOSE does not stop a thread if it is still running; it
simply releases the thread's handle (i.e., the resources used to track the thread), and the
thread itself will continue to run.

Once a thread handle is released, the value stored in hThread becomes undefined. On
this basis, thread handles should not be released until there is no further need to test the
thread status or change the suspend count for a thread. If a thread does not need to be
monitored, its handle can be released immediately after the THREAD CREATE statement,
and the threads resources will be freed automatically when the thread terminates
naturally. Best practice suggests that after releasing a thread handle, the thread handle
variable should be set to 0, to set it apart from other valid thread handle variables.

Once a thread has exited, it is not possible to restart the same thread (as identified by
hThread). However, a fresh thread can be executed, using the same target thread
Function, and resulting in a new thread handle which will identify the new thread.

Restrictions THREAD CLOSE will always execute successfully provided hThread contains a valid
thread handle value. THREAD CLOSE generates no run-time errors; all exceptions are
reported in the return value lResult&.

The WaitForSingleObject API function can be used wait until a nominated thread has
finished executing. Similarly, the WaitForMultipleObjects API can be used to wait for
one, two, or all secondary threads (to a maximum of 64 or %
MAXIMUM_WAIT_OBJECTS) to complete before continuing on. Such functions can be
very useful when a program creates a set of "worker" threads to process data, and the
primary thread can then sit idle until all the worker threads have completed all their work.
At that point, the primary thread may gather the results of the worker threads, etc.

It is also useful to understand that these kind of wait functions are very efficient and use
almost no CPU time or resources while they are waiting; however, care must be exercised
to avoid a deadlock or circular suspension. For example, a deadlock condition could
occur if thread A is halted while it waits for thread B, which in turn has a suspend count
that might only be adjustable by Thread A. Similarly, an infinite loop in one thread may
also halt any other thread that is waiting for it to terminate.

PowerBASIC Compiler for Windows Version 10

1868 / 2126

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

See also FUNCTION/END FUNCTION, THREAD Code Group, THREAD CREATE, THREAD Object,
THREAD RESUME, THREAD STATUS, THREAD SUSPEND, THREADCOUNT,
THREADED, THREADID

THREAD Code Group

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Code Group
Purpose The

 Code Group offers a collection of statements which allow you to create and
manipulate additional threads of execution in your programs.

Syntax THREAD DirectorWord [params]
THREAD DirectorWord [params] TO ReturnVariable(s)

Remarks A Windows thread is a smaller "program-within-a-program", that runs concurrently with
the main thread and other threads in the same application program. Threads provide
powerful ways for an application to perform several tasks at the same time.

With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. For
that reason, PowerBASIC has introduced the concept of a THREAD OBJECT. While the
THREAD Code Group will be supported for some time, we recommend that all new code
use THREAD OBJECTS exclusively. They provide much greater control, and much better
thread parameter handling for the programmer.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed referencing the
same thread.

See also FUNCTION/END FUNCTION, THREAD CLOSE, THREAD CREATE, THREAD GET
PRIORITY, THREAD Object, THREAD RESUME, THREAD STATUS,
THREAD SUSPEND, THREADCOUNT, THREADED, THREADID, THREADSAFE option
descriptor

THREAD CREATE statement

THREAD CREATE statement
Purpose Create a Windows thread, which is a smaller "program-within-a-program", that runs

concurrently with the main thread and other threads in the same application program.
 Threads provide powerful ways for an application to perform several tasks at the same
time.

Syntax THREAD CREATE FuncName(param) [StackSize,] [SUSPEND] TO hThread

THREADSAFE_option_descriptor.htm
THREADSAFE_option_descriptor.htm

PowerBASIC Compiler for Windows Version 10

1869 / 2126

Remarks THREAD CREATE creates and begins execution of a new thread Function identified by
FuncName. FuncName is specified without quotation marks. This function must take
exactly one Long-integer or Double-word (DWORD) parameter by value (BYVAL). For
example:

THREAD FUNCTION MyThreadFunction(BYVAL x AS LONG) AS LONG
 ' Thread code goes here
END FUNCTION
' more code here
THREAD CREATE MyThreadFunction(var&) TO hThread???

The 32-bit parameter passed to the thread may be used to pass a value such as a
programmer-defined ID or window handle to post "progress" messages back to a GUI
window/dialog running in another thread. A more common use for the parameter is to
pass the address to a UDT or other data structure. Passing an address this way can
enable the thread to use a pointer to access large volumes of data that reside outside of
the thread. For example:

THREAD FUNCTION MyThread(BYVAL y AS DWORD) AS DWORD
 DIM x AS MyUDT POINTER
 x = y ' Set the pointer from the DWORD param
 ' From here we can access all of the UDT member elements
 ' using the standard @x pointer syntax
END FUNCTION
' more code here
DIM x AS MyUDT, hThread???
' Initialize the members of x here
THREAD CREATE MyThread(VARPTR(x)) TO hThread???
' more code here

Note that data passed this way is subject to the notes (below) concerning GLOBAL and
STATIC variables, in order to avoid synchronization problems during context-switching.

The return value of the thread Function is retrieved with the THREAD STATUS statement
(once the thread has completed execution).

StackSize A long integer expression to specify the requested size of the stack for this newly created
thread. This value should always be specified in increments of 64K (65536). If this
parameter is omitted, the size of the stack for the main thread will be used.

SUSPEND Execution of the thread begins immediately unless the SUSPEND option is included. In
that case, the suspend count for the thread will be initially set to 1, and the thread will be
initially suspended. The THREAD RESUME statement is used to decrease the suspend
count of a thread by 1, and when the suspend count reaches 0, the thread will start
(resume) execution. Controlling the suspend state of a thread requires the thread handle
value be retained until such time as the thread can be closed or left to run unmonitored.

hThread If successful, THREAD CREATE returns a Double-word (or Long-integer) handle in
hThread, or zero (0) if the thread was not started. This handle is used with the other

 to control the suspend count, and to release the thread handle, etc. Also see
THREAD CLOSE for more information on monitoring, closing, and waiting for
threads to complete.

FuncName The name of the thread function to execute as a thread. A thread Function must comply
exactly with the following syntax:

THREAD FUNCTION ThreadFuncName (BYVAL param AS {LONG | DWORD}) AS {LONG
| DWORD}

Restrictions The THREAD CREATE statement generates no run-time errors; all exceptions are
reported as a zero stored in the return value hThread. However, the target thread Function
must be located in the same compiled module as the THREAD CREATE statement. That
is, a thread Function may not be an imported Function.

Additionally, a thread Function may not be directly called or executed, except by a
THREAD CREATE statement. This restriction is imposed to ensure that PowerBASIC
run-time library can maintain a thread-safe state at all times, correctly allocate and

PowerBASIC Compiler for Windows Version 10

1870 / 2126

deallocate internal thread-local storage, and the various

 (such as THREADCOUNT) can return accurate values.
One situation that can arise is where a Function may need to be invoked both directly and
used as a thread Function. The easiest solution is to create a small wrapper Function for
the Function, then use THREAD CREATE with the wrapper Function when a thread is
required, or continue to call the original Function directly when a separate thread is not
required. For example:

FUNCTION WorkerFunc(BYVAL x AS LONG) AS LONG
 ' code here
END FUNCTION

THREAD FUNCTION WorkerThread(BYVAL x AS LONG) AS LONG
 FUNCTION = WorkerFunc(x)
END FUNCTION

' more code here

' Execute the worker function directly, thus:
lResult& = WorkerFunc(var&)

' Execute the worker thread as a thread, using
' the wrapper function:
THREAD CREATE WorkerThread(var&) TO hThread???

A thread can determine its own ID with the THREADID function. Note: a thread ID is not
interchangeable with a thread handle.

Threads are initialized and started asynchronously, so it is wise to give the operating
system a small amount of time to perform thread initialization before using the
THREADCOUNT function to monitor the thread.

Once a thread has exited, it is not possible to restart the same thread as identified by
hThread - however, a new thread can be initiated using the same Function (which
naturally provides a new hThread handle value). In addition, the same thread Function
can be launched multiple times to create a set of identical threads executing the same
code.

As each thread is created, it is assigned its own "private" stack frame. Therefore, LOCAL
and REGISTER variables are private to each thread, and are automatically "thread-safe".

Exercise care when using GLOBAL and STATIC variables that may be accessed by more
than one thread at the same time. If one thread is part way through storing data at the
point where another thread begins to read the same memory block, it can result in the
second thread reading only partially updated (i.e., invalid) data. The point where one
thread is suspended so that another can run is called a "context-switch". In these
situations, the use of Windows' synchronization functions (such as Critical Sections and
Mutexes) may be employed to create thread-safe code.

Thread-safe code is deemed to be unaffected by context-switching, regardless of when
context-switching occurs. Local variables, being stored in a "private" stack frame, are not
affected by context-switching.

Local variable storage created by each thread is automatically freed when the thread
Function terminates, in the same manner as a normal Sub, Function, Method, or
Property. However, the thread handle must be explicitly freed with a THREAD CLOSE
statement. The THREAD CLOSE can occur at any time, since it only frees the thread
handle and has no other impact on the running thread. If the thread result value is not
required (or the thread state does not need to be altered), THREAD CLOSE can be used
immediately after the THREAD CREATE statement, leaving the thread to run its course.

For more information on threading and synchronization techniques, please refer to MSDN
http://msdn.microsoft.com.

http://msdn.microsoft.com

PowerBASIC Compiler for Windows Version 10

1871 / 2126

The PowerBASIC run-time library is thread-safe and reentrant.

See also FUNCTION/END FUNCTION, THREAD CLOSE, THREAD Code Group, THREAD GET
PRIORITY, THREAD Object, THREAD RESUME, THREAD STATUS,
THREAD SUSPEND, THREADCOUNT, THREADED, THREADID

Example SUB SpawnThreads()
 LOCAL x AS LONG
 LOCAL s AS LONG
 DIM hThread(10) AS LOCAL DWORD

 FOR x = 1 TO 10
 THREAD CREATE MyThread(x) TO hThread(x)
 SLEEP 50
 NEXT

 DisplayText "10 Threads Started! " + _
 "Wait for them to finish!"

 DO
 FOR x = 1 TO 10
 SLEEP 0
 THREAD STATUS hThread(x) TO s
 IF s <> &H103 AND s <> 0 THEN ITERATE DO
 NEXT
 LOOP WHILE s

 FOR x = 1 TO 10
 THREAD CLOSE hThread(x) TO s
 NEXT x

 DisplayText "Finished!"
END SUB

' The following is executed as a thread Function!
THREAD FUNCTION MyThread (BYVAL x AS LONG) AS LONG
 LOCAL n AS LONG
 LOCAL t AS SINGLE

 DisplayText "Begin Thread" + STR$(x)
 t = TIMER

 FOR n = 1 TO 10
 SLEEP 100 + 100 * x
 NEXT n

 t = TIMER - t
 DisplayText "End Thread" + STR$(x) + _
 " Elapsed time = " + STR$(t,5)

END FUNCTION

THREAD GET PRIORITY statement

Keyword Template
Purpose

Syntax

PowerBASIC Compiler for Windows Version 10

1872 / 2126

Remarks

See also

Example

THREAD GET PRIORITY statement
Purpose Retrieve the Priority Value for a

.
Syntax THREAD GET PRIORITY hThread TO lResult&

Remarks THREAD GET PRIORITY retrieves the priority value for the thread specified by the thread
handle (hThread). The thread handle is returned by the THREAD CREATE statement at
the time the thread is created. If hThread is zero (0), the thread which is currently
executing is presumed. The retrieved priority value is assigned to the long or dword
variable designated by lResult&. A thread ID cannot be used in place of a thread handle.

 The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

See also PROCESS GET PRIORITY, PROCESS SET PRIORITY, THREAD Code Group, THREAD
CREATE, THREAD Object, THREAD SET PRIORITY

THREAD Object

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD Object
Purpose A

 is a "program-within-a-program", that runs concurrently with the main thread and
other threads in a single application program. Threads provide powerful ways for an
application to perform several tasks at the same time. When executed on a computer
with a multi-core CPU, threads can improve performance to a remarkable level.
THREAD objects offer a collection of methods which allow you to easily create and
maintain additional threads of execution in your programs.

A thread can be completely encapsulated (contained) within a thread object.
 Encapsulation makes an object the perfect vehicle to host a thread. With thread objects,
you'll have easy access to multiple thread parameters, private methods, and thread local
storage of data. In short, a complete program-within-a-program which can be executed
with ease.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1873 / 2126

We liken this to the concept that "Threads are Alive". When a thread object is created
and launched, it takes on a life of its own. It lives (and executes) until its lifetime is over
and the thread ends. The life of the thread parallels the life of the object which makes it
quite easy to manage.

PowerBASIC provides a pre-defined interface named "IPowerThread", which is a DUAL
interface (Dispatch and direct access). When you create a thread object, you first inherit
IPowerThread, giving you immediate access to all of its member methods. Next, you add
a THREAD METHOD, a special form of private CLASS METHOD, which is automatically
executed when the thread is launched.

It's important to remember that the THREAD METHOD you create contains the code
which will be executed in the thread. When you start the thread (by calling the LAUNCH
method), it executes your THREAD METHOD. When you reach the end of the THREAD
METHOD, the thread ends, and its lifetime is over. The THREAD METHOD acts just like
the MAIN (or PBMAIN) function in your executable.

You may give the THREAD METHOD any name you wish. However, it is recommended
you name it MAIN or PBMAIN. This bit of self-documentation will be a simple reminder of
the functionality when you review the code a year from now! Generally speaking, most
thread objects consist primarily of CLASS METHODS which are called from the THREAD
METHOD. If there are any Member Methods (visible from outside the class), they are not
usually called from within the thread. Instead, they are typically called from other threads
to monitor the status and progress.

There must be exactly one THREAD METHOD per Class. No more. No less. The
THREAD METHOD is executed automatically; it may never be called from within your
program.

Instance variables are declared just as in any other class. Unique parameters are passed
to each object when it is launched. Finally, public methods and properties may be added
to monitor and manipulate the life of your thread.

Here's a synopsis of THREAD OBJECT usage:

1. Create a class with an interface which inherits IPowerThread.

2. Create a THREAD METHOD, best named MAIN or PBMAIN.

3. Create an INSTANCE variable named THREADPARAM which will hold the
parameter(s) you choose to pass to the thread when it begins execution. This is
usually another object variable.

4. Create CLASS METHODS as needed, which will be called from the THREAD
METHOD for support of that code.

5. From the main thread, create an object variable of the thread class and interface.

6. Call the LAUNCH method, passing the appropriate parameter to be used as
THREADPARAM. Your thread is now running and alive.

Syntax <ObjectVar>.membername(params)
RetVal = <ObjectVar>.membername(params)
<ObjectVar>.membername(params) TO ReturnVariable

Remarks With the advent of multi-core CPU's and multi-CPU computers, it's clearly desirable to
encapsulate all of the information about a particular thread in a single component. We
recommend that all new code use THREAD OBJECTS exclusively, rather than the Thread
Code Group. Thread objects provide much greater control, and much better thread
parameter handling for the programmer.

IPowerThread Methods

The Dispatch ID (DispID) for each member method is displayed within angle brackets.

METHOD CLOSE() <2>

Releases the thread handle of this thread. Note that it does not stop a thread if it is still
running; it simply releases the thread handle (i.e., the resources used to track the

PowerBASIC Compiler for Windows Version 10

1874 / 2126

thread).

Thread handles should not be released until there is no further need to use other thread
methods or properties. If a thread does not need to be monitored, its handle can be
released immediately. The thread resources will be freed automatically when the thread
terminates naturally.

THREADCOUNT continues to report a thread tally that will include threads whose handle
has already been released. A thread ID value may not be used interchangeably with a
thread handle value.

METHOD EQUALS(ObjectVar AS InterfaceName) AS Long <3>

Compares the parameter ObjectVar to determine if it references the same object as this
object. If they both reference the same object, true (-1) is returned; if not, false (0) is
returned.

METHOD HANDLE() AS Long <4>

Retrieves the handle of the thread for use with Windows API functions.

METHOD ID() AS Long <5>

Retrieves the ID of the thread for use with Windows API functions.

METHOD ISALIVE() AS Long <6>

Checks the thread to see if it is currently "alive". If the thread has been launched, but has
not yet ended, the value true (-1) is returned; if not, the value false (0) is returned.

METHOD JOIN(ThreadObjectVar AS InterfaceName, TimeOutVal
AS Long) <7>

Waits for the thread referenced by ThreadObjectVar to complete before execution of this
thread continues. TimeOutVal specifies the maximum length of time to wait, in
MilliSeconds. If TimeOutVal is zero (0), the time to wait is infinite.

METHOD LAUNCH(ByRef Param as UDT) <8>

LAUNCH begins execution of the thread, passing parameter data to it. Since the thread is
hosted by an object, it is only fitting that the parameter data be contained in the most
robust form, another object.

THREADPARAM is a mandatory Instance variable which you must define in each thread
class. It is normally declared as the interface name of your choice:

INSTANCE ThreadParam as MyInterface

When the thread begins, PowerBASIC automatically creates a copy of the LAUNCH
parameter, and assigns it to ThreadParam. Since it is stored in an Instance variable, it is
visible to all of your code in your member methods, yet is kept private from the rest of the
program. The use of an object as the parameter is the normally the best choice, as it
allows virtually any number of data items to be contained.

In simpler cases, you may choose to declare THREADPARAM as a

, Long Integer, or Dword. In that case, you must pass the launch parameter using a
 option, to override the expected object variable.

INSTANCE ThreadParam as LONG
...
MyThread.Launch(ByVal MyNumber&)

Of course, the Pointer parameter option can be used to pass a pointer to any variable, of
any type. For example, it could be used to pass a used-defined type if that fits your
needs:

INSTANCE ThreadParam AS MyType POINTER

 THREAD METHOD MyMethod() AS LONG
 xyz# = ThreadParam.member1
 ... other code
END METHOD
...

PowerBASIC Compiler for Windows Version 10

1875 / 2126

MyThread.Launch(ByVal VARPTR(MyType))

PROPERTY GET PRIORITY() AS Long <9>

Retrieves the priority value for this thread. The thread priority value is one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

PROPERTY SET PRIORITY (LEVEL AS Long) <9>

Sets the Priority Value for this thread. The thread priority value must be one of the
following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

METHOD RESULT() AS Long <10>

If the thread has ended, the result value returned by the THREAD METHOD is retrieved
and returned to the caller. The result may be any integral value in the range of a long
integer. However, you should avoid using the number &H103 (decimal 259), as that is the
value used by Windows to signify that the thread is still running.

If the result is retrieved successfully, the OBJRESULT is set to %S_OK (0). If the thread
has not ended, the value zero (0) is returned, and the OBJRESULT is set to %S_FALSE
(1).

METHOD RESUME() AS Long <11>

Resumes execution of a suspended thread. The suspend count of the thread is
decremented. When it reaches zero (0), execution of the thread resumes. If the resume
is successful, the prior suspend count is returned; otherwise, -1 is returned.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running at that time.

PROPERTY GET STACKSIZE() AS Long <13>

Retrieves the size of the stack for this thread. If the value returned is zero (0), the thread
StackSize is the same as that of the main thread.

PROPERTY SET STACKSIZE(Long) <13>

Sets the size of the stack for this thread to the value specified by the parameter. The
value should always be specified in multiples of 64K (65536). PROPERTY SET must
only be executed prior to thread execution with LAUNCH, or it will be ignored. If no
PROPERTY SET STACKSIZE is executed, the size of the stack for the main thread will
be used for this thread.

METHOD SUSPEND() AS Long <14>

Suspends execution of the thread. The suspend count of the thread is incremented. If
the suspend was successful, the suspend count is returned; otherwise, -1 is returned.

If SUSPEND is executed prior to LAUNCH of the thread, the suspend count is
incremented, and the subsequent LAUNCH is treated as a suspended launch. That is, all
the necessary setup tasks are performed, but the thread is suspended just before
execution of your THREAD METHOD begins. You can continue execution with RESUME.

A thread can suspend itself with SUSPEND (which increments the suspend count), but
logically, cannot RESUME itself because it is not running while suspended.

METHOD TIMECREATE() AS Quad <16>

PowerBASIC Compiler for Windows Version 10

1876 / 2126

Retrieves the date and time-of-day of the thread creation, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time.

METHOD TIMEEXIT() AS Quad <17>

Retrieves the date and time-of-day of the thread exit, and returns it as a Quad Integer
value. The internal format of the value is that of a FILETIME structure, so you can use the
PowerTime object to convert it to a human readable format of Month/Day/Year/Time. If
the thread has not yet exited, the return value is undefined.

METHOD TIMEKERNEL() AS Quad <18>

Retrieves the amount of time this thread has spent in kernel mode, and returns it as a
Quad Integer value. The internal format of the value is that of a FILETIME structure, so
you can use the PowerTime object to convert it to a human readable format.

METHOD TIMEUSER() AS Quad <19>

Retrieves the amount of time this thread has spent in user mode, and returns it as a Quad
Integer value. The internal format of the value is that of a FILETIME structure, so you can
use the PowerTime object to convert it to a human readable format.

Restrictions Functions from the Thread Code Group and THREAD OBJECTS may co-exist in the
same application. However, it is important that they not be intermixed when you
reference one particular thread.

See also PowerTime, THREAD Code Group

Example CLASS MyClass
 INSTANCE ThreadParam as DataFace

 THREAD METHOD MAIN() AS LONG
 x& = ThreadParam.GetANumber()
 MsgBox DEC$(x&)
 END METHOD

 INTERFACE MyFace
 INHERIT IPOWERTHREAD

 METHOD abc
 END METHOD
 END INTERFACE
END CLASS

CLASS DataClass
 INTERFACE DataFace
 INHERIT DUAL

 METHOD GetANumber() AS LONG
 METHOD = 77
 END METHOD

 END INTERFACE
END CLASS

FUNCTION PBMain()
 LOCAL xx AS MyFace
 LET xx = CLASS "MyClass"

 LOCAL oo AS DataFace
 LET oo = CLASS "DataClass"

 xx.launch(oo)
 xx.join(xx, 0)
END FUNCTION

PowerBASIC Compiler for Windows Version 10

1877 / 2126

THREAD RESUME statement

THREAD RESUME statement
Purpose Resume execution of a Windows thread.

Syntax THREAD RESUME hThread TO lResult&

Remarks THREAD RESUME decreases the suspend count of the thread identified by the 32-bit
DWORD value stored in hThread (see THREAD CREATE). If it succeeds, the lResult&
value is the thread's previous suspend count; otherwise, it is -1.

Execution of a suspended thread resumes when the suspend count of a thread is
decremented to zero. If the SUSPEND option is included in the associated THREAD
CREATE statement, the thread will have an initial suspend count of 1. In that case,
execution of the thread will only begin when a THREAD RESUME statement is executed,
using the thread handle stored in hThread to identify the thread.

Restrictions The THREAD RESUME statement generates no run-time errors; all exceptions are
reported in the return value lResult&. A thread ID cannot be used interchangeably with a
thread handle. A thread can suspend itself by incrementing its own suspend count, but
logically, cannot decrement its own suspend count.

See also FUNCTION/END FUNCTION, THREAD CLOSE, THREAD Code Group,
THREAD CREATE, THREAD Object, THREAD STATUS, THREAD SUSPEND,
THREADCOUNT, THREADED, THREADID

THREAD SET PRIORITY statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

THREAD SET PRIORITY statement
Purpose Sets the Priority Value for a

.
Syntax THREAD SET PRIORITY hThread, Priority&

Remarks THREAD SET PRIORITY assigns a new priority value to the thread specified by the
thread handle (hThread). The thread handle is returned by the THREAD CREATE
statement at the time the thread is created. If hThread is zero (0), the thread which is
currently executing is presumed. A thread ID cannot be used in place of a thread handle.

The thread priority value must be one of the following:

%THREAD_PRIORITY_IDLE = -15
%THREAD_PRIORITY_LOWEST = -2
%THREAD_PRIORITY_BELOW_NORMAL = -1
%THREAD_PRIORITY_NORMAL = 0
%THREAD_PRIORITY_ABOVE_NORMAL = +1
%THREAD_PRIORITY_HIGHEST = +2
%THREAD_PRIORITY_TIME_CRITICAL= +15

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1878 / 2126

See also PROCESS GET PRIORITY, PROCESS SET PRIORITY, THREAD Code Group, THREAD
CREATE, THREAD GET PRIORITY, THREAD Object

THREAD STATUS statement

THREAD STATUS statement
Purpose Retrieve the Status of a Windows thread.

Syntax THREAD STATUS hThread TO lResult&

Remarks THREAD STATUS assigns the status of the thread identified by the DWORD value in
hThread (see THREAD CREATE) to lResult&.

If the function fails, lResult& is set to zero. If the thread is still running, the system value
&H103 is assigned. If the thread has terminated and the thread handle has not yet been
closed, the return value from the thread Function is assigned to lResult&. To wait for one
or more threads to complete execution, use the WaitForSingleObject or
WaitForMultipleObjects API functions - see THREAD CLOSE for more information.

The number of currently running threads in a module can be determined with the
THREADCOUNT function.

Restrictions The THREAD STATUS statement generates no run-time errors; all exceptions are reported
in the return value lResult&. A thread ID cannot be used in place of a thread handle.

See also FUNCTION/END FUNCTION, THREAD CLOSE, THREAD Code Group,
THREAD CREATE, THREAD Object, THREAD RESUME, THREAD SUSPEND,
THREADCOUNT, THREADED, THREADID

THREAD SUSPEND statement

THREAD SUSPEND statement
Purpose Suspend execution of a Windows thread.

Syntax THREAD SUSPEND hThread TO lResult&

Remarks THREAD SUSPEND adds 1 to the suspend count of the thread specified by hThread (see
THREAD CREATE). If it succeeds, the lResult& value is the thread's previous suspend
count; otherwise, it is -1. A thread is always suspended if it has a suspend count of 1 or
higher.

To decrement the suspend count of a thread, use the THREAD RESUME statement. A
suspended thread will only resume execution when its suspend count is decremented to
0.

Restrictions The THREAD SUSPEND statement generates no run-time errors; all exceptions are
reported in the return value lResult&. A thread ID cannot be used interchangeably with a
thread handle. A thread can suspend itself by incrementing its own suspend count.

See also FUNCTION/END FUNCTION, THREAD CLOSE, THREAD Code Group,
THREAD CREATE, THREAD Object, THREAD RESUME, THREAD STATUS,
THREADCOUNT, THREADED, THREADID

THREADCOUNT function

THREADCOUNT function
Purpose Return the number of PowerBASIC-created active threads that exist in a module.

PowerBASIC Compiler for Windows Version 10

1879 / 2126

Syntax lCount& = THREADCOUNT

Remarks Applications will return a THREADCOUNT of at least 1, which is attributed to the
"primary" application thread. Additional threads created by the application or module with
the THREAD CREATE function will also be included in the tally returned by
THREADCOUNT.

THREADCOUNT can be useful for when a "controlling thread" needs to poll the state of a
collection of "worker threads" as they complete a set of tasks. However, care should be
exercised if other (unrelated) threads may also be running in the same module - in such
cases, using THREAD STATUS is the preferred solution. If polling is not desired, the
WaitForMultipleObjects API function can also be useful - see THREAD CLOSE for more
information.

Restrictions THREADCOUNT includes threads that have had their thread handle released with
THREAD CLOSE, yet are still running.

Threads are initialized and started asynchronously, so it is wise to give the operating
system a small amount of time to perform thread initialization before using the
THREADCOUNT function to monitor the thread.

A thread Function may not be directly called or executed, except by a THREAD CREATE
statement. This restriction is imposed to ensure that PowerBASIC run-time library can
maintain a thread-safe state at all times, correctly allocate and deallocate internal thread-
local storage), and functions such as THREADCOUNT can return accurate values. See
THREAD CREATE for more information and solutions.

See also FUNCTION/END FUNCTION, THREAD CLOSE, THREAD Code Group,
THREAD CREATE, THREAD Object, THREAD RESUME, THREAD STATUS,
THREAD SUSPEND, THREADED, THREADID

Example THREAD FUNCTION tZ(BYVAL x&) AS LONG
 ' Wait for a random time
 SLEEP x& * RND(1,1000)
 FUNCTION = 1
END FUNCTION

FUNCTION PBMAIN
 ' Create 10 threads
 FOR x& = 1 TO 10
 THREAD CREATE tZ(x&) TO hThread???
 THREAD CLOSE hThread??? TO lResult&
 NEXT x&

 'Wait until the threads are all done
 DO
 SLEEP 100
 LOOP WHILE THREADCOUNT > 1
END FUNCTION

THREADED statement

THREADED statement
Purpose Declare thread-local variables.

Syntax THREADED variable[()] [AS type] [, variable[()]]
THREADED variable[()] [, variable[()]] [, ...] AS type

Remarks Threaded variables are global to every Sub, Function, Method, and Property but are not
shared across threads. Each thread has its own independent set of thread-local
variables.

To declare an array as a threaded variable, use an empty set of parentheses in the

PowerBASIC Compiler for Windows Version 10

1880 / 2126

variable list: You can then use the DIM statement to dimension the array.

THREADED MyArray%()
THREADED StringArray() AS STRING

The THREADED statement may, optionally, accept a list of variables, all of which are
defined by the type descriptor keyword that follows them. For example:

THREADED aaa, bbb, ccc AS INTEGER
THREADED vptr, aptr() AS LONG PTR

Restrictions DEFtype has no effect on variables defined by a THREADED statement.

See also DIM, GLOBAL, INSTANCE, LOCAL, STATIC

Example THREADED xxx, yyy, zzz AS INTEGER
THREADED vptr, aptr() AS LONG PTR

THREADID function

THREADID function
Purpose Return a Long-integer thread identifier of the current thread.

Syntax thrdID& = THREADID

Remarks The thread ID value is returned for the thread that is currently executing. The Thread ID is
intended for use with the various (advanced) thread-related API functions provided by
Windows.

Restrictions The thread ID value cannot be used interchangeably with the thread handle returned by
THREAD CREATE.

See also FUNCTION/END FUNCTION, THREAD CLOSE, THREAD CREATE, THREAD RESUME,
THREAD STATUS, THREAD SUSPEND, THREADED

TIME$ system variable

TIME$ system variable
Purpose Read and/or set the system time.

Syntax To read the time:

s$ = TIME$

To set the time:

TIME$ = string_expression

Remarks The system variable TIME$ contains an eight-character

 that represents the time of the system clock in the form "hh:mm:ss", where hh is hours
(in 24-hour military form), mm is minutes, and ss is seconds.
Assigning string_expression to TIME$ resets the system clock. string_expression must
contain time information in military (24-hour) format. Minutes and seconds information
can be omitted. For example:

TIME$ = "12" 'set clock to 12 noon
TIME$ = "13:01" 'set clock to 1:01 PM
TIME$ = "13:01:30" 'set clock to 30 sec after 1:01 PM
TIME$ = "0:01" 'set clock to 1 min after midnight

Use the TIMER function to return the number of seconds that have elapsed since
midnight.

See also DATE$, MONTHNAME$, POWERTIME, TIMER, TIX

PowerBASIC Compiler for Windows Version 10

1881 / 2126

TIMER function

TIMER function
Purpose Return the number of seconds that have elapsed since midnight.

Syntax y = TIMER

Remarks TIMER returns the number of seconds since midnight as a Double-precision floating-point
value. The resolution is about 1/100 of a second on NT-based platforms, or 1/18th of a
second on earlier platforms.

See also DATE$, TIME$, TIX

Example OldTime$ = TIME$ ' Current time
TIME$ = "12" ' Noon
NoonSec$ = FORMAT$(TIMER, "#,")
x$ = "Noon is " + NoonSec$ + " seconds past midnight"
TIME$ = OldTime$ ' Restore time

Result Noon is 43,200 seconds past midnight

TIX statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TIX statement
Purpose Measures elapsed CPU cycles.

Syntax TIX QuadVar
TIX END QuadVar

Remarks The TIX statement offers you the ability to measure elapsed CPU cycles, the smallest
timing increment possible. Modern processors typically execute billions of cycles per
second. This can be beneficial for comparing the execution speed of various styles of
coding in PowerBASIC.

TIX QuadVar

The first form of the TIX statement retrieves the current value of the cycle counter and
assigns it to the Quad Integer variable.

TIX END QuadVar

The second form of the TIX statement retrieves the current value of the cycle counter. The
value in the QuadVar is subtracted from it, and the result is assigned to QuadVar.

To measure the total cycle count for a particular set of statements, you would write:

TIX CycleCount&&
 ' statements to measure go here
TIX END CycleCount&&

At this point, CycleCount&& contains the elapsed number of CPU cycles.

PowerBASIC Compiler for Windows Version 10

1882 / 2126

See also #ALIGN, TIMER

TOOLBAR ADD BUTTON statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TOOLBAR statement
Purpose A ToolBar control contains one or more buttons which act as shortcuts to menu items.

 The TOOLBAR statement is used to manipulate a TOOLBAR control.

Syntax TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT item&] [CALL
callback]
TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]
TOOLBAR DELETE BUTTON hDlg, id&, [BYCMD] item&
TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&
TOOLBAR GET COUNT hDlg, ID TO datav&
TOOLBAR SET IMAGELIST hDlg, ID, hLst, ListType&
TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

hDlg Handle of the dialog that owns the ToolBar.

hLst Handle of the ImageList to be used for graphical items.

id& The control identifier assigned with CONTROL ADD TOOLBAR.

cmd& Command id number associated with this button.

image& Image number selected (1=first, 2=second, etc.)

item& A data item number. First=1, second=2...

size& Size of the item expressed in pixels.

state& A state descriptor to define specific attributes.

style& Style descriptor bits for this button.

text$ A text

 to be displayed on this button.
type& A type descriptor to define specific attributes.

callback A callback function which receives messages for the control.

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result text is assigned.

Remarks A TOOLBAR control contains one or more buttons, each of which normally corresponds
to a menu item. It is generally placed at the top of the client area of a dialog. When the
user "presses" a tool bar button, the program reacts in the same way as if the command
had been selected from a menu. It simply acts as a shortcut to common menu
commands.

In each of the following descriptions, the TOOLBAR is referenced by the dialog handle
(hDlg) and id&. In some cases a specific button is chosen with the item& parameter. If
the BYCMD option is included, item& specifies the command id number of the button to

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1883 / 2126

be used. If not, item& describes the button by its position on the TOOLBAR. Since
separators are considered to be a special class of button by the operating system, they
must be counted when you calculate a position item number. Positions are always
indexed to one (1=first, 2=second, and so on).

TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT
item&] [CALL callback]

A button is added to this TOOLBAR. The image to be displayed is selected from the
attached IMAGELIST based upon the parameter image& (1=first, 2=second, etc.). The
cmd& parameter specifies the command id number to be executed (with %
WM_COMMAND) when the button is pressed. The style& parameter describes the style
of the button from the following most often used attributes:

%BTNS_AUTOSIZE The width of the button is calculated by the system, based
upon the text and the image.

%BTNS_BUTTON The button behaves like a standard push button.

%BTNS_CHECK The button is dual-state which toggles between the pressed
and nonpressed state each time it's clicked.

%BTNS_GROUP Defines a group of buttons. When combined with the check
style, it creates a button that stays pressed until another
button in the group is pressed. This is similar to an option
button or radio button.

%
BTNS_CHECKGROU
P

A combination of check and group styles.

%
BTNS_DROPDOWN

Creates a drop-down style button that can display a list
when clicked. Drop-down buttons send a %
TBN_DROPDOWN notification instead of %
WM_COMMAND.

%BTNS_NOPREFIX The button text will not have an accelerator prefix associated
with it.

The text$ parameter specifies the text to be displayed on the button.

If the optional "AT item&" clause is included, the button is inserted at the designated
position (1=first, 2=second, etc.). Otherwise, it is added to the end of the list.

If the optional "CALL callback" clause is included, it specifies the name of a Callback
Function that receives %WM_COMMAND messages when the button is clicked. If not
specified, these command messages are sent to the dialog callback specified in

. Message routing by button allows you to easily determine which button generated
the event.
If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]

A separator is added to this TOOLBAR. It separates two buttons by the number of pixels
specified in size&. It may be used to separate and distinguish two adjacent button
groups (%tbstyle_group), or to just enhance the visual appearance. If the optional cmd&
parameter is included, it's a unique numeric identifier for this separator. Of course, a
separator can't be pressed like a button, so it doesn't literally allow a command to be
sent. However, it may be used later with a BYCMD option in TOOLBAR DELETE,
TOOLBAR SET STATE, etc. If the "AT item&" clause is included, the separator is
inserted at the designated position (1=first, 2=second, etc.). Otherwise, it is added to the
end of the list.

PowerBASIC Compiler for Windows Version 10

1884 / 2126

TOOLBAR DELETE BUTTON hDlg, ID, [BYCMD] item&

A BUTTON or SEPARATOR, specified by item&, is deleted from the TOOLBAR. The
parameter item& may be positional, or it may represent a command id number with
BYCMD.

TOOLBAR GET COUNT hDlg, ID to datav&

The number of buttons (and separators) on the TOOLBAR is retrieved and assigned to the
long integer variable specified by datav&.

TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&

The state descriptor bits for a specific button are retrieved and assigned to the variable
designated by datav&. The parameter item& tells which button to check -- it may be
positional, or it may be the command id number when used with BYCMD. The descriptor
bits may consist of one or more of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

TOOLBAR SET IMAGELIST hDlg, ID, hLst, type&

The IMAGELIST specified by hLst is attached to this TOOLBAR control. The value of
ListType& specifies the type of IMAGELIST:

0 Default images
1 Disabled images
2 Hot images

The graphical images contained in the IMAGELIST are displayed on the TOOLBAR
buttons. Up to three IMAGELIST structures may be attached to each TOOLBAR control.
 The image to be displayed is determined by the specification made in TOOLBAR ADD
BUTTON, and the current state of the button. When the TOOLBAR control is destroyed,
any attached IMAGELIST is automatically destroyed.

TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

The state descriptor bits for the specified button are applied from the expression state&.
 The parameter item& tells which button to set -- it may be positional, or it may be the
command id number when used with BYCMD. The descriptor bits state& may consist of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

See also DIALOG SHOW MODAL, DIALOG SHOW MODELESS, Dynamic Dialog Tools,
CONTROL ADD TOOLBAR, CONTROL SET FONT, IMAGELIST

TOOLBAR ADD SEPARATOR statement

PowerBASIC Compiler for Windows Version 10

1885 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TOOLBAR statement
Purpose A ToolBar control contains one or more buttons which act as shortcuts to menu items.

 The TOOLBAR statement is used to manipulate a TOOLBAR control.

Syntax TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT item&] [CALL
callback]
TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]
TOOLBAR DELETE BUTTON hDlg, id&, [BYCMD] item&
TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&
TOOLBAR GET COUNT hDlg, ID TO datav&
TOOLBAR SET IMAGELIST hDlg, ID, hLst, ListType&
TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

hDlg Handle of the dialog that owns the ToolBar.

hLst Handle of the ImageList to be used for graphical items.

id& The control identifier assigned with CONTROL ADD TOOLBAR.

cmd& Command id number associated with this button.

image& Image number selected (1=first, 2=second, etc.)

item& A data item number. First=1, second=2...

size& Size of the item expressed in pixels.

state& A state descriptor to define specific attributes.

style& Style descriptor bits for this button.

text$ A text

 to be displayed on this button.
type& A type descriptor to define specific attributes.

callback A callback function which receives messages for the control.

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result text is assigned.

Remarks A TOOLBAR control contains one or more buttons, each of which normally corresponds
to a menu item. It is generally placed at the top of the client area of a dialog. When the
user "presses" a tool bar button, the program reacts in the same way as if the command
had been selected from a menu. It simply acts as a shortcut to common menu
commands.

In each of the following descriptions, the TOOLBAR is referenced by the dialog handle
(hDlg) and id&. In some cases a specific button is chosen with the item& parameter. If
the BYCMD option is included, item& specifies the command id number of the button to
be used. If not, item& describes the button by its position on the TOOLBAR. Since
separators are considered to be a special class of button by the operating system, they
must be counted when you calculate a position item number. Positions are always
indexed to one (1=first, 2=second, and so on).

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1886 / 2126

TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT
item&] [CALL callback]

A button is added to this TOOLBAR. The image to be displayed is selected from the
attached IMAGELIST based upon the parameter image& (1=first, 2=second, etc.). The
cmd& parameter specifies the command id number to be executed (with %
WM_COMMAND) when the button is pressed. The style& parameter describes the style
of the button from the following most often used attributes:

%BTNS_AUTOSIZE The width of the button is calculated by the system, based
upon the text and the image.

%BTNS_BUTTON The button behaves like a standard push button.

%BTNS_CHECK The button is dual-state which toggles between the pressed
and nonpressed state each time it's clicked.

%BTNS_GROUP Defines a group of buttons. When combined with the check
style, it creates a button that stays pressed until another
button in the group is pressed. This is similar to an option
button or radio button.

%
BTNS_CHECKGROU
P

A combination of check and group styles.

%
BTNS_DROPDOWN

Creates a drop-down style button that can display a list
when clicked. Drop-down buttons send a %
TBN_DROPDOWN notification instead of %
WM_COMMAND.

%BTNS_NOPREFIX The button text will not have an accelerator prefix associated
with it.

The text$ parameter specifies the text to be displayed on the button.

If the optional "AT item&" clause is included, the button is inserted at the designated
position (1=first, 2=second, etc.). Otherwise, it is added to the end of the list.

If the optional "CALL callback" clause is included, it specifies the name of a Callback
Function that receives %WM_COMMAND messages when the button is clicked. If not
specified, these command messages are sent to the dialog callback specified in

. Message routing by button allows you to easily determine which button generated
the event.
If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]

A separator is added to this TOOLBAR. It separates two buttons by the number of pixels
specified in size&. It may be used to separate and distinguish two adjacent button
groups (%tbstyle_group), or to just enhance the visual appearance. If the optional cmd&
parameter is included, it's a unique numeric identifier for this separator. Of course, a
separator can't be pressed like a button, so it doesn't literally allow a command to be
sent. However, it may be used later with a BYCMD option in TOOLBAR DELETE,
TOOLBAR SET STATE, etc. If the "AT item&" clause is included, the separator is
inserted at the designated position (1=first, 2=second, etc.). Otherwise, it is added to the
end of the list.

TOOLBAR DELETE BUTTON hDlg, ID, [BYCMD] item&

A BUTTON or SEPARATOR, specified by item&, is deleted from the TOOLBAR. The
parameter item& may be positional, or it may represent a command id number with
BYCMD.

PowerBASIC Compiler for Windows Version 10

1887 / 2126

TOOLBAR GET COUNT hDlg, ID to datav&

The number of buttons (and separators) on the TOOLBAR is retrieved and assigned to the
long integer variable specified by datav&.

TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&

The state descriptor bits for a specific button are retrieved and assigned to the variable
designated by datav&. The parameter item& tells which button to check -- it may be
positional, or it may be the command id number when used with BYCMD. The descriptor
bits may consist of one or more of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

TOOLBAR SET IMAGELIST hDlg, ID, hLst, type&

The IMAGELIST specified by hLst is attached to this TOOLBAR control. The value of
ListType& specifies the type of IMAGELIST:

0 Default images
1 Disabled images
2 Hot images

The graphical images contained in the IMAGELIST are displayed on the TOOLBAR
buttons. Up to three IMAGELIST structures may be attached to each TOOLBAR control.
 The image to be displayed is determined by the specification made in TOOLBAR ADD
BUTTON, and the current state of the button. When the TOOLBAR control is destroyed,
any attached IMAGELIST is automatically destroyed.

TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

The state descriptor bits for the specified button are applied from the expression state&.
 The parameter item& tells which button to set -- it may be positional, or it may be the
command id number when used with BYCMD. The descriptor bits state& may consist of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

See also DIALOG SHOW MODAL, DIALOG SHOW MODELESS, Dynamic Dialog Tools,
CONTROL ADD TOOLBAR, CONTROL SET FONT, IMAGELIST

TOOLBAR DELETE BUTTON statement

Keyword Template
Purpose

Syntax

PowerBASIC Compiler for Windows Version 10

1888 / 2126

Remarks

See also

Example

TOOLBAR statement
Purpose A ToolBar control contains one or more buttons which act as shortcuts to menu items.

 The TOOLBAR statement is used to manipulate a TOOLBAR control.

Syntax TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT item&] [CALL
callback]
TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]
TOOLBAR DELETE BUTTON hDlg, id&, [BYCMD] item&
TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&
TOOLBAR GET COUNT hDlg, ID TO datav&
TOOLBAR SET IMAGELIST hDlg, ID, hLst, ListType&
TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

hDlg Handle of the dialog that owns the ToolBar.

hLst Handle of the ImageList to be used for graphical items.

id& The control identifier assigned with CONTROL ADD TOOLBAR.

cmd& Command id number associated with this button.

image& Image number selected (1=first, 2=second, etc.)

item& A data item number. First=1, second=2...

size& Size of the item expressed in pixels.

state& A state descriptor to define specific attributes.

style& Style descriptor bits for this button.

text$ A text

 to be displayed on this button.
type& A type descriptor to define specific attributes.

callback A callback function which receives messages for the control.

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result text is assigned.

Remarks A TOOLBAR control contains one or more buttons, each of which normally corresponds
to a menu item. It is generally placed at the top of the client area of a dialog. When the
user "presses" a tool bar button, the program reacts in the same way as if the command
had been selected from a menu. It simply acts as a shortcut to common menu
commands.

In each of the following descriptions, the TOOLBAR is referenced by the dialog handle
(hDlg) and id&. In some cases a specific button is chosen with the item& parameter. If
the BYCMD option is included, item& specifies the command id number of the button to
be used. If not, item& describes the button by its position on the TOOLBAR. Since
separators are considered to be a special class of button by the operating system, they
must be counted when you calculate a position item number. Positions are always
indexed to one (1=first, 2=second, and so on).

TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT
item&] [CALL callback]

A button is added to this TOOLBAR. The image to be displayed is selected from the
attached IMAGELIST based upon the parameter image& (1=first, 2=second, etc.). The
cmd& parameter specifies the command id number to be executed (with %

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1889 / 2126

WM_COMMAND) when the button is pressed. The style& parameter describes the style
of the button from the following most often used attributes:

%BTNS_AUTOSIZE The width of the button is calculated by the system, based
upon the text and the image.

%BTNS_BUTTON The button behaves like a standard push button.

%BTNS_CHECK The button is dual-state which toggles between the pressed
and nonpressed state each time it's clicked.

%BTNS_GROUP Defines a group of buttons. When combined with the check
style, it creates a button that stays pressed until another
button in the group is pressed. This is similar to an option
button or radio button.

%
BTNS_CHECKGROU
P

A combination of check and group styles.

%
BTNS_DROPDOWN

Creates a drop-down style button that can display a list
when clicked. Drop-down buttons send a %
TBN_DROPDOWN notification instead of %
WM_COMMAND.

%BTNS_NOPREFIX The button text will not have an accelerator prefix associated
with it.

The text$ parameter specifies the text to be displayed on the button.

If the optional "AT item&" clause is included, the button is inserted at the designated
position (1=first, 2=second, etc.). Otherwise, it is added to the end of the list.

If the optional "CALL callback" clause is included, it specifies the name of a Callback
Function that receives %WM_COMMAND messages when the button is clicked. If not
specified, these command messages are sent to the dialog callback specified in

. Message routing by button allows you to easily determine which button generated
the event.
If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]

A separator is added to this TOOLBAR. It separates two buttons by the number of pixels
specified in size&. It may be used to separate and distinguish two adjacent button
groups (%tbstyle_group), or to just enhance the visual appearance. If the optional cmd&
parameter is included, it's a unique numeric identifier for this separator. Of course, a
separator can't be pressed like a button, so it doesn't literally allow a command to be
sent. However, it may be used later with a BYCMD option in TOOLBAR DELETE,
TOOLBAR SET STATE, etc. If the "AT item&" clause is included, the separator is
inserted at the designated position (1=first, 2=second, etc.). Otherwise, it is added to the
end of the list.

TOOLBAR DELETE BUTTON hDlg, ID, [BYCMD] item&

A BUTTON or SEPARATOR, specified by item&, is deleted from the TOOLBAR. The
parameter item& may be positional, or it may represent a command id number with
BYCMD.

TOOLBAR GET COUNT hDlg, ID to datav&

The number of buttons (and separators) on the TOOLBAR is retrieved and assigned to the
long integer variable specified by datav&.

PowerBASIC Compiler for Windows Version 10

1890 / 2126

TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&

The state descriptor bits for a specific button are retrieved and assigned to the variable
designated by datav&. The parameter item& tells which button to check -- it may be
positional, or it may be the command id number when used with BYCMD. The descriptor
bits may consist of one or more of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

TOOLBAR SET IMAGELIST hDlg, ID, hLst, type&

The IMAGELIST specified by hLst is attached to this TOOLBAR control. The value of
ListType& specifies the type of IMAGELIST:

0 Default images
1 Disabled images
2 Hot images

The graphical images contained in the IMAGELIST are displayed on the TOOLBAR
buttons. Up to three IMAGELIST structures may be attached to each TOOLBAR control.
 The image to be displayed is determined by the specification made in TOOLBAR ADD
BUTTON, and the current state of the button. When the TOOLBAR control is destroyed,
any attached IMAGELIST is automatically destroyed.

TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

The state descriptor bits for the specified button are applied from the expression state&.
 The parameter item& tells which button to set -- it may be positional, or it may be the
command id number when used with BYCMD. The descriptor bits state& may consist of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

See also DIALOG SHOW MODAL, DIALOG SHOW MODELESS, Dynamic Dialog Tools,
CONTROL ADD TOOLBAR, CONTROL SET FONT, IMAGELIST

TOOLBAR GET COUNT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1891 / 2126

TOOLBAR statement
Purpose A ToolBar control contains one or more buttons which act as shortcuts to menu items.

 The TOOLBAR statement is used to manipulate a TOOLBAR control.

Syntax TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT item&] [CALL
callback]
TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]
TOOLBAR DELETE BUTTON hDlg, id&, [BYCMD] item&
TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&
TOOLBAR GET COUNT hDlg, ID TO datav&
TOOLBAR SET IMAGELIST hDlg, ID, hLst, ListType&
TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

hDlg Handle of the dialog that owns the ToolBar.

hLst Handle of the ImageList to be used for graphical items.

id& The control identifier assigned with CONTROL ADD TOOLBAR.

cmd& Command id number associated with this button.

image& Image number selected (1=first, 2=second, etc.)

item& A data item number. First=1, second=2...

size& Size of the item expressed in pixels.

state& A state descriptor to define specific attributes.

style& Style descriptor bits for this button.

text$ A text

 to be displayed on this button.
type& A type descriptor to define specific attributes.

callback A callback function which receives messages for the control.

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result text is assigned.

Remarks A TOOLBAR control contains one or more buttons, each of which normally corresponds
to a menu item. It is generally placed at the top of the client area of a dialog. When the
user "presses" a tool bar button, the program reacts in the same way as if the command
had been selected from a menu. It simply acts as a shortcut to common menu
commands.

In each of the following descriptions, the TOOLBAR is referenced by the dialog handle
(hDlg) and id&. In some cases a specific button is chosen with the item& parameter. If
the BYCMD option is included, item& specifies the command id number of the button to
be used. If not, item& describes the button by its position on the TOOLBAR. Since
separators are considered to be a special class of button by the operating system, they
must be counted when you calculate a position item number. Positions are always
indexed to one (1=first, 2=second, and so on).

TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT
item&] [CALL callback]

A button is added to this TOOLBAR. The image to be displayed is selected from the
attached IMAGELIST based upon the parameter image& (1=first, 2=second, etc.). The
cmd& parameter specifies the command id number to be executed (with %
WM_COMMAND) when the button is pressed. The style& parameter describes the style
of the button from the following most often used attributes:

%BTNS_AUTOSIZE The width of the button is calculated by the system, based
upon the text and the image.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1892 / 2126

%BTNS_BUTTON The button behaves like a standard push button.

%BTNS_CHECK The button is dual-state which toggles between the pressed
and nonpressed state each time it's clicked.

%BTNS_GROUP Defines a group of buttons. When combined with the check
style, it creates a button that stays pressed until another
button in the group is pressed. This is similar to an option
button or radio button.

%
BTNS_CHECKGROU
P

A combination of check and group styles.

%
BTNS_DROPDOWN

Creates a drop-down style button that can display a list
when clicked. Drop-down buttons send a %
TBN_DROPDOWN notification instead of %
WM_COMMAND.

%BTNS_NOPREFIX The button text will not have an accelerator prefix associated
with it.

The text$ parameter specifies the text to be displayed on the button.

If the optional "AT item&" clause is included, the button is inserted at the designated
position (1=first, 2=second, etc.). Otherwise, it is added to the end of the list.

If the optional "CALL callback" clause is included, it specifies the name of a Callback
Function that receives %WM_COMMAND messages when the button is clicked. If not
specified, these command messages are sent to the dialog callback specified in

. Message routing by button allows you to easily determine which button generated
the event.
If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]

A separator is added to this TOOLBAR. It separates two buttons by the number of pixels
specified in size&. It may be used to separate and distinguish two adjacent button
groups (%tbstyle_group), or to just enhance the visual appearance. If the optional cmd&
parameter is included, it's a unique numeric identifier for this separator. Of course, a
separator can't be pressed like a button, so it doesn't literally allow a command to be
sent. However, it may be used later with a BYCMD option in TOOLBAR DELETE,
TOOLBAR SET STATE, etc. If the "AT item&" clause is included, the separator is
inserted at the designated position (1=first, 2=second, etc.). Otherwise, it is added to the
end of the list.

TOOLBAR DELETE BUTTON hDlg, ID, [BYCMD] item&

A BUTTON or SEPARATOR, specified by item&, is deleted from the TOOLBAR. The
parameter item& may be positional, or it may represent a command id number with
BYCMD.

TOOLBAR GET COUNT hDlg, ID to datav&

The number of buttons (and separators) on the TOOLBAR is retrieved and assigned to the
long integer variable specified by datav&.

TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&

The state descriptor bits for a specific button are retrieved and assigned to the variable
designated by datav&. The parameter item& tells which button to check -- it may be
positional, or it may be the command id number when used with BYCMD. The descriptor

PowerBASIC Compiler for Windows Version 10

1893 / 2126

bits may consist of one or more of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

TOOLBAR SET IMAGELIST hDlg, ID, hLst, type&

The IMAGELIST specified by hLst is attached to this TOOLBAR control. The value of
ListType& specifies the type of IMAGELIST:

0 Default images
1 Disabled images
2 Hot images

The graphical images contained in the IMAGELIST are displayed on the TOOLBAR
buttons. Up to three IMAGELIST structures may be attached to each TOOLBAR control.
 The image to be displayed is determined by the specification made in TOOLBAR ADD
BUTTON, and the current state of the button. When the TOOLBAR control is destroyed,
any attached IMAGELIST is automatically destroyed.

TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

The state descriptor bits for the specified button are applied from the expression state&.
 The parameter item& tells which button to set -- it may be positional, or it may be the
command id number when used with BYCMD. The descriptor bits state& may consist of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

See also DIALOG SHOW MODAL, DIALOG SHOW MODELESS, Dynamic Dialog Tools,
CONTROL ADD TOOLBAR, CONTROL SET FONT, IMAGELIST

TOOLBAR GET STATE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TOOLBAR statement
Purpose A ToolBar control contains one or more buttons which act as shortcuts to menu items.

 The TOOLBAR statement is used to manipulate a TOOLBAR control.

PowerBASIC Compiler for Windows Version 10

1894 / 2126

Syntax TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT item&] [CALL
callback]
TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]
TOOLBAR DELETE BUTTON hDlg, id&, [BYCMD] item&
TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&
TOOLBAR GET COUNT hDlg, ID TO datav&
TOOLBAR SET IMAGELIST hDlg, ID, hLst, ListType&
TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

hDlg Handle of the dialog that owns the ToolBar.

hLst Handle of the ImageList to be used for graphical items.

id& The control identifier assigned with CONTROL ADD TOOLBAR.

cmd& Command id number associated with this button.

image& Image number selected (1=first, 2=second, etc.)

item& A data item number. First=1, second=2...

size& Size of the item expressed in pixels.

state& A state descriptor to define specific attributes.

style& Style descriptor bits for this button.

text$ A text

 to be displayed on this button.
type& A type descriptor to define specific attributes.

callback A callback function which receives messages for the control.

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result text is assigned.

Remarks A TOOLBAR control contains one or more buttons, each of which normally corresponds
to a menu item. It is generally placed at the top of the client area of a dialog. When the
user "presses" a tool bar button, the program reacts in the same way as if the command
had been selected from a menu. It simply acts as a shortcut to common menu
commands.

In each of the following descriptions, the TOOLBAR is referenced by the dialog handle
(hDlg) and id&. In some cases a specific button is chosen with the item& parameter. If
the BYCMD option is included, item& specifies the command id number of the button to
be used. If not, item& describes the button by its position on the TOOLBAR. Since
separators are considered to be a special class of button by the operating system, they
must be counted when you calculate a position item number. Positions are always
indexed to one (1=first, 2=second, and so on).

TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT
item&] [CALL callback]

A button is added to this TOOLBAR. The image to be displayed is selected from the
attached IMAGELIST based upon the parameter image& (1=first, 2=second, etc.). The
cmd& parameter specifies the command id number to be executed (with %
WM_COMMAND) when the button is pressed. The style& parameter describes the style
of the button from the following most often used attributes:

%BTNS_AUTOSIZE The width of the button is calculated by the system, based
upon the text and the image.

%BTNS_BUTTON The button behaves like a standard push button.

%BTNS_CHECK The button is dual-state which toggles between the pressed
and nonpressed state each time it's clicked.

%BTNS_GROUP Defines a group of buttons. When combined with the check
style, it creates a button that stays pressed until another

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1895 / 2126

button in the group is pressed. This is similar to an option
button or radio button.

%
BTNS_CHECKGROU
P

A combination of check and group styles.

%
BTNS_DROPDOWN

Creates a drop-down style button that can display a list
when clicked. Drop-down buttons send a %
TBN_DROPDOWN notification instead of %
WM_COMMAND.

%BTNS_NOPREFIX The button text will not have an accelerator prefix associated
with it.

The text$ parameter specifies the text to be displayed on the button.

If the optional "AT item&" clause is included, the button is inserted at the designated
position (1=first, 2=second, etc.). Otherwise, it is added to the end of the list.

If the optional "CALL callback" clause is included, it specifies the name of a Callback
Function that receives %WM_COMMAND messages when the button is clicked. If not
specified, these command messages are sent to the dialog callback specified in

. Message routing by button allows you to easily determine which button generated
the event.
If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]

A separator is added to this TOOLBAR. It separates two buttons by the number of pixels
specified in size&. It may be used to separate and distinguish two adjacent button
groups (%tbstyle_group), or to just enhance the visual appearance. If the optional cmd&
parameter is included, it's a unique numeric identifier for this separator. Of course, a
separator can't be pressed like a button, so it doesn't literally allow a command to be
sent. However, it may be used later with a BYCMD option in TOOLBAR DELETE,
TOOLBAR SET STATE, etc. If the "AT item&" clause is included, the separator is
inserted at the designated position (1=first, 2=second, etc.). Otherwise, it is added to the
end of the list.

TOOLBAR DELETE BUTTON hDlg, ID, [BYCMD] item&

A BUTTON or SEPARATOR, specified by item&, is deleted from the TOOLBAR. The
parameter item& may be positional, or it may represent a command id number with
BYCMD.

TOOLBAR GET COUNT hDlg, ID to datav&

The number of buttons (and separators) on the TOOLBAR is retrieved and assigned to the
long integer variable specified by datav&.

TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&

The state descriptor bits for a specific button are retrieved and assigned to the variable
designated by datav&. The parameter item& tells which button to check -- it may be
positional, or it may be the command id number when used with BYCMD. The descriptor
bits may consist of one or more of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

PowerBASIC Compiler for Windows Version 10

1896 / 2126

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

TOOLBAR SET IMAGELIST hDlg, ID, hLst, type&

The IMAGELIST specified by hLst is attached to this TOOLBAR control. The value of
ListType& specifies the type of IMAGELIST:

0 Default images
1 Disabled images
2 Hot images

The graphical images contained in the IMAGELIST are displayed on the TOOLBAR
buttons. Up to three IMAGELIST structures may be attached to each TOOLBAR control.
 The image to be displayed is determined by the specification made in TOOLBAR ADD
BUTTON, and the current state of the button. When the TOOLBAR control is destroyed,
any attached IMAGELIST is automatically destroyed.

TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

The state descriptor bits for the specified button are applied from the expression state&.
 The parameter item& tells which button to set -- it may be positional, or it may be the
command id number when used with BYCMD. The descriptor bits state& may consist of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

See also DIALOG SHOW MODAL, DIALOG SHOW MODELESS, Dynamic Dialog Tools,
CONTROL ADD TOOLBAR, CONTROL SET FONT, IMAGELIST

TOOLBAR SET IMAGELIST statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TOOLBAR statement
Purpose A ToolBar control contains one or more buttons which act as shortcuts to menu items.

 The TOOLBAR statement is used to manipulate a TOOLBAR control.

Syntax TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT item&] [CALL
callback]
TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]
TOOLBAR DELETE BUTTON hDlg, id&, [BYCMD] item&
TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&
TOOLBAR GET COUNT hDlg, ID TO datav&

PowerBASIC Compiler for Windows Version 10

1897 / 2126

TOOLBAR SET IMAGELIST hDlg, ID, hLst, ListType&
TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

hDlg Handle of the dialog that owns the ToolBar.

hLst Handle of the ImageList to be used for graphical items.

id& The control identifier assigned with CONTROL ADD TOOLBAR.

cmd& Command id number associated with this button.

image& Image number selected (1=first, 2=second, etc.)

item& A data item number. First=1, second=2...

size& Size of the item expressed in pixels.

state& A state descriptor to define specific attributes.

style& Style descriptor bits for this button.

text$ A text

 to be displayed on this button.
type& A type descriptor to define specific attributes.

callback A callback function which receives messages for the control.

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result text is assigned.

Remarks A TOOLBAR control contains one or more buttons, each of which normally corresponds
to a menu item. It is generally placed at the top of the client area of a dialog. When the
user "presses" a tool bar button, the program reacts in the same way as if the command
had been selected from a menu. It simply acts as a shortcut to common menu
commands.

In each of the following descriptions, the TOOLBAR is referenced by the dialog handle
(hDlg) and id&. In some cases a specific button is chosen with the item& parameter. If
the BYCMD option is included, item& specifies the command id number of the button to
be used. If not, item& describes the button by its position on the TOOLBAR. Since
separators are considered to be a special class of button by the operating system, they
must be counted when you calculate a position item number. Positions are always
indexed to one (1=first, 2=second, and so on).

TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT
item&] [CALL callback]

A button is added to this TOOLBAR. The image to be displayed is selected from the
attached IMAGELIST based upon the parameter image& (1=first, 2=second, etc.). The
cmd& parameter specifies the command id number to be executed (with %
WM_COMMAND) when the button is pressed. The style& parameter describes the style
of the button from the following most often used attributes:

%BTNS_AUTOSIZE The width of the button is calculated by the system, based
upon the text and the image.

%BTNS_BUTTON The button behaves like a standard push button.

%BTNS_CHECK The button is dual-state which toggles between the pressed
and nonpressed state each time it's clicked.

%BTNS_GROUP Defines a group of buttons. When combined with the check
style, it creates a button that stays pressed until another
button in the group is pressed. This is similar to an option
button or radio button.

%
BTNS_CHECKGROU
P

A combination of check and group styles.

% Creates a drop-down style button that can display a list

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1898 / 2126

BTNS_DROPDOWN when clicked. Drop-down buttons send a %
TBN_DROPDOWN notification instead of %
WM_COMMAND.

%BTNS_NOPREFIX The button text will not have an accelerator prefix associated
with it.

The text$ parameter specifies the text to be displayed on the button.

If the optional "AT item&" clause is included, the button is inserted at the designated
position (1=first, 2=second, etc.). Otherwise, it is added to the end of the list.

If the optional "CALL callback" clause is included, it specifies the name of a Callback
Function that receives %WM_COMMAND messages when the button is clicked. If not
specified, these command messages are sent to the dialog callback specified in

. Message routing by button allows you to easily determine which button generated
the event.
If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]

A separator is added to this TOOLBAR. It separates two buttons by the number of pixels
specified in size&. It may be used to separate and distinguish two adjacent button
groups (%tbstyle_group), or to just enhance the visual appearance. If the optional cmd&
parameter is included, it's a unique numeric identifier for this separator. Of course, a
separator can't be pressed like a button, so it doesn't literally allow a command to be
sent. However, it may be used later with a BYCMD option in TOOLBAR DELETE,
TOOLBAR SET STATE, etc. If the "AT item&" clause is included, the separator is
inserted at the designated position (1=first, 2=second, etc.). Otherwise, it is added to the
end of the list.

TOOLBAR DELETE BUTTON hDlg, ID, [BYCMD] item&

A BUTTON or SEPARATOR, specified by item&, is deleted from the TOOLBAR. The
parameter item& may be positional, or it may represent a command id number with
BYCMD.

TOOLBAR GET COUNT hDlg, ID to datav&

The number of buttons (and separators) on the TOOLBAR is retrieved and assigned to the
long integer variable specified by datav&.

TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&

The state descriptor bits for a specific button are retrieved and assigned to the variable
designated by datav&. The parameter item& tells which button to check -- it may be
positional, or it may be the command id number when used with BYCMD. The descriptor
bits may consist of one or more of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

TOOLBAR SET IMAGELIST hDlg, ID, hLst, type&

PowerBASIC Compiler for Windows Version 10

1899 / 2126

The IMAGELIST specified by hLst is attached to this TOOLBAR control. The value of
ListType& specifies the type of IMAGELIST:

0 Default images
1 Disabled images
2 Hot images

The graphical images contained in the IMAGELIST are displayed on the TOOLBAR
buttons. Up to three IMAGELIST structures may be attached to each TOOLBAR control.
 The image to be displayed is determined by the specification made in TOOLBAR ADD
BUTTON, and the current state of the button. When the TOOLBAR control is destroyed,
any attached IMAGELIST is automatically destroyed.

TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

The state descriptor bits for the specified button are applied from the expression state&.
 The parameter item& tells which button to set -- it may be positional, or it may be the
command id number when used with BYCMD. The descriptor bits state& may consist of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

See also DIALOG SHOW MODAL, DIALOG SHOW MODELESS, Dynamic Dialog Tools,
CONTROL ADD TOOLBAR, CONTROL SET FONT, IMAGELIST

TOOLBAR SET STATE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TOOLBAR statement
Purpose A ToolBar control contains one or more buttons which act as shortcuts to menu items.

 The TOOLBAR statement is used to manipulate a TOOLBAR control.

Syntax TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT item&] [CALL
callback]
TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]
TOOLBAR DELETE BUTTON hDlg, id&, [BYCMD] item&
TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&
TOOLBAR GET COUNT hDlg, ID TO datav&
TOOLBAR SET IMAGELIST hDlg, ID, hLst, ListType&
TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

hDlg Handle of the dialog that owns the ToolBar.

hLst Handle of the ImageList to be used for graphical items.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1900 / 2126

id& The control identifier assigned with CONTROL ADD TOOLBAR.

cmd& Command id number associated with this button.

image& Image number selected (1=first, 2=second, etc.)

item& A data item number. First=1, second=2...

size& Size of the item expressed in pixels.

state& A state descriptor to define specific attributes.

style& Style descriptor bits for this button.

text$ A text

 to be displayed on this button.
type& A type descriptor to define specific attributes.

callback A callback function which receives messages for the control.

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result text is assigned.

Remarks A TOOLBAR control contains one or more buttons, each of which normally corresponds
to a menu item. It is generally placed at the top of the client area of a dialog. When the
user "presses" a tool bar button, the program reacts in the same way as if the command
had been selected from a menu. It simply acts as a shortcut to common menu
commands.

In each of the following descriptions, the TOOLBAR is referenced by the dialog handle
(hDlg) and id&. In some cases a specific button is chosen with the item& parameter. If
the BYCMD option is included, item& specifies the command id number of the button to
be used. If not, item& describes the button by its position on the TOOLBAR. Since
separators are considered to be a special class of button by the operating system, they
must be counted when you calculate a position item number. Positions are always
indexed to one (1=first, 2=second, and so on).

TOOLBAR ADD BUTTON hDlg, ID, image&, cmd&, style&, text$ [AT
item&] [CALL callback]

A button is added to this TOOLBAR. The image to be displayed is selected from the
attached IMAGELIST based upon the parameter image& (1=first, 2=second, etc.). The
cmd& parameter specifies the command id number to be executed (with %
WM_COMMAND) when the button is pressed. The style& parameter describes the style
of the button from the following most often used attributes:

%BTNS_AUTOSIZE The width of the button is calculated by the system, based
upon the text and the image.

%BTNS_BUTTON The button behaves like a standard push button.

%BTNS_CHECK The button is dual-state which toggles between the pressed
and nonpressed state each time it's clicked.

%BTNS_GROUP Defines a group of buttons. When combined with the check
style, it creates a button that stays pressed until another
button in the group is pressed. This is similar to an option
button or radio button.

%
BTNS_CHECKGROU
P

A combination of check and group styles.

%
BTNS_DROPDOWN

Creates a drop-down style button that can display a list
when clicked. Drop-down buttons send a %
TBN_DROPDOWN notification instead of %
WM_COMMAND.

%BTNS_NOPREFIX The button text will not have an accelerator prefix associated
with it.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1901 / 2126

The text$ parameter specifies the text to be displayed on the button.

If the optional "AT item&" clause is included, the button is inserted at the designated
position (1=first, 2=second, etc.). Otherwise, it is added to the end of the list.

If the optional "CALL callback" clause is included, it specifies the name of a Callback
Function that receives %WM_COMMAND messages when the button is clicked. If not
specified, these command messages are sent to the dialog callback specified in

. Message routing by button allows you to easily determine which button generated
the event.
If the Callback Function processes a message, it should return TRUE (non-zero) to
prevent the message being passed unnecessarily to the dialog callback (if one exists).
 The dialog callback should also return TRUE if the notification message is processed by
that Callback Function. Otherwise, the DDT engine processes unhandled messages.

TOOLBAR ADD SEPARATOR hDlg, ID, size& [,cmd&] [AT item&]

A separator is added to this TOOLBAR. It separates two buttons by the number of pixels
specified in size&. It may be used to separate and distinguish two adjacent button
groups (%tbstyle_group), or to just enhance the visual appearance. If the optional cmd&
parameter is included, it's a unique numeric identifier for this separator. Of course, a
separator can't be pressed like a button, so it doesn't literally allow a command to be
sent. However, it may be used later with a BYCMD option in TOOLBAR DELETE,
TOOLBAR SET STATE, etc. If the "AT item&" clause is included, the separator is
inserted at the designated position (1=first, 2=second, etc.). Otherwise, it is added to the
end of the list.

TOOLBAR DELETE BUTTON hDlg, ID, [BYCMD] item&

A BUTTON or SEPARATOR, specified by item&, is deleted from the TOOLBAR. The
parameter item& may be positional, or it may represent a command id number with
BYCMD.

TOOLBAR GET COUNT hDlg, ID to datav&

The number of buttons (and separators) on the TOOLBAR is retrieved and assigned to the
long integer variable specified by datav&.

TOOLBAR GET STATE hDlg, ID, [BYCMD] item& TO datav&

The state descriptor bits for a specific button are retrieved and assigned to the variable
designated by datav&. The parameter item& tells which button to check -- it may be
positional, or it may be the command id number when used with BYCMD. The descriptor
bits may consist of one or more of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

TOOLBAR SET IMAGELIST hDlg, ID, hLst, type&

The IMAGELIST specified by hLst is attached to this TOOLBAR control. The value of
ListType& specifies the type of IMAGELIST:

0 Default images
1 Disabled images
2 Hot images

PowerBASIC Compiler for Windows Version 10

1902 / 2126

The graphical images contained in the IMAGELIST are displayed on the TOOLBAR
buttons. Up to three IMAGELIST structures may be attached to each TOOLBAR control.
 The image to be displayed is determined by the specification made in TOOLBAR ADD
BUTTON, and the current state of the button. When the TOOLBAR control is destroyed,
any attached IMAGELIST is automatically destroyed.

TOOLBAR SET STATE hDlg, ID, [BYCMD] item&, state&

The state descriptor bits for the specified button are applied from the expression state&.
 The parameter item& tells which button to set -- it may be positional, or it may be the
command id number when used with BYCMD. The descriptor bits state& may consist of:

%TBSTATE_DISABLED The button is disabled and grayed. (value=0)

%TBSTATE_CHECKED The button is checked.

%TBSTATE_PRESSED The button is pressed.

%TBSTATE_ENABLED The button is enabled.

%TBSTATE_HIDDEN The button is hidden.

%TBSTATE_INDETERMINATE The button is indeterminate and grayed.

%TBSTATE_MARKED The button is highlighted.

See also DIALOG SHOW MODAL, DIALOG SHOW MODELESS, Dynamic Dialog Tools,
CONTROL ADD TOOLBAR, CONTROL SET FONT, IMAGELIST

TRACE statement

TRACE statement
Purpose Capture a representation of the precise flow of execution in a module.

Syntax TRACE NEW fname$
TRACE ON
TRACE PRINT string_expr
TRACE OFF
TRACE CLOSE

Remarks The TRACE statement is used to generate a trace file detailing program flow as execution
passes through Labels, plus entry and exit of all Subs, Functions, Methods, and
Properties, along with details of passed parameters, etc. All trace details are written to a
named disk file fname$.

TRACE also logs PowerBASIC run-time errors as they occur, to assist with locating
program errors. TRACE can be dynamically started and stopped with the TRACE ON and
TRACE OFF statements to enable the programmer to check specific portions of a
program without generating volumes of irrelevant trace data.

The five general forms of the TRACE statement are described as follow:

TRACE NEW fname$

TRACE NEW causes a standard sequential trace file (of the specified file name fname$)
to be created, deleting any previous file of the same name.

TRACE ON

When a subsequent TRACE ON is then executed, PowerBASIC begins to write pertinent
trace information to the trace file. It will contain a chronological list of every call to an
internal procedure, the associated parameter values, and the point at which it was exited.
Further, it will list a label name each time that program execution flows through the label
position.

In a test or debugging situation, TRACE, CALLSTK, and CALLSTK$ allow you to easily
answer that age-old programming question, "How did I get here?". TRACE details the
entry and exit of every procedure in your program, while CALLSTK simply lists the stack

PowerBASIC Compiler for Windows Version 10

1903 / 2126

frames that exist above the current level. TRACE is particularly valuable in pinpointing the
area of a program where a fatal machine crash occurs.

TRACE PRINT string_expr

TRACE PRINT writes the value of string_expr to the trace file. It can be used to record the
value of important variables or other information of importance.

TRACE OFF

TRACE OFF temporarily stops output to the trace file. The trace can be subsequently
restarted with another TRACE ON statement. An implied TRACE OFF is performed when
you exit the procedure in which the current TRACE ON was executed.

TRACE CLOSE

TRACE CLOSE permanently detaches the trace file from the stream of trace data.

The TRACE statement can easily create a huge trace file, so caution must be exercised.
Use TRACE ON at the lowest procedure level possible, to keep the output size within
reason.

If PBMAIN contains TRACE NEW and TRACE ON statements, and subsequently calls
SUB AAA(x&), which in turn calls SUB BBB(y&,a$), which then calls SUB CCC(z&),
which encounters a run-time error 5, the trace file might look something like this:

Trace Begins...
 AAA(3)
 BBB(4,string data)
 CCC(5)
 TRACE PRINT printed this user data from CCC()
 ERROR 151 was generated in this thread
 CCC Exit
 BBB Exit
 AAA Exit

Numeric parameters are displayed in decimal, while pointer and array parameters display
a decimal representation of the offset of the target value.

Restrictions TRACE can be invaluable during debugging, but it generates substantial additional code
that should be avoided in the final release version of an application. If the source code
contains #TOOLS OFF, all TRACE statements which remain in the program are ignored
by the compiler, and the parameters and expressions are excluded from the compiled
program.

To conserve memory requirements in the code, long labels are truncated to 13 characters;
however, procedure names are not truncated.

The TRACE statement is "Thread-Aware", displaying only Sub, Function, Method,
Property, or Label details from the thread in which it was executed. You can execute
TRACE multiple times, or even in multiple concurrent threads. However, you must use
caution to ensure that each thread uses a unique name for its own trace file.

See also #TOOLS, CALLSTK, CALLSTK$, CALLSTKCOUNT, FUNCNAME$, PROFILE

Example #TOOLS ON
FUNCTION PBMAIN
 TRACE NEW "tracelog.txt"
 TRACE ON
 x& = 3
 CALL AAA(x&)
 TRACE OFF
 TRACE CLOSE
END FUNCTION

SUB AAA(x&)
 INCR x&
 CALL BBB(x&,"string data")

PowerBASIC Compiler for Windows Version 10

1904 / 2126

 ' More code
END SUB

SUB BBB(y&,a$)
 INCR y&
 CALL CCC(y&)
END SUB

SUB CCC(z&)
 TRACE PRINT "TRACE PRINT printed this " + _
 "user data from " + FUNCNAME$ + "()"
 ERROR 151 ' Trigger a run-time error
END SUB

TREEVIEW DELETE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

PowerBASIC Compiler for Windows Version 10

1905 / 2126

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1906 / 2126

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

PowerBASIC Compiler for Windows Version 10

1907 / 2126

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW GET BOLD statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.

PowerBASIC Compiler for Windows Version 10

1908 / 2126

Syntax TREEVIEW DELETE hDlg, id&, hItem
TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1909 / 2126

the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the

PowerBASIC Compiler for Windows Version 10

1910 / 2126

parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL

PowerBASIC Compiler for Windows Version 10

1911 / 2126

SET FONT, IMAGELIST

TREEVIEW GET CHECK statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1912 / 2126

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

PowerBASIC Compiler for Windows Version 10

1913 / 2126

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

PowerBASIC Compiler for Windows Version 10

1914 / 2126

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW GET CHILD statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO

PowerBASIC Compiler for Windows Version 10

1915 / 2126

hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1916 / 2126

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

PowerBASIC Compiler for Windows Version 10

1917 / 2126

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW GET COUNT statement

Keyword Template
Purpose

Syntax

Remarks

See also

PowerBASIC Compiler for Windows Version 10

1918 / 2126

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1919 / 2126

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of

PowerBASIC Compiler for Windows Version 10

1920 / 2126

the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of

PowerBASIC Compiler for Windows Version 10

1921 / 2126

the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW GET EXPANDED statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1922 / 2126

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the

PowerBASIC Compiler for Windows Version 10

1923 / 2126

previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is

PowerBASIC Compiler for Windows Version 10

1924 / 2126

unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW GET NEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

PowerBASIC Compiler for Windows Version 10

1925 / 2126

TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1926 / 2126

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.

PowerBASIC Compiler for Windows Version 10

1927 / 2126

 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW GET PARENT statement

PowerBASIC Compiler for Windows Version 10

1928 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1929 / 2126

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

PowerBASIC Compiler for Windows Version 10

1930 / 2126

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

PowerBASIC Compiler for Windows Version 10

1931 / 2126

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW GET PREVIOUS statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&

PowerBASIC Compiler for Windows Version 10

1932 / 2126

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1933 / 2126

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

PowerBASIC Compiler for Windows Version 10

1934 / 2126

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW GET ROOT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1935 / 2126

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1936 / 2126

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT

PowerBASIC Compiler for Windows Version 10

1937 / 2126

control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight

PowerBASIC Compiler for Windows Version 10

1938 / 2126

user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW GET SELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1939 / 2126

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is

PowerBASIC Compiler for Windows Version 10

1940 / 2126

found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

PowerBASIC Compiler for Windows Version 10

1941 / 2126

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW GET TEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

PowerBASIC Compiler for Windows Version 10

1942 / 2126

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1943 / 2126

variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the

PowerBASIC Compiler for Windows Version 10

1944 / 2126

text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW GET USER statement

PowerBASIC Compiler for Windows Version 10

1945 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1946 / 2126

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

PowerBASIC Compiler for Windows Version 10

1947 / 2126

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

PowerBASIC Compiler for Windows Version 10

1948 / 2126

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW INSERT ITEM statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&

PowerBASIC Compiler for Windows Version 10

1949 / 2126

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1950 / 2126

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

PowerBASIC Compiler for Windows Version 10

1951 / 2126

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW RESET statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1952 / 2126

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1953 / 2126

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT

PowerBASIC Compiler for Windows Version 10

1954 / 2126

control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight

PowerBASIC Compiler for Windows Version 10

1955 / 2126

user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW SELECT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1956 / 2126

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is

PowerBASIC Compiler for Windows Version 10

1957 / 2126

found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

PowerBASIC Compiler for Windows Version 10

1958 / 2126

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW SET BOLD statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

PowerBASIC Compiler for Windows Version 10

1959 / 2126

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1960 / 2126

variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the

PowerBASIC Compiler for Windows Version 10

1961 / 2126

text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW SET CHECK statement

PowerBASIC Compiler for Windows Version 10

1962 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1963 / 2126

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

PowerBASIC Compiler for Windows Version 10

1964 / 2126

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

PowerBASIC Compiler for Windows Version 10

1965 / 2126

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW SET EXPANDED statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&

PowerBASIC Compiler for Windows Version 10

1966 / 2126

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1967 / 2126

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

PowerBASIC Compiler for Windows Version 10

1968 / 2126

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW SET IMAGELIST statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1969 / 2126

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1970 / 2126

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT

PowerBASIC Compiler for Windows Version 10

1971 / 2126

control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight

PowerBASIC Compiler for Windows Version 10

1972 / 2126

user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW SET TEXT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1973 / 2126

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is

PowerBASIC Compiler for Windows Version 10

1974 / 2126

found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

PowerBASIC Compiler for Windows Version 10

1975 / 2126

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW SET USER statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

PowerBASIC Compiler for Windows Version 10

1976 / 2126

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1977 / 2126

variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the

PowerBASIC Compiler for Windows Version 10

1978 / 2126

text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TREEVIEW UNSELECT statement

PowerBASIC Compiler for Windows Version 10

1979 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TREEVIEW statement
Purpose A TreeView control displays a set of data items with a parent-child relationship between

the items. This creates a hierarchical list of data which can have any number of levels.
Each item displays an optional image and a text

. Each time you add an item, you must specify its relationship to existing data items.
Syntax TREEVIEW DELETE hDlg, id&, hItem

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&
TREEVIEW GET CHECK hDlg, id&, hItem TO datav&
TREEVIEW GET CHILD hDlg, id&, hItem TO datav&
TREEVIEW GET COUNT hDlg, id& TO datav&
TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&
TREEVIEW GET NEXT hDlg, id&, hItem TO datav&
TREEVIEW GET PARENT hDlg, id&, hItem TO datav&
TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&
TREEVIEW GET ROOT hDlg, id& TO datav&
TREEVIEW GET SELECT hDlg, id& TO datav&
TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$
TREEVIEW GET USER hDlg, id&, hItem TO datav&
TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, simage&, txt$ TO
hItem
TREEVIEW RESET hDlg, id&
TREEVIEW SELECT hDlg, id&, hItem
TREEVIEW SET BOLD hDlg, id&, hItem, flag&
TREEVIEW SET CHECK hDlg, id&, hItem, flag&
TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&
TREEVIEW SET IMAGELIST hDlg, id&, hLst
TREEVIEW SET TEXT hDlg, id&, hItem, txt$
TREEVIEW SET USER hDlg, id&, hItem, NumExpr
TREEVIEW UNSELECT hDlg, id&

hDlg Handle of the dialog that owns the Treeview.

id& The control identifier assigned with CONTROL ADD TREEVIEW.

hItem Handle of a Treeview item, used to uniquely identify the item

datav& A long integer variable to which result data is assigned.

txtv$ A string variable to which result data is assigned.

hPrnt Handle of the parent item to insert the new item under.

hIAftr Handle of the item to insert the new item after.

image& Image index of the new item

simage& Selected image index of the new item

txt$ Text to be displayed for the Treeview item

flag& A long integer value to define specific attributes

hLst Handle of the ImageList to be used for graphical items.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1980 / 2126

Remarks TREEVIEW DELETE hDlg, id&, hItem

The data item specified by the handle hItem is deleted from the TREEVIEW control.

TREEVIEW GET BOLD hDlg, id&, hItem TO datav&

The bold attribute for the data item hItem is retrieved and assigned to the variable datav&.
 If the item is bold, the value true (-1) is assigned. If not bold, the value false (0) is
assigned.

TREEVIEW GET CHECK hDlg, id&, hItem TO datav&

The checkmark attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the checkbox is checked, the value true (-1) is assigned. If not checked, the
value false (0) is assigned.

TREEVIEW GET CHILD hDlg, id&, hItem TO datav&

The parent data item specified by hItem is scanned for child data items. If any are found,
the handle of the first child is assigned to the variable specified by datav&. If none are
found, the value zero (0) is assigned to datav&.

TREEVIEW GET COUNT hDlg, id& TO datav&

The number of data items in the TREEVIEW is retrieved, and assigned to the long integer
variable specified by datav&.

TREEVIEW GET EXPANDED hDlg, id&, hItem TO datav&

The expanded attribute for the data item hItem is retrieved and assigned to the variable
datav&. If the item is expanded, displaying its child data items, the value true (-1) is
assigned. If the item is collapsed, the value false (0) is assigned.

TREEVIEW GET NEXT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the next
sibling is assigned to the variable specified by datav&. If no next sibling is found, the
value zero (0) is assigned to datav&.

TREEVIEW GET PARENT hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for its parent data item. The handle of the
parent is assigned to the variable specified by datav&. If no parent is found, the value zero
(0) is assigned to datav&.

TREEVIEW GET PREVIOUS hDlg, id&, hItem TO datav&

The data item specified by hItem is scanned for sibling data items. The handle of the
previous sibling is assigned to the variable specified by datav&. If no previous sibling is
found, the value zero (0) is assigned to datav&.

TREEVIEW GET ROOT hDlg, id& TO datav&

The handle of the very first data item (topmost) in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&.

TREEVIEW GET SELECT hDlg, id& TO datav&

The handle of the data item currently selected in the TREEVIEW is retrieved, and
assigned to the variable specified by datav&. If there is no current selection, the value
zero (0) is assigned.

TREEVIEW GET TEXT hDlg, id&, hItem TO txtv$

PowerBASIC Compiler for Windows Version 10

1981 / 2126

The text of a specific data item (specified by the handle hItem) is retrieved from the
TREEVIEW control and assigned to the string variable designated by txtv$.

TREEVIEW GET USER hDlg, id&, hItem TO datav&

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed. The returned user value is assigned to the long integer
variable specified by datav&. In addition to these TREEVIEW user values, every DDT
control offers an additional eight user values which can be accessed with CONTROL GET
USER and CONTROL SET USER.

TREEVIEW INSERT ITEM hDlg, id&, hPrnt, hIAftr, image&, selimage&,
txt$ TO hItem

A new data item is added to this TREEVIEW control. The parameter hPrnt specifies the
parent of this item, or zero if item is to be inserted at the root. The parameter hIAftr
specifies the handle of the item after which this new item is to be inserted, or %
TVI_FIRST (at the beginning), %TVI_LAST (at the end), %TVI_SORT (alphabetical order).
 If an IMAGELIST has been attached, the parameters image& and selimage& specify
which image should be displayed (1=first, 2=second, etc.) for normal and selected items.
 If no image is needed, the value(s) 0 should be used. The parameter txt$ designates the
text string which should be displayed. If the operation is successful, the handle to the
new data item is assigned to the variable designated by hItem. If the operation fails, the
value zero is assigned to hItem.

TREEVIEW RESET hDlg, id&

All data items are deleted from the specified TREEVIEW control.

TREEVIEW SELECT hDlg, id&, hItem

The data item specified by the handle hItem is chosen as selected text for the
TREEVIEW control, and the selected text is scrolled into a visible position.

TREEVIEW SET BOLD hDlg, id&, hItem, flag&

The bold attribute for the data item specified by hItem is set based upon the value of the
flag& parameter. If flag& is true (non-zero), it is displayed in bold format. If flag& is false
(zero), it is displayed in normal format.

TREEVIEW SET CHECK hDlg, id&, hItem, flag&

The optional checkbox for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is checked. If flag& is false (zero), it is
unchecked.

TREEVIEW SET EXPANDED hDlg, id&, hItem, flag&

The expanded attribute for the data item specified by hItem is set based upon the value of
the flag& parameter. If flag& is true (non-zero), it is displayed in expanded format, with
its child items visible. If flag& is false (zero), it is displayed in collapsed format.

TREEVIEW SET IMAGELIST hDlg, id&, hLst

The IMAGELIST specified by hLst is attached to this TREEVIEW control. The images it
contains are displayed as needed with each data item. When the TREEVIEW control is
destroyed, any attached IMAGELIST is automatically destroyed.

TREEVIEW SET TEXT hDlg, id&, hItem, txt$

PowerBASIC Compiler for Windows Version 10

1982 / 2126

The text of a specific data item (specified by the handle hItem) is replaced by the text in
the string expression txt$.

TREEVIEW SET USER hDlg, id&, hItem, NumExpr

Each item in a TREEVIEW may have a long integer user value associated with it at the
discretion of the programmer. This user value is assigned with TREEVIEW SET USER,
and retrieved with TREEVIEW GET USER. The parameter hItem specifies the handle of
the user item to be accessed, while NumExpr is the user value saved for later retrieval. In
addition to these TREEVIEW user values, every DDT control offers an additional eight
user values which can be accessed with CONTROL GET USER and CONTROL SET
USER.

TREEVIEW UNSELECT hDlg, id&

All items in the TREEVIEW control are set to an unselected state.

See also Dynamic Dialog Tools, CONTROL ADD TREEVIEW, CONTROL SET COLOR, CONTROL
SET FONT, IMAGELIST

TRIM$ function

TRIM$ function
Purpose Removes leading and trailing characters or substrings.

Syntax NewString$ = TRIM$(OldString$ [, [ANY] CharsToTrim$])
NewString$ = TRIM$(NumrExpr [,Digits&])

Remarks TRIM$ combines the functionality of LTRIM$ and RTRIM$ into a single function.
OldString$ is the string expression from which to remove characters, and CharsToTrim$ is
the string expression to remove leading and trailing occurrences. If CharsToTrim$ is not
specified, TRIM$ removes leading and trailing spaces.

ANY If the ANY keyword is included, CharsToTrim$ specifies a list of single characters to be
searched for individually, a match on any one of which as a leading or trailing character
will cause the character to be removed from the result.

NumrExpr If a numeric expression is provided as the parameter, it is converted to a string (just like
STR$), but with no leading or trailing spaces.

digits& The maximum number of significant digits, in the range of 1 to 18. If not included,
PowerBASIC supplies a default value of 7 for single precision values, or 16 for more
precise values. Use care that digits& is large enough to contain the integral part of a
number, or scientific notation must be used to estimate it. For example, TRIM$(123.456,
2) returns "1.2E+2", while FORMAT$(123.456, 5) returns the string "123.45".

Restrictions TRIM$ is case sensitive, so capitalization matters.

See also CLIP$, FORMAT$, INSTR, LCASE$, LTRIM$, MCASE$, MID$, REMOVE$, REPLACE,
RIGHT$, RTRIM$, SHRINK$, TALLY, UCASE$, UNWRAP$, VERIFY

TRY/END TRY block

TRY/END TRY block
Purpose A structured method of trapping and responding to run-time errors.

Syntax TRY
 [statements]
 [EXIT TRY]
 [statements]

PowerBASIC Compiler for Windows Version 10

1983 / 2126

CATCH
 [error handling statements]
 [EXIT TRY]
 [error handling statements]
[FINALLY
 [statements]
 [EXIT TRY]
 [statements]]
END TRY

Remarks Statements in the TRY section are executed normally. The first time a run-time error
occurs, control is transferred to the CATCH section. If no run-time errors are generated in
the TRY section, the CATCH section is skipped entirely.

Then, regardless of error status, the FINALLY section is executed, if it is present. Error
trapping and control transfer are disabled in the CATCH and FINALLY sections, so you
would normally use conventional "

 ERR =…" tests to check the success of error-prone operations in those sections.
However, TRY structures can be nested to any level, so it may be desirable to use
another TRY block within these clauses.

Restrictions CATCH is a mandatory section of this structure, although the FINALLY section is optional.

Because of the nesting requirements, the ERR value is local to the TRY structure. Upon
exit, the prior ERR value is restored, so be sure to save the value of ERR if it will be
needed outside of the TRY structure.

To leave the TRY structure, execution must pass normally through END TRY, or by an
EXIT TRY statement. Leaving a TRY block any other way is strongly discouraged
because error trapping will remain disabled, and the previous ERR value will not be
restored. Future versions of PowerBASIC may disallow such practices.

ON ERROR GOTO is invalid within a TRY structure, but may be used within the same
Sub/Function/Method/Property.

See also #DEBUG ERROR, ERL, ERR, ERRCLEAR, ERROR, Error Overview, ERROR$,
Error Trapping, ON ERROR

Example TRY
 OPEN "file.dat" FOR INPUT LOCK READ WRITE AS #1
CATCH
 CALL NotifyUserOfError(ERR)
 EXIT TRY
FINALLY
 CALL UpdateDataBase()
 CLOSE #1
END TRY

TXT.CELL method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

1984 / 2126

TXT pseudo-object
Purpose Displays and inputs text on a specially created TEXT WINDOW. This is similar to a

CONSOLE window, with some advantages. Generally speaking, a Text Window is more
attractive. But, just like a Console Window, only fixed-width text may be displayed.

Syntax TXT.membername(params)
RetVal = TXT.membername(params)
TXT.membername(params) TO ReturnVariable

Remarks Text Windows offer a specific, but limited capability. They are very easy to implement
and use, and they offer an excellent means to produce quick and straightforward
programs in text mode.

Text Windows offer an excellent path for the beginning programmer, or for anyone who
needs a procedural code model. As the name implies, they display only fixed-width text.
 Further, only one Text Window may exist at a time. If you need snazzy graphics, more
specialized fonts, multiple windows, or a GUI interface, you should look to GRAPHIC
WINDOWS and GRAPHIC CONTROLS instead.

Text Window methods are accessed like any other object. The object name TXT is
followed by a period separator, and the name of the method or property:

TXT.Cell = RowValue&, ColumnVal&

Text Window methods which return a value may be used in two forms, a statement with a
TO clause, or a function which may be used as a term in an expression:

TXT.Row TO RowVar&
RowVar& = TXT.Row

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity.

Most PowerBASIC functions specify graphic and pixel positions as x,y (the horizontal
term first, then the vertical term). However, for compatibility with most current and prior
versions of BASIC (PowerBASIC included), the functions which reference text rows and
columns name the vertical term first (rows, columns).

Text Windows handle text wrapping and auto-scrolling much like a typical Console
Window. When printing exceeds the end of a line, the print position wraps to the first
column of the next row. When printing exceeds the last row, the entire page is scrolled
to open a new line at the bottom.

In order to use the TXT object successfully, you must use care to first create a Text
Window in your program. To do this, you can execute the TXT.WINDOW method.

All Text Windows are stable. They cannot be closed unexpectedly by the user, so there
are no surprises when you find you are trying to print to a window which no longer exists.
 There is no Close Box, no System Menu, nor is ALT-F4 recognized as a close
command. They can only be closed by executing TXT.END, or by terminating the entire
application.

 TXT METHODS

TXT.CELL

Syntax TXT.CELL = RowValue&, ColValue&
TXT.CELL TO RowVar&, ColVar&
TXT.COL TO ColVar& <or> ColVar& = TXT.COL
TXT.ROW TO RowVar& <or> RowVar& = TXT.ROW

Remarks TXT.CELL is used to set or retrieve the cursor position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1985 / 2126

left corner of the Text Window is considered to be cell 1,1.

The first form of TXT.CELL moves the cursor to the desired row and column. If a value
given is zero (0), that parameter is ignored and that position is not changed. The second
form of TXT.CELL retrieves the current cursor position, and assigns the values to the
variables specified by RowVar& and ColVar&.

The last two forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

TXT.CLS

Syntax TXT.CLS

Remarks The text window is cleared, and the caret (next print position) is moved to the upper left
corner (row 1, column 1).

TXT.COLOR

Syntax TXT.COLOR = RGBColor&

Remarks TXT.COLOR is used to change the foreground color of new text drawn with TXT.PRINT.
 Existing text on the Text Window is not changed. PowerBASIC includes many built-in
RGB color equates which may be used here, like %RGB_RED, %RGB_BLUE, etc.

TXT.END

Syntax TXT.END

Remarks The Text Window currently attached to your program is destroyed and detached from the
process. No errors are generated, even if no Text Window is currently attached.

TXT.INKEY$

Syntax TXT.INKEY$ TO InkeyVar$
InkeyVar$ = TXT.INKEY$

Remarks Reads a keyboard character if one is ready. TXT.INKEY$ returns a

 of 0 or 1 characters that reflects the status of the keyboard buffer for the current text
window. A null string (LEN=0) means that the buffer is empty - no key was pressed.
A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.INKEY$ only processes standard characters. Extended keys, like function keys and
the insert key, are ignored.

TXT.INSTAT

Syntax TXT.INSTAT TO InStatVar&
InstatVar& = TXT.INSTAT

Remarks Determines whether a keyboard character is ready. The

 variable receives the keyboard buffer status for the current text window. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.
TXT.INSTAT does not remove the character from the buffer, so repeated execution will
continue to return TRUE until the character is read with TXT.INKEY$, TXT.LINE.INPUT,
etc.

TXT.LINE.INPUT

Syntax TXT.LINE.INPUT(["prompt",] StringVar)

Remarks Reads an entire line from the keyboard into a string variable, ignoring any delimiters which
may be embedded. The prompt is an optional string constant or string equate. Upon

PowerBASIC Compiler for Windows Version 10

1986 / 2126

execution, the prompt is displayed and the program waits for keyboard input. Keystrokes
are accepted until the user presses ENTER, at which time the resulting string is stored
into the StringVar.

The StringVar may be a fixed-length, nul-terminated, or a dynamic string. For fixed-length
and nul-terminated strings, keyboard input longer than the string is truncated to fit.
 Dynamic strings receive the complete keyboard input without truncation. StringVar may
not be a UDT variable, although fixed-length and nul-terminated UDT member variables are
allowed.

TXT.PRINT

Syntax TXT.PRINT([ExprList] [SPC(n)] [TAB(n)] [,] [;]...)

Remarks Write text data to the TEXT WINDOW at the current caret location. The TXT.PRINT
method has the following parts, which may occur in any order and quantity:

ExprList: Numeric and/or string expression(s) to be written to the TEXT WINDOW.

SPC(n) An optional function used to insert n spaces into the printed output.
 Multiple use of the SPC argument is permitted in TXT.PRINT, such as
positions between expressions. Values of n less than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing an
expression. Multiple use of the TAB argument is permitted in TXT.PRINT,
such as positions between expressions. Values of n less than 1 are
ignored.

; and , are special characters that determine the position of the next text item printed. A
semicolon (;) means the next text item is printed immediately; a comma (,) means the
next text item is printed at the start of the next print zone. Print zones begin every 14
columns.

If the final argument of TXT.PRINT is a semicolon or comma, the caret position is
maintained at the current location, rather than the default action of moving the print
position to the start of the next line. For example:

TXT.PRINT "Hello";
TXT.PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, TXT.PRINT prints a blank line. Printing always begins at the
current caret position.

Any control codes, such as Carriage Return, Line-Feed and Backspace are not
interpreted. They will display on the screen as symbols.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

TXT.WAITKEY$

Syntax TXT.WAITKEY$ [TO WaitVar$]
WaitVar$ = TXT.WAITKEY$

Remarks Reads a keyboard character, waiting until one is ready. It removes the character from the
keyboard buffer for the Text Window, and optionally assigns it to the string variable. If the
TO clause is omitted, the keyboard character is discarded.

TXT.WAITKEY$ returns a string of 0 or 1 characters that reflects the status of the
keyboard buffer for the Text Window. A null string (LEN=0) means that there was an
error, such as the case when no Text Window currently exists.

A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.WAITKEY$ only processes standard characters. Extended keys, like function keys

PowerBASIC Compiler for Windows Version 10

1987 / 2126

and the insert key, are ignored.

TXT.WINDOW

Syntax TXT.WINDOW(Cap$, x, y [,Rows, Cols]) TO hWin

Remarks A new Text Window is created and attached to your program. The size of the Window is
determined by rows and cols, or defaults to 25 rows and 80 columns. Subsequent TXT
Methods will act upon this newly created Text Window.

If the Text Window is created successfully, the handle will be assigned to the variable
specified by hWin. If it fails, the value zero (0) will be assigned instead. If you try to
create a Text Window while another still exists, it will fail. In this case, you must first
destroy the prior Text Window, as only one may exist at a time.

The parameters x and y specify the requested location of the window, relative to the upper
left corner of the desktop. The parameters are always given in pixels. Rows and columns
optionally specify the size of the window, given in the number of characters which will fit
within the borders. If not given, the method defaults to 25 vertical rows by 80 horizontal
columns.

See also DIALOG NEW, GRAPHIC WINDOW, INPUTBOX$, MSGBOX

TXT.CLS method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TXT pseudo-object
Purpose Displays and inputs text on a specially created TEXT WINDOW. This is similar to a

CONSOLE window, with some advantages. Generally speaking, a Text Window is more
attractive. But, just like a Console Window, only fixed-width text may be displayed.

Syntax TXT.membername(params)
RetVal = TXT.membername(params)
TXT.membername(params) TO ReturnVariable

Remarks Text Windows offer a specific, but limited capability. They are very easy to implement
and use, and they offer an excellent means to produce quick and straightforward
programs in text mode.

Text Windows offer an excellent path for the beginning programmer, or for anyone who
needs a procedural code model. As the name implies, they display only fixed-width text.
 Further, only one Text Window may exist at a time. If you need snazzy graphics, more
specialized fonts, multiple windows, or a GUI interface, you should look to GRAPHIC
WINDOWS and GRAPHIC CONTROLS instead.

Text Window methods are accessed like any other object. The object name TXT is
followed by a period separator, and the name of the method or property:

TXT.Cell = RowValue&, ColumnVal&

Text Window methods which return a value may be used in two forms, a statement with a
TO clause, or a function which may be used as a term in an expression:

TXT.Row TO RowVar&

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1988 / 2126

RowVar& = TXT.Row

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity.

Most PowerBASIC functions specify graphic and pixel positions as x,y (the horizontal
term first, then the vertical term). However, for compatibility with most current and prior
versions of BASIC (PowerBASIC included), the functions which reference text rows and
columns name the vertical term first (rows, columns).

Text Windows handle text wrapping and auto-scrolling much like a typical Console
Window. When printing exceeds the end of a line, the print position wraps to the first
column of the next row. When printing exceeds the last row, the entire page is scrolled
to open a new line at the bottom.

In order to use the TXT object successfully, you must use care to first create a Text
Window in your program. To do this, you can execute the TXT.WINDOW method.

All Text Windows are stable. They cannot be closed unexpectedly by the user, so there
are no surprises when you find you are trying to print to a window which no longer exists.
 There is no Close Box, no System Menu, nor is ALT-F4 recognized as a close
command. They can only be closed by executing TXT.END, or by terminating the entire
application.

 TXT METHODS

TXT.CELL

Syntax TXT.CELL = RowValue&, ColValue&
TXT.CELL TO RowVar&, ColVar&
TXT.COL TO ColVar& <or> ColVar& = TXT.COL
TXT.ROW TO RowVar& <or> RowVar& = TXT.ROW

Remarks TXT.CELL is used to set or retrieve the cursor position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the Text Window is considered to be cell 1,1.

The first form of TXT.CELL moves the cursor to the desired row and column. If a value
given is zero (0), that parameter is ignored and that position is not changed. The second
form of TXT.CELL retrieves the current cursor position, and assigns the values to the
variables specified by RowVar& and ColVar&.

The last two forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

TXT.CLS

Syntax TXT.CLS

Remarks The text window is cleared, and the caret (next print position) is moved to the upper left
corner (row 1, column 1).

TXT.COLOR

Syntax TXT.COLOR = RGBColor&

Remarks TXT.COLOR is used to change the foreground color of new text drawn with TXT.PRINT.
 Existing text on the Text Window is not changed. PowerBASIC includes many built-in
RGB color equates which may be used here, like %RGB_RED, %RGB_BLUE, etc.

TXT.END

Syntax TXT.END

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1989 / 2126

Remarks The Text Window currently attached to your program is destroyed and detached from the
process. No errors are generated, even if no Text Window is currently attached.

TXT.INKEY$

Syntax TXT.INKEY$ TO InkeyVar$
InkeyVar$ = TXT.INKEY$

Remarks Reads a keyboard character if one is ready. TXT.INKEY$ returns a

 of 0 or 1 characters that reflects the status of the keyboard buffer for the current text
window. A null string (LEN=0) means that the buffer is empty - no key was pressed.
A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.INKEY$ only processes standard characters. Extended keys, like function keys and
the insert key, are ignored.

TXT.INSTAT

Syntax TXT.INSTAT TO InStatVar&
InstatVar& = TXT.INSTAT

Remarks Determines whether a keyboard character is ready. The

 variable receives the keyboard buffer status for the current text window. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.
TXT.INSTAT does not remove the character from the buffer, so repeated execution will
continue to return TRUE until the character is read with TXT.INKEY$, TXT.LINE.INPUT,
etc.

TXT.LINE.INPUT

Syntax TXT.LINE.INPUT(["prompt",] StringVar)

Remarks Reads an entire line from the keyboard into a string variable, ignoring any delimiters which
may be embedded. The prompt is an optional string constant or string equate. Upon
execution, the prompt is displayed and the program waits for keyboard input. Keystrokes
are accepted until the user presses ENTER, at which time the resulting string is stored
into the StringVar.

The StringVar may be a fixed-length, nul-terminated, or a dynamic string. For fixed-length
and nul-terminated strings, keyboard input longer than the string is truncated to fit.
 Dynamic strings receive the complete keyboard input without truncation. StringVar may
not be a UDT variable, although fixed-length and nul-terminated UDT member variables are
allowed.

TXT.PRINT

Syntax TXT.PRINT([ExprList] [SPC(n)] [TAB(n)] [,] [;]...)

Remarks Write text data to the TEXT WINDOW at the current caret location. The TXT.PRINT
method has the following parts, which may occur in any order and quantity:

ExprList: Numeric and/or string expression(s) to be written to the TEXT WINDOW.

SPC(n) An optional function used to insert n spaces into the printed output.
 Multiple use of the SPC argument is permitted in TXT.PRINT, such as
positions between expressions. Values of n less than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing an
expression. Multiple use of the TAB argument is permitted in TXT.PRINT,
such as positions between expressions. Values of n less than 1 are
ignored.

; and , are special characters that determine the position of the next text item printed. A

PowerBASIC Compiler for Windows Version 10

1990 / 2126

semicolon (;) means the next text item is printed immediately; a comma (,) means the
next text item is printed at the start of the next print zone. Print zones begin every 14
columns.

If the final argument of TXT.PRINT is a semicolon or comma, the caret position is
maintained at the current location, rather than the default action of moving the print
position to the start of the next line. For example:

TXT.PRINT "Hello";
TXT.PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, TXT.PRINT prints a blank line. Printing always begins at the
current caret position.

Any control codes, such as Carriage Return, Line-Feed and Backspace are not
interpreted. They will display on the screen as symbols.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

TXT.WAITKEY$

Syntax TXT.WAITKEY$ [TO WaitVar$]
WaitVar$ = TXT.WAITKEY$

Remarks Reads a keyboard character, waiting until one is ready. It removes the character from the
keyboard buffer for the Text Window, and optionally assigns it to the string variable. If the
TO clause is omitted, the keyboard character is discarded.

TXT.WAITKEY$ returns a string of 0 or 1 characters that reflects the status of the
keyboard buffer for the Text Window. A null string (LEN=0) means that there was an
error, such as the case when no Text Window currently exists.

A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.WAITKEY$ only processes standard characters. Extended keys, like function keys
and the insert key, are ignored.

TXT.WINDOW

Syntax TXT.WINDOW(Cap$, x, y [,Rows, Cols]) TO hWin

Remarks A new Text Window is created and attached to your program. The size of the Window is
determined by rows and cols, or defaults to 25 rows and 80 columns. Subsequent TXT
Methods will act upon this newly created Text Window.

If the Text Window is created successfully, the handle will be assigned to the variable
specified by hWin. If it fails, the value zero (0) will be assigned instead. If you try to
create a Text Window while another still exists, it will fail. In this case, you must first
destroy the prior Text Window, as only one may exist at a time.

The parameters x and y specify the requested location of the window, relative to the upper
left corner of the desktop. The parameters are always given in pixels. Rows and columns
optionally specify the size of the window, given in the number of characters which will fit
within the borders. If not given, the method defaults to 25 vertical rows by 80 horizontal
columns.

See also DIALOG NEW, GRAPHIC WINDOW, INPUTBOX$, MSGBOX

TXT.COLOR method

Keyword Template

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1991 / 2126

Purpose

Syntax

Remarks

See also

Example

TXT pseudo-object
Purpose Displays and inputs text on a specially created TEXT WINDOW. This is similar to a

CONSOLE window, with some advantages. Generally speaking, a Text Window is more
attractive. But, just like a Console Window, only fixed-width text may be displayed.

Syntax TXT.membername(params)
RetVal = TXT.membername(params)
TXT.membername(params) TO ReturnVariable

Remarks Text Windows offer a specific, but limited capability. They are very easy to implement
and use, and they offer an excellent means to produce quick and straightforward
programs in text mode.

Text Windows offer an excellent path for the beginning programmer, or for anyone who
needs a procedural code model. As the name implies, they display only fixed-width text.
 Further, only one Text Window may exist at a time. If you need snazzy graphics, more
specialized fonts, multiple windows, or a GUI interface, you should look to GRAPHIC
WINDOWS and GRAPHIC CONTROLS instead.

Text Window methods are accessed like any other object. The object name TXT is
followed by a period separator, and the name of the method or property:

TXT.Cell = RowValue&, ColumnVal&

Text Window methods which return a value may be used in two forms, a statement with a
TO clause, or a function which may be used as a term in an expression:

TXT.Row TO RowVar&
RowVar& = TXT.Row

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity.

Most PowerBASIC functions specify graphic and pixel positions as x,y (the horizontal
term first, then the vertical term). However, for compatibility with most current and prior
versions of BASIC (PowerBASIC included), the functions which reference text rows and
columns name the vertical term first (rows, columns).

Text Windows handle text wrapping and auto-scrolling much like a typical Console
Window. When printing exceeds the end of a line, the print position wraps to the first
column of the next row. When printing exceeds the last row, the entire page is scrolled
to open a new line at the bottom.

In order to use the TXT object successfully, you must use care to first create a Text
Window in your program. To do this, you can execute the TXT.WINDOW method.

All Text Windows are stable. They cannot be closed unexpectedly by the user, so there
are no surprises when you find you are trying to print to a window which no longer exists.
 There is no Close Box, no System Menu, nor is ALT-F4 recognized as a close
command. They can only be closed by executing TXT.END, or by terminating the entire
application.

 TXT METHODS

TXT.CELL

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1992 / 2126

Syntax TXT.CELL = RowValue&, ColValue&
TXT.CELL TO RowVar&, ColVar&
TXT.COL TO ColVar& <or> ColVar& = TXT.COL
TXT.ROW TO RowVar& <or> RowVar& = TXT.ROW

Remarks TXT.CELL is used to set or retrieve the cursor position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the Text Window is considered to be cell 1,1.

The first form of TXT.CELL moves the cursor to the desired row and column. If a value
given is zero (0), that parameter is ignored and that position is not changed. The second
form of TXT.CELL retrieves the current cursor position, and assigns the values to the
variables specified by RowVar& and ColVar&.

The last two forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

TXT.CLS

Syntax TXT.CLS

Remarks The text window is cleared, and the caret (next print position) is moved to the upper left
corner (row 1, column 1).

TXT.COLOR

Syntax TXT.COLOR = RGBColor&

Remarks TXT.COLOR is used to change the foreground color of new text drawn with TXT.PRINT.
 Existing text on the Text Window is not changed. PowerBASIC includes many built-in
RGB color equates which may be used here, like %RGB_RED, %RGB_BLUE, etc.

TXT.END

Syntax TXT.END

Remarks The Text Window currently attached to your program is destroyed and detached from the
process. No errors are generated, even if no Text Window is currently attached.

TXT.INKEY$

Syntax TXT.INKEY$ TO InkeyVar$
InkeyVar$ = TXT.INKEY$

Remarks Reads a keyboard character if one is ready. TXT.INKEY$ returns a

 of 0 or 1 characters that reflects the status of the keyboard buffer for the current text
window. A null string (LEN=0) means that the buffer is empty - no key was pressed.
A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.INKEY$ only processes standard characters. Extended keys, like function keys and
the insert key, are ignored.

TXT.INSTAT

Syntax TXT.INSTAT TO InStatVar&
InstatVar& = TXT.INSTAT

Remarks Determines whether a keyboard character is ready. The

 variable receives the keyboard buffer status for the current text window. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.

PowerBASIC Compiler for Windows Version 10

1993 / 2126

TXT.INSTAT does not remove the character from the buffer, so repeated execution will
continue to return TRUE until the character is read with TXT.INKEY$, TXT.LINE.INPUT,
etc.

TXT.LINE.INPUT

Syntax TXT.LINE.INPUT(["prompt",] StringVar)

Remarks Reads an entire line from the keyboard into a string variable, ignoring any delimiters which
may be embedded. The prompt is an optional string constant or string equate. Upon
execution, the prompt is displayed and the program waits for keyboard input. Keystrokes
are accepted until the user presses ENTER, at which time the resulting string is stored
into the StringVar.

The StringVar may be a fixed-length, nul-terminated, or a dynamic string. For fixed-length
and nul-terminated strings, keyboard input longer than the string is truncated to fit.
 Dynamic strings receive the complete keyboard input without truncation. StringVar may
not be a UDT variable, although fixed-length and nul-terminated UDT member variables are
allowed.

TXT.PRINT

Syntax TXT.PRINT([ExprList] [SPC(n)] [TAB(n)] [,] [;]...)

Remarks Write text data to the TEXT WINDOW at the current caret location. The TXT.PRINT
method has the following parts, which may occur in any order and quantity:

ExprList: Numeric and/or string expression(s) to be written to the TEXT WINDOW.

SPC(n) An optional function used to insert n spaces into the printed output.
 Multiple use of the SPC argument is permitted in TXT.PRINT, such as
positions between expressions. Values of n less than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing an
expression. Multiple use of the TAB argument is permitted in TXT.PRINT,
such as positions between expressions. Values of n less than 1 are
ignored.

; and , are special characters that determine the position of the next text item printed. A
semicolon (;) means the next text item is printed immediately; a comma (,) means the
next text item is printed at the start of the next print zone. Print zones begin every 14
columns.

If the final argument of TXT.PRINT is a semicolon or comma, the caret position is
maintained at the current location, rather than the default action of moving the print
position to the start of the next line. For example:

TXT.PRINT "Hello";
TXT.PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, TXT.PRINT prints a blank line. Printing always begins at the
current caret position.

Any control codes, such as Carriage Return, Line-Feed and Backspace are not
interpreted. They will display on the screen as symbols.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

TXT.WAITKEY$

Syntax TXT.WAITKEY$ [TO WaitVar$]
WaitVar$ = TXT.WAITKEY$

Remarks Reads a keyboard character, waiting until one is ready. It removes the character from the
keyboard buffer for the Text Window, and optionally assigns it to the string variable. If the

PowerBASIC Compiler for Windows Version 10

1994 / 2126

TO clause is omitted, the keyboard character is discarded.

TXT.WAITKEY$ returns a string of 0 or 1 characters that reflects the status of the
keyboard buffer for the Text Window. A null string (LEN=0) means that there was an
error, such as the case when no Text Window currently exists.

A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.WAITKEY$ only processes standard characters. Extended keys, like function keys
and the insert key, are ignored.

TXT.WINDOW

Syntax TXT.WINDOW(Cap$, x, y [,Rows, Cols]) TO hWin

Remarks A new Text Window is created and attached to your program. The size of the Window is
determined by rows and cols, or defaults to 25 rows and 80 columns. Subsequent TXT
Methods will act upon this newly created Text Window.

If the Text Window is created successfully, the handle will be assigned to the variable
specified by hWin. If it fails, the value zero (0) will be assigned instead. If you try to
create a Text Window while another still exists, it will fail. In this case, you must first
destroy the prior Text Window, as only one may exist at a time.

The parameters x and y specify the requested location of the window, relative to the upper
left corner of the desktop. The parameters are always given in pixels. Rows and columns
optionally specify the size of the window, given in the number of characters which will fit
within the borders. If not given, the method defaults to 25 vertical rows by 80 horizontal
columns.

See also DIALOG NEW, GRAPHIC WINDOW, INPUTBOX$, MSGBOX

TXT.END method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TXT pseudo-object
Purpose Displays and inputs text on a specially created TEXT WINDOW. This is similar to a

CONSOLE window, with some advantages. Generally speaking, a Text Window is more
attractive. But, just like a Console Window, only fixed-width text may be displayed.

Syntax TXT.membername(params)
RetVal = TXT.membername(params)
TXT.membername(params) TO ReturnVariable

Remarks Text Windows offer a specific, but limited capability. They are very easy to implement
and use, and they offer an excellent means to produce quick and straightforward
programs in text mode.

Text Windows offer an excellent path for the beginning programmer, or for anyone who
needs a procedural code model. As the name implies, they display only fixed-width text.
 Further, only one Text Window may exist at a time. If you need snazzy graphics, more

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1995 / 2126

specialized fonts, multiple windows, or a GUI interface, you should look to GRAPHIC
WINDOWS and GRAPHIC CONTROLS instead.

Text Window methods are accessed like any other object. The object name TXT is
followed by a period separator, and the name of the method or property:

TXT.Cell = RowValue&, ColumnVal&

Text Window methods which return a value may be used in two forms, a statement with a
TO clause, or a function which may be used as a term in an expression:

TXT.Row TO RowVar&
RowVar& = TXT.Row

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity.

Most PowerBASIC functions specify graphic and pixel positions as x,y (the horizontal
term first, then the vertical term). However, for compatibility with most current and prior
versions of BASIC (PowerBASIC included), the functions which reference text rows and
columns name the vertical term first (rows, columns).

Text Windows handle text wrapping and auto-scrolling much like a typical Console
Window. When printing exceeds the end of a line, the print position wraps to the first
column of the next row. When printing exceeds the last row, the entire page is scrolled
to open a new line at the bottom.

In order to use the TXT object successfully, you must use care to first create a Text
Window in your program. To do this, you can execute the TXT.WINDOW method.

All Text Windows are stable. They cannot be closed unexpectedly by the user, so there
are no surprises when you find you are trying to print to a window which no longer exists.
 There is no Close Box, no System Menu, nor is ALT-F4 recognized as a close
command. They can only be closed by executing TXT.END, or by terminating the entire
application.

 TXT METHODS

TXT.CELL

Syntax TXT.CELL = RowValue&, ColValue&
TXT.CELL TO RowVar&, ColVar&
TXT.COL TO ColVar& <or> ColVar& = TXT.COL
TXT.ROW TO RowVar& <or> RowVar& = TXT.ROW

Remarks TXT.CELL is used to set or retrieve the cursor position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the Text Window is considered to be cell 1,1.

The first form of TXT.CELL moves the cursor to the desired row and column. If a value
given is zero (0), that parameter is ignored and that position is not changed. The second
form of TXT.CELL retrieves the current cursor position, and assigns the values to the
variables specified by RowVar& and ColVar&.

The last two forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

TXT.CLS

Syntax TXT.CLS

Remarks The text window is cleared, and the caret (next print position) is moved to the upper left
corner (row 1, column 1).

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1996 / 2126

TXT.COLOR

Syntax TXT.COLOR = RGBColor&

Remarks TXT.COLOR is used to change the foreground color of new text drawn with TXT.PRINT.
 Existing text on the Text Window is not changed. PowerBASIC includes many built-in
RGB color equates which may be used here, like %RGB_RED, %RGB_BLUE, etc.

TXT.END

Syntax TXT.END

Remarks The Text Window currently attached to your program is destroyed and detached from the
process. No errors are generated, even if no Text Window is currently attached.

TXT.INKEY$

Syntax TXT.INKEY$ TO InkeyVar$
InkeyVar$ = TXT.INKEY$

Remarks Reads a keyboard character if one is ready. TXT.INKEY$ returns a

 of 0 or 1 characters that reflects the status of the keyboard buffer for the current text
window. A null string (LEN=0) means that the buffer is empty - no key was pressed.
A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.INKEY$ only processes standard characters. Extended keys, like function keys and
the insert key, are ignored.

TXT.INSTAT

Syntax TXT.INSTAT TO InStatVar&
InstatVar& = TXT.INSTAT

Remarks Determines whether a keyboard character is ready. The

 variable receives the keyboard buffer status for the current text window. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.
TXT.INSTAT does not remove the character from the buffer, so repeated execution will
continue to return TRUE until the character is read with TXT.INKEY$, TXT.LINE.INPUT,
etc.

TXT.LINE.INPUT

Syntax TXT.LINE.INPUT(["prompt",] StringVar)

Remarks Reads an entire line from the keyboard into a string variable, ignoring any delimiters which
may be embedded. The prompt is an optional string constant or string equate. Upon
execution, the prompt is displayed and the program waits for keyboard input. Keystrokes
are accepted until the user presses ENTER, at which time the resulting string is stored
into the StringVar.

The StringVar may be a fixed-length, nul-terminated, or a dynamic string. For fixed-length
and nul-terminated strings, keyboard input longer than the string is truncated to fit.
 Dynamic strings receive the complete keyboard input without truncation. StringVar may
not be a UDT variable, although fixed-length and nul-terminated UDT member variables are
allowed.

TXT.PRINT

Syntax TXT.PRINT([ExprList] [SPC(n)] [TAB(n)] [,] [;]...)

Remarks Write text data to the TEXT WINDOW at the current caret location. The TXT.PRINT
method has the following parts, which may occur in any order and quantity:

PowerBASIC Compiler for Windows Version 10

1997 / 2126

ExprList: Numeric and/or string expression(s) to be written to the TEXT WINDOW.

SPC(n) An optional function used to insert n spaces into the printed output.
 Multiple use of the SPC argument is permitted in TXT.PRINT, such as
positions between expressions. Values of n less than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing an
expression. Multiple use of the TAB argument is permitted in TXT.PRINT,
such as positions between expressions. Values of n less than 1 are
ignored.

; and , are special characters that determine the position of the next text item printed. A
semicolon (;) means the next text item is printed immediately; a comma (,) means the
next text item is printed at the start of the next print zone. Print zones begin every 14
columns.

If the final argument of TXT.PRINT is a semicolon or comma, the caret position is
maintained at the current location, rather than the default action of moving the print
position to the start of the next line. For example:

TXT.PRINT "Hello";
TXT.PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, TXT.PRINT prints a blank line. Printing always begins at the
current caret position.

Any control codes, such as Carriage Return, Line-Feed and Backspace are not
interpreted. They will display on the screen as symbols.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

TXT.WAITKEY$

Syntax TXT.WAITKEY$ [TO WaitVar$]
WaitVar$ = TXT.WAITKEY$

Remarks Reads a keyboard character, waiting until one is ready. It removes the character from the
keyboard buffer for the Text Window, and optionally assigns it to the string variable. If the
TO clause is omitted, the keyboard character is discarded.

TXT.WAITKEY$ returns a string of 0 or 1 characters that reflects the status of the
keyboard buffer for the Text Window. A null string (LEN=0) means that there was an
error, such as the case when no Text Window currently exists.

A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.WAITKEY$ only processes standard characters. Extended keys, like function keys
and the insert key, are ignored.

TXT.WINDOW

Syntax TXT.WINDOW(Cap$, x, y [,Rows, Cols]) TO hWin

Remarks A new Text Window is created and attached to your program. The size of the Window is
determined by rows and cols, or defaults to 25 rows and 80 columns. Subsequent TXT
Methods will act upon this newly created Text Window.

If the Text Window is created successfully, the handle will be assigned to the variable
specified by hWin. If it fails, the value zero (0) will be assigned instead. If you try to
create a Text Window while another still exists, it will fail. In this case, you must first
destroy the prior Text Window, as only one may exist at a time.

The parameters x and y specify the requested location of the window, relative to the upper
left corner of the desktop. The parameters are always given in pixels. Rows and columns

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1998 / 2126

optionally specify the size of the window, given in the number of characters which will fit
within the borders. If not given, the method defaults to 25 vertical rows by 80 horizontal
columns.

See also DIALOG NEW, GRAPHIC WINDOW, INPUTBOX$, MSGBOX

TXT.INKEY$ method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TXT pseudo-object
Purpose Displays and inputs text on a specially created TEXT WINDOW. This is similar to a

CONSOLE window, with some advantages. Generally speaking, a Text Window is more
attractive. But, just like a Console Window, only fixed-width text may be displayed.

Syntax TXT.membername(params)
RetVal = TXT.membername(params)
TXT.membername(params) TO ReturnVariable

Remarks Text Windows offer a specific, but limited capability. They are very easy to implement
and use, and they offer an excellent means to produce quick and straightforward
programs in text mode.

Text Windows offer an excellent path for the beginning programmer, or for anyone who
needs a procedural code model. As the name implies, they display only fixed-width text.
 Further, only one Text Window may exist at a time. If you need snazzy graphics, more
specialized fonts, multiple windows, or a GUI interface, you should look to GRAPHIC
WINDOWS and GRAPHIC CONTROLS instead.

Text Window methods are accessed like any other object. The object name TXT is
followed by a period separator, and the name of the method or property:

TXT.Cell = RowValue&, ColumnVal&

Text Window methods which return a value may be used in two forms, a statement with a
TO clause, or a function which may be used as a term in an expression:

TXT.Row TO RowVar&
RowVar& = TXT.Row

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity.

Most PowerBASIC functions specify graphic and pixel positions as x,y (the horizontal
term first, then the vertical term). However, for compatibility with most current and prior
versions of BASIC (PowerBASIC included), the functions which reference text rows and
columns name the vertical term first (rows, columns).

Text Windows handle text wrapping and auto-scrolling much like a typical Console
Window. When printing exceeds the end of a line, the print position wraps to the first
column of the next row. When printing exceeds the last row, the entire page is scrolled
to open a new line at the bottom.

In order to use the TXT object successfully, you must use care to first create a Text

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

1999 / 2126

Window in your program. To do this, you can execute the TXT.WINDOW method.

All Text Windows are stable. They cannot be closed unexpectedly by the user, so there
are no surprises when you find you are trying to print to a window which no longer exists.
 There is no Close Box, no System Menu, nor is ALT-F4 recognized as a close
command. They can only be closed by executing TXT.END, or by terminating the entire
application.

 TXT METHODS

TXT.CELL

Syntax TXT.CELL = RowValue&, ColValue&
TXT.CELL TO RowVar&, ColVar&
TXT.COL TO ColVar& <or> ColVar& = TXT.COL
TXT.ROW TO RowVar& <or> RowVar& = TXT.ROW

Remarks TXT.CELL is used to set or retrieve the cursor position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the Text Window is considered to be cell 1,1.

The first form of TXT.CELL moves the cursor to the desired row and column. If a value
given is zero (0), that parameter is ignored and that position is not changed. The second
form of TXT.CELL retrieves the current cursor position, and assigns the values to the
variables specified by RowVar& and ColVar&.

The last two forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

TXT.CLS

Syntax TXT.CLS

Remarks The text window is cleared, and the caret (next print position) is moved to the upper left
corner (row 1, column 1).

TXT.COLOR

Syntax TXT.COLOR = RGBColor&

Remarks TXT.COLOR is used to change the foreground color of new text drawn with TXT.PRINT.
 Existing text on the Text Window is not changed. PowerBASIC includes many built-in
RGB color equates which may be used here, like %RGB_RED, %RGB_BLUE, etc.

TXT.END

Syntax TXT.END

Remarks The Text Window currently attached to your program is destroyed and detached from the
process. No errors are generated, even if no Text Window is currently attached.

TXT.INKEY$

Syntax TXT.INKEY$ TO InkeyVar$
InkeyVar$ = TXT.INKEY$

Remarks Reads a keyboard character if one is ready. TXT.INKEY$ returns a

 of 0 or 1 characters that reflects the status of the keyboard buffer for the current text
window. A null string (LEN=0) means that the buffer is empty - no key was pressed.
A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.INKEY$ only processes standard characters. Extended keys, like function keys and

PowerBASIC Compiler for Windows Version 10

2000 / 2126

the insert key, are ignored.

TXT.INSTAT

Syntax TXT.INSTAT TO InStatVar&
InstatVar& = TXT.INSTAT

Remarks Determines whether a keyboard character is ready. The

 variable receives the keyboard buffer status for the current text window. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.
TXT.INSTAT does not remove the character from the buffer, so repeated execution will
continue to return TRUE until the character is read with TXT.INKEY$, TXT.LINE.INPUT,
etc.

TXT.LINE.INPUT

Syntax TXT.LINE.INPUT(["prompt",] StringVar)

Remarks Reads an entire line from the keyboard into a string variable, ignoring any delimiters which
may be embedded. The prompt is an optional string constant or string equate. Upon
execution, the prompt is displayed and the program waits for keyboard input. Keystrokes
are accepted until the user presses ENTER, at which time the resulting string is stored
into the StringVar.

The StringVar may be a fixed-length, nul-terminated, or a dynamic string. For fixed-length
and nul-terminated strings, keyboard input longer than the string is truncated to fit.
 Dynamic strings receive the complete keyboard input without truncation. StringVar may
not be a UDT variable, although fixed-length and nul-terminated UDT member variables are
allowed.

TXT.PRINT

Syntax TXT.PRINT([ExprList] [SPC(n)] [TAB(n)] [,] [;]...)

Remarks Write text data to the TEXT WINDOW at the current caret location. The TXT.PRINT
method has the following parts, which may occur in any order and quantity:

ExprList: Numeric and/or string expression(s) to be written to the TEXT WINDOW.

SPC(n) An optional function used to insert n spaces into the printed output.
 Multiple use of the SPC argument is permitted in TXT.PRINT, such as
positions between expressions. Values of n less than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing an
expression. Multiple use of the TAB argument is permitted in TXT.PRINT,
such as positions between expressions. Values of n less than 1 are
ignored.

; and , are special characters that determine the position of the next text item printed. A
semicolon (;) means the next text item is printed immediately; a comma (,) means the
next text item is printed at the start of the next print zone. Print zones begin every 14
columns.

If the final argument of TXT.PRINT is a semicolon or comma, the caret position is
maintained at the current location, rather than the default action of moving the print
position to the start of the next line. For example:

TXT.PRINT "Hello";
TXT.PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, TXT.PRINT prints a blank line. Printing always begins at the
current caret position.

Any control codes, such as Carriage Return, Line-Feed and Backspace are not

PowerBASIC Compiler for Windows Version 10

2001 / 2126

interpreted. They will display on the screen as symbols.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

TXT.WAITKEY$

Syntax TXT.WAITKEY$ [TO WaitVar$]
WaitVar$ = TXT.WAITKEY$

Remarks Reads a keyboard character, waiting until one is ready. It removes the character from the
keyboard buffer for the Text Window, and optionally assigns it to the string variable. If the
TO clause is omitted, the keyboard character is discarded.

TXT.WAITKEY$ returns a string of 0 or 1 characters that reflects the status of the
keyboard buffer for the Text Window. A null string (LEN=0) means that there was an
error, such as the case when no Text Window currently exists.

A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.WAITKEY$ only processes standard characters. Extended keys, like function keys
and the insert key, are ignored.

TXT.WINDOW

Syntax TXT.WINDOW(Cap$, x, y [,Rows, Cols]) TO hWin

Remarks A new Text Window is created and attached to your program. The size of the Window is
determined by rows and cols, or defaults to 25 rows and 80 columns. Subsequent TXT
Methods will act upon this newly created Text Window.

If the Text Window is created successfully, the handle will be assigned to the variable
specified by hWin. If it fails, the value zero (0) will be assigned instead. If you try to
create a Text Window while another still exists, it will fail. In this case, you must first
destroy the prior Text Window, as only one may exist at a time.

The parameters x and y specify the requested location of the window, relative to the upper
left corner of the desktop. The parameters are always given in pixels. Rows and columns
optionally specify the size of the window, given in the number of characters which will fit
within the borders. If not given, the method defaults to 25 vertical rows by 80 horizontal
columns.

See also DIALOG NEW, GRAPHIC WINDOW, INPUTBOX$, MSGBOX

TXT.INSTAT method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TXT pseudo-object
Purpose Displays and inputs text on a specially created TEXT WINDOW. This is similar to a

CONSOLE window, with some advantages. Generally speaking, a Text Window is more

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2002 / 2126

attractive. But, just like a Console Window, only fixed-width text may be displayed.

Syntax TXT.membername(params)
RetVal = TXT.membername(params)
TXT.membername(params) TO ReturnVariable

Remarks Text Windows offer a specific, but limited capability. They are very easy to implement
and use, and they offer an excellent means to produce quick and straightforward
programs in text mode.

Text Windows offer an excellent path for the beginning programmer, or for anyone who
needs a procedural code model. As the name implies, they display only fixed-width text.
 Further, only one Text Window may exist at a time. If you need snazzy graphics, more
specialized fonts, multiple windows, or a GUI interface, you should look to GRAPHIC
WINDOWS and GRAPHIC CONTROLS instead.

Text Window methods are accessed like any other object. The object name TXT is
followed by a period separator, and the name of the method or property:

TXT.Cell = RowValue&, ColumnVal&

Text Window methods which return a value may be used in two forms, a statement with a
TO clause, or a function which may be used as a term in an expression:

TXT.Row TO RowVar&
RowVar& = TXT.Row

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity.

Most PowerBASIC functions specify graphic and pixel positions as x,y (the horizontal
term first, then the vertical term). However, for compatibility with most current and prior
versions of BASIC (PowerBASIC included), the functions which reference text rows and
columns name the vertical term first (rows, columns).

Text Windows handle text wrapping and auto-scrolling much like a typical Console
Window. When printing exceeds the end of a line, the print position wraps to the first
column of the next row. When printing exceeds the last row, the entire page is scrolled
to open a new line at the bottom.

In order to use the TXT object successfully, you must use care to first create a Text
Window in your program. To do this, you can execute the TXT.WINDOW method.

All Text Windows are stable. They cannot be closed unexpectedly by the user, so there
are no surprises when you find you are trying to print to a window which no longer exists.
 There is no Close Box, no System Menu, nor is ALT-F4 recognized as a close
command. They can only be closed by executing TXT.END, or by terminating the entire
application.

 TXT METHODS

TXT.CELL

Syntax TXT.CELL = RowValue&, ColValue&
TXT.CELL TO RowVar&, ColVar&
TXT.COL TO ColVar& <or> ColVar& = TXT.COL
TXT.ROW TO RowVar& <or> RowVar& = TXT.ROW

Remarks TXT.CELL is used to set or retrieve the cursor position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the Text Window is considered to be cell 1,1.

The first form of TXT.CELL moves the cursor to the desired row and column. If a value
given is zero (0), that parameter is ignored and that position is not changed. The second
form of TXT.CELL retrieves the current cursor position, and assigns the values to the

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2003 / 2126

variables specified by RowVar& and ColVar&.

The last two forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

TXT.CLS

Syntax TXT.CLS

Remarks The text window is cleared, and the caret (next print position) is moved to the upper left
corner (row 1, column 1).

TXT.COLOR

Syntax TXT.COLOR = RGBColor&

Remarks TXT.COLOR is used to change the foreground color of new text drawn with TXT.PRINT.
 Existing text on the Text Window is not changed. PowerBASIC includes many built-in
RGB color equates which may be used here, like %RGB_RED, %RGB_BLUE, etc.

TXT.END

Syntax TXT.END

Remarks The Text Window currently attached to your program is destroyed and detached from the
process. No errors are generated, even if no Text Window is currently attached.

TXT.INKEY$

Syntax TXT.INKEY$ TO InkeyVar$
InkeyVar$ = TXT.INKEY$

Remarks Reads a keyboard character if one is ready. TXT.INKEY$ returns a

 of 0 or 1 characters that reflects the status of the keyboard buffer for the current text
window. A null string (LEN=0) means that the buffer is empty - no key was pressed.
A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.INKEY$ only processes standard characters. Extended keys, like function keys and
the insert key, are ignored.

TXT.INSTAT

Syntax TXT.INSTAT TO InStatVar&
InstatVar& = TXT.INSTAT

Remarks Determines whether a keyboard character is ready. The

 variable receives the keyboard buffer status for the current text window. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.
TXT.INSTAT does not remove the character from the buffer, so repeated execution will
continue to return TRUE until the character is read with TXT.INKEY$, TXT.LINE.INPUT,
etc.

TXT.LINE.INPUT

Syntax TXT.LINE.INPUT(["prompt",] StringVar)

Remarks Reads an entire line from the keyboard into a string variable, ignoring any delimiters which
may be embedded. The prompt is an optional string constant or string equate. Upon
execution, the prompt is displayed and the program waits for keyboard input. Keystrokes
are accepted until the user presses ENTER, at which time the resulting string is stored
into the StringVar.

The StringVar may be a fixed-length, nul-terminated, or a dynamic string. For fixed-length

PowerBASIC Compiler for Windows Version 10

2004 / 2126

and nul-terminated strings, keyboard input longer than the string is truncated to fit.
 Dynamic strings receive the complete keyboard input without truncation. StringVar may
not be a UDT variable, although fixed-length and nul-terminated UDT member variables are
allowed.

TXT.PRINT

Syntax TXT.PRINT([ExprList] [SPC(n)] [TAB(n)] [,] [;]...)

Remarks Write text data to the TEXT WINDOW at the current caret location. The TXT.PRINT
method has the following parts, which may occur in any order and quantity:

ExprList: Numeric and/or string expression(s) to be written to the TEXT WINDOW.

SPC(n) An optional function used to insert n spaces into the printed output.
 Multiple use of the SPC argument is permitted in TXT.PRINT, such as
positions between expressions. Values of n less than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing an
expression. Multiple use of the TAB argument is permitted in TXT.PRINT,
such as positions between expressions. Values of n less than 1 are
ignored.

; and , are special characters that determine the position of the next text item printed. A
semicolon (;) means the next text item is printed immediately; a comma (,) means the
next text item is printed at the start of the next print zone. Print zones begin every 14
columns.

If the final argument of TXT.PRINT is a semicolon or comma, the caret position is
maintained at the current location, rather than the default action of moving the print
position to the start of the next line. For example:

TXT.PRINT "Hello";
TXT.PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, TXT.PRINT prints a blank line. Printing always begins at the
current caret position.

Any control codes, such as Carriage Return, Line-Feed and Backspace are not
interpreted. They will display on the screen as symbols.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

TXT.WAITKEY$

Syntax TXT.WAITKEY$ [TO WaitVar$]
WaitVar$ = TXT.WAITKEY$

Remarks Reads a keyboard character, waiting until one is ready. It removes the character from the
keyboard buffer for the Text Window, and optionally assigns it to the string variable. If the
TO clause is omitted, the keyboard character is discarded.

TXT.WAITKEY$ returns a string of 0 or 1 characters that reflects the status of the
keyboard buffer for the Text Window. A null string (LEN=0) means that there was an
error, such as the case when no Text Window currently exists.

A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.WAITKEY$ only processes standard characters. Extended keys, like function keys
and the insert key, are ignored.

TXT.WINDOW

Syntax TXT.WINDOW(Cap$, x, y [,Rows, Cols]) TO hWin

PowerBASIC Compiler for Windows Version 10

2005 / 2126

Remarks A new Text Window is created and attached to your program. The size of the Window is
determined by rows and cols, or defaults to 25 rows and 80 columns. Subsequent TXT
Methods will act upon this newly created Text Window.

If the Text Window is created successfully, the handle will be assigned to the variable
specified by hWin. If it fails, the value zero (0) will be assigned instead. If you try to
create a Text Window while another still exists, it will fail. In this case, you must first
destroy the prior Text Window, as only one may exist at a time.

The parameters x and y specify the requested location of the window, relative to the upper
left corner of the desktop. The parameters are always given in pixels. Rows and columns
optionally specify the size of the window, given in the number of characters which will fit
within the borders. If not given, the method defaults to 25 vertical rows by 80 horizontal
columns.

See also DIALOG NEW, GRAPHIC WINDOW, INPUTBOX$, MSGBOX

TXT.LINE.INPUT method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TXT pseudo-object
Purpose Displays and inputs text on a specially created TEXT WINDOW. This is similar to a

CONSOLE window, with some advantages. Generally speaking, a Text Window is more
attractive. But, just like a Console Window, only fixed-width text may be displayed.

Syntax TXT.membername(params)
RetVal = TXT.membername(params)
TXT.membername(params) TO ReturnVariable

Remarks Text Windows offer a specific, but limited capability. They are very easy to implement
and use, and they offer an excellent means to produce quick and straightforward
programs in text mode.

Text Windows offer an excellent path for the beginning programmer, or for anyone who
needs a procedural code model. As the name implies, they display only fixed-width text.
 Further, only one Text Window may exist at a time. If you need snazzy graphics, more
specialized fonts, multiple windows, or a GUI interface, you should look to GRAPHIC
WINDOWS and GRAPHIC CONTROLS instead.

Text Window methods are accessed like any other object. The object name TXT is
followed by a period separator, and the name of the method or property:

TXT.Cell = RowValue&, ColumnVal&

Text Window methods which return a value may be used in two forms, a statement with a
TO clause, or a function which may be used as a term in an expression:

TXT.Row TO RowVar&
RowVar& = TXT.Row

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2006 / 2126

Most PowerBASIC functions specify graphic and pixel positions as x,y (the horizontal
term first, then the vertical term). However, for compatibility with most current and prior
versions of BASIC (PowerBASIC included), the functions which reference text rows and
columns name the vertical term first (rows, columns).

Text Windows handle text wrapping and auto-scrolling much like a typical Console
Window. When printing exceeds the end of a line, the print position wraps to the first
column of the next row. When printing exceeds the last row, the entire page is scrolled
to open a new line at the bottom.

In order to use the TXT object successfully, you must use care to first create a Text
Window in your program. To do this, you can execute the TXT.WINDOW method.

All Text Windows are stable. They cannot be closed unexpectedly by the user, so there
are no surprises when you find you are trying to print to a window which no longer exists.
 There is no Close Box, no System Menu, nor is ALT-F4 recognized as a close
command. They can only be closed by executing TXT.END, or by terminating the entire
application.

 TXT METHODS

TXT.CELL

Syntax TXT.CELL = RowValue&, ColValue&
TXT.CELL TO RowVar&, ColVar&
TXT.COL TO ColVar& <or> ColVar& = TXT.COL
TXT.ROW TO RowVar& <or> RowVar& = TXT.ROW

Remarks TXT.CELL is used to set or retrieve the cursor position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the Text Window is considered to be cell 1,1.

The first form of TXT.CELL moves the cursor to the desired row and column. If a value
given is zero (0), that parameter is ignored and that position is not changed. The second
form of TXT.CELL retrieves the current cursor position, and assigns the values to the
variables specified by RowVar& and ColVar&.

The last two forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

TXT.CLS

Syntax TXT.CLS

Remarks The text window is cleared, and the caret (next print position) is moved to the upper left
corner (row 1, column 1).

TXT.COLOR

Syntax TXT.COLOR = RGBColor&

Remarks TXT.COLOR is used to change the foreground color of new text drawn with TXT.PRINT.
 Existing text on the Text Window is not changed. PowerBASIC includes many built-in
RGB color equates which may be used here, like %RGB_RED, %RGB_BLUE, etc.

TXT.END

Syntax TXT.END

Remarks The Text Window currently attached to your program is destroyed and detached from the
process. No errors are generated, even if no Text Window is currently attached.

TXT.INKEY$

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2007 / 2126

Syntax TXT.INKEY$ TO InkeyVar$
InkeyVar$ = TXT.INKEY$

Remarks Reads a keyboard character if one is ready. TXT.INKEY$ returns a

 of 0 or 1 characters that reflects the status of the keyboard buffer for the current text
window. A null string (LEN=0) means that the buffer is empty - no key was pressed.
A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.INKEY$ only processes standard characters. Extended keys, like function keys and
the insert key, are ignored.

TXT.INSTAT

Syntax TXT.INSTAT TO InStatVar&
InstatVar& = TXT.INSTAT

Remarks Determines whether a keyboard character is ready. The

 variable receives the keyboard buffer status for the current text window. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.
TXT.INSTAT does not remove the character from the buffer, so repeated execution will
continue to return TRUE until the character is read with TXT.INKEY$, TXT.LINE.INPUT,
etc.

TXT.LINE.INPUT

Syntax TXT.LINE.INPUT(["prompt",] StringVar)

Remarks Reads an entire line from the keyboard into a string variable, ignoring any delimiters which
may be embedded. The prompt is an optional string constant or string equate. Upon
execution, the prompt is displayed and the program waits for keyboard input. Keystrokes
are accepted until the user presses ENTER, at which time the resulting string is stored
into the StringVar.

The StringVar may be a fixed-length, nul-terminated, or a dynamic string. For fixed-length
and nul-terminated strings, keyboard input longer than the string is truncated to fit.
 Dynamic strings receive the complete keyboard input without truncation. StringVar may
not be a UDT variable, although fixed-length and nul-terminated UDT member variables are
allowed.

TXT.PRINT

Syntax TXT.PRINT([ExprList] [SPC(n)] [TAB(n)] [,] [;]...)

Remarks Write text data to the TEXT WINDOW at the current caret location. The TXT.PRINT
method has the following parts, which may occur in any order and quantity:

ExprList: Numeric and/or string expression(s) to be written to the TEXT WINDOW.

SPC(n) An optional function used to insert n spaces into the printed output.
 Multiple use of the SPC argument is permitted in TXT.PRINT, such as
positions between expressions. Values of n less than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing an
expression. Multiple use of the TAB argument is permitted in TXT.PRINT,
such as positions between expressions. Values of n less than 1 are
ignored.

; and , are special characters that determine the position of the next text item printed. A
semicolon (;) means the next text item is printed immediately; a comma (,) means the
next text item is printed at the start of the next print zone. Print zones begin every 14
columns.

If the final argument of TXT.PRINT is a semicolon or comma, the caret position is

PowerBASIC Compiler for Windows Version 10

2008 / 2126

maintained at the current location, rather than the default action of moving the print
position to the start of the next line. For example:

TXT.PRINT "Hello";
TXT.PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, TXT.PRINT prints a blank line. Printing always begins at the
current caret position.

Any control codes, such as Carriage Return, Line-Feed and Backspace are not
interpreted. They will display on the screen as symbols.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

TXT.WAITKEY$

Syntax TXT.WAITKEY$ [TO WaitVar$]
WaitVar$ = TXT.WAITKEY$

Remarks Reads a keyboard character, waiting until one is ready. It removes the character from the
keyboard buffer for the Text Window, and optionally assigns it to the string variable. If the
TO clause is omitted, the keyboard character is discarded.

TXT.WAITKEY$ returns a string of 0 or 1 characters that reflects the status of the
keyboard buffer for the Text Window. A null string (LEN=0) means that there was an
error, such as the case when no Text Window currently exists.

A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.WAITKEY$ only processes standard characters. Extended keys, like function keys
and the insert key, are ignored.

TXT.WINDOW

Syntax TXT.WINDOW(Cap$, x, y [,Rows, Cols]) TO hWin

Remarks A new Text Window is created and attached to your program. The size of the Window is
determined by rows and cols, or defaults to 25 rows and 80 columns. Subsequent TXT
Methods will act upon this newly created Text Window.

If the Text Window is created successfully, the handle will be assigned to the variable
specified by hWin. If it fails, the value zero (0) will be assigned instead. If you try to
create a Text Window while another still exists, it will fail. In this case, you must first
destroy the prior Text Window, as only one may exist at a time.

The parameters x and y specify the requested location of the window, relative to the upper
left corner of the desktop. The parameters are always given in pixels. Rows and columns
optionally specify the size of the window, given in the number of characters which will fit
within the borders. If not given, the method defaults to 25 vertical rows by 80 horizontal
columns.

See also DIALOG NEW, GRAPHIC WINDOW, INPUTBOX$, MSGBOX

TXT.PRINT method

Keyword Template
Purpose

Syntax

Remarks

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2009 / 2126

See also

Example

TXT pseudo-object
Purpose Displays and inputs text on a specially created TEXT WINDOW. This is similar to a

CONSOLE window, with some advantages. Generally speaking, a Text Window is more
attractive. But, just like a Console Window, only fixed-width text may be displayed.

Syntax TXT.membername(params)
RetVal = TXT.membername(params)
TXT.membername(params) TO ReturnVariable

Remarks Text Windows offer a specific, but limited capability. They are very easy to implement
and use, and they offer an excellent means to produce quick and straightforward
programs in text mode.

Text Windows offer an excellent path for the beginning programmer, or for anyone who
needs a procedural code model. As the name implies, they display only fixed-width text.
 Further, only one Text Window may exist at a time. If you need snazzy graphics, more
specialized fonts, multiple windows, or a GUI interface, you should look to GRAPHIC
WINDOWS and GRAPHIC CONTROLS instead.

Text Window methods are accessed like any other object. The object name TXT is
followed by a period separator, and the name of the method or property:

TXT.Cell = RowValue&, ColumnVal&

Text Window methods which return a value may be used in two forms, a statement with a
TO clause, or a function which may be used as a term in an expression:

TXT.Row TO RowVar&
RowVar& = TXT.Row

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity.

Most PowerBASIC functions specify graphic and pixel positions as x,y (the horizontal
term first, then the vertical term). However, for compatibility with most current and prior
versions of BASIC (PowerBASIC included), the functions which reference text rows and
columns name the vertical term first (rows, columns).

Text Windows handle text wrapping and auto-scrolling much like a typical Console
Window. When printing exceeds the end of a line, the print position wraps to the first
column of the next row. When printing exceeds the last row, the entire page is scrolled
to open a new line at the bottom.

In order to use the TXT object successfully, you must use care to first create a Text
Window in your program. To do this, you can execute the TXT.WINDOW method.

All Text Windows are stable. They cannot be closed unexpectedly by the user, so there
are no surprises when you find you are trying to print to a window which no longer exists.
 There is no Close Box, no System Menu, nor is ALT-F4 recognized as a close
command. They can only be closed by executing TXT.END, or by terminating the entire
application.

 TXT METHODS

TXT.CELL

Syntax TXT.CELL = RowValue&, ColValue&
TXT.CELL TO RowVar&, ColVar&
TXT.COL TO ColVar& <or> ColVar& = TXT.COL
TXT.ROW TO RowVar& <or> RowVar& = TXT.ROW

Remarks TXT.CELL is used to set or retrieve the cursor position, based upon the row and column

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2010 / 2126

position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the Text Window is considered to be cell 1,1.

The first form of TXT.CELL moves the cursor to the desired row and column. If a value
given is zero (0), that parameter is ignored and that position is not changed. The second
form of TXT.CELL retrieves the current cursor position, and assigns the values to the
variables specified by RowVar& and ColVar&.

The last two forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

TXT.CLS

Syntax TXT.CLS

Remarks The text window is cleared, and the caret (next print position) is moved to the upper left
corner (row 1, column 1).

TXT.COLOR

Syntax TXT.COLOR = RGBColor&

Remarks TXT.COLOR is used to change the foreground color of new text drawn with TXT.PRINT.
 Existing text on the Text Window is not changed. PowerBASIC includes many built-in
RGB color equates which may be used here, like %RGB_RED, %RGB_BLUE, etc.

TXT.END

Syntax TXT.END

Remarks The Text Window currently attached to your program is destroyed and detached from the
process. No errors are generated, even if no Text Window is currently attached.

TXT.INKEY$

Syntax TXT.INKEY$ TO InkeyVar$
InkeyVar$ = TXT.INKEY$

Remarks Reads a keyboard character if one is ready. TXT.INKEY$ returns a

 of 0 or 1 characters that reflects the status of the keyboard buffer for the current text
window. A null string (LEN=0) means that the buffer is empty - no key was pressed.
A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.INKEY$ only processes standard characters. Extended keys, like function keys and
the insert key, are ignored.

TXT.INSTAT

Syntax TXT.INSTAT TO InStatVar&
InstatVar& = TXT.INSTAT

Remarks Determines whether a keyboard character is ready. The

 variable receives the keyboard buffer status for the current text window. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.
TXT.INSTAT does not remove the character from the buffer, so repeated execution will
continue to return TRUE until the character is read with TXT.INKEY$, TXT.LINE.INPUT,
etc.

TXT.LINE.INPUT

PowerBASIC Compiler for Windows Version 10

2011 / 2126

Syntax TXT.LINE.INPUT(["prompt",] StringVar)

Remarks Reads an entire line from the keyboard into a string variable, ignoring any delimiters which
may be embedded. The prompt is an optional string constant or string equate. Upon
execution, the prompt is displayed and the program waits for keyboard input. Keystrokes
are accepted until the user presses ENTER, at which time the resulting string is stored
into the StringVar.

The StringVar may be a fixed-length, nul-terminated, or a dynamic string. For fixed-length
and nul-terminated strings, keyboard input longer than the string is truncated to fit.
 Dynamic strings receive the complete keyboard input without truncation. StringVar may
not be a UDT variable, although fixed-length and nul-terminated UDT member variables are
allowed.

TXT.PRINT

Syntax TXT.PRINT([ExprList] [SPC(n)] [TAB(n)] [,] [;]...)

Remarks Write text data to the TEXT WINDOW at the current caret location. The TXT.PRINT
method has the following parts, which may occur in any order and quantity:

ExprList: Numeric and/or string expression(s) to be written to the TEXT WINDOW.

SPC(n) An optional function used to insert n spaces into the printed output.
 Multiple use of the SPC argument is permitted in TXT.PRINT, such as
positions between expressions. Values of n less than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing an
expression. Multiple use of the TAB argument is permitted in TXT.PRINT,
such as positions between expressions. Values of n less than 1 are
ignored.

; and , are special characters that determine the position of the next text item printed. A
semicolon (;) means the next text item is printed immediately; a comma (,) means the
next text item is printed at the start of the next print zone. Print zones begin every 14
columns.

If the final argument of TXT.PRINT is a semicolon or comma, the caret position is
maintained at the current location, rather than the default action of moving the print
position to the start of the next line. For example:

TXT.PRINT "Hello";
TXT.PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, TXT.PRINT prints a blank line. Printing always begins at the
current caret position.

Any control codes, such as Carriage Return, Line-Feed and Backspace are not
interpreted. They will display on the screen as symbols.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

TXT.WAITKEY$

Syntax TXT.WAITKEY$ [TO WaitVar$]
WaitVar$ = TXT.WAITKEY$

Remarks Reads a keyboard character, waiting until one is ready. It removes the character from the
keyboard buffer for the Text Window, and optionally assigns it to the string variable. If the
TO clause is omitted, the keyboard character is discarded.

TXT.WAITKEY$ returns a string of 0 or 1 characters that reflects the status of the
keyboard buffer for the Text Window. A null string (LEN=0) means that there was an
error, such as the case when no Text Window currently exists.

PowerBASIC Compiler for Windows Version 10

2012 / 2126

A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.WAITKEY$ only processes standard characters. Extended keys, like function keys
and the insert key, are ignored.

TXT.WINDOW

Syntax TXT.WINDOW(Cap$, x, y [,Rows, Cols]) TO hWin

Remarks A new Text Window is created and attached to your program. The size of the Window is
determined by rows and cols, or defaults to 25 rows and 80 columns. Subsequent TXT
Methods will act upon this newly created Text Window.

If the Text Window is created successfully, the handle will be assigned to the variable
specified by hWin. If it fails, the value zero (0) will be assigned instead. If you try to
create a Text Window while another still exists, it will fail. In this case, you must first
destroy the prior Text Window, as only one may exist at a time.

The parameters x and y specify the requested location of the window, relative to the upper
left corner of the desktop. The parameters are always given in pixels. Rows and columns
optionally specify the size of the window, given in the number of characters which will fit
within the borders. If not given, the method defaults to 25 vertical rows by 80 horizontal
columns.

See also DIALOG NEW, GRAPHIC WINDOW, INPUTBOX$, MSGBOX

TXT.WAITKEY$ method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TXT pseudo-object
Purpose Displays and inputs text on a specially created TEXT WINDOW. This is similar to a

CONSOLE window, with some advantages. Generally speaking, a Text Window is more
attractive. But, just like a Console Window, only fixed-width text may be displayed.

Syntax TXT.membername(params)
RetVal = TXT.membername(params)
TXT.membername(params) TO ReturnVariable

Remarks Text Windows offer a specific, but limited capability. They are very easy to implement
and use, and they offer an excellent means to produce quick and straightforward
programs in text mode.

Text Windows offer an excellent path for the beginning programmer, or for anyone who
needs a procedural code model. As the name implies, they display only fixed-width text.
 Further, only one Text Window may exist at a time. If you need snazzy graphics, more
specialized fonts, multiple windows, or a GUI interface, you should look to GRAPHIC
WINDOWS and GRAPHIC CONTROLS instead.

Text Window methods are accessed like any other object. The object name TXT is
followed by a period separator, and the name of the method or property:

TXT.Cell = RowValue&, ColumnVal&

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2013 / 2126

Text Window methods which return a value may be used in two forms, a statement with a
TO clause, or a function which may be used as a term in an expression:

TXT.Row TO RowVar&
RowVar& = TXT.Row

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity.

Most PowerBASIC functions specify graphic and pixel positions as x,y (the horizontal
term first, then the vertical term). However, for compatibility with most current and prior
versions of BASIC (PowerBASIC included), the functions which reference text rows and
columns name the vertical term first (rows, columns).

Text Windows handle text wrapping and auto-scrolling much like a typical Console
Window. When printing exceeds the end of a line, the print position wraps to the first
column of the next row. When printing exceeds the last row, the entire page is scrolled
to open a new line at the bottom.

In order to use the TXT object successfully, you must use care to first create a Text
Window in your program. To do this, you can execute the TXT.WINDOW method.

All Text Windows are stable. They cannot be closed unexpectedly by the user, so there
are no surprises when you find you are trying to print to a window which no longer exists.
 There is no Close Box, no System Menu, nor is ALT-F4 recognized as a close
command. They can only be closed by executing TXT.END, or by terminating the entire
application.

 TXT METHODS

TXT.CELL

Syntax TXT.CELL = RowValue&, ColValue&
TXT.CELL TO RowVar&, ColVar&
TXT.COL TO ColVar& <or> ColVar& = TXT.COL
TXT.ROW TO RowVar& <or> RowVar& = TXT.ROW

Remarks TXT.CELL is used to set or retrieve the cursor position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the Text Window is considered to be cell 1,1.

The first form of TXT.CELL moves the cursor to the desired row and column. If a value
given is zero (0), that parameter is ignored and that position is not changed. The second
form of TXT.CELL retrieves the current cursor position, and assigns the values to the
variables specified by RowVar& and ColVar&.

The last two forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

TXT.CLS

Syntax TXT.CLS

Remarks The text window is cleared, and the caret (next print position) is moved to the upper left
corner (row 1, column 1).

TXT.COLOR

Syntax TXT.COLOR = RGBColor&

Remarks TXT.COLOR is used to change the foreground color of new text drawn with TXT.PRINT.
 Existing text on the Text Window is not changed. PowerBASIC includes many built-in
RGB color equates which may be used here, like %RGB_RED, %RGB_BLUE, etc.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2014 / 2126

TXT.END

Syntax TXT.END

Remarks The Text Window currently attached to your program is destroyed and detached from the
process. No errors are generated, even if no Text Window is currently attached.

TXT.INKEY$

Syntax TXT.INKEY$ TO InkeyVar$
InkeyVar$ = TXT.INKEY$

Remarks Reads a keyboard character if one is ready. TXT.INKEY$ returns a

 of 0 or 1 characters that reflects the status of the keyboard buffer for the current text
window. A null string (LEN=0) means that the buffer is empty - no key was pressed.
A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.INKEY$ only processes standard characters. Extended keys, like function keys and
the insert key, are ignored.

TXT.INSTAT

Syntax TXT.INSTAT TO InStatVar&
InstatVar& = TXT.INSTAT

Remarks Determines whether a keyboard character is ready. The

 variable receives the keyboard buffer status for the current text window. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.
TXT.INSTAT does not remove the character from the buffer, so repeated execution will
continue to return TRUE until the character is read with TXT.INKEY$, TXT.LINE.INPUT,
etc.

TXT.LINE.INPUT

Syntax TXT.LINE.INPUT(["prompt",] StringVar)

Remarks Reads an entire line from the keyboard into a string variable, ignoring any delimiters which
may be embedded. The prompt is an optional string constant or string equate. Upon
execution, the prompt is displayed and the program waits for keyboard input. Keystrokes
are accepted until the user presses ENTER, at which time the resulting string is stored
into the StringVar.

The StringVar may be a fixed-length, nul-terminated, or a dynamic string. For fixed-length
and nul-terminated strings, keyboard input longer than the string is truncated to fit.
 Dynamic strings receive the complete keyboard input without truncation. StringVar may
not be a UDT variable, although fixed-length and nul-terminated UDT member variables are
allowed.

TXT.PRINT

Syntax TXT.PRINT([ExprList] [SPC(n)] [TAB(n)] [,] [;]...)

Remarks Write text data to the TEXT WINDOW at the current caret location. The TXT.PRINT
method has the following parts, which may occur in any order and quantity:

ExprList: Numeric and/or string expression(s) to be written to the TEXT WINDOW.

SPC(n) An optional function used to insert n spaces into the printed output.
 Multiple use of the SPC argument is permitted in TXT.PRINT, such as
positions between expressions. Values of n less than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing an
expression. Multiple use of the TAB argument is permitted in TXT.PRINT,

PowerBASIC Compiler for Windows Version 10

2015 / 2126

such as positions between expressions. Values of n less than 1 are
ignored.

; and , are special characters that determine the position of the next text item printed. A
semicolon (;) means the next text item is printed immediately; a comma (,) means the
next text item is printed at the start of the next print zone. Print zones begin every 14
columns.

If the final argument of TXT.PRINT is a semicolon or comma, the caret position is
maintained at the current location, rather than the default action of moving the print
position to the start of the next line. For example:

TXT.PRINT "Hello";
TXT.PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, TXT.PRINT prints a blank line. Printing always begins at the
current caret position.

Any control codes, such as Carriage Return, Line-Feed and Backspace are not
interpreted. They will display on the screen as symbols.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

TXT.WAITKEY$

Syntax TXT.WAITKEY$ [TO WaitVar$]
WaitVar$ = TXT.WAITKEY$

Remarks Reads a keyboard character, waiting until one is ready. It removes the character from the
keyboard buffer for the Text Window, and optionally assigns it to the string variable. If the
TO clause is omitted, the keyboard character is discarded.

TXT.WAITKEY$ returns a string of 0 or 1 characters that reflects the status of the
keyboard buffer for the Text Window. A null string (LEN=0) means that there was an
error, such as the case when no Text Window currently exists.

A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.WAITKEY$ only processes standard characters. Extended keys, like function keys
and the insert key, are ignored.

TXT.WINDOW

Syntax TXT.WINDOW(Cap$, x, y [,Rows, Cols]) TO hWin

Remarks A new Text Window is created and attached to your program. The size of the Window is
determined by rows and cols, or defaults to 25 rows and 80 columns. Subsequent TXT
Methods will act upon this newly created Text Window.

If the Text Window is created successfully, the handle will be assigned to the variable
specified by hWin. If it fails, the value zero (0) will be assigned instead. If you try to
create a Text Window while another still exists, it will fail. In this case, you must first
destroy the prior Text Window, as only one may exist at a time.

The parameters x and y specify the requested location of the window, relative to the upper
left corner of the desktop. The parameters are always given in pixels. Rows and columns
optionally specify the size of the window, given in the number of characters which will fit
within the borders. If not given, the method defaults to 25 vertical rows by 80 horizontal
columns.

See also DIALOG NEW, GRAPHIC WINDOW, INPUTBOX$, MSGBOX

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2016 / 2126

TXT.WINDOW method

Keyword Template
Purpose

Syntax

Remarks

See also

Example

TXT pseudo-object
Purpose Displays and inputs text on a specially created TEXT WINDOW. This is similar to a

CONSOLE window, with some advantages. Generally speaking, a Text Window is more
attractive. But, just like a Console Window, only fixed-width text may be displayed.

Syntax TXT.membername(params)
RetVal = TXT.membername(params)
TXT.membername(params) TO ReturnVariable

Remarks Text Windows offer a specific, but limited capability. They are very easy to implement
and use, and they offer an excellent means to produce quick and straightforward
programs in text mode.

Text Windows offer an excellent path for the beginning programmer, or for anyone who
needs a procedural code model. As the name implies, they display only fixed-width text.
 Further, only one Text Window may exist at a time. If you need snazzy graphics, more
specialized fonts, multiple windows, or a GUI interface, you should look to GRAPHIC
WINDOWS and GRAPHIC CONTROLS instead.

Text Window methods are accessed like any other object. The object name TXT is
followed by a period separator, and the name of the method or property:

TXT.Cell = RowValue&, ColumnVal&

Text Window methods which return a value may be used in two forms, a statement with a
TO clause, or a function which may be used as a term in an expression:

TXT.Row TO RowVar&
RowVar& = TXT.Row

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity.

Most PowerBASIC functions specify graphic and pixel positions as x,y (the horizontal
term first, then the vertical term). However, for compatibility with most current and prior
versions of BASIC (PowerBASIC included), the functions which reference text rows and
columns name the vertical term first (rows, columns).

Text Windows handle text wrapping and auto-scrolling much like a typical Console
Window. When printing exceeds the end of a line, the print position wraps to the first
column of the next row. When printing exceeds the last row, the entire page is scrolled
to open a new line at the bottom.

In order to use the TXT object successfully, you must use care to first create a Text
Window in your program. To do this, you can execute the TXT.WINDOW method.

All Text Windows are stable. They cannot be closed unexpectedly by the user, so there
are no surprises when you find you are trying to print to a window which no longer exists.
 There is no Close Box, no System Menu, nor is ALT-F4 recognized as a close
command. They can only be closed by executing TXT.END, or by terminating the entire
application.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2017 / 2126

 TXT METHODS

TXT.CELL

Syntax TXT.CELL = RowValue&, ColValue&
TXT.CELL TO RowVar&, ColVar&
TXT.COL TO ColVar& <or> ColVar& = TXT.COL
TXT.ROW TO RowVar& <or> RowVar& = TXT.ROW

Remarks TXT.CELL is used to set or retrieve the cursor position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the Text Window is considered to be cell 1,1.

The first form of TXT.CELL moves the cursor to the desired row and column. If a value
given is zero (0), that parameter is ignored and that position is not changed. The second
form of TXT.CELL retrieves the current cursor position, and assigns the values to the
variables specified by RowVar& and ColVar&.

The last two forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

TXT.CLS

Syntax TXT.CLS

Remarks The text window is cleared, and the caret (next print position) is moved to the upper left
corner (row 1, column 1).

TXT.COLOR

Syntax TXT.COLOR = RGBColor&

Remarks TXT.COLOR is used to change the foreground color of new text drawn with TXT.PRINT.
 Existing text on the Text Window is not changed. PowerBASIC includes many built-in
RGB color equates which may be used here, like %RGB_RED, %RGB_BLUE, etc.

TXT.END

Syntax TXT.END

Remarks The Text Window currently attached to your program is destroyed and detached from the
process. No errors are generated, even if no Text Window is currently attached.

TXT.INKEY$

Syntax TXT.INKEY$ TO InkeyVar$
InkeyVar$ = TXT.INKEY$

Remarks Reads a keyboard character if one is ready. TXT.INKEY$ returns a

 of 0 or 1 characters that reflects the status of the keyboard buffer for the current text
window. A null string (LEN=0) means that the buffer is empty - no key was pressed.
A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.INKEY$ only processes standard characters. Extended keys, like function keys and
the insert key, are ignored.

TXT.INSTAT

Syntax TXT.INSTAT TO InStatVar&
InstatVar& = TXT.INSTAT

Remarks Determines whether a keyboard character is ready. The

PowerBASIC Compiler for Windows Version 10

2018 / 2126

 variable receives the keyboard buffer status for the current text window. The value
assigned is TRUE (non-zero) if a keyboard character is ready to be retrieved, or
FALSE (zero) if not.
TXT.INSTAT does not remove the character from the buffer, so repeated execution will
continue to return TRUE until the character is read with TXT.INKEY$, TXT.LINE.INPUT,
etc.

TXT.LINE.INPUT

Syntax TXT.LINE.INPUT(["prompt",] StringVar)

Remarks Reads an entire line from the keyboard into a string variable, ignoring any delimiters which
may be embedded. The prompt is an optional string constant or string equate. Upon
execution, the prompt is displayed and the program waits for keyboard input. Keystrokes
are accepted until the user presses ENTER, at which time the resulting string is stored
into the StringVar.

The StringVar may be a fixed-length, nul-terminated, or a dynamic string. For fixed-length
and nul-terminated strings, keyboard input longer than the string is truncated to fit.
 Dynamic strings receive the complete keyboard input without truncation. StringVar may
not be a UDT variable, although fixed-length and nul-terminated UDT member variables are
allowed.

TXT.PRINT

Syntax TXT.PRINT([ExprList] [SPC(n)] [TAB(n)] [,] [;]...)

Remarks Write text data to the TEXT WINDOW at the current caret location. The TXT.PRINT
method has the following parts, which may occur in any order and quantity:

ExprList: Numeric and/or string expression(s) to be written to the TEXT WINDOW.

SPC(n) An optional function used to insert n spaces into the printed output.
 Multiple use of the SPC argument is permitted in TXT.PRINT, such as
positions between expressions. Values of n less than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing an
expression. Multiple use of the TAB argument is permitted in TXT.PRINT,
such as positions between expressions. Values of n less than 1 are
ignored.

; and , are special characters that determine the position of the next text item printed. A
semicolon (;) means the next text item is printed immediately; a comma (,) means the
next text item is printed at the start of the next print zone. Print zones begin every 14
columns.

If the final argument of TXT.PRINT is a semicolon or comma, the caret position is
maintained at the current location, rather than the default action of moving the print
position to the start of the next line. For example:

TXT.PRINT "Hello";
TXT.PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, TXT.PRINT prints a blank line. Printing always begins at the
current caret position.

Any control codes, such as Carriage Return, Line-Feed and Backspace are not
interpreted. They will display on the screen as symbols.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

TXT.WAITKEY$

Syntax TXT.WAITKEY$ [TO WaitVar$]

PowerBASIC Compiler for Windows Version 10

2019 / 2126

WaitVar$ = TXT.WAITKEY$

Remarks Reads a keyboard character, waiting until one is ready. It removes the character from the
keyboard buffer for the Text Window, and optionally assigns it to the string variable. If the
TO clause is omitted, the keyboard character is discarded.

TXT.WAITKEY$ returns a string of 0 or 1 characters that reflects the status of the
keyboard buffer for the Text Window. A null string (LEN=0) means that there was an
error, such as the case when no Text Window currently exists.

A string length of one means that a standard key was pressed and the string contains the
character. A value between 1 and 31 indicates a control code.

TXT.WAITKEY$ only processes standard characters. Extended keys, like function keys
and the insert key, are ignored.

TXT.WINDOW

Syntax TXT.WINDOW(Cap$, x, y [,Rows, Cols]) TO hWin

Remarks A new Text Window is created and attached to your program. The size of the Window is
determined by rows and cols, or defaults to 25 rows and 80 columns. Subsequent TXT
Methods will act upon this newly created Text Window.

If the Text Window is created successfully, the handle will be assigned to the variable
specified by hWin. If it fails, the value zero (0) will be assigned instead. If you try to
create a Text Window while another still exists, it will fail. In this case, you must first
destroy the prior Text Window, as only one may exist at a time.

The parameters x and y specify the requested location of the window, relative to the upper
left corner of the desktop. The parameters are always given in pixels. Rows and columns
optionally specify the size of the window, given in the number of characters which will fit
within the borders. If not given, the method defaults to 25 vertical rows by 80 horizontal
columns.

See also DIALOG NEW, GRAPHIC WINDOW, INPUTBOX$, MSGBOX

TYPE/END TYPE block

TYPE/END TYPE block
Purpose Define a User-Defined Data Type (UDT), containing one or more member elements.

Syntax TYPE MyType [BYTE | WORD | DWORD | QWORD] [FILL]
 [MemberName [(subscripts)] AS] TypeName
 [MemberName [(subscripts)] AS TypeName]
 [...]
END TYPE

Remarks The TYPE statement has the following parts:

TYPE The beginning of a User-Defined Type definition.

MyType The name of the User-Defined Type, which must conform to standard variable naming
conventions.

 Member alignment

 TYPE definitions may optionally specify an alignment of BYTE (the default), WORD,
DWORD, or QWORD, as well as FILL characteristics. With standard alignment, each
member of a Type Structure will be located on the specified boundary. For example, with
DWORD, up to 3 bytes may be skipped between members to accomplish alignment.

However, when a user-defined type is defined as a member of a larger user-defined type,
this "sub-type" retains its original size and alignment, just as first declared.

BYTE Each member will be aligned on a BYTE boundary - no padding or alignment is applied to

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2020 / 2126

the structure. This is the default alignment method.

WORD Each member will be aligned on a WORD boundary. Any odd byte between members of
TYPE will be automatically skipped and ignored. The UDT structure may also be padded
with one trailing byte to ensure the total structure size is a multiple of 2 bytes.

DWORD Each member will be aligned on a DWORD boundary. Up to three bytes will be skipped
to accomplish this alignment. The UDT structure is also padded with up to three trailing
bytes to ensure the total structure size is a multiple of 4 bytes.

QWORD QWORD alignment is included for compatibility with Windows, it cannot be fully
implemented in a 32-bit operating system. With QWORD, individual members are 64-bit
aligned for the appropriate structure size, but variables of that type may only be aligned on
32-bit boundaries, as stack pointer alignment is not guaranteed.

FILL If the FILL option is specified, such as TYPE xxx DWORD FILL, the following rules apply:

1. No bytes are skipped if the next member of the Type will fit entirely into that space to
be skipped.

2. Fixed-length strings are considered to be an array of bytes, so no bytes are skipped
preceding them.

3. The total size of an array is considered to determine if FILL should affect its
placement within the structure. For example, with DWORD FILL, an array of two
integers would be started on a 4-byte boundary, even if two or three bytes must be
skipped.

 Type members

MemberName The name of a member of the User-Defined Type. This too must follow the standard
variable naming conventions.

subscripts The dimensions of a member array. Arrays of one and two dimensions are supported, but
must be defined with constant or numeric literal values. That is, the total size of a UDT
must be known at compile-time, so items like dynamic strings, which vary in size, cannot
be part of a TYPE structure. A STRING PTR can, however, since a pointer is
implemented as a DWORD.

Like conventional arrays, the default lower array boundary is zero, but positive non-zero
values may be used to specify a specific range of subscript index values for the array,
separated from the upper array boundary subscript with the TO keyword. Additionally,
both the lower and upper subscript index values must be zero or greater (ie, negative
subscript values are not permitted). Examples of valid syntax follow:

TYPE MYTYPE
 id AS INTEGER ' Scalar UDT member
 Styles(6) AS DWORD ' 7 elements (0 TO 6)
 Yrs(1980 TO 2010) AS LONG ' 31 elements
 Team(100 TO 101) AS BYTE ' 2 elements
 Rating(1 TO 10) AS DWORD ' 10 elements
 X(1 TO 5, 0 TO 5) AS EXT ' 30 elements (5x6)
 Y(4,3) AS QUAD ' 20 elements (5x4)
END TYPE

Individual UDT structures can be up to 16 MB each. A single member element
of a UDT may also occupy the entire 16 MB. For example, arrays within a
UDT, nul-terminated strings, and fixed-length strings. UDT member arrays are
not resizable at runtime. Additionally, the

 cannot be used directly on a UDT member array. Instead, use DIM..AT to declare
a conventional array at the same memory address as the UDT member array, and
the ARRAY statement can then be used on that array.

TypeName One of the supported data types, including User-Defined Types and Unions, with the
exception of arrays.

END TYPE Marks the end of the User-Defined Type definition.

PowerBASIC Compiler for Windows Version 10

2021 / 2126

It is often very convenient to be able to refer to several different types of things as a single
unit or data structure. For example, in an accounting program, an account number and
amount are part of what makes up a single journal entry. The TYPE/END TYPE
block statements make it easy to create a single UDT that holds such information.

TYPE JournalType DWORD ' type name and alignment
 AccountNumber AS LONG ' member name and data type
 Amount AS CUR ' this is another one
END TYPE ' end of type declaration

DIM JournalEntry AS JournalType ' declare a record

TYPE/END TYPE blocks must be defined outside of a Sub, Function, or Class and may
be defined only once in any program. It is usually easiest to put your TYPE/END TYPE
block definitions in an Include file and use the #INCLUDE metastatement in any module
that may need to use them.

TYPE/END TYPE blocks do not declare any variables; instead, they simply define a new
type. You can declare variables of that type using the DIM or REDIM statements, or any
statement that lets you use an AS clause:

DIM TypeVariable as TypeVariableType

Once you have a User-Defined Type variable declared, you can access its member
elements using the following format:

TypeVariable.Element

For example, to change the account number in the JournalEntryType type, you might use
a statement like:

JournalEntry.AccountNumber = 1000

A User-Defined Type can be used like any built-in PowerBASIC type. For example, you
can define an array of record variables:

DIM JournalEntries(1 TO 100) AS JournalEntryType

…or even create a procedure that accepts a record variable:

SUB PrintJournalEntry(aJournalEntry AS JournalEntryType)
 ' Print journal
END SUB

You can also use pointers in a TYPE definition. Note that the first member in the next
example is auto-aligned to start on a DWORD boundary, and three bytes are skipped so
that the second member is also aligned on a DWORD boundary:

TYPE MyType DWORD
 Count AS BYTE ' Aligned to a DWORD boundary
 y AS INTEGER PTR ' Aligned to next DWORD boundary
 z AS STRING PTR
END TYPE

Since pointers are stored as a DWORD, their length is 4 bytes when used in a
TYPE/END TYPE, regardless of the length of their target. To access the target of a
pointer, you must place the at-sign in front of the TYPE/END TYPE member, not the
name of the TYPE itself:

iResult% = @MyType.y ' Invalid
iResult% = MyType.@y ' Valid

You can also declare a variable that is a pointer to a TYPE:

TYPE MyData
 Val1 AS INTEGER
 Val2 AS INTEGER
 Val3 AS INTEGER
 Val4 AS INTEGER
END TYPE

DIM Info AS MyData PTR
Info = VARPTR(YourData)

PowerBASIC Compiler for Windows Version 10

2022 / 2126

Message$ = HEX$(@Info.Val1) + $CRLF + _
 HEX$(@Info.Val2) + $CRLF + _
 HEX$(@Info.Val3) + $CRLF + _
 HEX$(@Info.Val4)

Note that the target specifier is in front of the TYPE name since it is the pointer. Val1,
Val2, Val3, and Val4 represent offsets from that pointer. PowerBASIC does support a
pointer within a structure pointer, but you should be very careful in their use. Changing
the structure pointer itself could make all member pointers invalid. See the topic on
pointers for more information.

 Bit Variables

 TYPE structures may contain bit variables, which are named BIT (unsigned values) or
SBIT (signed values). Each bit variable may occupy from 1 to 31 bits, and they may be
packed one after another up to a total of 32 bits per bit field. The size of a bit variable is
defined as follows:

var AS BIT * nlit [IN BYTE|WORD|DWORD]

…where the term "* nlit" defines the number of bits (1 to 31), and the optional term "IN
BYTE|WORD|DWORD", if present, defines the start of a new bit field of 1, 2, or 4 bytes.
For example:

TYPE ABCD
 Valu2 AS BIT * 31 IN DWORD
 Sign1 AS SBIT * 1
 nybl2 AS BIT * 4 IN BYTE
 nybl1 AS BIT * 4
END TYPE

The example TYPE structure above is 5 bytes in size, containing a 4-byte bit field and a
1-byte bit field. In this case, each contains two bit-variables of varying size. The range of
values which may be stored depends upon the number of bits available. For example,
"BIT * 4" has a range of 0 to 15, "SBIT * 1" has a range of -1 to 0, and "SBIT * 5" has a
range of -16 to +15.

 Structures within structures

 Structures (TYPE/UNION) may be embedded within another structure, for simplification in
referencing deeply nested items, by simply stating the structure name alone at the
appropriate position. The internal alignment of the member structure is precisely
maintained regardless of other alignment specifications, to foster inheritance issues. For
example:

TYPE ABCD3

A AS LONG

ABCD2

C AS LONG

END TYPE

TYPE ABCD2

D AS DWORD

E AS DOUBLE

ABCD1

END TYPE

UNION ABCD1

F AS DWORD

G AS LONG

H AS SINGLE

END UNION

In this case, you could access the lone Single-precision float member of this structure
very simply. Assuming DIM X AS ABCD3, you could reference the Single-precision Union
member with the statement X.H, instead of the extended syntax X.ABCD2.ABCD1.H

For related information, please refer to the UNION/END UNION and User-
Defined Types and Unions sections.

Restrictions When measuring the size of a padded (aligned) UDT structure with the LEN or SIZEOF
statements, the measured length includes any padding that was added to the structure.
For example, the following UDT structure:

TYPE LengthTestType DWORD
 a AS INTEGER

PowerBASIC Compiler for Windows Version 10

2023 / 2126

END TYPE
' more code here
DIM abc AS LengthTestType
x& = LEN(abc)

Returns a length of 4 bytes in x&, since the UDT was padded with 2 additional bytes to
enforce DWORD alignment. Note that the LEN and SIZEOF of individual UDT members
will return the true size of the member without regard to padding or alignment. In the
previous example, LEN(abc.a) returns 2.

Individual UDT structures can be up to 16 MB each. Arrays within a UDT, nul-
terminated strings and fixed-length strings may occupy the full 16 MB structure
size limit.

Field strings and dynamic strings cannot be used in UDT or UNION structures.
Attempting to do so results in a compile-time Error 485 ("Dynamic/Field strings not
allowed").

See also DIM, LEN, REDIM, LET (with Types), SIZEOF, TYPE SET, UNION/END UNION, User-
Defined Types, Unions

Example TYPE JournalEntryType
 AccountName AS STRING * 20
 AccountNumber AS LONG
 Amount AS CUR
END TYPE

DIM JournalEntry AS JournalEntryType

JournalEntry.AccountName = "Joe Smith"
JournalEntry.AccountNumber = 7467047&
JournalEntry.Amount = 42.01@
' process journal entry here
JournalEntry.AccountNumber = 705233476&
JournalEntry.Amount = 69.35@
' process journal entry here

TYPE SET statement

TYPE SET statement
Purpose Assign the value of a User-Defined Type or byte string expression into another User-

Defined Type variable.

Syntax TYPE SET typevar = {typevar | ByteStringExpr$} [USING ustring_expression]

Remarks TYPE SET is primarily designed to assign the value of a User-Defined Type (UDT) to a
different class of User-Defined Type. Additionally, TYPE SET can be used to assign a
string expression (ByteStringExpr$) to a UDT, though it is generally not appropriate to
assign a wide Unicode string.

USING Any Byte positions remaining after the assignment are filled (padded) in the target typevar
with the first character of the USING string expression, or binary zeros if not specified.

See also CSET, CSET$, LET (with Types), LSET, LSET$, RSET, RSET$, TYPE/END TYPE

Example TYPE udt1
 x AS STRING * 12
 y AS LONG
 z AS INTEGER
END TYPE

TYPE udt2
 a(1 TO 18) AS BYTE

PowerBASIC Compiler for Windows Version 10

2024 / 2126

END TYPE

FUNCTION PBMAIN
 DIM u1 AS udt1
 DIM u2 AS udt2

 u1.x = "ABC"
 TYPE SET u2 = u1
 a$ = CHR$(u2.a(1), u2.a(2), u2.a(3))

 TYPE SET u2 = "1" USING "2"
 b$ = CHR$(u2.a(1), u2.a(2), u2.a(3))
END FUNCTION

Result a$ contains "ABC"
b$ contains "122"

UBOUND function

UBOUND function
Purpose Return the largest possible subscript (boundary) for an array's specified dimension.

Syntax y = UBOUND(array [(dimension)])
y = UBOUND(array, dimension)

Remarks array is the array of interest. dimension is an

 value or expression from 1 up to the number of dimensions in array; it specifies which
dimension's upper bound value will be returned. If you omit dimension, it defaults to
1 (the first dimension). To find the lower bound of an array's dimension, use the
LBOUND function. Use LBOUND and UBOUND together to determine an array's
size. UBOUND of an undimensioned array returns -1, so that UBOUND(array)
- LBOUND(array) + 1 yields zero (0) for such an array.

Restrictions UBOUND cannot be used on arrays within User-Defined Types.

See also ARRAYATTR, DIM, LBOUND, REDIM

Example ' Dimension an array with lower and upper bounds
DIM MyArray%(1900 TO 2000,5 TO 10)

' print out the values of the array
Message$ = "The array's first dimension is from" + _
 STR$(LBOUND(MyArray%(1))) + "to" + _
 STR$(UBOUND(MyArray%(1)))
Message$ = "The array's second dimension is from" + _
 STR$(LBOUND(MyArray%(2))) + "to" + _
 STR$(UBOUND(MyArray%(2)))

Result The array's first dimension is from 1900 to 2000
The array's second dimension is from 5 to 10

UCASE$ function

UCASE$ function
Purpose Return an all-uppercase (capitalized) version of a

.
Syntax s$ = UCASE$(string_expression [,ANSI | OEM])

PowerBASIC Compiler for Windows Version 10

2025 / 2126

Remarks UCASE$ returns a string equivalent to string_expression, except that lowercase letters in
string_expression are converted to uppercase. The optional ANSI or OEM parameter
specifies whether the conversion is made using the ANSI charset for the system, or the
original IBM OEM charset. If no charset is specified, PowerBASIC for Windows uses the
system ANSI charset, while PB/CC uses the IBM OEM charset. Only "International"
characters in the range of CHR$(128) to CHR$(255) are affected by this parameter.

The OEM charset is based upon the original IBM OEM charset to ensure compatibility
with programs written for all previous versions of the PowerBASIC compiler.

See also ASC, LCASE$, MCASE$

Example x$ = UCASE$("Beware of cats!")

Result BEWARE OF CATS!

UCODE$ function

UCODE$ function
Purpose Translates ANSI bytes into Unicode bytes.

Syntax a$ = UCODE$(AnsiStrExpression [,CodePage&])

Remarks This version of PowerBASIC handles all conversions between ANSI strings and UNICODE
strings automatically. For example:

MyWideString$$ = MyAnsiString$

In this case, the ANSI characters are transparently converted to WIDE UNICODE
characters when they are stored in MyWideString$. You should not insert a UCODE$
function here. The simple fact that the variables are of differing types (ANSI/WIDE)
causes the compiler to make all conversions for you, whenever they are needed.

Of course, this automatic conversion was not available in previous versions of the
compiler. In the past, there were no WIDE UNICODE variables offered, so it was
necessary to force wide characters into standard byte strings when UNICODE was
needed. The ACODE$ and UCODE$ functions are used for this purpose alone: to support
legacy programs which calculated strings in this fashion.

New PowerBASIC programs and updates to your older PowerBASIC programs should use
the new WIDE UNICODE variables which are now available.

UCODE$ presumes that the AnsiStrExpression contains ANSI byte characters stored in
an ANSI byte string. It converts them into WIDE UNICODE characters and returns them
as an ANSI byte string. To convert a UNICODE byte string into an ANSI byte string, use
the ACODE$ function.

If the optional parameter CodePage& is present, it represents the code page to be used
for the conversion process. If not given, the default code page for the locale of the
executing computer is used.

Unicode strings require two bytes to represent a Unicode character, whereas ANSI strings
(the native PowerBASIC string format) use one byte to represent a character. Therefore,
UCODE$ returns a string that has double the byte count of the ANSI string, yet
represents the same number of characters.

See also ACODE$, UCODEPAGE

UCODEPAGE statement

Keyword Template
Purpose

http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

2026 / 2126

Syntax

Remarks

See also

Example

UCODEPAGE statement
Purpose Set the default codepage used for ANSI / UNICODE conversions.

Syntax UCODEPAGE ANSI|OEM|NumExpr [TO PrevPage&]

Remarks PowerBASIC will make many conversions between ANSI and UNICODE (wide character)

. UCODEPAGE specifies the CodePage to be used for these translations. The
default is UCODEPAGE ANSI which will use the system ANSI codepage for your
computer. UCODEPAGE OEM will use the system OEM codepage for your
computer, while a expression can specify a particular CodePage of your choice.
If the optional TO clause is used, the number of the previous default CodePage is
assigned to the long integer variable specified by PrevPage&. By saving the previous
codepage, you can later restore it, if that's appropriate.

This statement does not change the CodePage in use by your computer. It tells which
codepage PowerBASIC should use for ANSI/UNICODE conversions.

By default, the system ANSI CodePage, is used to map the character translation, and
this generally works very well, as it represents the usual codepage for your primary
language. However, if you are compiling a CONSOLE application which makes use of the
high-order ANSI codes, CHR$(128) through CHR$(255) for line drawing and a few
international characters, you should declare an OEM CodePage by placing UCODEPAGE
OEM at the start of your MAIN function.

The CodePage specification is maintained on a thread-by-thread basis. At program start,
the default is the system ANSI CodePage. If a new

 is launched, it inherits the CodePage in use by the main thread.
See also ACODE$, UCODE$

UDP CLOSE statement

UDP CLOSE statement
Purpose Close a previously opened UDP socket that was created with the UDP OPEN statement.

Syntax UDP CLOSE [#] fNum&

Remarks Close the previously opened UDP/IP port specified by fNum&.

See also TCP and UDP Communication, TCP CLOSE, UDP NOTIFY, UDP OPEN, UDP RECV,
UDP SEND

UDP NOTIFY statement

UDP NOTIFY statement
Purpose Designate which UDP/IP events will generate a notification message.

Syntax UDP NOTIFY [#] fNum&, {SEND | RECV | CLOSE} TO hWnd& AS wMsg&

Remarks Designates which events (SEND, RECV, and CLOSE) will generate a notification wMsg&

PowerBASIC Compiler for Windows Version 10

2027 / 2126

message, to be sent to the window/dialog procedure (CALLBACK), identified by the
window handle hWnd&.

Your program defines the wMsg& value, and this value should be equal or larger than %
WM_USER + 500, to avoid conflict with common Windows callback message values.

When the nominated Callback Function receives the wMsg& notification, the wParam&
parameter identifies the operating system's handle of the socket (see FILEATTR). The
low-order Word of lParam& specifies the code of the event (see table below), and the high-
order Word of lParam& contains the error code (if any).

LO(WORD, lParam&) Definition
%FD_READ Data is available to be read from the socket.
%FD_WRITE The socket is ready for data to be written.
%FD_CLOSE The socket has been closed.

Notification messages do not arrive in unabated or continuous streams. That is, once a
particular notification message arrives, it will not be sent again until the initial message is
acted upon. For example, if an %FD_READ notification is received for a particular
socket, it will not be resent until after a UDP RECV statement is executed.

The Winsock error codes are listed in WINSOCK2.INC, prefixed with %WSAE.

See also FILEATTR, TCP and UDP Communication, TCP NOTIFY, UDP CLOSE, UDP OPEN,
UDP RECV, UDP SEND

UDP OPEN statement

UDP OPEN statement
Purpose Create a socket for an application to communicate with a UDP server or client using the

UDP (connectionless) protocol over Winsock (UDP/IP).

Syntax UDP OPEN [PORT p&] AS [#] fNum& [TIMEOUT timeoutval&]

Remarks Open a UDP socket (port or service) for UDP communication. FNum& is a file number
such as #1, or a variable with a value obtained using the FREEFILE function.

PORT If PORT p& is specified, the socket is opened as a server that can receive UDP data.
Use the UDP NOTIFY statement to receive server notifications from the socket so that the
data can be retrieved. Common port numbers include 7 (Echo, see RFC862); 37 (Time,
see RFC868); and 123 (NTP - RFC1305).

TIMEOUT The TIMEOUT option allows you to specify how long, in milliseconds (mSec), a UDP
SEND/RECV operation should wait for completion. If the specified number of milliseconds
elapses, the UDP operation will fail, and the ERR system variable will be set to indicate a
run-time Error 24 ("Device timeout"). The default timeout is 60000 milliseconds (60
seconds).

See also TCP and UDP Communication, FREEFILE, TCP OPEN, UDP CLOSE, UDP NOTIFY,
UDP RECV, UDP SEND

UDP RECV statement

UDP RECV statement
Purpose Receive data from a previously opened UDP port.

Syntax UDP RECV [#] fNum&, FROM ip&, pNum&, Buffer$

Remarks Receive any bytes from the previously opened UDP port specified by fNum&, and place
them into Buffer$. The IP address that sent the UDP packet is placed into the ip&
variable, and the port number is placed into the pNum& variable.

PowerBASIC Compiler for Windows Version 10

2028 / 2126

ip& and pNum& may be subsequently used to send data back in response to data
received.

UDP RECV is a blocking statement. That is, execution does not continue until either
data is retrieved from the socket, or the timeout period expires.

If a timeout occurs, a run-time Error 24 ("Device timeout") is generated and placed in the
ERR system variable. See UDP OPEN to specify the UDP socket timeout value.

See also TCP and UDP Communication, TCP RECV, UDP CLOSE, UDP NOTIFY, UDP OPEN,
UDP SEND

UDP SEND statement

UDP SEND statement
Purpose Send a

 of data through a previously opened UDP socket.
Syntax UDP SEND [#] fNum&, AT ip&, pNum&, string_expression

Remarks Write the specified string_expression to the UDP/IP port pNum& at the IP address
specified in ip&, using the UDP connection specified by fNum&.

See also TCP and UDP Communication, TCP SEND, UDP CLOSE, UDP NOTIFY, UDP OPEN,
UDP RECV

UNION/END UNION block

UNION/END UNION statements
Purpose Create a new User-Defined Type definition whose member elements overlap in memory.

Syntax UNION UnionName
 MemberName [(subscripts)] AS TypeName
 [MemberName [(subscripts)] AS TypeName]
 [...]
END UNION

Remarks A union is a type - very similar to a User-Defined Type - except that its elements overlap in
memory. While this may seem strange at first, it has enormous potential.

For example, say you are designing an accounting program. You want to make it general
purpose so it has widespread appeal. But everyone does their accounting differently; for
example, some people use account numbers that are plain integral values, while others
may use alphanumeric account names. Using a Union makes this easy. Another
common use of a Union is variable type conversion. The is best described by way of an
example:

UNION VarConvert
 iLong AS LONG
 iDword AS DWORD
 sStr AS STRING * 4
END UNION

DIM x AS VarConvert, y AS DWORD, z AS STRING
x.iLong = 123456&
y = x.iDword
z = x.sStr

Like a User-Defined Type, a Union may also contain arrays, and these follow the same
rules as User-Defined Type member arrays (see Type Members for syntax rules and

PowerBASIC Compiler for Windows Version 10

2029 / 2126

additional examples). The following example demonstrates the use of a Union member
array:

UNION Arrs
 a1(1 TO 1024) AS BYTE
 st AS ASCIIZ * 10
END UNION

FUNCTION PBMAIN
 DIM a AS Arrs
 a.a1(1) = 72
 a.a1(2) = 101
 a.a1(3) = 108
 a.a1(4) = 108
 a.a1(5) = 111
 a.a1(6) = 33
 ' At this point, a.st contains "Hello!"
END FUNCTION

Bit Variables

UNION structures may contain bit variables, which are named BIT (unsigned values) or
SBIT (signed values). Each bit variable may occupy from 1 to 31 bits, and they may be
packed one after another up to a total of 32 bits per bit field. The size of a bit variable is
defined as follows:

var AS BIT * nlit [IN BYTE|WORD|DWORD]

…where the term "* nlit" defines the number of bits (1 to 31), and the optional term "IN
BYTE|WORD|DWORD", if present, defines the start of a new bit field of 1, 2, or 4 bytes.
For example:

UNION ABCDE
 Odd1 AS BIT * 1 IN DWORD
 Value1 AS LONG
END UNION

The example UNION structure above is 4 bytes in size, containing a 1-byte bit field and a
4-byte LONG.

UNION abcde
 Part1 AS BIT * 8 IN DWORD
 Part2 AS BIT * 16
END UNION

The example union above is 4 bytes in size, containing an 8-bit field and an overlapping
16-bit field.

Structures within structures

Structures (TYPE/UNION) may be embedded within another structure, for simplification in
referencing deeply nested items, by simply stating the structure name alone at the
appropriate position. The internal alignment of the member structure is precisely
maintained regardless of other alignment specifications, to foster inheritance issues. For
example:

TYPE ABCD3

A AS LONG

ABCD2

C AS LONG

END TYPE

TYPE ABCD2

D AS DWORD

E AS DOUBLE

ABCD1

END TYPE

UNION ABCD1

F AS DWORD

G AS LONG

H AS SINGLE

END UNION

In this case, you could access the lone Single-precision float member of this structure
very simply. Assuming DIM X AS ABCD3, you could reference the Single-precision Union
member with the variable name X.H, instead of the extended syntax X.ABCD2.ABCD1.H

PowerBASIC Compiler for Windows Version 10

2030 / 2126

Restrictions A Union can contain elements of dissimilar sizes. The size of a Union structure is always
determined by the longest member element. This is usually an important consideration
when using a Union within another Union or UDT structure, in order to determine the size
of the final structure.

For related information, please refer to the TYPE/END TYPE, User-
Defined Types and Unions sections.

Field strings cannot be used in UDT or UNION structures. Attempting to do so results in
a compile-time Error 485 ("Dynamic/Field strings not allowed").

See also DIM, LEN, LET (with Types), SIZEOF, TYPE/END TYPE, User-Defined Types, Unions

Example UNION AccountUnion
 AccountNumber AS LONG
 AccountName AS STRING * 16
END UNION

TYPE JournalEntryType
 Account AS AccountUnion
 Amount AS CUR
END TYPE

DIM JournalEntry AS JournalEntryType

JournalEntry.Account.AccountName = "Smith"
JournalEntry.Amount = 123.01@
' process journal entry here
JournalEntry.Account.AccountNumber = 1001
JournalEntry.Amount = -1.99@

UNLOCK statement

UNLOCK statement
Purpose Remove locks placed on a file to permit other threads, processes, and applications to

access the locked sections of the file.

Syntax UNLOCK [#] filenum& [, {record&& | start&& TO finish&&}]

Remarks UNLOCK restores access to a record, range of records, byte, or range of bytes locked by
the LOCK statement, in file opened as file number filenum&.

If the file was opened in random-access mode, record&&, start&&, and finish&& specify
record numbers.

When used with binary mode files, record&&, start&&, and finish&& specify byte
positions, starting from either one (the default) or zero, depending on the BASE setting
given when the file was Opened.

If a record is specified, only that record (or byte) is unlocked. Otherwise, a range of
records (or bytes) is unlocked, from start&& to finish&&. If no records are specified, or if
the file was opened in sequential mode, the entire file is unlocked.

All records (or bytes) to be unlocked must have been previously locked using the LOCK
statement. Multiple locks may be placed on a file, and locks may be unlocked in any
order. However, the parameters used for each UNLOCK statement must exactly match
those used for the previous corresponding LOCK statement.

All locked records (or bytes) must be unlocked using the UNLOCK statement
before the file can be closed.

If an unlock attempt fails, PowerBASIC sets the ERR system variable to reflect a run-time
Error 70 ("Permission denied"), or Error 75 ("Path/file access error").

PowerBASIC Compiler for Windows Version 10

2031 / 2126

See also LOCK, OPEN

Example See the example for LOCK.

UNWRAP$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

UNWRAP$ function
Purpose Remove paired characters from the beginning and end of a

.
Syntax s$ = UNWRAP$(StringExpression, LeftChar$, RightChar$)

Remarks The UNWRAP$ function removes the characters in LeftChar$ from the beginning of
StringExpression, if there is an exact match. It then removes the characters in
RightChar$ from the end, if there is an exact match. The remaining character are then
returned. For example:

UNWRAP$("<MyWord>", "<", ">") returns "MyWord"

UNWRAP$ is particularly useful for removing parentheses, quotes, brackets, etc. from a
text item.

See also EXTRACT$, LTRIM$, MID$, REMOVE$, REPLACE, RTRIM$, SHRINK$, TRIM$, WRAP$

USING$ function

USING$ function
Purpose Format one or more

 or expressions, based upon the contents of the format mask string.
Syntax sResult$ = USING$(fmtmask$, expr [, expr [, ...]])

Remarks The rules of formatting are based upon the PRINT USING statement supported in many
DOS versions of BASIC, including PowerBASIC for DOS.

However, since it is implemented as a function, it allows far more versatility in that it is not
necessary to output a value to gain the benefit of this unique functionality. Also, USING$
offers a wider range of applications than FORMAT$ because it can format both numeric
and string expressions, and can take multiple arguments.

fmtmask$ A string expression, string variable or string literal consisting of format characters that will
determine how the complete expression should be formatted. This expression is termed
the mask . There may be as many format masks in fmtmask$, arranged in the same
order as the expr arguments are specified. See the examples below for more information.

expr A string or numeric expression, variable, or literal value to be formatted. The mask
characters available depend on whether expr is a string or numeric.

Character Definition

http://www.powerbasic.com/products/pbdos/

PowerBASIC Compiler for Windows Version 10

2032 / 2126

(string expr) When expr is a string, the following format codes apply within
fmtmask$:

! The first character of the string is returned.
& The entire string is returned.
\\ The first two characters are returned.
\ \ If backslashes enclose n spaces, n + 2 characters of the string

expression are returned.
_ Escape (underscore) character. The following character is interpreted as

a literal character instead of a mask format character.
(numeric expr) When expr is numeric, the following format codes apply within

fmtmask$:

A numeric digit position, which is space-filled to the left, and zero-filled to
the right of the decimal point. If the number is negative, a minus sign
occupies a digit position.

. The decimal point is placed at this position.

, A numeric digit position, which signifies that whole number digits should
be displayed with a comma each three digits.

$$ Two numeric digit positions which cause a dollar sign to be inserted
immediately before the number.

*x Two numeric digit positions which cause leading blank spaces in the field
to be replaced with the character in the second position of the pair
"x" (where "x" represents your own choice of character). For example,
two asterisks "**" will convert leading spaces to asterisks, and "*="
converts leading spaces to equals characters, etc. The *x mask
characters also act as two digit (#) placeholders. Your mask must
contain at least three characters to use this.

+ A plus at the start of the field causes the sign of the value (+ -) to be
inserted before the number. A plus at the end of the field causes the
sign of the value (+ -) to be added after the number.

- A minus at the end of the field causes a minus signed to be added after a
negative number, or a space to be added after a positive number. A
minus at the start of the field is treated as a literal character, which is
always inserted.

^ Numbers can be formatted in scientific notation by including three to six
carets ()̂ in the format string. Each caret corresponds to a numeric digit
position in the exponent, one for E, one for the exponent sign, and one to
four for the actual digits of the exponent value.

_ Escape (underscore) character. The following character is interpreted as
a literal character instead of a mask format character. Therefore, to
include a literal underscore character in the format mask, use two
underscore characters.

 All characters in the format mask string that are not identified above are
copied into the output string just as they are encountered. You can
override or escape any special format code by preceding it with an
underscore character (_) and it will be copied as any other literal
character. This provides the flexibility to include literal string text within
the formatted return string.

Restrictions The returned string is limited to an absolute length limit of 1024 bytes.

By specifying a single mask in fmtmask$, all expr arguments are subjected to the single
mask. See the examples below.

If there are fewer expr arguments than matching format masks in fmtmask$, parsing of the
fmtmask$ halts after the last referenced mask position, and subsequent characters in
fmtmask$ are ignored. This is consistent with the behavior of PRINT USING$ in PB/DOS.

If a numeric argument overflows its mask (i.e., there are more digits than digit positions),
the resulting string will occupy as many spaces as needed to represent the number. In
such cases, PB/DOS includes a leading "%" symbol to indicate the mask overflow;

PowerBASIC Compiler for Windows Version 10

2033 / 2126

however, PowerBASIC for Windows does not return the additional "%" overflow character.

The semicolon (;) and zero (0) characters are reserved for future use, so it would be
prudent to escape such literal characters in USING$ masks to maintain future
compatibility.

See also GRAPHIC PRINT, XPRINT, FORMAT$, STR$

Example a$ = USING$("!", "abc")
' returns "a"

a$ = USING$("You owe $$#,.##", 12345.67@)
' returns "You owe $12,345.67

DIM p AS BYTE PTR
HOST ADDR "localhost" TO ip&
p = VARPTR(ip&)
a$ = USING$("#_.#_.#_.#", @p, @p[1], @p[2], @p[3])
' returns "127.0.0.1"

a$ = USING$("&=#.##############", "Pi", ATN(1)*4)
' returns "Pi=3.14159265358979"

a$ = USING$("!", "AX", "BX", "CX")
' returns "ABC"

a$ = USING$("$#.##_,", 1,20,300,4)
' returns "$1.00,$20.00,$300.00,$4.00,"

a$ = USING$("$*=#####.##_,",1,20)
' returns "$======1.00,$=====20.00,"

Utf8ToChr$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

Utf8ToChr$ function
Purpose Translates a byte string of OEM characters into ANSI/WIDE characters.

Syntax a$$ = Utf8ToChr$(UtfExpr$)

Remarks UtfExpr$ contains a series of bytes in UTF-8 format. Utf8ToChr$ translates it into either
ANSI multi-byte equivalent characters or WIDE (16-bit) Unicode characters, depending
upon the context of the source code. PowerBASIC will always choose the correct form
with no intervention needed by the programmer.

See also ChrToOem$, ChrToUtf8$, OemToChr$

VAL function

PowerBASIC Compiler for Windows Version 10

2034 / 2126

VAL function
Purpose Convert a text

 to a value.
Syntax y = VAL(string_expression [, offset])

Remarks The VAL function converts a string argument to a number. If the optional Offset parameter
is included, it indicates the position in the string where the conversion should begin. If not
given, it defaults to one (1), and begins at the first character. Leading white-space
characters (spaces, tabs, carriage-returns, and linefeeds) are skipped and ignored.
 Evaluation of the number continues until a non-numeric character is found, or the end of
the string is reached. If no number is found, the VAL() function returns zero (0). Format
characters (like commas) are not allowed, and will cause early termination of the
evaluation.

VAL interprets the letters "e" and "d" (and "E" and "D") as the symbols for exponentiation
and scientific notation:

i& = VAL("10.101e3") ' 10101 ~ 10.101*(10^3)
j& = VAL("2D4") ' 20000 ~ 2 * (10 ^ 4)

Hexadecimal, Binary and Octal conversions

VAL can also be used to convert string arguments that are in the form of Hexadecimal,
Binary and Octal numbers. Hexadecimal values should be prefixed with "&H" and Binary
with "&B". Octal values may be prefixed "&O", "&Q" or just "&". If the string_expressio
contains a leading zero, the result is returned as an unsigned value; otherwise, a signed
value is returned. For example:

i& = VAL("&HF5F3") ' Hex, returns -2573 (signed)
j& = VAL("&H0F5F3") ' Hex, returns 62963 (unsigned)
x& = VAL("&B0100101101") ' Binary, returns 301 (unsigned)
y& = VAL("&O4574514") ' Octal, returns 1243468 (signed)

Valid hex characters include 0 to 9, A to F (and a to f). Valid Octal characters include 0
to 7, and binary 0 to 1.

Use the STR$, DEC$, FORMAT$, and USING$ functions to convert numeric values into
decimal strings. Use BIN$, HEX$ and OCT$ to convert them to Binary, Hexadecimal, and
Octal representations.

Restrictions VAL stops analyzing string_expression when non-numeric characters are encountered.
 When dealing with Hexadecimal, Binary, and Octal number systems, the period
character is classified as non-numeric. This is because PowerBASIC only supports
floating-point formats for the decimal number system. VAL accepts the period character
as a decimal place for all decimal number system values.

VAL does not analyze trailing type-specifiers for decimal strings. For example,
VAL("9.1&") is evaluated as 9.1 rather than 9 because the "&" suffix is treated as a non-
numeric character, not a type-specifier. However, type suffixes may be used with binary,
octal, and hex values.

See also BIN$, DEC$, FORMAT$, HEX$, OCT$, STR$, USING$, VAL statement

Example Price$ = "$ 15,345.92"
Cost@@ = VAL(REMOVE$(Price$, ANY "$, "))

Result 15345.92

VAL statement

Keyword Template
Purpose

PowerBASIC Compiler for Windows Version 10

2035 / 2126

Syntax

Remarks

See also

Example

VAL statement
Purpose Convert a text

 to a value with additional information.
Syntax VAL StrgExpr [, offset] TO ValueVar [, DigitsVar&, UnusedVar&]

Remarks The VAL statement converts a string argument to a number, but adds additional
information about the conversion. Both Leading and trailing white-space characters
(spaces, tabs, carriage-returns, and linefeeds) are skipped and ignored. If no number is
found, the value zero (0) is returned. Format characters (like commas) are not allowed,
and will cause early termination of the evaluation.

VAL interprets the letters "e" and "d" (and "E" and "D") as the symbols for exponentiation
and scientific notation:

VAL "10.101e3" TO i& ' 10101 ~ 10.101*(10^3)
VAL "2D4" TO j& ' 20000 ~ 2 * (10 ^ 4)

Hexadecimal, Binary and Octal conversions

VAL can also be used to convert string arguments that are in the form of Hexadecimal,
Binary and Octal numbers. Hexadecimal values should be prefixed with "&H" and Binary
with "&B". Octal values may be prefixed "&O", "&Q" or just "&". If the StrgExpr contains
a leading zero, the result is returned as an unsigned value; otherwise, a signed value is
returned. For example:

VAL "&HF5F3" TO i& ' Hex, returns -2573 (signed)
VAL "&H0F5F3" TO j& ' Hex, returns 62963 (unsigned)
VAL "&B0100101101" TO x& ' Binary, returns 301 (unsigned)
VAL "&O4574514" TO y& ' Octal, returns 1243468 (signed)

Valid hex characters include 0 to 9, A to F (and a to f). Valid Octal characters include 0
to 7, and binary 0 to 1.

Use the STR$, DEC$, FORMAT$, and USING$ functions to convert numeric values into
decimal strings. Use BIN$, HEX$ and OCT$ to convert them to Binary, Hexadecimal, and
Octal representations.

Offset If the optional Offset parameter is included, it indicates the position in the string where the
conversion should begin. If not given, it defaults to one (1), and begins at the first
character.

ValueVar A numeric variable which receives the result of the conversion.

DigitsVar An optional long integer variable which receives the count of the number of significant
digits found in the evaluation. If this value is zero (0), no valid number was found and zero
(0) was also assigned to ValueVar.

UnUsedVar An optional long integer variable which receives the count of the unused characters.
 Since the evaluation skips both leading and trailing white-space, a non-zero value
indicates that additional characters of some significance may be present. You can use
RIGHT$(StrgExpr, UnUsedVar) to separate the unused characters.

Restrictions VAL stops analyzing string_expression when non-numeric characters are encountered.
 When dealing with Hexadecimal, Binary, and Octal number systems, the period
character is classified as non-numeric. This is because PowerBASIC only supports
floating-point formats for the decimal number system. VAL accepts the period character
as a decimal place for all decimal number system values.

PowerBASIC Compiler for Windows Version 10

2036 / 2126

VAL does not analyze trailing type-specifiers for decimal strings. For example,
VAL("9.1&") is evaluated as 9.1 rather than 9 because the "&" suffix is treated as a non-
numeric character, not a type-specifier. However, type suffixes may be used with binary,
octal, and hex values.

See also BIN$, DEC$, FORMAT$, HEX$, OCT$, STR$ USING$, VAL function

Example s = "The total cost is $145.26."
VAL s, INSTR(s, "$")+1 to i

Result 145.26

VARIANT# function

VARIANT# function
Purpose Returns the numeric value contained in a Variant variable.

Syntax numericvar = VARIANT#(vrntvar)

Remarks The value returned by VARIANT# may be any range from BYTE to
DOUBLE/QUAD/CURRENCY, depending upon the internal representation used within the
Variant.

While Variant variables, by definition, do not offer support for Extended Precision Float
data types, you should note that it is possible for a QUAD or CURRENCY value to exceed
the precision level offered by a DOUBLE. You should therefore use some judgement in
deciding on the

 variable type to be used as the destination of this function, based upon the expected
return values, and the internal representation, which you can obtain with
VARIANTVT.

Restrictions VARIANT# presumes that a valid numeric value is present (not an array); otherwise, the
value zero is returned.

See also DIM, LET, OBJECT, LET (with Variants), VARIANT$, VARIANT$$, VARIANTVT

Example DIM vVnt AS VARIANT
vVnt = 999&
a& = VARIANT#(vVnt)

VARIANT$/VARIANT$$ function

VARIANT$ / VARIANT$$ function
Purpose Returns the byte

 contained in a Variant variable.
Syntax AnsiVar = VARIANT$(VrntVar)

WideVar = VARIANT$$(VrntVar)
TypeVar = VARIANT$(BYTE, VrntVar)

Remarks VARIANT$ extracts a string from a variant variable if a dynamic string (VT_BSTR) is found
there. If the variant contains any other VT type, an empty string is returned. By
definition, a BSTR is a wide Unicode string. It is generally safe to assume this is the
case, unless the variant was created by PowerBASIC and you know the internal format is
bytes rather than wide Unicode words.

The first form of VARIANT$ converts the wide Unicode contents to ANSI, returning it as an
ANSI string. The second form of VARIANT$$ returns the contents directly as a wide
Unicode string. Of course, in all assignment and parameter situations, PowerBASIC will
automatically handle any conversions needed between ANSI and WIDE string values. For

PowerBASIC Compiler for Windows Version 10

2037 / 2126

that reason, no additional code should be added to this operation for ANSI/WIDE
conversion. Also, keep in mind that the correct choice of function can improve the
performance of your program.

BYTE If the BYTE option is specified, you are telling PowerBASIC that the string contains a set
of BYTES rather than wide Unicode words. This would be the case if you stored a User-
Defined Type in a variant:

LET VariantVar = ThisUDTVar AS STRING
ThatUDTVar = VARIANT$(BYTE, VariantVar)

This form of VARIANT$ always returns the contents as an ANSI byte string. This result
can be assigned to an ANSI string variable or a User-Defined Type.

Legacy Older legacy programs were forced to store Unicode characters in an ANSI string variable
because wide string variables were not yet available. These programs should continue to
use VARIANT$ with ACODE$ and variant assignment with UCODE$ until the program
logic is updated to use wide Unicode variables.

See also DIM, LET, OBJECT, LET (with Variants), VARIANT#, VARIANTVT

Example DIM vVnt AS VARIANT
vVnt = "Hello World"$$
a$ = VARIANT$(vVnt)

VARIANTVT function

VARIANTVT function
Purpose Determine the internal data type of the data stored in a Variant variable.

Syntax numericvar = VARIANTVT(vrntvar)

Remarks The VARIANTVT function returns the internal VT data type stored in the Variant. The entire range of %VT_
prefixed values are documented by the OLE (COM) specification and are available in WIN32API.INC.

The most important values in this limited context include %VT_EMPTY (=0) and %VT_BSTR (=8), since most of
the others are

 formats automatically resolved by the LET (with Variants) statement and VARIANT# function.
Result Equate Content Type

0 %VT_EMPTY An Empty Variant

1 %VT_NULL Null value

2 %VT_I2 Integer

3 %VT_I4 Long-Integer

4 %VT_R4 Single

5 %VT_R8 Double

6 %VT_CY Currency

7 %VT_DATE Date

8 %VT_BSTR Dynamic String

9 %VT_DISPATCH IDispatch

10 %VT_ERROR Error Code

11 %VT_BOOL Boolean

12 %VT_VARIANT Variant

13 %VT_UNKNOWN IUnknown

14 %VT_DECIMAL Decimal

16 %VT_I1 Byte (signed)

PowerBASIC Compiler for Windows Version 10

2038 / 2126

17 %VT_UI1 Byte (unsigned)

18 %VT_UI2 Word

19 %VT_UI4 DWORD

20 %VT_I8 Quad (signed)

21 %VT_UI8 Quad (unsigned)

22 %VT_INT Long-Integer

23 %VT_UINT DWord

24 %VT_VOID A C-style void type

25 %VT_HRESULT COM result code

26 %VT_PTR Pointer

27 %VT_SAFEARRAY VB Array

28 %VT_CARRAY A C-style array

29 %VT_USERDEFINED User Defined Type

30 %VT_LPSTR ANSI

31 %VT_LPWSTR Unicode string

36 %VT_RECORD UDT

64 %VT_FILETIME A FILETIME value

65 %VT_BLOB An arbitrary block of memory

66 %VT_STREAM A stream of bytes

67 %VT_STORAGE Name of the storage

68 %VT_STREAMED_OBJECT A stream that contains an object

69 %VT_STORED_OBJECT A storage object

70 %VT_BLOB_OBJECT A block of memory that represents an object

71 %VT_CF Clipboard format

72 %VT_CLSID Class ID

&H1000 %VT_VECTOR An array with a leading count

&H2000 %VT_ARRAY Array

&H4000 %VT_BYREF A reference value

If a Variant contains a complete array, the Variant type is determined by adding the base type to the array
modifier. That is, for a string array, it would be %VT_BSTR plus %VT_ARRAY (= &H2008).

Quad arrays within Variants are not supported by most versions of Windows. The result from VARIANTVT can be
used to see whether such an array was created properly.

See also DIM, Just what is COM?, OBJECT, LET (with Variants), VARIANT#, VARIANT$, VARIANT$$, What is an object
anyway?

VARPTR function

VARPTR function
Purpose Return the 32-bit address of a variable.

Syntax y = VARPTR(variable)

Remarks VARPTR returns a complete 32-bit address to the specified variable as a Double-word
(DWORD) value. variable is any

, , structure variable (User-Defined Type or Union), or element of an array. VARPTR
returns a pointer (32-bit address in memory) where the variable data is stored.

PowerBASIC Compiler for Windows Version 10

2039 / 2126

VARPTR may also be used to locate an array descriptor, as well as the array data itself.
To find the address of an array descriptor, use the array name with empty parentheses:
VARPTR(x()).

When you use VARPTR to get the address of a dynamic (variable length) string, keep in
mind that the value being returned is the address of the string handle, not the actual data
in the string. This can be useful for manipulating a dynamic string array using indexed-
pointers, For example:

DIM A$(100), b$, pA AS STRING PTR, x&
' Assume A$() is filled here
pA = VARPTR(a$(0)) ' 1st element handle
FOR X& = 0 TO 100
 B$ = B$ + @pA[x&] + ","
NEXT x&

You can use STRPTR to find the address of the string's data. When used with pointers,
VARPTR returns the address of the pointer itself.

Restrictions VARPTR cannot be used on Register variables, because Register variables are stored in
internal processor registers rather than application memory. VARPTR can be used on
UDT and Union variables, but not the UDT definition name. For example:

TYPE MyType
 ABC AS LONG
END TYPE
' more code here
DIM x AS MyTYPE, y&
y& = VARPTR(x) ' This is legal
y& = VARPTR(MyType) ' This is not

See also CODEPTR, PEEK, Pointers, POKE, STRPTR

Example DIM x AS INTEGER PTR, a%, b%

a% = 55
x = VARPTR(A%)
b% = @x
CALL DisplayResult("b% contains " + FORMAT$(b%))

Result b% contains 55

VERIFY function

VERIFY function
Purpose Determine whether each character of a

 is present in another string.
Syntax x = VERIFY([start&,] MainString, MatchString)

Remarks VERIFY returns zero if each character in MainString is present in MatchString. If not, it
returns the position of the first non-matching character in MainString.

This function is very useful for determining if a string contains only

 digits, for example.
VERIFY is case-sensitive, so capitalization matters.

Restrictions If start& evaluates to a position outside of the string on either side, or if start& is zero,
VERIFY returns zero.

See also INSTR, LCASE$, LTRIM$, MID$, REMOVE$, REPLACE, RIGHT$, RTRIM$, TALLY,
TRIM$, UCASE$

Example ' returns 4 since "." is not in "0123456789"
x& = VERIFY("123.65,22.5", "0123456789")

PowerBASIC Compiler for Windows Version 10

2040 / 2126

' returns 7 since 5 starts it past the first non-digit ("." at position 4)
x& = VERIFY(5,"123.65,22.5", "0123456789")

WHILE/WEND statements

WHILE/WEND statements
Purpose Define a block of program statements that are executed repeatedly for as long as certain

conditions are met.

Syntax WHILE integer_expression
 [statements]
 [EXIT LOOP]
 [statements]
WEND

Remarks If integer_expression is TRUE (it evaluates to a non-zero value), all of the statements
between the WHILE and the terminating WEND are executed. PowerBASIC then jumps
back to the WHILE statement and repeats the test. If it is still TRUE, PowerBASIC
executes the enclosed statements again. This process is repeated until the test
expression evaluates to zero, or an EXIT statement is encountered. In either case,
execution passes to the statement following WEND.

If integer_expression evaluates to FALSE (zero) on the first pass, none of the statements
in the loop are executed.

Loops built with WHILE/WEND statements can be nested (enclosed within each other).
Each WEND matches the most recent unmatched WHILE.

One use of a WHILE/WEND loop is to input data from a file until the end of the file is
reached:

i& = 0
WHILE ISFALSE EOF(1)
 INCR i&
 LINE INPUT #1, FileTxt$(i&)
WEND

Although the compiler does not care, it's a good idea to indent the statements between
WHILE and WEND, to clarify the structure of the loop you have constructed.

Note that the following code creates in infinite loop:

WHILE -1
 [statements]
WEND

To exit a WHILE/WEND loop prematurely, use the EXIT LOOP statement.

PowerBASIC's DO/LOOP construct offers a more flexible way to build conditional loops.

Also see the discussion on the IF statement for notes on PowerBASIC's Short-
circuit evaluation and its possible side effects.

See also #OPTIMIZE, DO/LOOP, EXIT, FOR EACH/NEXT, FOR/NEXT, ITERATE, Short-
circuit evaluation

WINDOW GET HANDLE statement

Keyword Template
Purpose

Syntax

PowerBASIC Compiler for Windows Version 10

2041 / 2126

Remarks

See also

Example

WINDOW GET statement
Purpose Manipulate a Window in the program, which may include setting or retrieving data. The

target window may be of any class, including a

 or Dialog.
Syntax WINDOW GET HANDLE hWin, ID& TO DataVar&

WINDOW GET ID hWin TO DataVar&
WINDOW GET PARENT hWin TO DataVar&
WINDOW GET STYLE hWin TO DataVar&
WINDOW GET STYLEX hWin TO DataVar&
WINDOW GET USER hWin TO DataVar&

hWin Handle of the Window to be used.

DataVar& A long integer variable to which result data is assigned.

Remarks The WINDOW statement may be used with any type of window in your program, including
a Control or Dialog. Generally speaking, the window to be manipulated or tested is
identified by its handle (hWin), which is often obtained at the time it is created. However,
since a control is usually accessed by a "Parent / ID" combination, you must use
WINDOW GET HANDLE or CONTROL HANDLE to retrieve its handle for this purpose. If
the operation fails, the value zero (0) is assigned to the result variable.

WINDOW GET HANDLE hWin, ID& TO DataVar&

This statement retrieves the handle of a Window, translating from the parent handle and
the specific integral control ID given at the time it was created. hWin is the handle of the
parent, ID& is the control ID, and DataVar& represents the variable which receives the
desired window handle.

WINDOW GET ID hWin To DataVar&

The integral ID of the window hWin is retrieved and assigned to the variable designated by
DataVar&. Generally, only a CONTROL will have an ID, so windows of other classes will
normally return the value zero.

WINDOW GET PARENT hWin To DataVar&

The handle of the parent is retrieved and assigned to the variable designated by
DataVar&.

WINDOW GET STYLE hWin TO DataVar&

The window style value of the window specified by the handle hWin is retrieved and
assigned to the variable designated by DataVar&.

WINDOW GET STYLEX hWin TO DataVar&

The extended window style value of the window specified by the handle hWin is retrieved
and assigned to the variable designated by DataVar&.

WINDOW GET USER hWin TO DataVar&

The 32-bit user data value associated with the window specified by the handle hWin is
retrieved and assigned to the variable designated by DataVar&. This particular user data
value is associated with every window in your program, and is maintained by the Windows

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2042 / 2126

operating system. It is separate and apart from user data maintained by DDT for each
dialog and control created with DDT.

See also CONTROL HANDLE, WINDOW SET

WINDOW GET ID statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

WINDOW GET statement
Purpose Manipulate a Window in the program, which may include setting or retrieving data. The

target window may be of any class, including a

 or Dialog.
Syntax WINDOW GET HANDLE hWin, ID& TO DataVar&

WINDOW GET ID hWin TO DataVar&
WINDOW GET PARENT hWin TO DataVar&
WINDOW GET STYLE hWin TO DataVar&
WINDOW GET STYLEX hWin TO DataVar&
WINDOW GET USER hWin TO DataVar&

hWin Handle of the Window to be used.

DataVar& A long integer variable to which result data is assigned.

Remarks The WINDOW statement may be used with any type of window in your program, including
a Control or Dialog. Generally speaking, the window to be manipulated or tested is
identified by its handle (hWin), which is often obtained at the time it is created. However,
since a control is usually accessed by a "Parent / ID" combination, you must use
WINDOW GET HANDLE or CONTROL HANDLE to retrieve its handle for this purpose. If
the operation fails, the value zero (0) is assigned to the result variable.

WINDOW GET HANDLE hWin, ID& TO DataVar&

This statement retrieves the handle of a Window, translating from the parent handle and
the specific integral control ID given at the time it was created. hWin is the handle of the
parent, ID& is the control ID, and DataVar& represents the variable which receives the
desired window handle.

WINDOW GET ID hWin To DataVar&

The integral ID of the window hWin is retrieved and assigned to the variable designated by
DataVar&. Generally, only a CONTROL will have an ID, so windows of other classes will
normally return the value zero.

WINDOW GET PARENT hWin To DataVar&

The handle of the parent is retrieved and assigned to the variable designated by
DataVar&.

WINDOW GET STYLE hWin TO DataVar&

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2043 / 2126

The window style value of the window specified by the handle hWin is retrieved and
assigned to the variable designated by DataVar&.

WINDOW GET STYLEX hWin TO DataVar&

The extended window style value of the window specified by the handle hWin is retrieved
and assigned to the variable designated by DataVar&.

WINDOW GET USER hWin TO DataVar&

The 32-bit user data value associated with the window specified by the handle hWin is
retrieved and assigned to the variable designated by DataVar&. This particular user data
value is associated with every window in your program, and is maintained by the Windows
operating system. It is separate and apart from user data maintained by DDT for each
dialog and control created with DDT.

See also CONTROL HANDLE, WINDOW SET

WINDOW GET PARENT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

WINDOW GET statement
Purpose Manipulate a Window in the program, which may include setting or retrieving data. The

target window may be of any class, including a

 or Dialog.
Syntax WINDOW GET HANDLE hWin, ID& TO DataVar&

WINDOW GET ID hWin TO DataVar&
WINDOW GET PARENT hWin TO DataVar&
WINDOW GET STYLE hWin TO DataVar&
WINDOW GET STYLEX hWin TO DataVar&
WINDOW GET USER hWin TO DataVar&

hWin Handle of the Window to be used.

DataVar& A long integer variable to which result data is assigned.

Remarks The WINDOW statement may be used with any type of window in your program, including
a Control or Dialog. Generally speaking, the window to be manipulated or tested is
identified by its handle (hWin), which is often obtained at the time it is created. However,
since a control is usually accessed by a "Parent / ID" combination, you must use
WINDOW GET HANDLE or CONTROL HANDLE to retrieve its handle for this purpose. If
the operation fails, the value zero (0) is assigned to the result variable.

WINDOW GET HANDLE hWin, ID& TO DataVar&

This statement retrieves the handle of a Window, translating from the parent handle and
the specific integral control ID given at the time it was created. hWin is the handle of the
parent, ID& is the control ID, and DataVar& represents the variable which receives the
desired window handle.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2044 / 2126

WINDOW GET ID hWin To DataVar&

The integral ID of the window hWin is retrieved and assigned to the variable designated by
DataVar&. Generally, only a CONTROL will have an ID, so windows of other classes will
normally return the value zero.

WINDOW GET PARENT hWin To DataVar&

The handle of the parent is retrieved and assigned to the variable designated by
DataVar&.

WINDOW GET STYLE hWin TO DataVar&

The window style value of the window specified by the handle hWin is retrieved and
assigned to the variable designated by DataVar&.

WINDOW GET STYLEX hWin TO DataVar&

The extended window style value of the window specified by the handle hWin is retrieved
and assigned to the variable designated by DataVar&.

WINDOW GET USER hWin TO DataVar&

The 32-bit user data value associated with the window specified by the handle hWin is
retrieved and assigned to the variable designated by DataVar&. This particular user data
value is associated with every window in your program, and is maintained by the Windows
operating system. It is separate and apart from user data maintained by DDT for each
dialog and control created with DDT.

See also CONTROL HANDLE, WINDOW SET

WINDOW GET STYLE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

WINDOW GET statement
Purpose Manipulate a Window in the program, which may include setting or retrieving data. The

target window may be of any class, including a

 or Dialog.
Syntax WINDOW GET HANDLE hWin, ID& TO DataVar&

WINDOW GET ID hWin TO DataVar&
WINDOW GET PARENT hWin TO DataVar&
WINDOW GET STYLE hWin TO DataVar&
WINDOW GET STYLEX hWin TO DataVar&
WINDOW GET USER hWin TO DataVar&

hWin Handle of the Window to be used.

DataVar& A long integer variable to which result data is assigned.

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2045 / 2126

Remarks The WINDOW statement may be used with any type of window in your program, including
a Control or Dialog. Generally speaking, the window to be manipulated or tested is
identified by its handle (hWin), which is often obtained at the time it is created. However,
since a control is usually accessed by a "Parent / ID" combination, you must use
WINDOW GET HANDLE or CONTROL HANDLE to retrieve its handle for this purpose. If
the operation fails, the value zero (0) is assigned to the result variable.

WINDOW GET HANDLE hWin, ID& TO DataVar&

This statement retrieves the handle of a Window, translating from the parent handle and
the specific integral control ID given at the time it was created. hWin is the handle of the
parent, ID& is the control ID, and DataVar& represents the variable which receives the
desired window handle.

WINDOW GET ID hWin To DataVar&

The integral ID of the window hWin is retrieved and assigned to the variable designated by
DataVar&. Generally, only a CONTROL will have an ID, so windows of other classes will
normally return the value zero.

WINDOW GET PARENT hWin To DataVar&

The handle of the parent is retrieved and assigned to the variable designated by
DataVar&.

WINDOW GET STYLE hWin TO DataVar&

The window style value of the window specified by the handle hWin is retrieved and
assigned to the variable designated by DataVar&.

WINDOW GET STYLEX hWin TO DataVar&

The extended window style value of the window specified by the handle hWin is retrieved
and assigned to the variable designated by DataVar&.

WINDOW GET USER hWin TO DataVar&

The 32-bit user data value associated with the window specified by the handle hWin is
retrieved and assigned to the variable designated by DataVar&. This particular user data
value is associated with every window in your program, and is maintained by the Windows
operating system. It is separate and apart from user data maintained by DDT for each
dialog and control created with DDT.

See also CONTROL HANDLE, WINDOW SET

WINDOW GET STYLEX statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

WINDOW GET statement

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2046 / 2126

Purpose Manipulate a Window in the program, which may include setting or retrieving data. The
target window may be of any class, including a

 or Dialog.
Syntax WINDOW GET HANDLE hWin, ID& TO DataVar&

WINDOW GET ID hWin TO DataVar&
WINDOW GET PARENT hWin TO DataVar&
WINDOW GET STYLE hWin TO DataVar&
WINDOW GET STYLEX hWin TO DataVar&
WINDOW GET USER hWin TO DataVar&

hWin Handle of the Window to be used.

DataVar& A long integer variable to which result data is assigned.

Remarks The WINDOW statement may be used with any type of window in your program, including
a Control or Dialog. Generally speaking, the window to be manipulated or tested is
identified by its handle (hWin), which is often obtained at the time it is created. However,
since a control is usually accessed by a "Parent / ID" combination, you must use
WINDOW GET HANDLE or CONTROL HANDLE to retrieve its handle for this purpose. If
the operation fails, the value zero (0) is assigned to the result variable.

WINDOW GET HANDLE hWin, ID& TO DataVar&

This statement retrieves the handle of a Window, translating from the parent handle and
the specific integral control ID given at the time it was created. hWin is the handle of the
parent, ID& is the control ID, and DataVar& represents the variable which receives the
desired window handle.

WINDOW GET ID hWin To DataVar&

The integral ID of the window hWin is retrieved and assigned to the variable designated by
DataVar&. Generally, only a CONTROL will have an ID, so windows of other classes will
normally return the value zero.

WINDOW GET PARENT hWin To DataVar&

The handle of the parent is retrieved and assigned to the variable designated by
DataVar&.

WINDOW GET STYLE hWin TO DataVar&

The window style value of the window specified by the handle hWin is retrieved and
assigned to the variable designated by DataVar&.

WINDOW GET STYLEX hWin TO DataVar&

The extended window style value of the window specified by the handle hWin is retrieved
and assigned to the variable designated by DataVar&.

WINDOW GET USER hWin TO DataVar&

The 32-bit user data value associated with the window specified by the handle hWin is
retrieved and assigned to the variable designated by DataVar&. This particular user data
value is associated with every window in your program, and is maintained by the Windows
operating system. It is separate and apart from user data maintained by DDT for each
dialog and control created with DDT.

See also CONTROL HANDLE, WINDOW SET

WINDOW GET USER statement

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2047 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

WINDOW GET statement
Purpose Manipulate a Window in the program, which may include setting or retrieving data. The

target window may be of any class, including a

 or Dialog.
Syntax WINDOW GET HANDLE hWin, ID& TO DataVar&

WINDOW GET ID hWin TO DataVar&
WINDOW GET PARENT hWin TO DataVar&
WINDOW GET STYLE hWin TO DataVar&
WINDOW GET STYLEX hWin TO DataVar&
WINDOW GET USER hWin TO DataVar&

hWin Handle of the Window to be used.

DataVar& A long integer variable to which result data is assigned.

Remarks The WINDOW statement may be used with any type of window in your program, including
a Control or Dialog. Generally speaking, the window to be manipulated or tested is
identified by its handle (hWin), which is often obtained at the time it is created. However,
since a control is usually accessed by a "Parent / ID" combination, you must use
WINDOW GET HANDLE or CONTROL HANDLE to retrieve its handle for this purpose. If
the operation fails, the value zero (0) is assigned to the result variable.

WINDOW GET HANDLE hWin, ID& TO DataVar&

This statement retrieves the handle of a Window, translating from the parent handle and
the specific integral control ID given at the time it was created. hWin is the handle of the
parent, ID& is the control ID, and DataVar& represents the variable which receives the
desired window handle.

WINDOW GET ID hWin To DataVar&

The integral ID of the window hWin is retrieved and assigned to the variable designated by
DataVar&. Generally, only a CONTROL will have an ID, so windows of other classes will
normally return the value zero.

WINDOW GET PARENT hWin To DataVar&

The handle of the parent is retrieved and assigned to the variable designated by
DataVar&.

WINDOW GET STYLE hWin TO DataVar&

The window style value of the window specified by the handle hWin is retrieved and
assigned to the variable designated by DataVar&.

WINDOW GET STYLEX hWin TO DataVar&

The extended window style value of the window specified by the handle hWin is retrieved
and assigned to the variable designated by DataVar&.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2048 / 2126

WINDOW GET USER hWin TO DataVar&

The 32-bit user data value associated with the window specified by the handle hWin is
retrieved and assigned to the variable designated by DataVar&. This particular user data
value is associated with every window in your program, and is maintained by the Windows
operating system. It is separate and apart from user data maintained by DDT for each
dialog and control created with DDT.

See also CONTROL HANDLE, WINDOW SET

WINDOW SET ID statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

WINDOW SET statement
Purpose Manipulate a Window in the program, which may include setting or retrieving data. The

target window may be of any class, including a

 or Dialog.
Syntax WINDOW SET ID hWin, NewVal& TO OldValVar&

WINDOW SET STYLE hWin, NewVal& TO OldValVar&
WINDOW SET STYLEX hWin, NewVal& TO OldValVar&
WINDOW SET USER hWin, NewVal& TO OldValVar&

hWin Handle of the Window to be used.

OldValVar& A long integer variable to which the old value of the item is assigned.

Remarks The WINDOW SET statement may be used with any type of window in your program,
including a Control or Dialog. However, you must use care due to possible side effects.
 Generally speaking, the window to be manipulated is identified by its handle (hWin),
which is often obtained at the time it is created. However, since a control is usually
accessed by a "Parent / ID" combination, you must use WINDOW GET HANDLE or
CONTROL HANDLE to retrieve its handle for this purpose.

WINDOW SET ID hWin, NewVal& To OldValVar&

The integral ID of the window hWin is changed to NewVal&. The prior ID value is assigned
to the variable designated by OldValVar&. If the operation fails, the value zero (0) is
assigned to OldValVar&. As a general rule, you should not change the ID of a Window,
Dialog, or Control created with DDT as it will cause unpredictable results.

WINDOW SET STYLE hWin, NewVal& TO OldValVar&

The window style value of the window hWin is changed to NewVal&. The prior style value
is assigned to the variable designated by OldValVar&. If the operation fails, the value zero
(0) is assigned to OldValVar&.

WINDOW SET STYLEX hWin, NewVal& TO OldValVar&

The extended window style value of the window hWin is changed to NewVal&. The prior

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2049 / 2126

extended style value is assigned to the variable designated by OldValVar&. If the
operation fails, the value zero (0) is assigned to OldValVar&.

WINDOW SET USER hWin, NewVal& TO OldValVar&

The 32-bit user data value associated with the window specified by the handle hWin is
changed to NewVal&. The prior user data value is assigned to the variable designated by
OldValVar&. This particular user data value is associated with every window in your
program, and is maintained by the Windows operating system. It is separate and apart
from user data maintained by DDT for each dialog and control created with DDT. If the
operation fails, the value zero (0) is assigned to OldValVar&. However, this is not a
certain indication of failure, since the prior user value might have been zero.

See also CONTROL HANDLE, WINDOW GET

WINDOW SET STYLE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

WINDOW SET statement
Purpose Manipulate a Window in the program, which may include setting or retrieving data. The

target window may be of any class, including a

 or Dialog.
Syntax WINDOW SET ID hWin, NewVal& TO OldValVar&

WINDOW SET STYLE hWin, NewVal& TO OldValVar&
WINDOW SET STYLEX hWin, NewVal& TO OldValVar&
WINDOW SET USER hWin, NewVal& TO OldValVar&

hWin Handle of the Window to be used.

OldValVar& A long integer variable to which the old value of the item is assigned.

Remarks The WINDOW SET statement may be used with any type of window in your program,
including a Control or Dialog. However, you must use care due to possible side effects.
 Generally speaking, the window to be manipulated is identified by its handle (hWin),
which is often obtained at the time it is created. However, since a control is usually
accessed by a "Parent / ID" combination, you must use WINDOW GET HANDLE or
CONTROL HANDLE to retrieve its handle for this purpose.

WINDOW SET ID hWin, NewVal& To OldValVar&

The integral ID of the window hWin is changed to NewVal&. The prior ID value is assigned
to the variable designated by OldValVar&. If the operation fails, the value zero (0) is
assigned to OldValVar&. As a general rule, you should not change the ID of a Window,
Dialog, or Control created with DDT as it will cause unpredictable results.

WINDOW SET STYLE hWin, NewVal& TO OldValVar&

The window style value of the window hWin is changed to NewVal&. The prior style value
is assigned to the variable designated by OldValVar&. If the operation fails, the value zero

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2050 / 2126

(0) is assigned to OldValVar&.

WINDOW SET STYLEX hWin, NewVal& TO OldValVar&

The extended window style value of the window hWin is changed to NewVal&. The prior
extended style value is assigned to the variable designated by OldValVar&. If the
operation fails, the value zero (0) is assigned to OldValVar&.

WINDOW SET USER hWin, NewVal& TO OldValVar&

The 32-bit user data value associated with the window specified by the handle hWin is
changed to NewVal&. The prior user data value is assigned to the variable designated by
OldValVar&. This particular user data value is associated with every window in your
program, and is maintained by the Windows operating system. It is separate and apart
from user data maintained by DDT for each dialog and control created with DDT. If the
operation fails, the value zero (0) is assigned to OldValVar&. However, this is not a
certain indication of failure, since the prior user value might have been zero.

See also CONTROL HANDLE, WINDOW GET

WINDOW SET STYLEX statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

WINDOW SET statement
Purpose Manipulate a Window in the program, which may include setting or retrieving data. The

target window may be of any class, including a

 or Dialog.
Syntax WINDOW SET ID hWin, NewVal& TO OldValVar&

WINDOW SET STYLE hWin, NewVal& TO OldValVar&
WINDOW SET STYLEX hWin, NewVal& TO OldValVar&
WINDOW SET USER hWin, NewVal& TO OldValVar&

hWin Handle of the Window to be used.

OldValVar& A long integer variable to which the old value of the item is assigned.

Remarks The WINDOW SET statement may be used with any type of window in your program,
including a Control or Dialog. However, you must use care due to possible side effects.
 Generally speaking, the window to be manipulated is identified by its handle (hWin),
which is often obtained at the time it is created. However, since a control is usually
accessed by a "Parent / ID" combination, you must use WINDOW GET HANDLE or
CONTROL HANDLE to retrieve its handle for this purpose.

WINDOW SET ID hWin, NewVal& To OldValVar&

The integral ID of the window hWin is changed to NewVal&. The prior ID value is assigned
to the variable designated by OldValVar&. If the operation fails, the value zero (0) is
assigned to OldValVar&. As a general rule, you should not change the ID of a Window,
Dialog, or Control created with DDT as it will cause unpredictable results.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2051 / 2126

WINDOW SET STYLE hWin, NewVal& TO OldValVar&

The window style value of the window hWin is changed to NewVal&. The prior style value
is assigned to the variable designated by OldValVar&. If the operation fails, the value zero
(0) is assigned to OldValVar&.

WINDOW SET STYLEX hWin, NewVal& TO OldValVar&

The extended window style value of the window hWin is changed to NewVal&. The prior
extended style value is assigned to the variable designated by OldValVar&. If the
operation fails, the value zero (0) is assigned to OldValVar&.

WINDOW SET USER hWin, NewVal& TO OldValVar&

The 32-bit user data value associated with the window specified by the handle hWin is
changed to NewVal&. The prior user data value is assigned to the variable designated by
OldValVar&. This particular user data value is associated with every window in your
program, and is maintained by the Windows operating system. It is separate and apart
from user data maintained by DDT for each dialog and control created with DDT. If the
operation fails, the value zero (0) is assigned to OldValVar&. However, this is not a
certain indication of failure, since the prior user value might have been zero.

See also CONTROL HANDLE, WINDOW GET

WINDOW SET USER statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

WINDOW SET statement
Purpose Manipulate a Window in the program, which may include setting or retrieving data. The

target window may be of any class, including a

 or Dialog.
Syntax WINDOW SET ID hWin, NewVal& TO OldValVar&

WINDOW SET STYLE hWin, NewVal& TO OldValVar&
WINDOW SET STYLEX hWin, NewVal& TO OldValVar&
WINDOW SET USER hWin, NewVal& TO OldValVar&

hWin Handle of the Window to be used.

OldValVar& A long integer variable to which the old value of the item is assigned.

Remarks The WINDOW SET statement may be used with any type of window in your program,
including a Control or Dialog. However, you must use care due to possible side effects.
 Generally speaking, the window to be manipulated is identified by its handle (hWin),
which is often obtained at the time it is created. However, since a control is usually
accessed by a "Parent / ID" combination, you must use WINDOW GET HANDLE or
CONTROL HANDLE to retrieve its handle for this purpose.

WINDOW SET ID hWin, NewVal& To OldValVar&

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2052 / 2126

The integral ID of the window hWin is changed to NewVal&. The prior ID value is assigned
to the variable designated by OldValVar&. If the operation fails, the value zero (0) is
assigned to OldValVar&. As a general rule, you should not change the ID of a Window,
Dialog, or Control created with DDT as it will cause unpredictable results.

WINDOW SET STYLE hWin, NewVal& TO OldValVar&

The window style value of the window hWin is changed to NewVal&. The prior style value
is assigned to the variable designated by OldValVar&. If the operation fails, the value zero
(0) is assigned to OldValVar&.

WINDOW SET STYLEX hWin, NewVal& TO OldValVar&

The extended window style value of the window hWin is changed to NewVal&. The prior
extended style value is assigned to the variable designated by OldValVar&. If the
operation fails, the value zero (0) is assigned to OldValVar&.

WINDOW SET USER hWin, NewVal& TO OldValVar&

The 32-bit user data value associated with the window specified by the handle hWin is
changed to NewVal&. The prior user data value is assigned to the variable designated by
OldValVar&. This particular user data value is associated with every window in your
program, and is maintained by the Windows operating system. It is separate and apart
from user data maintained by DDT for each dialog and control created with DDT. If the
operation fails, the value zero (0) is assigned to OldValVar&. However, this is not a
certain indication of failure, since the prior user value might have been zero.

See also CONTROL HANDLE, WINDOW GET

WINMAIN function

WINMAIN function
Purpose WINMAIN (or its synonym MAIN) is a user-defined function called by Windows to begin

execution of an application.

Syntax FUNCTION {WINMAIN | MAIN} (_
 BYVAL hInstance AS DWORD, _
 BYVAL hPrevInst AS DWORD, _
 BYVAL lpszCmdLine AS WSTRINGZ PTR, _
 BYVAL nCmdShow AS LONG) AS LONG

Remarks The WINMAIN function is called by Windows when an executable application first loads
and begins to run. It is often referred to as the "entry point" for the application. When the
execution of WINMAIN is completed, the application is deemed to be finished, and
Windows releases the application memory back to the heap. WINMAIN receives the
following parameters:

hInstance The executable's (EXE) instance handle. Each instance of a Windows application has a
unique handle. It is used as a parameter to a number of Windows API functions which
may need to distinguish between multiple instances of an application.

hPrevInst Not used by 32-bit Windows. It is present merely for compatibility with existing 16-bit
code, and always returns zero in 32-bit applications.

lpszCmdLine A pointer to an nul-terminated string that contains a command-line. Note that the string
passed in lpszCmdLine is not the same as the string returned by the GetCommandLine
API call. The string in lpszCmdLine contains the command-line arguments only (like
COMMAND$), but GetCommandLine returns the program name (including path) followed
by the arguments.

nCmdShow Specifies how to display the application's main window. For example, the calling
application can specify %SW_NORMAL or %SW_MINIMIZE, etc. It is up to the

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2053 / 2126

programmer to honor this parameter, and to do so is recommended.

Return The return value assigned to WINMAIN is optional, but by convention, the return value is
derived from the wParam& parameter of a %WM_QUIT message.

Typically, a GUI-based application uses the WINMAIN function to create the initial GUI
application window, and then enters a message loop. This loop should terminate when a
%WM_QUIT message is received, and the wParam& parameter of that message should
be passed on as the return value for WINMAIN. If WINMAIN terminates before entering
the message loop, WINMAIN should return zero.

Console applications may use the return value to set an error level that can be passed
back to the calling application, in the range 0 to 255 inclusive. Batch files may act on the
result through the IF [NOT] ERRORLEVEL batch command.

If the parameters passed to WINMAIN are not required by the application itself, the
PBMAIN function may be used in place of WINMAIN.

Restrictions Pointers may not be passed BYREF, so the lpszCmdLine parameter of WINMAIN must
be declared to be passed BYVAL.

See also PBMAIN

Example #COMPILE EXE
FUNCTION WINMAIN(BYVAL hInst???, BYVAL hPrevInst???, BYVAL pCmdLine AS
WSTRINGZ PTR, BYVAL nCmdShow&) AS LONG
 ' more code here
 FUNCTION = 1
END FUNCTION

WRAP$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

WRAP$ function
Purpose Add paired characters to the beginning and end of a

.
Syntax s$ = WRAP$(StringExpression, LeftChar$, RightChar$)

Remarks The WRAP$ function prepends LeftChar$ to the StringExpression, then appends
RightChar$, and returns the total result. For example:

WRAP$("MyWord", "<", ">") returns "<MyWord>"

It is particularly useful for enclosing text with parenthesess, quotes, brackets, etc.

See also BUILD$, STRINGBUILDER, STRINSERT$, UNWRAP$

WRITE# statement

WRITE# statement

http://www.powerbasic.com/products/pbdll32/
http://www.powerbasic.com/products/pbcc/

PowerBASIC Compiler for Windows Version 10

2054 / 2126

Purpose Output data to a sequential file in a delimited format.

Syntax WRITE #filenum&
WRITE #filenum&, [expression [{;|,} expression] ...] [;|,]

filenum& The file number used when the file or device was opened.

expression A

 or a string expression representing the data to be written to the file or device.
Remarks WRITE# is similar to PRINT#, except WRITE# inserts a comma in the output file between

each expression. It encloses

 data within quotation marks, and adds no leading or trailing spaces around numeric
values.
WRITE# is the preferred method of writing data to a sequential file, since it formats the
output to be readable by the INPUT# statement. In other words, INPUT# respects the
delimiter characters that separate items in a line of text, as created by WRITE#.

WRITE# with a file number and a comma but no expressions, outputs a carriage return to
the file.

To read a delimited file without regard to the delimiter characters, use the LINE INPUT#
statement.

Restrictions For best results, strings should not contain quotation marks, as these may interfere with
the expected output format.

Each expression in the WRITE# statement must be separated from other expressions by
a comma or semicolon. If you include a trailing comma or semicolon, the final carriage
return / line feed is suppressed and replaced with a comma delimiter. This allows you to
append data to the sequential record by executing another WRITE statement.

See also GET, GET$, GET$$, INPUT#, LINE INPUT#, OPEN, PRINT#, PUT, PUT$, PUT$$,
SETEOF

Example ' Open a sequential output file and write to it
OPEN "FILE.TXT" FOR OUTPUT AS #1
WRITE #1, "TEST"
z& = -12345&
info1$ = "Do not covet"
info2$ = "thy neighbors ox"
WRITE #1, z&, info1$, info2$
WRITE #1, "TEST"
CLOSE #1

Result "TEST"
-12345,"Do not covet","thy neighbors ox"
"TEST"

XOR operator

XOR operator
Purpose The XOR operator works as both a logical and a bitwise arithmetic operator.

Syntax p XOR q

Remarks XOR as a logical operator

XOR returns FALSE (zero) if and only if both its operands have the same value. Here is
XOR's truth table:

Truth table
x y x XOR y
T T F
T F T

PowerBASIC Compiler for Windows Version 10

2055 / 2126

F T T
F F F

Using XOR as a bitwise arithmetic operator

An XOR mask complements (reverses) selected bits of an

 value, without affecting the other bits of that value. For example, to complement the
two most-significant bits in &H9700, use XOR with a mask of &HC000; that is, all
zeros except for the positions to be complemented:

See also Arithmetic Operators, AND, EQV, IMP, NOT, OR

XPRINT Code Group

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT Code Group
Purpose The

 Code Group offers statements and functions which draw text and graphics on a Host
Printer Page. In addition, it provides a wide variety of support to manage and interact
with these items.

Syntax XPRINT DirectorWord [params]
XPRINT DirectorWord [params] TO ReturnVariable(s)

Function Form:
ReturnVariable = XPRINT(DirectorWord [,params])
ReturnVariable$ = XPRINT$(DirectorWord [,params])

Remarks Some of the functionality of the XPRINT group was available in prior versions of
PowerBASIC, but it has now been expanded. Some XPRINT Procedures (namely those
which return a single value) may be used in two forms, a statement with a TO clause, or a
function which may be used as a term in an expression:

XPRINT GET LINES TO LineCountVar&
LineCountVar& = XPRINT(LINES)

The two examples above are functionally identical. The choice is simply a matter of your
personal preference. If you use the second form (as a function which returns a value), it
can be a term in any expression of any complexity. When a function form is available, it
is labeled with the prefix "Function Form".

Some XPRINT procedures return two or more values. As it is not possible to
simultaneously inject multiple terms into a valid expression, the function option is not
available for them.

PIXELS and POINTS

PowerBASIC Compiler for Windows Version 10

2056 / 2126

For the purposes of this discussion on XPRINT, the terms PIXELS and POINTS are
considered to be synonyms. They may be used interchangeably.

XPRINT STREAM

The XPRINT Stream is the connection between XPRINT code and a host printer page.
 The XPrint Stream is created when you attach a particular printer with XPRINT ATTACH.
 From that moment forward, all XPrint code acts on that selected printer. This continues
until such time as you end your print job with XPRINT CLOSE.

PAGE UNITS

PAGE UNITS are used to measure the size of a graphical item, or to define a particular
position on an XPrint page. You can define page units to be points or scaled units of your
choice.

Initially, each XPrint session begins with Page Units set to points. You can change this to
scaled world coordinates of your choice with XPRINT SCALE.

By default, the upper left corner of a printer page is considered to be the X,Y position 0,0
and grows larger to the right or downward. The X axis is horizontal, while the Y axis is
vertical. Whenever an X,Y position is given, the X value is stated first.

XPRINT POSITION (POS)

Each time you draw text or graphics, it is displayed at the current XPrint position (POS).
 Upon completion, the POS is updated to the last point referenced. You can draw a
relative distance from the POS (using a STEP option), or set an entirely new position with
XPRINT SET POS.

TEXT CELL (ROW/COLUMN POSITION)

For ease of programming, a few procedures specify text position by row and column. In
this case, the position is measured in text cells, which is the space occupied by one
character. This works well with fixed width fonts, which is recommended. If a variable
width font is chosen, PowerBASIC must use the average character size for these
calculations, which can give imprecise results.

For compatibility with most current and prior versions of BASIC (PowerBASIC included),
code which references text rows and columns names the vertical term first (ROWS,
COLUMNS). Rows and columns are always numbered from one upward.

See also Printing, Printing Commands

XPRINT(CANVAS.X) function

XPRINT GET CANVAS statement
Purpose Retrieves the writable size of the attached host printer.

Syntax XPRINT GET CANVAS TO WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(CANVAS.X)
HeightVar! = XPRINT(CANVAS.Y)

Remarks XPRINT GET CANVAS retrieves the logical size of the client area (printable area) for the
attached host printer. This is the size of the page, minus the unprintable margins, without
any reductions for a CLIP area. The size is specified in Page Units, so it could return
scaled values if they were applied with XPRINT SCALE. This is very similar to XPRINT
GET CLIENT, with the single exception that scaled values (set by XPRINT SCALE) are
returned if they have been utilized. If executed without a host printer attached, error 57 is
generated.

PowerBASIC Compiler for Windows Version 10

2057 / 2126

See also XPRINT GET CLIENT, XPRINT GET CLIP, XPRINT GET SIZE, XPRINT GET SCALE,
XPRINT SCALE

XPRINT(CANVAS.Y) function

XPRINT GET CANVAS statement
Purpose Retrieves the writable size of the attached host printer.

Syntax XPRINT GET CANVAS TO WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(CANVAS.X)
HeightVar! = XPRINT(CANVAS.Y)

Remarks XPRINT GET CANVAS retrieves the logical size of the client area (printable area) for the
attached host printer. This is the size of the page, minus the unprintable margins, without
any reductions for a CLIP area. The size is specified in Page Units, so it could return
scaled values if they were applied with XPRINT SCALE. This is very similar to XPRINT
GET CLIENT, with the single exception that scaled values (set by XPRINT SCALE) are
returned if they have been utilized. If executed without a host printer attached, error 57 is
generated.

See also XPRINT GET CLIENT, XPRINT GET CLIP, XPRINT GET SIZE, XPRINT GET SCALE,
XPRINT SCALE

XPRINT(Cell.Size.X) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT CELL SIZE statement
Purpose Retrieve the character cell size including external leading.

Syntax XPRINT CELL SIZE TO WidthVar, HeightVar!

Function Form:
WidthVar! = XPRINT(Cell.Size.X)
HeightVar! = XPRINT(Cell.Size.Y)

Remarks XPRINT CELL SIZE retrieves the size of one character cell, for the current font, on the
attached printer. The returned cell size is specified in PAGE UNITS, and allows you to
calculate the number of text lines which will fit in a particular space. The height value is
the size of the displayed character, including external leading (if any) for this particular
font.

If the font is a fixed-width font, like Courier New or Lucida Console,the sizes returned are
as exact as possible, given the fractional rounding approximations necessary for some
scaled units. If the font is proportional, like Arial or Times New Roman, the width will be
the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the

PowerBASIC Compiler for Windows Version 10

2058 / 2126

character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the exact height of
characters without external leading, use XPRINT CHR SIZE.

See also XPRINT CELL, XPRINT CHR SIZE, XPRINT SET FONT, XPRINT TEXT SIZE

XPRINT(Cell.Size.Y) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT CELL SIZE statement
Purpose Retrieve the character cell size including external leading.

Syntax XPRINT CELL SIZE TO WidthVar, HeightVar!

Function Form:
WidthVar! = XPRINT(Cell.Size.X)
HeightVar! = XPRINT(Cell.Size.Y)

Remarks XPRINT CELL SIZE retrieves the size of one character cell, for the current font, on the
attached printer. The returned cell size is specified in PAGE UNITS, and allows you to
calculate the number of text lines which will fit in a particular space. The height value is
the size of the displayed character, including external leading (if any) for this particular
font.

If the font is a fixed-width font, like Courier New or Lucida Console,the sizes returned are
as exact as possible, given the fractional rounding approximations necessary for some
scaled units. If the font is proportional, like Arial or Times New Roman, the width will be
the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the
character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the exact height of
characters without external leading, use XPRINT CHR SIZE.

See also XPRINT CELL, XPRINT CHR SIZE, XPRINT SET FONT, XPRINT TEXT SIZE

XPRINT(Chr.Size.X) function

XPRINT CHR SIZE statement
Purpose Retrieve the character size for the current font on a host printer page.

Syntax XPRINT CHR SIZE TO WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(Chr.Size.X)
HeightVar! = XPRINT(Chr.Size.Y)

Remarks The character size is specified in the same terms (pixels or scaled units) as originally
stated. The height value retrieved is the actual size of the printed character without
including any external leading for this particular font.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2059 / 2126

If the font is a fixed-width font, like Courier New or Lucida Console, the sizes returned are
as exact as possible, given the fractional rounding approximations possible when
converting from pixels to other coordinates. If the font is proportional, like Arial or Times
New Roman, the width will be the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the
character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the total row height
including external leading, use XPRINT CELL SIZE.

See also XPRINT, XPRINT ATTACH, XPRINT CELL SIZE, XPRINT SET FONT, XPRINT TEXT SIZE

XPRINT(Chr.Size.Y) function

XPRINT CHR SIZE statement
Purpose Retrieve the character size for the current font on a host printer page.

Syntax XPRINT CHR SIZE TO WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(Chr.Size.X)
HeightVar! = XPRINT(Chr.Size.Y)

Remarks The character size is specified in the same terms (pixels or scaled units) as originally
stated. The height value retrieved is the actual size of the printed character without
including any external leading for this particular font.

If the font is a fixed-width font, like Courier New or Lucida Console, the sizes returned are
as exact as possible, given the fractional rounding approximations possible when
converting from pixels to other coordinates. If the font is proportional, like Arial or Times
New Roman, the width will be the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the
character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the total row height
including external leading, use XPRINT CELL SIZE.

See also XPRINT, XPRINT ATTACH, XPRINT CELL SIZE, XPRINT SET FONT, XPRINT TEXT SIZE

XPRINT(Client.X) function

XPRINT GET CLIENT statement
Purpose Retrieves the size of the client area (printable area) on the host printer page.

Syntax XPRINT GET CLIENT To WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(Client.X)
HeightVar! = XPRINT(Client.Y)

Remarks XPRINT GET CLIENT retrieves the physical size of the client area (printable area) for the
attached host printer. The size is always specified in Pixels (points). This is very similar
to XPRINT GET CANVAS, with the single exception that scaled values (set by XPRINT
SCALE) are not utilized. If executed without a host printer attached, error 57 is
generated.

See also XPRINT ATTACH, XPRINT GET CANVAS, XPRINT GET CLIP, XPRINT GET MARGIN,
XPRINT GET PPI, XPRINT GET SIZE

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2060 / 2126

XPRINT(Client.Y) function

XPRINT GET CLIENT statement
Purpose Retrieves the size of the client area (printable area) on the host printer page.

Syntax XPRINT GET CLIENT To WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(Client.X)
HeightVar! = XPRINT(Client.Y)

Remarks XPRINT GET CLIENT retrieves the physical size of the client area (printable area) for the
attached host printer. The size is always specified in Pixels (points). This is very similar
to XPRINT GET CANVAS, with the single exception that scaled values (set by XPRINT
SCALE) are not utilized. If executed without a host printer attached, error 57 is
generated.

See also XPRINT ATTACH, XPRINT GET CANVAS, XPRINT GET CLIP, XPRINT GET MARGIN,
XPRINT GET PPI, XPRINT GET SIZE

XPRINT(Clip.X) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET CLIP statement
Purpose Retrieves the size of the clip area on the selected printer.

Syntax XPRINT GET CLIP TO WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(Clip.X)
HeightVar! = XPRINT(Clip.Y)

Remarks The clip area of the printer is that space where print operations can be written. That is,
the clip area is that portion of the client area which is not protected (clipped) by the
XPRINT SET CLIP statement.

XPRINT GET CLIP retrieves the size of the clip area, and assigns these values to the
variables specified by WidthVar! and HeightVar!. The size is specified in PAGE UNITS
(pixels/points or scaled units). If no printer is selected, the values 0,0 are returned.

See also XPRINT GET CANVAS, XPRINT GET CLIENT, XPRINT SET CLIP

XPRINT(Clip.Y) function

Keyword Template
Purpose

Syntax

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2061 / 2126

Remarks

See also

Example

XPRINT GET CLIP statement
Purpose Retrieves the size of the clip area on the selected printer.

Syntax XPRINT GET CLIP TO WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(Clip.X)
HeightVar! = XPRINT(Clip.Y)

Remarks The clip area of the printer is that space where print operations can be written. That is,
the clip area is that portion of the client area which is not protected (clipped) by the
XPRINT SET CLIP statement.

XPRINT GET CLIP retrieves the size of the clip area, and assigns these values to the
variables specified by WidthVar! and HeightVar!. The size is specified in PAGE UNITS
(pixels/points or scaled units). If no printer is selected, the values 0,0 are returned.

See also XPRINT GET CANVAS, XPRINT GET CLIENT, XPRINT SET CLIP

XPRINT(COL) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT CELL statement
Purpose Sets or retrieves the next print position (LPR - Last Point Referenced), based upon the

row and column position of a text cell.

Syntax XPRINT CELL = RowValue&, ColValue&
XPRINT CELL TO RowVar&, ColVar&
XPRINT COL TO ColVar&
XPRINT ROW TO RowVar&

Function Form:
ColVar& = XPRINT(COL)
RowVar& = XPRINT(ROW)

Remarks XPRINT CELL is used to set or retrieve the print position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the page is considered to be cell 1,1.

The first form of XPRINT CELL moves the print position to the desired row and column. If
a value given is zero (0), that parameter is ignored and that position is not changed. The
second form of XPRINT CELL retrieves the current print position, and assigns the values

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2062 / 2126

to the variables specified by RowVar& and ColVar&.

The remaining forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

See also XPRINT CELL SIZE, XPRINT SET FONT, XPRINT SET WORDWRAP, XPRINT SET
WRAP, XPRINT SPLIT

XPRINT(COLLATE) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET COLLATE statement
Purpose Retrieves the XPRINT collate status.

Syntax XPRINT GET COLLATE TO CollateVar&

Function Form:
CollateVar& = XPRINT(COLLATE)

Remarks XPRINT allows you to set the collate status, if the printer driver supports both multiple
copies and collate capability. XPRINT GET COLLATE retrieves the collate status,
assigning the value to the long integer variable specified by CollateVar&. The following
equates are predefined in the compiler to symbolically represent the possible collate
status:

%DMCOLLATE_FALSE = 0
%DMCOLLATE_TRUE = 1

If this statement is executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT SET COLLATE

XPRINT(COLORMODE) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET COLORMODE statement
Purpose Retrieves the XPRINT colormode status.

Syntax XPRINT GET COLORMODE TO ColorVar&

Function Form:

PowerBASIC Compiler for Windows Version 10

2063 / 2126

ColorVar& = XPRINT(COLORMODE)

Remarks XPRINT allows you to set the color or monochrome print mode if the printer driver
supports it. XPRINT GET COLORMODE retrieves the colormode status, assigning the
value to the long integer variable specified by ColorVar&. The value zero may be returned
if colormode is not supported by the printer driver. The following equates are predefined in
the compiler to symbolically represent the possible status:

%DMCOLOR_MONOCHROME = 1
%DMCOLOR_COLOR = 2

If this statement is executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT SET COLORMODE

XPRINT(COPIES) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET COPIES statement
Purpose Retrieves the XPRINT copy count.

Syntax XPRINT GET COPIES TO CopyVar&

Function Form:

CopyVar& = XPRINT(COPIES)

Remarks XPRINT allows you to set the number of copies to be automatically printed, if it is
supported by the printer driver. XPRINT GET COPIES retrieves the copy count, assigning
the value to the long integer variable specified by CopyVar&. The default value is one (1).
 If this statement is executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT SET COPIES

XPRINT(DC) function

XPRINT GET DC statement
Purpose Retrieve the handle of the device context (DC) for the host printer page.

Syntax XPRINT GET DC TO hDC

Function Form:
hDC = XPRINT(DC)

Remarks If no host printer is currently attached, zero is returned. The DC handle may be used with
various Windows API functions to perform specialized operations on the host printer page.

See also XPRINT ATTACH

XPRINT(DUPLEX) function

PowerBASIC Compiler for Windows Version 10

2064 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET DUPLEX statement
Purpose Retrieve the XPRINT duplex status.

Syntax XPRINT GET DUPLEX TO DuplexVar&

Function Form:
DuplexVar& = XPRINT(DUPLEX)

Remarks XPRINT allows you to get/set the duplex status, if the printer supports printing on both
sides of a page. XPRINT GET DUPLEX retrieves the duplex status, assigning the value to
the long integer variable specified by DuplexVar&. The following equates are predefined in
the compiler to symbolically represent the possible duplex status:

%DMDUP_SIMPLEX = 1 (single sided printing)
%DMDUP_VERTICAL = 2 (page flipped on the vertical edge)
%DMDUP_HORIZONTAL = 3 (page flipped on the horizontal edge)

If the printer does not support duplex printing, the value zero (0) is returned. If this
statement is executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT SET DUPLEX

XPRINT(LINES) function

XPRINT GET LINES statement
Purpose Retrieve the number of lines that can be printed.

Syntax XPRINT GET LINES To LineVar&

Function Form:
LineVar& = XPRINT(LINES)

Remarks XPRINT GET LINES retrieves the number of lines of text which can be printed on the host
printer page, given the current selected font. Since

 statements do not generate an automatic formfeed when text is printed on the last line,
this statement can be used to determine when your program should execute an
XPRINT FORMFEED to move to the next printed page on a host printer. If
executed without a host printer attached, error 57 is generated.

See also XPRINT, XPRINT ATTACH, XPRINT SET FONT, XPRINT FORMFEED

XPRINT(MIX) function

XPRINT GET MIX statement
Purpose Retrieve the color mix mode for a host printer page.

Syntax XPRINT GET MIX To MixVar&

Function Form:

PowerBASIC Compiler for Windows Version 10

2065 / 2126

MixVar& = XPRINT(MIX)

Remarks Prior to any

 operations, a host printer must first be selected with XPRINT ATTACH. There are
16 mix modes available to use for mixing the drawing color with the color that already
exists at the drawing location. The mix mode equates are predefined in
PowerBASIC. If executed without a host printer attached, error 57 is generated.

%MIX_BLACKNESS Pixel is always 0 (black).
%MIX_NOTMERGESRC Pixel is the inverse of the MergeSrc color.
%MIX_MASKNOTSRC Pixel is a combination of the colors common to both

the pixel and the inverse of the source.
%MIX_NOTCOPYSRC Pixel is the inverse of the pen color.
%MIX_MASKSRCNOT Pixel is a combination of the colors common to both

the source and the inverse of the pixel.
%MIX_NOT Pixel is the inverse of the pixel color.
%MIX_XORSRC Pixel is a combination of the colors in the source and

in the pixel, but not in both.
%MIX_NOTMASKSRC Pixel is the inverse of the MaskSrc color.
%MIX_MASKSRC Pixel is a combination of the colors common to both

the source and the pixel.
%MIX_NOTXORSRC Pixel is the inverse of the XorSrc color.
%MIX_NOP Pixel remains unchanged.
%MIX_MERGENOTSRC Pixel is a combination of the source color and the

inverse of the pixel color.
%MIX_COPYSRC Pixel is the source color (default).
%MIX_MERGESRCNOT Pixel is a combination of the source color and the

inverse of the pixel color.
%MIX_MERGESRC Pixel is a combination of the source color and the

pixel color.
%MIX_WHITENESS Pixel is always 1 (white).

See also XPRINT ATTACH, XPRINT SET MIX

XPRINT(ORIENTATION) function

XPRINT GET ORIENTATION statement
Purpose Retrieve the paper orientation for a host printer page.

Syntax XPRINT GET ORIENTATION To OrentVar&

Function Form:
OrentVar& = XPRINT(ORIENTATION)

Remarks XPRINT GET ORIENTATION retrieves the orientation of the paper in the host printer,
assigning the value to the long integer variable specified by OrentVar&. The value 1
indicates portrait mode, while 2 indicates landscape mode. If the printer does not support
paper orientation, 0 is returned. If a host printer is not attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT SET ORIENTATION

XPRINT(OVERLAP) function

XPRINT GET OVERLAP statement
Purpose Retrieves the status of XPrint Overlap Mode.

Syntax XPRINT GET OVERLAP To OverlapVar&

Function Form:

PowerBASIC Compiler for Windows Version 10

2066 / 2126

OverlapVar& = XPRINT(OVERLAP)

Remarks XPRINT GET OVERLAP retrieves the status of overlap mode and assigns it to the variable
specified by OverlapVar&. If Overlap Mode is enabled, the value true (non-zero) is
assigned. If it's disabled, the value false (zero) is assigned instead. The value returned
reflects the status of the host printer which is currently attached to the XPrint stream.

With Overlap Mode, you can control how PowerBASIC treats XPrint operations which
involve a bounding rectangle (RECT structure) in their definition. Windows maintains
unique conventions for a RECT. The bottom and right coordinates of a RECT are
exclusive. In other words, the pixels at the bottom and right edges lie immediately
outside the rectangle. They are ignored. For example:

XPRINT BOX (0,0) - (50,50)

In this case, a box is drawn from 0,0 to 49,49. The final pixels at the bottom and right
edge are simply not drawn. However, if Overlap Mode is enabled with XPRINT SET
OVERLAP, the box is drawn from 0,0 to 50,50.

The Overlap Mode affects all XPRINT functions which take a bounding rectangle as a
parameter. This includes XPRINT SCALE, XPRINT BOX, XPRINT ELLIPSE, XPRINT
LINE, XPRINT POLYLINE, etc.

See also XPRINT SET OVERLAP

XPRINT(PAPER) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET PAPER statement
Purpose Retrieves the current paper size/type.

Syntax XPRINT GET PAPER TO PaperVar&

Function Form:
PaperVar& = XPRINT(PAPER)

Remarks XPRINT GET PAPER retrieves the paper style for which the host printer is currently
configured. The paper style is identified by an

 value which is assigned to the long integer variable specified by PaperVar&. The
following equates are predefined in the compiler, and represent the most common
paper styles:
%DMPAPER_LETTER = 1 Letter 8.5 x 11 inches
%DMPAPER_TABLOID = 3 Tabloid 11 x 17 inches
%DMPAPER_LEDGER = 4 Ledger 17 x 11 inches
%DMPAPER_LEGAL = 5 Legal 8.5 x 14 inches
%DMPAPER_STATEMENT = 6 Statement 5.5 x 8.5 inches
%DMPAPER_EXECUTIVE = 7 Executive 7.25 x 10.5 inches
%DMPAPER_A3 = 8 A3 297 x 420 mm
%DMPAPER_A4 = 9 A4 210 x 297 mm
%DMPAPER_A5 = 11 A5 148 x 210 mm
%DMPAPER_B4 = 12 B4 250 x 354 mm
%DMPAPER_B5 = 13 B5 182 x 257 mm

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2067 / 2126

%DMPAPER_FOLIO = 14 Folio 8.5 x 13 inches
%DMPAPER_QUARTO = 15 Quarto 215 x 275 mm
%DMPAPER_10X14 = 16 10x14 10 x 14 inches
%DMPAPER_11X17 = 17 11x17 11 x 17 inches
%DMPAPER_NOTE = 18 Note 8.5 x 11 inches
%DMPAPER_ENV_9 = 19 9 Envlp 3.875 x 8.875 inches
%DMPAPER_ENV_10 = 20 10 Envlp 4.125 x 9.5 inches

Other paper style codes may be defined by Windows or printer suppliers. You can use
XPRINT GET PAPERS to obtain a list of all the paper styles supported by the attached
host printer.

If the printer does not support paper style changes, the value zero is returned. If executed
without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET PAPERS, XPRINT SET PAPER

XPRINT(PIXEL...) function

XPRINT GET PIXEL statement
Purpose Retrieves the color of a pixel on a host printer page.

Syntax XPRINT GET PIXEL [STEP] (x!, y!) TO PixelVar&

Function Form:
PixelVar& = XPRINT(PIXEL [STEP], x!, y!)

Remarks Not all printer drivers support the ability to retrieve the color of a pixel. If this feature is not
supported, or if the coordinates are outside the printer client area, an invalid color value of
-1 is returned. If no host printer is attached, error 57 is generated.

See also Built In RGB Color Equates, XPRINT ATTACH, XPRINT COLOR, XPRINT SET PIXEL

XPRINT(POS.X) function

XPRINT GET POS statement
Purpose Retrieves the last point referenced (POS) by an

 statement.
Syntax XPRINT GET POS TO XVar!, YVar!

Function Form:
XVar! = XPRINT(POS.X)
YVar! = XPRINT(POS.Y)

Remarks XPRINT GET POS allows you to retrieve the last point referenced (POS) by XPRINT
statements. The coordinate points are specified in Page Units. If executed without a
host printer attached, an error 57 is generated, and the values 0,0 are returned.

See also XPRINT ATTACH, XPRINT SET POS

XPRINT(POS.Y) function

XPRINT GET POS statement
Purpose Retrieves the last point referenced (POS) by an

 statement.
Syntax

XPRINT GET POS TO XVar!, YVar!

PowerBASIC Compiler for Windows Version 10

2068 / 2126

Function Form:
XVar! = XPRINT(POS.X)
YVar! = XPRINT(POS.Y)

Remarks XPRINT GET POS allows you to retrieve the last point referenced (POS) by XPRINT
statements. The coordinate points are specified in Page Units. If executed without a
host printer attached, an error 57 is generated, and the values 0,0 are returned.

See also XPRINT ATTACH, XPRINT SET POS

XPRINT(PPI.X) function

XPRINT GET PPI statement
Purpose Retrieves the resolution of the host printer page.

Syntax XPRINT GET PPI TO XVar&, YVar&

Function Form:
XVar& = XPRINT(PPI.X)
YVar& = XPRINT(PPI.Y)

Remarks XPRINT GET PPI retrieves the resolution (points per inch) of the host printer page. The
resolution is always specified in pixels, regardless of any XPRINT SCALE option. If
executed without a host printer attached, error 57 is generated, and the values 0,0 are
returned. This statement is particularly useful in drawing items such as rulers and graphs
to a particular physical size. There are 25.4 millimeters per inch, so just divide by 25.4 to
convert from pixels per inch to pixels per millimeter.

See also XPRINT ATTACH, XPRINT GET CLIENT, XPRINT GET MARGIN, XPRINT GET SIZE

XPRINT(PPI.Y) function

XPRINT GET PPI statement
Purpose Retrieves the resolution of the host printer page.

Syntax XPRINT GET PPI TO XVar&, YVar&

Function Form:
XVar& = XPRINT(PPI.X)
YVar& = XPRINT(PPI.Y)

Remarks XPRINT GET PPI retrieves the resolution (points per inch) of the host printer page. The
resolution is always specified in pixels, regardless of any XPRINT SCALE option. If
executed without a host printer attached, error 57 is generated, and the values 0,0 are
returned. This statement is particularly useful in drawing items such as rulers and graphs
to a particular physical size. There are 25.4 millimeters per inch, so just divide by 25.4 to
convert from pixels per inch to pixels per millimeter.

See also XPRINT ATTACH, XPRINT GET CLIENT, XPRINT GET MARGIN, XPRINT GET SIZE

XPRINT(QUALITY) function

XPRINT GET QUALITY statement
Purpose Retrieves the print quality setting for the host printer.

Syntax XPRINT GET QUALITY To QualVar&

Function Form:
QualVar& = XPRINT(QUALITY)

PowerBASIC Compiler for Windows Version 10

2069 / 2126

Remarks XPRINT GET QUALITY retrieves the print quality setting for the host printer. The value 1
is draft mode, 2 is low resolution, 3 is medium resolution, and 4 is high resolution. If the
printer does not support print quality settings, 0 is returned. If no host printer is attached,
error 57 is generated.

See also XPRINT ATTACH, XPRINT SET QUALITY

XPRINT(ROW) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT CELL statement
Purpose Sets or retrieves the next print position (LPR - Last Point Referenced), based upon the

row and column position of a text cell.

Syntax XPRINT CELL = RowValue&, ColValue&
XPRINT CELL TO RowVar&, ColVar&
XPRINT COL TO ColVar&
XPRINT ROW TO RowVar&

Function Form:
ColVar& = XPRINT(COL)
RowVar& = XPRINT(ROW)

Remarks XPRINT CELL is used to set or retrieve the print position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the page is considered to be cell 1,1.

The first form of XPRINT CELL moves the print position to the desired row and column. If
a value given is zero (0), that parameter is ignored and that position is not changed. The
second form of XPRINT CELL retrieves the current print position, and assigns the values
to the variables specified by RowVar& and ColVar&.

The remaining forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

See also XPRINT CELL SIZE, XPRINT SET FONT, XPRINT SET WORDWRAP, XPRINT SET
WRAP, XPRINT SPLIT

XPRINT(SELECTION) function

Keyword Template
Purpose

Syntax

Remarks

PowerBASIC Compiler for Windows Version 10

2070 / 2126

See also

Example

XPRINT GET SELECTION statement
Purpose Retrieves the status of the SELECTION flag.

Syntax XPRINT GET SELECTION TO SelectVar&

Function Form:
SelectVar& = XPRINT(SELECTION)

Remarks You may elect to limit a particular print job to just that part of the total which is
selected/highlighted. If so, it is the programmer's responsibility to limit XPRINT output to
just the selected region.

The selection flag can only be set by the user in the Print Dialog which is displayed when
XPRINT ATTACH is executed with the CHOOSE option. It cannot be set under program
control. This flag is maintained only to give the programmer information about the user's
request. If you do not wish to honor this option, you should disable it in XPRINT ATTACH
CHOOSE.

If XPRINT GET SELECTION is executed without a host printer attached, an error 57 is
generated.

See also XPRINT ATTACH

XPRINT(SIZE.X) function

XPRINT GET SIZE statement
Purpose Retrieve the total size of the host printer page.

Syntax XPRINT GET SIZE TO WidthVar&, HeightVar&

Function Form:
WidthVar& = XPRINT(SIZE.X)
HeightVar& = XPRINT(SIZE.Y)

Remarks XPRINT GET SIZE allows you to retrieve the full size of the host printer page, including
both the printable client area and any unprintable margins. The sizes are specified in
pixels (points). If no host printer is attached, error 57 is generated, and the values 0,0 are
returned.

See also XPRINT ATTACH, XPRINT GET CLIENT, XPRINT GET MARGIN, XPRINT GET MIX,
XPRINT GET PPI

XPRINT(SIZE.Y) function

XPRINT GET SIZE statement
Purpose Retrieve the total size of the host printer page.

Syntax XPRINT GET SIZE TO WidthVar&, HeightVar&

Function Form:
WidthVar& = XPRINT(SIZE.X)
HeightVar& = XPRINT(SIZE.Y)

Remarks XPRINT GET SIZE allows you to retrieve the full size of the host printer page, including
both the printable client area and any unprintable margins. The sizes are specified in
pixels (points). If no host printer is attached, error 57 is generated, and the values 0,0 are

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2071 / 2126

returned.

See also XPRINT ATTACH, XPRINT GET CLIENT, XPRINT GET MARGIN, XPRINT GET MIX,
XPRINT GET PPI

XPRINT(STRETCHMODE) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET STRETCHMODE statement
Purpose Retrieves the default bitmap stretching mode for the attached DC.

Syntax XPRINT GET STRETCHMODE TO ModeVar&

Function Form:
ModeVar& = XPRINT(STRETCHMODE)

Remarks There are several operations in PowerBASIC which involve stretching or condensing
images on bitmaps, most notably XPRINT STRETCH. As individual points must be added
or removed, there is a good chance that the quality of the image will be degraded.
 However, if you describe the nature of the image by defining a StretchMode, you can
substantially enhance the appearance.

The default StretchMode is maintained individually for each DC. You can retrieve the
default mode with this statement, or set it with XPRINT SET STRETCHMODE. Of course,
you can also override the default StretchMode when you execute one of the affected
statements.

The 4 stretch mode equates are predefined in PowerBASIC.

%
BLACKONWHIT
E

1 This is the default Windows stretch mode, and is most
appropriate for monochrome bitmaps, or those with blocks of
color. Performs a boolean OR of eliminated and existing
pixels. It preserves black pixels at the expense of white
pixels.

%
WHITEONBLAC
K

2 Performs a boolean OR of eliminated and existing pixels. It
preserves white pixels at the expense of black pixels.

%
COLORONCOL
OR

3 Deletes eliminated lines of pixels without trying to preserve
their information.

%HALFTONE 4 This provides the highest quality for complex color bitmaps.
 The average color of the destination pixel block is kept
approximately the same as the source pixel block.

See also XPRINT COPY, XPRINT RENDER, XPRINT STRETCH, XPRINT SET STRETCHMODE

XPRINT(TEXT.SIZE.X...) function

PowerBASIC Compiler for Windows Version 10

2072 / 2126

XPRINT TEXT SIZE statement
Purpose Calculate the size of text to be printed on a host printer.

Syntax XPRINT TEXT SIZE txt$ To nWidth!, nHeight!

Function Form:
WidthVar! = XPRINT(TEXT.SIZE.X, txt$)
HeightVar! = XPRINT(TEXT.SIZE.Y, txt$)

Remarks This statement calculates the total size of the printed text, based upon the current font for
the host printer. The sizes returned are specified in Page Units.

This allows you to easily calculate the appropriate print position, particularly when using a
proportional font. If this statement is executed without a host printer attached, error 57 is
generated.

See also XPRINT CELL SIZE, XPRINT CHR SIZE, XPRINT SET FONT

Example FUNCTION PBMAIN
 ' The following example draws the text both horizontally
 ' and vertically centered on the host printer page

 LOCAL x, y, w, h, w2, h2 AS LONG
 LOCAL sText AS STRING
 sText = "PowerBASIC"

 XPRINT ATTACH "Lexmark C750"
 XPRINT COLOR %BLUE, -2 ' blue text, clear background
 XPRINT FONT "Times New Roman", 18, 3 ' 18p, bold, italic

 XPRINT GET CLIENT TO w, h ' get client size
 XPRINT TEXT SIZE sText TO w2, h2 ' get text size
 x = (w-w2) / 2 ' centered x-pos
 y = (h-h2) / 2 ' centered y-pos

 XPRINT SET POS (x, y) ' set position
 XPRINT sText ' draw the text
 XPRINT CLOSE
END FUNCTION

XPRINT(TEXT.SIZE.Y...) function

XPRINT TEXT SIZE statement
Purpose Calculate the size of text to be printed on a host printer.

Syntax XPRINT TEXT SIZE txt$ To nWidth!, nHeight!

Function Form:
WidthVar! = XPRINT(TEXT.SIZE.X, txt$)
HeightVar! = XPRINT(TEXT.SIZE.Y, txt$)

Remarks This statement calculates the total size of the printed text, based upon the current font for
the host printer. The sizes returned are specified in Page Units.

This allows you to easily calculate the appropriate print position, particularly when using a
proportional font. If this statement is executed without a host printer attached, error 57 is
generated.

See also XPRINT CELL SIZE, XPRINT CHR SIZE, XPRINT SET FONT

Example FUNCTION PBMAIN
 ' The following example draws the text both horizontally
 ' and vertically centered on the host printer page

PowerBASIC Compiler for Windows Version 10

2073 / 2126

 LOCAL x, y, w, h, w2, h2 AS LONG
 LOCAL sText AS STRING
 sText = "PowerBASIC"

 XPRINT ATTACH "Lexmark C750"
 XPRINT COLOR %BLUE, -2 ' blue text, clear background
 XPRINT FONT "Times New Roman", 18, 3 ' 18p, bold, italic

 XPRINT GET CLIENT TO w, h ' get client size
 XPRINT TEXT SIZE sText TO w2, h2 ' get text size
 x = (w-w2) / 2 ' centered x-pos
 y = (h-h2) / 2 ' centered y-pos

 XPRINT SET POS (x, y) ' set position
 XPRINT sText ' draw the text
 XPRINT CLOSE
END FUNCTION

XPRINT(TRAY) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET TRAY statement
Purpose Retrieves the active printer tray.

Syntax XPRINT GET TRAY TO TrayVar&

Function Form:
TrayVar& = XPRINT(TRAY)

Remarks XPRINT GET TRAY retrieves the paper tray which is active on the host printer. A
descriptive value is assigned to the long integer variable specified by TrayVar&. The
following equates are predefined in the compiler, and represent the most common paper
trays:

%DMBIN_UPPER = 1
%DMBIN_LOWER = 2
%DMBIN_MIDDLE = 3
%DMBIN_MANUAL = 4
%DMBIN_ENVELOPE = 5
%DMBIN_ENVMANUAL = 6
%DMBIN_AUTO = 7
%DMBIN_TRACTOR = 8
%DMBIN_SMALLFMT = 9
%DMBIN_LARGEFMT = 10
%DMBIN_LARGECAPACITY = 11
%DMBIN_CASSETTE = 14
%DMBIN_FORMSOURCE = 15

Other tray codes may be defined by Windows or printer suppliers, so your program
should be written to consider that possibility. You can use XPRINT GET TRAYS to obtain

PowerBASIC Compiler for Windows Version 10

2074 / 2126

a list of all the paper trays supported by the attached host printer.

If the printer does not support the tray change requested, error 5 is generated. If
executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET TRAYS, XPRINT SET TRAY

XPRINT(WORDWRAP) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET WORDWRAP statement
Purpose Retrieves the status of XPRINT WordWrap Mode.

Syntax XPRINT GET WORDWRAP TO WrapVar&

Function Form:
WrapVar& = XPRINT(WORDWRAP)

Remarks XPRINT GET WORDWRAP retrieves the status of wordwrap mode and assigns it to the
variable specified by WrapVar&. If WordWrap Mode is enabled, the value true (non-zero)
is assigned. If it's disabled, the value false (zero) is assigned instead. The value returned
reflects the status of the attached printer.

With WordWrap Mode, you can control how PowerBASIC prints text on an XPRINT page
when it reaches the end of a line. Since XPRINT operates on a full page basis, the default
is to ignore text which is printed past the end of the line. This can be modified under
program control by using XPRINT SET WORDWRAP.

When WordWrap mode is enabled, it affects only XPRINT print operations. If XPRINT print
attempts to display a word beyond the end of a row, the entire word is automatically
wrapped to the first column of the next row.

See also XPRINT CELL, XPRINT GET WRAP, XPRINT SET WORDWRAP, XPRINT SET WRAP,
XPRINT SPLIT

XPRINT(WRAP) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET WRAP statement

PowerBASIC Compiler for Windows Version 10

2075 / 2126

Purpose Retrieves the status of XPRINT Wrap Mode.

Syntax XPRINT GET WRAP TO WrapVar&

Function Form:
WrapVar& = XPRINT(WRAP)

Remarks XPRINT GET WRAP retrieves the status of wrap mode and assigns it to the variable
specified by WrapVar&. If Wrap Mode is enabled, the value true (non-zero) is assigned.
 If it's disabled, the value false (zero) is assigned instead. The value returned reflects the
status of the attached printer.

With Wrap Mode, you can control how PowerBASIC prints text on an XPRINT page when
it reaches the end of a line. Since XPRINT operates on a full page basis, the default is to
ignore text which is printed past the end of the line. This can be modified under program
control by using XPRINT SET WRAP.

When Wrap Mode is enabled, it affects only XPRINT print operations. If XPRINT print
attempts to display a character beyond the end of a row, it is automatically wrapped to
the first column of the next row.

See also XPRINT CELL, XPRINT GET WORDWRAP, XPRINT SET WORDWRAP, XPRINT SET
WRAP, XPRINT SPLIT

XPRINT$ function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET ATTACH statement
Purpose Retrieve the name of the attached host printer.

Syntax XPRINT GET ATTACH TO PrinterVar$

Function Form:
PrinterVar$ = XPRINT$(ATTACH)
PrinterVar$ = XPRINT$

Remarks XPRINT GET ATTACH returns the name of the attached host printer, which is the printer
that would be used by XPRINT statements. If there is no attached host printer, an empty
string is returned. XPRINT$ is typically used to detect if an XPRINT ATTACH operation
was successful.

See also XPRINT ATTACH

XPRINT$(ATTACH) function

Keyword Template
Purpose

Syntax

Remarks

PowerBASIC Compiler for Windows Version 10

2076 / 2126

See also

Example

XPRINT GET ATTACH statement
Purpose Retrieve the name of the attached host printer.

Syntax XPRINT GET ATTACH TO PrinterVar$

Function Form:
PrinterVar$ = XPRINT$(ATTACH)
PrinterVar$ = XPRINT$

Remarks XPRINT GET ATTACH returns the name of the attached host printer, which is the printer
that would be used by XPRINT statements. If there is no attached host printer, an empty
string is returned. XPRINT$ is typically used to detect if an XPRINT ATTACH operation
was successful.

See also XPRINT ATTACH

XPRINT$(PAPERS) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET PAPERS statement
Purpose Retrieves a list of supported paper types.

Syntax XPRINT GET PAPERS TO PapersVar$

Function Form:
PapersVar$ = XPRINT$(PAPERS)

Remarks XPRINT GET PAPERS retrieves a

 which contains a list of all of the paper types supported by the attached host printer.
 This string is assigned to the string variable specified by PapersVar$.
The string contains a comma-delimited list of papertype, papername... repeated as many
times as necessary. For example:

"1,Letter,5,Legal,7,Executive,20,Envelope #10"

You can use PARSECOUNT to determine the number of delimited fields in the string, and
PARSE$() to easily extract the type numbers and names. The following equates are
predefined in the compiler, and represent the most common paper styles:

%DMPAPER_LETTER = 1 Letter 8.5 x 11 inches
%DMPAPER_TABLOID = 3 Tabloid 11 x 17 inches
%DMPAPER_LEDGER = 4 Ledger 17 x 11 inches
%DMPAPER_LEGAL = 5 Legal 8.5 x 14 inches
%DMPAPER_STATEMENT = 6 Statement 5.5 x 8.5 inches
%DMPAPER_EXECUTIVE = 7 Executive 7.25 x 10.5 inches
%DMPAPER_A3 = 8 A3 297 x 420 mm
%DMPAPER_A4 = 9 A4 210 x 297 mm

PowerBASIC Compiler for Windows Version 10

2077 / 2126

%DMPAPER_A5 = 11 A5 148 x 210 mm
%DMPAPER_B4 = 12 B4 250 x 354 mm
%DMPAPER_B5 = 13 B5 182 x 257 mm
%DMPAPER_FOLIO = 14 Folio 8.5 x 13 inches
%DMPAPER_QUARTO = 15 Quarto 215 x 275 mm
%DMPAPER_10X14 = 16 10x14 10 x 14 inches
%DMPAPER_11X17 = 17 11x17 11 x 17 inches
%DMPAPER_NOTE = 18 Note 8.5 x 11 inches
%DMPAPER_ENV_9 = 19 9 Envlp 3.875 x 8.875 inches
%DMPAPER_ENV_10 = 20 10 Envlp 4.125 x 9.5 inches

Other paper style codes may be defined by Windows or printer suppliers. If executed
without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET PAPERS, XPRINT SET PAPER

XPRINT$(TRAYS) function

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET TRAYS statement
Purpose Retrieves a list of supported paper trays.

Syntax XPRINT GET TRAYS TO TrayVar$

Function Form:
TrayVar$ = XPRINT$(TRAYS)

Remarks XPRINT GET TRAYS retrieves a

 which contains a list of all of the paper trays supported by the attached host printer.
 This string is assigned to the string variable specified by TrayVar$.
The string contains a comma-delimited list of traytype, trayname... repeated as many
times as necessary. For example:

"1,Upper,2,Lower,5,Envelope"

You can use PARSECOUNT to determine the number of delimited fields in the string, and
PARSE$() to easily extract the tray numbers and names. The following equates are
predefined in the compiler, and represent the most common trays:

%DMBIN_UPPER = 1
%DMBIN_LOWER = 2
%DMBIN_MIDDLE = 3
%DMBIN_MANUAL = 4
%DMBIN_ENVELOPE = 5
%DMBIN_ENVMANUAL = 6
%DMBIN_AUTO = 7
%DMBIN_TRACTOR = 8
%DMBIN_SMALLFMT = 9
%DMBIN_LARGEFMT = 10
%DMBIN_LARGECAPACITY = 11
%DMBIN_CASSETTE = 14
%DMBIN_FORMSOURCE = 15

PowerBASIC Compiler for Windows Version 10

2078 / 2126

Other paper style codes may be defined by Windows or printer suppliers. If executed
without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET TRAY, XPRINT SET TRAY

XPRINT ARC statement

XPRINT ARC statement
Purpose Draw an arc on a host printer page.

Syntax XPRINT ARC (x1!, y1!) - (x2!, y2!), arcStart!, arcEnd! [, rgbColor&]

Remarks An arc is a section of a circle or an ellipse. To specify a particular arc, you would first
define the full circle or ellipse of which it is a part, and then specify the points on the
ellipse where the arc starts and stops.

The full circle or ellipse is defined by its bounding rectangle, which is the smallest
rectangle which can be drawn around the circle or ellipse. For example, if the circle is
centered at position (400,400), with a radius of 100 pixels, the upper left corner (x1,y1) of
the bounding rectangle is (300,300), and the lower right corner (x2,y2) is (500,500).

The start point and end point of the arc are specified by their angle, which must be given
in radians. A complete circle or ellipse is 2*pi radians. On a 12-hour clock-face, the values
0 and 2*pi both refer to the position of 3 o'clock, while the value 1*pi refers to the position
of 9 o'clock. Other positions are specified by a radian value relative to these. In
PowerBASIC, arcs are always drawn counter-clockwise from the starting point to the
ending point.

Prior to any

 operations, a host printer must first be selected with XPRINT ATTACH. The
coordinate points are specified in pixels (or world coordinates, if those were chosen
with XPRINT SCALE). Line width can be set using XPRINT WIDTH. If line width is
set to 1 (the default), the line style can be set with XPRINT STYLE. Because of the
nature of an arc, XPRINT ARC neither uses, nor updates, (last point referenced). If
executed without a host printer attached, error 57 is generated.

x1!, y1! The upper left corner of the bounding rectangle of the full circle or ellipse.

x2!, y2! The lower right corner of the bounding rectangle of the full circle or ellipse.

ArcStart! The starting angle of the arc, in radians, from 0 to 2*pi.

ArcEnd! The ending angle of the arc, in radians, from 0 to 2*pi radians. Note that arcs are always
drawn counter-clockwise from arcStart! to arcEnd!. Compared with a 12-hour clock-face,
0 or 2*pi radians is at 3 o'clock, and 1*pi radians is at 9 o'clock.

rgbColor& Optional RGB color for the arc. If omitted (or -1), the current foreground color for the host
printer page is used.

See also Built In RGB Color Equates, XPRINT ATTACH, XPRINT COLOR, XPRINT ELLIPSE,
XPRINT PIE, XPRINT STYLE, XPRINT WIDTH

Example ' Draw two arcs that combine into a circle.
' The upper half uses the default foreground color.
' The lower half is drawn in red.
LOCAL Pi AS DOUBLE
Pi = 4 * ATN(1) ' Calculate Pi
XPRINT ARC (5, 5) - (105, 105), 0, Pi ' Upper half
XPRINT ARC (5, 5) - (105, 105), Pi, 0, %RED ' Lower half

XPRINT ATTACH statement

PowerBASIC Compiler for Windows Version 10

2079 / 2126

XPRINT ATTACH statement
Purpose Connect a host-based (GDI) printer for use with

code.
Syntax XPRINT ATTACH {DEFAULT | PrinterName$} [,JobName$]

XPRINT ATTACH CHOOSE [USING Flags&] [,JobName$]

Remarks XPRINT ATTACH connects to a host-based (Windows-only or GDI-based) printer for use
with subsequent XPRINT operations. Host-based printing is device-independent and
performed through the Windows printing system and printer driver. Device independence
can be achieved because the printer driver handles the task of converting text into the
manufacturers proprietary binary format used by the printer.

To send device-dependent print data (such as plain text) to a line printer device, use the
LPRINT ATTACH statement instead.

XPRINT ATTACH allows you to change the printer device used by XPRINT operation.
When executed, the current connection (if any) is closed and the new connection is
established.

DEFAULT If DEFAULT is specified, the default printer (as set in the Printers applet in Control Panel)
is used. For example:

XPRINT ATTACH DEFAULT

CHOOSE If CHOOSE is specified, the Choose Printer common dialog is opened, allowing the user
to select from the list of installed printers. For example:

XPRINT ATTACH CHOOSE

With CHOOSE, you may elect to include an optional numeric expression called Flags&.
 This value consists of one or more of the following equates to control the execution of the
Printer Dialog:

%PD_ALLPAGES "All Pages" button is the default.

%
PD_SELECTION

"Selection" button is the default.

%
PD_PAGENUMS

"Numbered Pages" button is the default. (Only one of the above
is allowed)

%
PD_NOSELECTI
ON

Disables the "Selection" button.

%
PD_NOPAGENU
MS

Disables the "Numbered Pages" button.

%PD_COLLATE "Collate" option is checked.

%
PD_PRINTTOFIL
E

"Print To File" option is checked.

%
PD_DISABLEPRI
NTTOFILE

Disables the "Print To File" option.

%
PD_HIDEPRINTT
OFILE

Hides the "Print To File" option.

PrinterName$ The name of the printer to attach (as shown in the Printers applet in Control Panel, or
returned by the PRINTER$ function). printername$ must be a valid device name and
cannot exceed 259 characters in length. For example:

XPRINT ATTACH "HP LaserJet 5MP"

JobName$ The name of the print job. This will be shown in the print spooler. If you do not supply a
name, "Printjob" is used by default.

PowerBASIC Compiler for Windows Version 10

2080 / 2126

If XPRINT ATTACH is not successful, XPRINT$ returns an empty

. Error 68 ("device unavailable") is generated if an invalid printer was specified. No
error is generated if the user cancels the Choose Printer dialog (with XPRINT
ATTACH CHOOSE). Therefore, for host-based printing, applications should always
use XPRINT ATTACH to explicitly select the intended host-based printer, then test
for a successful selection with the XPRINT$ and ERR functions to ensure the host-
based printer selection was successful.
Unlike direct printing (LPRINT ATTACH), host-based printing is handled by a printer driver
and the operating system's spooler subsystem. Therefore, spooler settings such as "work
offline" in the Printer Properties dialog will not impede the creation of a spooled print job.
Once all the data has been sent to the printer, detach the printer so other applications
can use it., with the XPRINT CLOSE statement.

Host-based printers use proprietary control protocols, unlike line printers, so it is usually
not possible to send them printer-dependent control codes. To attach a line printer, use
LPRINT ATTACH instead of XPRINT ATTACH.

Note: You can enumerate the available printers with the PRINTERCOUNT and PRINTER$
functions.

See also LPRINT ATTACH, PRINTER$, XPRINT CANCEL, XPRINT CLOSE, XPRINT GET ATTACH,
XPRINT GET PAGES, XPRINT GET SELECTION

Example ERRCLEAR
XPRINT ATTACH "HP DeskJet 960c"
IF ERR = 0 AND LEN(XPRINT$) > 0 THEN
 XPRINT COLOR RGB(0,0,255) ' Blue
 XPRINT "This is your printer talking"
 XPRINT FORMFEED ' Issue a formfeed
 XPRINT CLOSE ' Deselect the printer
END IF

XPRINT BOX statement

XPRINT BOX statement
Purpose Draw a box with square or rounded corners on a host printer page.

Syntax XPRINT BOX (x1!, y1!) - (x2!, y2!) [, [corner&] [, [rgbColor&] [,
[fillcolor&] [, [fillstyle&]]]]]

Remarks Prior to any

 operations, a host printer must first be selected with XPRINT ATTACH. The coordinate
points are specified in pixels (or world coordinates, if those were chosen with XPRINT
SCALE). Line width can be set using XPRINT WIDTH. If line width is set to 1 (the
default), the line style can be set with XPRINT STYLE. Because of the nature of a box,
XPRINT BOX neither uses, nor updates, (last point referenced). If executed without a
host printer attached, error 57 is generated.
Windows graphic conventions consider the bottom and right coordinates of a BOX to be
exclusive. The pixels at the bottom and right edges are not drawn unless OVERLAP MODE
is enabled. See XPRINT SET OVERLAP for details.

x1!, y1! The upper left corner of the box.

x2!, y2! The lower right corner of the box.

corner& The percentage of roundness of the corners, in the range of 0 to 100. A value of zero creates
square corners, while 100 creates a circle/oval. A value of 20 being most common for a
pleasant, rounded appearance. If corner& is omitted, the default is 0, which creates a
rectangle with square corners.

PowerBASIC Compiler for Windows Version 10

2081 / 2126

rgbColor& Optional RGB color of the box edge. If omitted (or -1), the edge color defaults to the current
foreground color for the host printer page.

fillcolor& Optional RGB color of the box interior. If fillcolor& is omitted (or -2), the interior of the box is
not filled, allowing the background to show through. If fillcolor& is -1, the interior is painted
with the same color as the edge. Otherwise, fillcolor& specifies the RGB color to be used.

fillstyle& Optional fill style (pattern) to be used. If fillstyle& is omitted, the default fill style is solid (0).
If a hatch pattern is chosen (1 to 6), the foreground color is specified by the fillcolor&, while
the background is specified by the default background color for the host printer page. The
optional fillstyle& may be:

0 Solid (default)
1 Horizontal Lines
2 Vertical Lines
3 Upward Diagonal Lines
4 Downward Diagonal Lines
5 Crossed Lines
6 Diagonal Crossed Lines

See also Built In RGB Color Equates, XPRINT ATTACH, XPRINT COLOR, XPRINT LINE, XPRINT SET
OVERLAP, XPRINT STYLE, XPRINT WIDTH

Example ' Draw rectangle with square corners and default colors.
XPRINT BOX (10, 10) - (100, 80)

' Draw a blue rectangle with 20% rounded corners,
' filled with a light-gray, diagonal cross pattern
XPRINT BOX (15, 15) - (95, 75), 20, %BLUE, RGB(191,191,191), 6

XPRINT CANCEL statement

XPRINT CANCEL statement
Purpose Cancel a print job on the host printer.

Syntax XPRINT CANCEL

Remarks XPRINT CANCEL deletes the current print job and detaches the host printer, as long as
XPRINT CLOSE has not yet been executed. This function is generally used to abort the
print process when an error occurs.

See also XPRINT ATTACH, XPRINT CLOSE

XPRINT CELL statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT CELL statement
Purpose Sets or retrieves the next print position (LPR - Last Point Referenced), based upon the

row and column position of a text cell.

PowerBASIC Compiler for Windows Version 10

2082 / 2126

Syntax XPRINT CELL = RowValue&, ColValue&
XPRINT CELL TO RowVar&, ColVar&
XPRINT COL TO ColVar&
XPRINT ROW TO RowVar&

Function Form:
ColVar& = XPRINT(COL)
RowVar& = XPRINT(ROW)

Remarks XPRINT CELL is used to set or retrieve the print position, based upon the row and column
position of a Text Cell. That is the row and column position where the next printed text
will be displayed. RowValue& specifies the horizontal screen row (starting at 1) at which
to position the cursor. ColValue& specifies the vertical screen column (starting at 1) at
which to position the cursor. Since row and column numbers start at one (1), the upper
left corner of the page is considered to be cell 1,1.

The first form of XPRINT CELL moves the print position to the desired row and column. If
a value given is zero (0), that parameter is ignored and that position is not changed. The
second form of XPRINT CELL retrieves the current print position, and assigns the values
to the variables specified by RowVar& and ColVar&.

The remaining forms allow you to retrieve just a single value, either row or column, and are
supported in both statement and function form.

See also XPRINT CELL SIZE, XPRINT SET FONT, XPRINT SET WORDWRAP, XPRINT SET
WRAP, XPRINT SPLIT

XPRINT CELL SIZE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT CELL SIZE statement
Purpose Retrieve the character cell size including external leading.

Syntax XPRINT CELL SIZE TO WidthVar, HeightVar!

Function Form:
WidthVar! = XPRINT(Cell.Size.X)
HeightVar! = XPRINT(Cell.Size.Y)

Remarks XPRINT CELL SIZE retrieves the size of one character cell, for the current font, on the
attached printer. The returned cell size is specified in PAGE UNITS, and allows you to
calculate the number of text lines which will fit in a particular space. The height value is
the size of the displayed character, including external leading (if any) for this particular
font.

If the font is a fixed-width font, like Courier New or Lucida Console,the sizes returned are
as exact as possible, given the fractional rounding approximations necessary for some
scaled units. If the font is proportional, like Arial or Times New Roman, the width will be
the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the
character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the exact height of

PowerBASIC Compiler for Windows Version 10

2083 / 2126

characters without external leading, use XPRINT CHR SIZE.

See also XPRINT CELL, XPRINT CHR SIZE, XPRINT SET FONT, XPRINT TEXT SIZE

XPRINT CHR SIZE statement

XPRINT CHR SIZE statement
Purpose Retrieve the character size for the current font on a host printer page.

Syntax XPRINT CHR SIZE TO WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(Chr.Size.X)
HeightVar! = XPRINT(Chr.Size.Y)

Remarks The character size is specified in the same terms (pixels or scaled units) as originally
stated. The height value retrieved is the actual size of the printed character without
including any external leading for this particular font.

If the font is a fixed-width font, like Courier New or Lucida Console, the sizes returned are
as exact as possible, given the fractional rounding approximations possible when
converting from pixels to other coordinates. If the font is proportional, like Arial or Times
New Roman, the width will be the average size for the entire font.

External leading is the vertical distance from the bottom of one character to the top of the
character below it. This value is specified by the font in use. It may vary from zero to a
larger value, depending upon the font and point size. To retrieve the total row height
including external leading, use XPRINT CELL SIZE.

See also XPRINT, XPRINT ATTACH, XPRINT CELL SIZE, XPRINT SET FONT, XPRINT TEXT SIZE

XPRINT CLOSE statement

XPRINT CLOSE statement
Purpose Detach a host printer so printing may begin.

Syntax XPRINT CLOSE

Remarks XPRINT CLOSE detaches the printer from the current process, and allows printing to a
HOST printer to begin. If XPRINT CLOSE is not executed, printed data may be lost.

See also XPRINT ATTACH, XPRINT CANCEL

XPRINT COLOR statement

XPRINT COLOR statement
Purpose Set the foreground color (and, optionally, the background color) for various

 statements.
Syntax XPRINT COLOR foreground& [, background&]

Remarks Colors are expressed as RGB values, or use -1 for the default color. If the background
parameter is -2, the background is made transparent. If either parameter is -3, the existing
color is not changed. A host printer must first be connected with XPRINT ATTACH. If a
host printer is not attached, error 57 is generated.

See also Built In RGB Color Equates, XPRINT, XPRINT ATTACH

Example ' Set colors to red foreground and blue background.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2084 / 2126

XPRINT COLOR %RED, RGB(0,0,191)

XPRINT COPY statement

XPRINT COPY statement
Purpose Copy a

 to a host printer page.
Syntax XPRINT COPY hbmpSource???, id& [, style&]

XPRINT COPY hbmpSource???, id& TO (x!, y!) [, style&]
XPRINT COPY hbmpSource???, id&, (x1!, y1!)-(x2!, y2!) TO (x!, y!) [, style
%]

Remarks You can copy a complete bitmap, or a portion of it, to the host printer page. The
expression hbmpSource??? specifies the handle of the source bitmap or window. The
expression id& is the unique control identifier in the range 1 to 65535, as assigned with
the CONTROL ADD GRAPHIC statement. id& must be 0 for a GRAPHIC WINDOW or a

. The destination of the copy operation is the host printer page. You must use care
that your parameters are valid for the specified bitmaps, or results of the operation are
undefined.
The first form of the XPRINT COPY statement copies the complete bitmap, positioning it
at (0,0), which is the upper left corner of the destination.

The second form of XPRINT COPY also copies the complete bitmap, but positions it at
the point specified by the parameter (x!, y!).

The third form copies a portion of the bitmap, positioning it at the point specified by the
parameter (x!, y!). If style& is included, it is one of the following values:

%mix_Blackness Pixel is always 0 (black).
%mix_NotMergeSrc Pixel is the inverse of the MergeSrc color.
%mix_MaskNotSrc Pixel is a combination of the colors common to both the pixel and

the inverse of the source.
%mix_NotCopySrc Pixel is the inverse of the pen color.
%mix_MaskSrcNot Pixel is a combination of the colors common to both the source

and the inverse of the pixel.
%mix_Not Pixel is the inverse of the pixel color.
%mix_XorSrc Pixel is a combination of the colors in the source and in the pixel,

but not in both.
%mix_NotMaskSrc Pixel is the inverse of the MaskSrc color.
%mix_MaskSrc Pixel is a combination of the colors common to both the source

and the pixel.
%mix_NotXorSrc Pixel is the inverse of the XorSrc color.
%mix_Nop Pixel remains unchanged.
%mix_MergeNotSrc Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_CopySrc Pixel is the source color (default).
%mix_MergeSrcNot Pixel is a combination of the source color and the inverse of the

pixel color.
%mix_MergeSrc Pixel is a combination of the source color and the pixel color.
%mix_Whiteness Pixel is always 1 (white).

A host printer must first be connected with XPRINT ATTACH. If a host printer is not
attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT RENDER, XPRINT STRETCH, XPRINT SET STRETCHMODE

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2085 / 2126

XPRINT ELLIPSE statement

XPRINT ELLIPSE statement
Purpose Draw an ellipse or a circle on a host printer page.

Syntax XPRINT ELLIPSE (x1!, y1!) - (x2!, y2!) [, [rgbColor&] [, [fillcolor&] [,
[fillstyle&]]]]

Remarks A host printer must first be connected with XPRINT ATTACH. The coordinate points are
specified in pixels (or world coordinates, if those were defined with an XPRINT SCALE
statement). Line width can be set using XPRINT WIDTH. If line width is set to 1 (the
default), the line style can be set with XPRINT STYLE. Because of the nature of an
ellipse, which has no obvious beginning or end, XPRINT ELLIPSE neither uses, nor
updates, the last point referenced (POS). If executed without a host printer attached,
error 57 is generated.

The coordinate pair define an invisible bounding rectangle which would enclose the ellipse
to be drawn. It tells both the size and the proportions of the ellipse. Windows graphic
conventions consider the bottom and right coordinates of it to be exclusive. The pixels at
the bottom and right edges are ignored, unless Overlap Mode is enabled. See XPRINT
SET OVERLAP for details.

x1!, y1! The upper left corner of the bounding rectangle.

x2!, y2! The lower right corner of the bounding rectangle.

rgbColor& Optional RGB color of the ellipse edge. If omitted (or -1), the edge color defaults to the
current foreground color for the host printer page.

fillcolor& Optional RGB color of the ellipse interior. If fillcolor& is omitted (or -2), the interior of the
ellipse is not filled, allowing the background to show through. If fillcolor& is -1, the interior
is painted with the same color as the edge. Otherwise, fillcolor& specifies the RGB color
to be used.

fillstyle& Optional fill style (pattern) to be used. If fillstyle& is omitted, the default fill style is solid
(0). If a hatch pattern is chosen (1 to 6), the foreground color is specified by the fillcolor&,
while the background is specified by the default background color for the host printer
page. The optional fillstyle& may be:

0 Solid (default)
1 Horizontal Lines
2 Vertical Lines
3 Upward Diagonal Lines
4 Downward Diagonal Lines
5 Crossed Lines
6 Diagonal Crossed Lines

See also Built In RGB Color Equates, XPRINT ARC, XPRINT ATTACH, XPRINT COLOR, XPRINT
LINE, XPRINT PIE, XPRINT SET OVERLAP, RINT STYLE, XPRINT WIDTH

Example ' Draw a circle, using default colors.
XPRINT ELLIPSE (10, 10) - (100, 100)
' Draw a blue ellipse filled with a light-gray, diagonal cross pattern.
XPRINT ELLIPSE (15, 25) - (95, 50), %BLUE, RGB(191,191,191), 6

XPRINT FORMFEED statement

XPRINT FORMFEED statement
Purpose Start a new page for the host printer.

Syntax XPRINT FORMFEED

Remarks XPRINT FORMFEED causes the current print page to be ejected, and a new page
started. If XPRINT FORMFEED is unsuccessful, an error is generated. Note that some

PowerBASIC Compiler for Windows Version 10

2086 / 2126

printers do not eject a page if it is blank.

See also XPRINT ATTACH, XPRINT CLOSE

XPRINT GET ATTACH statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET ATTACH statement
Purpose Retrieve the name of the attached host printer.

Syntax XPRINT GET ATTACH TO PrinterVar$

Function Form:
PrinterVar$ = XPRINT$(ATTACH)
PrinterVar$ = XPRINT$

Remarks XPRINT GET ATTACH returns the name of the attached host printer, which is the printer
that would be used by XPRINT statements. If there is no attached host printer, an empty
string is returned. XPRINT$ is typically used to detect if an XPRINT ATTACH operation
was successful.

See also XPRINT ATTACH

XPRINT GET CANVAS statement

XPRINT GET CANVAS statement
Purpose Retrieves the writable size of the attached host printer.

Syntax XPRINT GET CANVAS TO WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(CANVAS.X)
HeightVar! = XPRINT(CANVAS.Y)

Remarks XPRINT GET CANVAS retrieves the logical size of the client area (printable area) for the
attached host printer. This is the size of the page, minus the unprintable margins, without
any reductions for a CLIP area. The size is specified in Page Units, so it could return
scaled values if they were applied with XPRINT SCALE. This is very similar to XPRINT
GET CLIENT, with the single exception that scaled values (set by XPRINT SCALE) are
returned if they have been utilized. If executed without a host printer attached, error 57 is
generated.

See also XPRINT GET CLIENT, XPRINT GET CLIP, XPRINT GET SIZE, XPRINT GET SCALE,
XPRINT SCALE

XPRINT GET CLIENT statement

PowerBASIC Compiler for Windows Version 10

2087 / 2126

XPRINT GET CLIENT statement
Purpose Retrieves the size of the client area (printable area) on the host printer page.

Syntax XPRINT GET CLIENT To WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(Client.X)
HeightVar! = XPRINT(Client.Y)

Remarks XPRINT GET CLIENT retrieves the physical size of the client area (printable area) for the
attached host printer. The size is always specified in Pixels (points). This is very similar
to XPRINT GET CANVAS, with the single exception that scaled values (set by XPRINT
SCALE) are not utilized. If executed without a host printer attached, error 57 is
generated.

See also XPRINT ATTACH, XPRINT GET CANVAS, XPRINT GET CLIP, XPRINT GET MARGIN,
XPRINT GET PPI, XPRINT GET SIZE

XPRINT GET CLIP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET CLIP statement
Purpose Retrieves the size of the clip area on the selected printer.

Syntax XPRINT GET CLIP TO WidthVar!, HeightVar!

Function Form:
WidthVar! = XPRINT(Clip.X)
HeightVar! = XPRINT(Clip.Y)

Remarks The clip area of the printer is that space where print operations can be written. That is,
the clip area is that portion of the client area which is not protected (clipped) by the
XPRINT SET CLIP statement.

XPRINT GET CLIP retrieves the size of the clip area, and assigns these values to the
variables specified by WidthVar! and HeightVar!. The size is specified in PAGE UNITS
(pixels/points or scaled units). If no printer is selected, the values 0,0 are returned.

See also XPRINT GET CANVAS, XPRINT GET CLIENT, XPRINT SET CLIP

XPRINT GET COLLATE statement

Keyword Template
Purpose

Syntax

Remarks

See also

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2088 / 2126

Example

XPRINT GET COLLATE statement
Purpose Retrieves the XPRINT collate status.

Syntax XPRINT GET COLLATE TO CollateVar&

Function Form:
CollateVar& = XPRINT(COLLATE)

Remarks XPRINT allows you to set the collate status, if the printer driver supports both multiple
copies and collate capability. XPRINT GET COLLATE retrieves the collate status,
assigning the value to the long integer variable specified by CollateVar&. The following
equates are predefined in the compiler to symbolically represent the possible collate
status:

%DMCOLLATE_FALSE = 0
%DMCOLLATE_TRUE = 1

If this statement is executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT SET COLLATE

XPRINT GET COLORMODE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET COLORMODE statement
Purpose Retrieves the XPRINT colormode status.

Syntax XPRINT GET COLORMODE TO ColorVar&

Function Form:
ColorVar& = XPRINT(COLORMODE)

Remarks XPRINT allows you to set the color or monochrome print mode if the printer driver
supports it. XPRINT GET COLORMODE retrieves the colormode status, assigning the
value to the long integer variable specified by ColorVar&. The value zero may be returned
if colormode is not supported by the printer driver. The following equates are predefined in
the compiler to symbolically represent the possible status:

%DMCOLOR_MONOCHROME = 1
%DMCOLOR_COLOR = 2

If this statement is executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT SET COLORMODE

XPRINT GET COPIES statement

Keyword Template

PowerBASIC Compiler for Windows Version 10

2089 / 2126

Purpose

Syntax

Remarks

See also

Example

XPRINT GET COPIES statement
Purpose Retrieves the XPRINT copy count.

Syntax XPRINT GET COPIES TO CopyVar&

Function Form:

CopyVar& = XPRINT(COPIES)

Remarks XPRINT allows you to set the number of copies to be automatically printed, if it is
supported by the printer driver. XPRINT GET COPIES retrieves the copy count, assigning
the value to the long integer variable specified by CopyVar&. The default value is one (1).
 If this statement is executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT SET COPIES

XPRINT GET DC statement

XPRINT GET DC statement
Purpose Retrieve the handle of the device context (DC) for the host printer page.

Syntax XPRINT GET DC TO hDC

Function Form:
hDC = XPRINT(DC)

Remarks If no host printer is currently attached, zero is returned. The DC handle may be used with
various Windows API functions to perform specialized operations on the host printer page.

See also XPRINT ATTACH

XPRINT GET DUPLEX statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET DUPLEX statement
Purpose Retrieve the XPRINT duplex status.

Syntax XPRINT GET DUPLEX TO DuplexVar&

Function Form:
DuplexVar& = XPRINT(DUPLEX)

PowerBASIC Compiler for Windows Version 10

2090 / 2126

Remarks XPRINT allows you to get/set the duplex status, if the printer supports printing on both
sides of a page. XPRINT GET DUPLEX retrieves the duplex status, assigning the value to
the long integer variable specified by DuplexVar&. The following equates are predefined in
the compiler to symbolically represent the possible duplex status:

%DMDUP_SIMPLEX = 1 (single sided printing)
%DMDUP_VERTICAL = 2 (page flipped on the vertical edge)
%DMDUP_HORIZONTAL = 3 (page flipped on the horizontal edge)

If the printer does not support duplex printing, the value zero (0) is returned. If this
statement is executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT SET DUPLEX

XPRINT GET LINES statement

XPRINT GET LINES statement
Purpose Retrieve the number of lines that can be printed.

Syntax XPRINT GET LINES To LineVar&

Function Form:
LineVar& = XPRINT(LINES)

Remarks XPRINT GET LINES retrieves the number of lines of text which can be printed on the host
printer page, given the current selected font. Since

 statements do not generate an automatic formfeed when text is printed on the last line,
this statement can be used to determine when your program should execute an
XPRINT FORMFEED to move to the next printed page on a host printer. If
executed without a host printer attached, error 57 is generated.

See also XPRINT, XPRINT ATTACH, XPRINT SET FONT, XPRINT FORMFEED

XPRINT GET MARGIN statement

XPRINT GET MARGIN statement
Purpose Retrieve the margin sizes for the host printer.

Syntax XPRINT GET MARGIN TO nLeft!, nTop!, nRight!, nBottom!

Remarks XPRINT GET MARGIN retrieves the size of the margins (the non-printable area) of the
printer page. This is important because some printers do not provide equal margins on
each side of the page. This is more common on the vertical coordinate, but could be
found in either or both directions. The size of the four margins are specified in pixels (or
world coordinates, if those were defined with an XPRINT SCALE statement). If executed
without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET CLIENT, XPRINT GET PPI, XPRINT GET SIZE

XPRINT GET MIX statement

XPRINT GET MIX statement
Purpose Retrieve the color mix mode for a host printer page.

Syntax XPRINT GET MIX To MixVar&

Function Form:
MixVar& = XPRINT(MIX)

PowerBASIC Compiler for Windows Version 10

2091 / 2126

Remarks Prior to any

 operations, a host printer must first be selected with XPRINT ATTACH. There are
16 mix modes available to use for mixing the drawing color with the color that already
exists at the drawing location. The mix mode equates are predefined in
PowerBASIC. If executed without a host printer attached, error 57 is generated.

%MIX_BLACKNESS Pixel is always 0 (black).
%MIX_NOTMERGESRC Pixel is the inverse of the MergeSrc color.
%MIX_MASKNOTSRC Pixel is a combination of the colors common to both

the pixel and the inverse of the source.
%MIX_NOTCOPYSRC Pixel is the inverse of the pen color.
%MIX_MASKSRCNOT Pixel is a combination of the colors common to both

the source and the inverse of the pixel.
%MIX_NOT Pixel is the inverse of the pixel color.
%MIX_XORSRC Pixel is a combination of the colors in the source and

in the pixel, but not in both.
%MIX_NOTMASKSRC Pixel is the inverse of the MaskSrc color.
%MIX_MASKSRC Pixel is a combination of the colors common to both

the source and the pixel.
%MIX_NOTXORSRC Pixel is the inverse of the XorSrc color.
%MIX_NOP Pixel remains unchanged.
%MIX_MERGENOTSRC Pixel is a combination of the source color and the

inverse of the pixel color.
%MIX_COPYSRC Pixel is the source color (default).
%MIX_MERGESRCNOT Pixel is a combination of the source color and the

inverse of the pixel color.
%MIX_MERGESRC Pixel is a combination of the source color and the

pixel color.
%MIX_WHITENESS Pixel is always 1 (white).

See also XPRINT ATTACH, XPRINT SET MIX

XPRINT GET ORIENTATION statement

XPRINT GET ORIENTATION statement
Purpose Retrieve the paper orientation for a host printer page.

Syntax XPRINT GET ORIENTATION To OrentVar&

Function Form:
OrentVar& = XPRINT(ORIENTATION)

Remarks XPRINT GET ORIENTATION retrieves the orientation of the paper in the host printer,
assigning the value to the long integer variable specified by OrentVar&. The value 1
indicates portrait mode, while 2 indicates landscape mode. If the printer does not support
paper orientation, 0 is returned. If a host printer is not attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT SET ORIENTATION

XPRINT GET OVERLAP statement

XPRINT GET OVERLAP statement
Purpose Retrieves the status of XPrint Overlap Mode.

Syntax XPRINT GET OVERLAP To OverlapVar&

Function Form:
OverlapVar& = XPRINT(OVERLAP)

PowerBASIC Compiler for Windows Version 10

2092 / 2126

Remarks XPRINT GET OVERLAP retrieves the status of overlap mode and assigns it to the variable
specified by OverlapVar&. If Overlap Mode is enabled, the value true (non-zero) is
assigned. If it's disabled, the value false (zero) is assigned instead. The value returned
reflects the status of the host printer which is currently attached to the XPrint stream.

With Overlap Mode, you can control how PowerBASIC treats XPrint operations which
involve a bounding rectangle (RECT structure) in their definition. Windows maintains
unique conventions for a RECT. The bottom and right coordinates of a RECT are
exclusive. In other words, the pixels at the bottom and right edges lie immediately
outside the rectangle. They are ignored. For example:

XPRINT BOX (0,0) - (50,50)

In this case, a box is drawn from 0,0 to 49,49. The final pixels at the bottom and right
edge are simply not drawn. However, if Overlap Mode is enabled with XPRINT SET
OVERLAP, the box is drawn from 0,0 to 50,50.

The Overlap Mode affects all XPRINT functions which take a bounding rectangle as a
parameter. This includes XPRINT SCALE, XPRINT BOX, XPRINT ELLIPSE, XPRINT
LINE, XPRINT POLYLINE, etc.

See also XPRINT SET OVERLAP

XPRINT GET PAGES statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET PAGES statement
Purpose Retrieves the XPRINT page number limits for this print job.

Syntax XPRINT GET PAGES TO FromPage&, ToPage&

Remarks You may elect to limit a particular print job to a subset of the total number of pages. This
can be accomplished under program control by executing XPRINT SET PAGES, or the
user can make the appropriate choice in the Print Dialog which is displayed when XPRINT
ATTACH is executed with the CHOOSE option. When the pages are limited in this way,
PowerBASIC handles all the details of print suppression for you.

Normally, XPRINT pages are numbered from one. The parameter FromPage& specifies
the first page of the full report which will be printed, while ToPage& specifies the last
page.

If XPRINT GET PAGES is executed without a host printer attached, an error 57 is
generated.

See also XPRINT PREVIEW, XPRINT GET SELECTION, XPRINT SET PAGES

XPRINT GET PAPER statement

Keyword Template
Purpose

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2093 / 2126

Syntax

Remarks

See also

Example

XPRINT GET PAPER statement
Purpose Retrieves the current paper size/type.

Syntax XPRINT GET PAPER TO PaperVar&

Function Form:
PaperVar& = XPRINT(PAPER)

Remarks XPRINT GET PAPER retrieves the paper style for which the host printer is currently
configured. The paper style is identified by an

 value which is assigned to the long integer variable specified by PaperVar&. The
following equates are predefined in the compiler, and represent the most common
paper styles:
%DMPAPER_LETTER = 1 Letter 8.5 x 11 inches
%DMPAPER_TABLOID = 3 Tabloid 11 x 17 inches
%DMPAPER_LEDGER = 4 Ledger 17 x 11 inches
%DMPAPER_LEGAL = 5 Legal 8.5 x 14 inches
%DMPAPER_STATEMENT = 6 Statement 5.5 x 8.5 inches
%DMPAPER_EXECUTIVE = 7 Executive 7.25 x 10.5 inches
%DMPAPER_A3 = 8 A3 297 x 420 mm
%DMPAPER_A4 = 9 A4 210 x 297 mm
%DMPAPER_A5 = 11 A5 148 x 210 mm
%DMPAPER_B4 = 12 B4 250 x 354 mm
%DMPAPER_B5 = 13 B5 182 x 257 mm
%DMPAPER_FOLIO = 14 Folio 8.5 x 13 inches
%DMPAPER_QUARTO = 15 Quarto 215 x 275 mm
%DMPAPER_10X14 = 16 10x14 10 x 14 inches
%DMPAPER_11X17 = 17 11x17 11 x 17 inches
%DMPAPER_NOTE = 18 Note 8.5 x 11 inches
%DMPAPER_ENV_9 = 19 9 Envlp 3.875 x 8.875 inches
%DMPAPER_ENV_10 = 20 10 Envlp 4.125 x 9.5 inches

Other paper style codes may be defined by Windows or printer suppliers. You can use
XPRINT GET PAPERS to obtain a list of all the paper styles supported by the attached
host printer.

If the printer does not support paper style changes, the value zero is returned. If executed
without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET PAPERS, XPRINT SET PAPER

XPRINT GET PAPERS statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

PowerBASIC Compiler for Windows Version 10

2094 / 2126

XPRINT GET PAPERS statement
Purpose Retrieves a list of supported paper types.

Syntax XPRINT GET PAPERS TO PapersVar$

Function Form:
PapersVar$ = XPRINT$(PAPERS)

Remarks XPRINT GET PAPERS retrieves a

 which contains a list of all of the paper types supported by the attached host printer.
 This string is assigned to the string variable specified by PapersVar$.
The string contains a comma-delimited list of papertype, papername... repeated as many
times as necessary. For example:

"1,Letter,5,Legal,7,Executive,20,Envelope #10"

You can use PARSECOUNT to determine the number of delimited fields in the string, and
PARSE$() to easily extract the type numbers and names. The following equates are
predefined in the compiler, and represent the most common paper styles:

%DMPAPER_LETTER = 1 Letter 8.5 x 11 inches
%DMPAPER_TABLOID = 3 Tabloid 11 x 17 inches
%DMPAPER_LEDGER = 4 Ledger 17 x 11 inches
%DMPAPER_LEGAL = 5 Legal 8.5 x 14 inches
%DMPAPER_STATEMENT = 6 Statement 5.5 x 8.5 inches
%DMPAPER_EXECUTIVE = 7 Executive 7.25 x 10.5 inches
%DMPAPER_A3 = 8 A3 297 x 420 mm
%DMPAPER_A4 = 9 A4 210 x 297 mm
%DMPAPER_A5 = 11 A5 148 x 210 mm
%DMPAPER_B4 = 12 B4 250 x 354 mm
%DMPAPER_B5 = 13 B5 182 x 257 mm
%DMPAPER_FOLIO = 14 Folio 8.5 x 13 inches
%DMPAPER_QUARTO = 15 Quarto 215 x 275 mm
%DMPAPER_10X14 = 16 10x14 10 x 14 inches
%DMPAPER_11X17 = 17 11x17 11 x 17 inches
%DMPAPER_NOTE = 18 Note 8.5 x 11 inches
%DMPAPER_ENV_9 = 19 9 Envlp 3.875 x 8.875 inches
%DMPAPER_ENV_10 = 20 10 Envlp 4.125 x 9.5 inches

Other paper style codes may be defined by Windows or printer suppliers. If executed
without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET PAPERS, XPRINT SET PAPER

XPRINT GET PIXEL statement

XPRINT GET PIXEL statement
Purpose Retrieves the color of a pixel on a host printer page.

Syntax XPRINT GET PIXEL [STEP] (x!, y!) TO PixelVar&

Function Form:
PixelVar& = XPRINT(PIXEL [STEP], x!, y!)

Remarks Not all printer drivers support the ability to retrieve the color of a pixel. If this feature is not
supported, or if the coordinates are outside the printer client area, an invalid color value of
-1 is returned. If no host printer is attached, error 57 is generated.

See also Built In RGB Color Equates, XPRINT ATTACH, XPRINT COLOR, XPRINT SET PIXEL

PowerBASIC Compiler for Windows Version 10

2095 / 2126

XPRINT GET POS statement

XPRINT GET POS statement
Purpose Retrieves the last point referenced (POS) by an

 statement.
Syntax XPRINT GET POS TO XVar!, YVar!

Function Form:
XVar! = XPRINT(POS.X)
YVar! = XPRINT(POS.Y)

Remarks XPRINT GET POS allows you to retrieve the last point referenced (POS) by XPRINT
statements. The coordinate points are specified in Page Units. If executed without a
host printer attached, an error 57 is generated, and the values 0,0 are returned.

See also XPRINT ATTACH, XPRINT SET POS

XPRINT GET PPI statement

XPRINT GET PPI statement
Purpose Retrieves the resolution of the host printer page.

Syntax XPRINT GET PPI TO XVar&, YVar&

Function Form:
XVar& = XPRINT(PPI.X)
YVar& = XPRINT(PPI.Y)

Remarks XPRINT GET PPI retrieves the resolution (points per inch) of the host printer page. The
resolution is always specified in pixels, regardless of any XPRINT SCALE option. If
executed without a host printer attached, error 57 is generated, and the values 0,0 are
returned. This statement is particularly useful in drawing items such as rulers and graphs
to a particular physical size. There are 25.4 millimeters per inch, so just divide by 25.4 to
convert from pixels per inch to pixels per millimeter.

See also XPRINT ATTACH, XPRINT GET CLIENT, XPRINT GET MARGIN, XPRINT GET SIZE

XPRINT GET QUALITY statement

XPRINT GET QUALITY statement
Purpose Retrieves the print quality setting for the host printer.

Syntax XPRINT GET QUALITY To QualVar&

Function Form:
QualVar& = XPRINT(QUALITY)

Remarks XPRINT GET QUALITY retrieves the print quality setting for the host printer. The value 1
is draft mode, 2 is low resolution, 3 is medium resolution, and 4 is high resolution. If the
printer does not support print quality settings, 0 is returned. If no host printer is attached,
error 57 is generated.

See also XPRINT ATTACH, XPRINT SET QUALITY

XPRINT GET SCALE statement

PowerBASIC Compiler for Windows Version 10

2096 / 2126

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET SCALE statement
Purpose Retrieve the current coordinate limits for the host printer page.

Syntax XPRINT GET SCALE TO x1!, y1!, x2!, y2!

Remarks XPRINT SCALE allows you to define your own world coordinate system for subsequent

 statements. World coordinates may be values, with the only requirement that x1! not
equal x2!, and y1! not equal y2!.
XPRINT GET SCALE retrieves the coordinate limits, which may be either custom world
coordinates (if an XPRINT SCALE has been executed), or else default pixel coordinates.
 This allows you to save and restore a previous set of coordinates.

See also XPRINT SCALE, XPRINT SCALE PIXELS

XPRINT GET SELECTION statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET SELECTION statement
Purpose Retrieves the status of the SELECTION flag.

Syntax XPRINT GET SELECTION TO SelectVar&

Function Form:
SelectVar& = XPRINT(SELECTION)

Remarks You may elect to limit a particular print job to just that part of the total which is
selected/highlighted. If so, it is the programmer's responsibility to limit XPRINT output to
just the selected region.

The selection flag can only be set by the user in the Print Dialog which is displayed when
XPRINT ATTACH is executed with the CHOOSE option. It cannot be set under program
control. This flag is maintained only to give the programmer information about the user's
request. If you do not wish to honor this option, you should disable it in XPRINT ATTACH
CHOOSE.

If XPRINT GET SELECTION is executed without a host printer attached, an error 57 is
generated.

See also XPRINT ATTACH

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2097 / 2126

XPRINT GET SIZE statement

XPRINT GET SIZE statement
Purpose Retrieve the total size of the host printer page.

Syntax XPRINT GET SIZE TO WidthVar&, HeightVar&

Function Form:
WidthVar& = XPRINT(SIZE.X)
HeightVar& = XPRINT(SIZE.Y)

Remarks XPRINT GET SIZE allows you to retrieve the full size of the host printer page, including
both the printable client area and any unprintable margins. The sizes are specified in
pixels (points). If no host printer is attached, error 57 is generated, and the values 0,0 are
returned.

See also XPRINT ATTACH, XPRINT GET CLIENT, XPRINT GET MARGIN, XPRINT GET MIX,
XPRINT GET PPI

XPRINT GET STRETCHMODE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET STRETCHMODE statement
Purpose Retrieves the default bitmap stretching mode for the attached DC.

Syntax XPRINT GET STRETCHMODE TO ModeVar&

Function Form:
ModeVar& = XPRINT(STRETCHMODE)

Remarks There are several operations in PowerBASIC which involve stretching or condensing
images on bitmaps, most notably XPRINT STRETCH. As individual points must be added
or removed, there is a good chance that the quality of the image will be degraded.
 However, if you describe the nature of the image by defining a StretchMode, you can
substantially enhance the appearance.

The default StretchMode is maintained individually for each DC. You can retrieve the
default mode with this statement, or set it with XPRINT SET STRETCHMODE. Of course,
you can also override the default StretchMode when you execute one of the affected
statements.

The 4 stretch mode equates are predefined in PowerBASIC.

%
BLACKONWHIT
E

1 This is the default Windows stretch mode, and is most
appropriate for monochrome bitmaps, or those with blocks of
color. Performs a boolean OR of eliminated and existing
pixels. It preserves black pixels at the expense of white
pixels.

% 2 Performs a boolean OR of eliminated and existing pixels. It

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2098 / 2126

WHITEONBLAC
K

preserves white pixels at the expense of black pixels.

%
COLORONCOL
OR

3 Deletes eliminated lines of pixels without trying to preserve
their information.

%HALFTONE 4 This provides the highest quality for complex color bitmaps.
 The average color of the destination pixel block is kept
approximately the same as the source pixel block.

See also XPRINT COPY, XPRINT RENDER, XPRINT STRETCH, XPRINT SET STRETCHMODE

XPRINT GET TRAY statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET TRAY statement
Purpose Retrieves the active printer tray.

Syntax XPRINT GET TRAY TO TrayVar&

Function Form:
TrayVar& = XPRINT(TRAY)

Remarks XPRINT GET TRAY retrieves the paper tray which is active on the host printer. A
descriptive value is assigned to the long integer variable specified by TrayVar&. The
following equates are predefined in the compiler, and represent the most common paper
trays:

%DMBIN_UPPER = 1
%DMBIN_LOWER = 2
%DMBIN_MIDDLE = 3
%DMBIN_MANUAL = 4
%DMBIN_ENVELOPE = 5
%DMBIN_ENVMANUAL = 6
%DMBIN_AUTO = 7
%DMBIN_TRACTOR = 8
%DMBIN_SMALLFMT = 9
%DMBIN_LARGEFMT = 10
%DMBIN_LARGECAPACITY = 11
%DMBIN_CASSETTE = 14
%DMBIN_FORMSOURCE = 15

Other tray codes may be defined by Windows or printer suppliers, so your program
should be written to consider that possibility. You can use XPRINT GET TRAYS to obtain
a list of all the paper trays supported by the attached host printer.

If the printer does not support the tray change requested, error 5 is generated. If
executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET TRAYS, XPRINT SET TRAY

PowerBASIC Compiler for Windows Version 10

2099 / 2126

XPRINT GET TRAYS statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET TRAYS statement
Purpose Retrieves a list of supported paper trays.

Syntax XPRINT GET TRAYS TO TrayVar$

Function Form:
TrayVar$ = XPRINT$(TRAYS)

Remarks XPRINT GET TRAYS retrieves a

 which contains a list of all of the paper trays supported by the attached host printer.
 This string is assigned to the string variable specified by TrayVar$.
The string contains a comma-delimited list of traytype, trayname... repeated as many
times as necessary. For example:

"1,Upper,2,Lower,5,Envelope"

You can use PARSECOUNT to determine the number of delimited fields in the string, and
PARSE$() to easily extract the tray numbers and names. The following equates are
predefined in the compiler, and represent the most common trays:

%DMBIN_UPPER = 1
%DMBIN_LOWER = 2
%DMBIN_MIDDLE = 3
%DMBIN_MANUAL = 4
%DMBIN_ENVELOPE = 5
%DMBIN_ENVMANUAL = 6
%DMBIN_AUTO = 7
%DMBIN_TRACTOR = 8
%DMBIN_SMALLFMT = 9
%DMBIN_LARGEFMT = 10
%DMBIN_LARGECAPACITY = 11
%DMBIN_CASSETTE = 14
%DMBIN_FORMSOURCE = 15

Other paper style codes may be defined by Windows or printer suppliers. If executed
without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET TRAY, XPRINT SET TRAY

XPRINT GET WORDWRAP statement

Keyword Template
Purpose

Syntax

Remarks

PowerBASIC Compiler for Windows Version 10

2100 / 2126

See also

Example

XPRINT GET WORDWRAP statement
Purpose Retrieves the status of XPRINT WordWrap Mode.

Syntax XPRINT GET WORDWRAP TO WrapVar&

Function Form:
WrapVar& = XPRINT(WORDWRAP)

Remarks XPRINT GET WORDWRAP retrieves the status of wordwrap mode and assigns it to the
variable specified by WrapVar&. If WordWrap Mode is enabled, the value true (non-zero)
is assigned. If it's disabled, the value false (zero) is assigned instead. The value returned
reflects the status of the attached printer.

With WordWrap Mode, you can control how PowerBASIC prints text on an XPRINT page
when it reaches the end of a line. Since XPRINT operates on a full page basis, the default
is to ignore text which is printed past the end of the line. This can be modified under
program control by using XPRINT SET WORDWRAP.

When WordWrap mode is enabled, it affects only XPRINT print operations. If XPRINT print
attempts to display a word beyond the end of a row, the entire word is automatically
wrapped to the first column of the next row.

See also XPRINT CELL, XPRINT GET WRAP, XPRINT SET WORDWRAP, XPRINT SET WRAP,
XPRINT SPLIT

XPRINT GET WRAP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT GET WRAP statement
Purpose Retrieves the status of XPRINT Wrap Mode.

Syntax XPRINT GET WRAP TO WrapVar&

Function Form:
WrapVar& = XPRINT(WRAP)

Remarks XPRINT GET WRAP retrieves the status of wrap mode and assigns it to the variable
specified by WrapVar&. If Wrap Mode is enabled, the value true (non-zero) is assigned.
 If it's disabled, the value false (zero) is assigned instead. The value returned reflects the
status of the attached printer.

With Wrap Mode, you can control how PowerBASIC prints text on an XPRINT page when
it reaches the end of a line. Since XPRINT operates on a full page basis, the default is to
ignore text which is printed past the end of the line. This can be modified under program
control by using XPRINT SET WRAP.

When Wrap Mode is enabled, it affects only XPRINT print operations. If XPRINT print
attempts to display a character beyond the end of a row, it is automatically wrapped to

PowerBASIC Compiler for Windows Version 10

2101 / 2126

the first column of the next row.

See also XPRINT CELL, XPRINT GET WORDWRAP, XPRINT SET WORDWRAP, XPRINT SET
WRAP, XPRINT SPLIT

XPRINT IMAGELIST statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT IMAGELIST statement
Purpose Prints an image from an IMAGELIST

Syntax XPRINT IMAGELIST (x!,y!), hLst, index&, overlay&, style&

Remarks One of the images stored in an IMAGELIST is printed on the attached host printer. The
parameters x!,y! define the upper left corner of the position of the image. hLst is the
handle of the IMAGELIST and index& is the selector of the image to be displayed (1=first,
2=second, etc.). If overlay& is non-zero, it specifies an overlay image to be added to the
printed image from the image list. The parameter style& may be one of the following style
bits:

%ILD_NORMAL Draws the image using the background color of the image
list. If the background color is the default value %
CLR_NONE (defined in the Commctrl.inc file), the image
is drawn transparently.

%ILD_TRANSPARENT Draws the image transparently if there is a mask.

%ILD_MASK Draws the mask.

%ILD_BLEND25 If there is a mask, the image is drawn blending 25% with
the system highlight color.

%ILD_BLEND50 If there is a mask, the image is drawn blending 50% with
the system highlight color.

See also XPRINT ATTACH, IMAGELIST

XPRINT LINE statement

XPRINT LINE statement
Purpose Draw a line on a host printer page.

Syntax XPRINT LINE [STEP] [(x1!, y1!)] - [STEP] (x2!, y2!)[, rgbColor&]

Remarks The line is drawn from the first point, up to, but not including the second point. Coordinate
points are specified in pixels, unless optional world coordinates have been defined with an
XPRINT SCALE statement. Line width can be set using XPRINT WIDTH. If line width is
set to 1 (the default), the line style can be set with XPRINT STYLE. If executed without a
host printer attached, error 57 is generated.

Windows graphic conventions consider the final x2 and y2 coordinates to be exclusive.
 Therefore, by default, the final pixel is not drawn unless Overlap Mode is enabled. See

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2102 / 2126

XPRINT SET OVERLAP for details.

x1!, y1! Optional values which define the starting point of the line. If this optional first point is
omitted, the line begins at the last point referenced (

) in a preceding statement. If the first STEP option is included, the x1! and y1!
starting coordinates are relative to the last point referenced (POS) on the host printer
page.

x2!, y2! The ending point of the line. If the second STEP option is included, the x2! and y2! ending
coordinates are relative to the starting coordinates.

rgbColor& Optional RGB color value for the line. If rgbColor& is omitted (or -1), the line color defaults
to the current foreground color for the host printer page.

See also Built In RGB Color Equates, XPRINT ARC, XPRINT ATTACH, XPRINT BOX, XPRINT
COLOR, XPRINT ELLIPSE, XPRINT PIE, XPRINT POLYGON, XPRINT POLYLINE,
XPRINT SET MIX, XPRINT SET OVERLAP, XPRINT STYLE, XPRINT WIDTH

Example ' Draw a triangle. Note that, since LINE draws up to,
' but not including the second point, one extra point
' must be added when STEP is used.
XPRINT LINE (10, 10) - (10, 100) ' left side
XPRINT LINE STEP - (101, 100) ' base line
XPRINT LINE STEP - (10, 10) ' back to top

XPRINT PIE statement

XPRINT PIE statement
Purpose Draw a pie section on a host printer page.

Syntax XPRINT PIE (x1!, y1!) - (x2!, y2!), arcStart!, arcEnd! [, [rgbColor&] [,
[fillcolor&] [, [fillstyle&]]]]

Remarks A pie section is an arc, with a line drawn from each end point to the center of the circle or
ellipse. To specify a pie section, you would first define the full circle or ellipse of which it is
a part, and then specify the points on the ellipse where the arc starts and stops.

The full circle or ellipse is defined by its bounding rectangle, which is defined as the
smallest rectangle which can be drawn around the circle or ellipse. For example, if the
circle is centered at position (400,400), with a radius of 100 pixels, the upper left corner
(x1,y1) of the bounding rectangle is (300,300), and the lower right corner (x2,y2) is
(500,500).

The start point and end point of the arc are specified by their angle, which must be given
in radians. A complete circle or ellipse is 2*pi radians. On a 12-hour clock-face, the values
0 and 2*pi both refer to the position of 3 o'clock, while the value 1*pi refers to the position
of 9 o'clock. Other positions are specified by a radian value relative to these. In
PowerBASIC, arcs are always drawn counter-clockwise from the starting point to the
ending point.

Prior to any

 operations, a host printer must first be selected with XPRINT ATTACH. The
coordinate points are specified in pixels (or world coordinates, if those were chosen
with XPRINT SCALE). Line width can be set using XPRINT WIDTH. If line width is
set to 1 (the default), the line style can be set with XPRINT STYLE. Because of the
nature of a pie section, XPRINT PIE neither uses, nor updates, (last point
referenced). If executed without a host printer attached, error 57 is generated.

x1!, y1! The upper left corner of the bounding rectangle of the full circle or ellipse.

x2!, y2! The lower right corner of the bounding rectangle of the full circle or ellipse.

ArcStart! The starting angle of the arc, in radians, from 0 to 2*pi.

PowerBASIC Compiler for Windows Version 10

2103 / 2126

ArcEnd! The ending angle of the arc, in radians, from 0 to 2*pi radians. Note that arcs are always
drawn counter-clockwise from arcStart! to arcEnd!. Compared with a 12-hour clock-face,
0 or 2*pi radians is at 3 o'clock, and 1*pi radians is at 9 o'clock.

rgbColor& Optional RGB color of the pie edge. If omitted (or -1), the edge color defaults to the
current foreground color for the host printer page.

fillcolor& Optional RGB color of the pie interior. If fillcolor& is omitted (or -2), the interior of the pie
is not filled, allowing the background to show through. If fillcolor& is -1, the interior is
painted with the same color as the edge. Otherwise, fillcolor& specifies the RGB color to
be used.

fillstyle& Optional fill style (pattern) to be used. If fillstyle& is omitted, the default fill style is solid
(0). If a hatch pattern is chosen (1 to 6), the foreground color is specified by the fillcolor&,
while the background is specified by the default background color for the host printer
page. The optional fillstyle& may be:

0 Solid (default)
1 Horizontal Lines
2 Vertical Lines
3 Upward Diagonal Lines
4 Downward Diagonal Lines
5 Crossed Lines
6 Diagonal Crossed Lines

See also Built In RGB Color Equates, XPRINT ARC, XPRINT ATTACH, XPRINT BOX, XPRINT
COLOR, XPRINT ELLIPSE, XPRINT LINE, XPRINT STYLE, XPRINT WIDTH

Example ' A full circle is 2*pi radians (100%).
' To show a 25% Pie, use the formula 0.25 * 2 * pi.
' The following divides a full circle into four 25% parts, each
' with its own colors, each slightly separated from the others.
' Note: 0 is at 3 o'clock, then it builds counter-clockwise.
LOCAL Pi2 AS DOUBLE
Pi2 = ATN(1)* 8 ' 2 * Pi can be useful here
XPRINT PIE (10, 9)-(110, 109), 0, Pi2 * 0.25, %BLUE, %LTGRAY, 3
XPRINT PIE (9, 9)-(109, 109), Pi2 * 0.25, Pi2 * 0.50, %RED, %LTGRAY, 4
XPRINT PIE (9, 10)-(109, 110), Pi2 * 0.5, Pi2 * 0.75, RGB(0,127,0), %
LTGRAY, 3
XPRINT PIE (10, 10)-(110, 110), Pi2 * 0.75, 0, %GRAY, %LTGRAY, 4

XPRINT POLYGON statement

XPRINT POLYGON statement
Purpose Draw a polygon on a host printer page.

Syntax XPRINT POLYGON points [, [rgbColor&] [, [fillcolor&] [, [fillstyle&] [,
fillmode&]]]]

Remarks The coordinate points are specified in pixels, unless optional world coordinates have been
defined with an XPRINT SCALE statement. Line width can be set using XPRINT WIDTH.
If line width is set to 1 (the default), the line style can be set with XPRINT STYLE.
XPRINT POLYGON neither uses, nor updates, the last point referenced (

). If executed without a host printer attached, error 57 is generated.
points User-defined type that defines the number of vertices and the location of each. There

must be at least two, and no more than 1024 vertices. The first member is a long integer
point count, followed directly by the appropriate number of single precision floats to
specify the actual coordinates. Floating point coordinates are required, because of the
possibility of their use as world coordinates with XPRINT SCALE. You can use a type
with a scalar list, like this:

TYPE PolyPoints
 count as long

PowerBASIC Compiler for Windows Version 10

2104 / 2126

 x1 as single
 y1 as single
 x2 as single
 y2 as single
 x3 as single
 y3 as single
END TYPE
Or, you can create an array using point types, like this:
TYPE PolyPoint
 x as single
 y as single
END TYPE

TYPE PolyArray
 count as long
 xy(1 TO 3) as PolyPoint
END TYPE

rgbColor& Optional RGB color of the polygon edge. If omitted (or -1), the edge color defaults to the
current foreground color for the host printer page.

fillcolor& Optional RGB color of the polygon interior. If fillcolor& is omitted (or -2), the interior of the
ellipse is not filled, allowing the background to show through. If fillcolor& is -1, the interior
is painted with the same color as the edge. Otherwise, fillcolor& specifies the RGB color
to be used.

fillstyle& Optional fill style (pattern) to be used. If fillstyle& is omitted, the default fill style is solid
(0). If a hatch pattern is chosen (1 to 6), the foreground color is specified by the fillcolor&,
while the background is specified by the default background color for the host printer
page. The optional fillstyle& may be:

0 Solid (default)
1 Horizontal Lines
2 Vertical Lines
3 Upward Diagonal Lines
4 Downward Diagonal Lines
5 Crossed Lines
6 Diagonal Crossed Lines

fillmode& If fillmode& is missing (or zero), the winding mode is selected. This fills any region with a
non-zero winding value. If fillmode& is non-zero, the alternate mode is selected. This fills
the area between odd-numbered and even-numbered polygon sides on each scan line.
That is, it fills the area between the first side and the second side, between the third side
and fourth side, etc.

See also Built In RGB Color Equates, XPRINT ARC, XPRINT ATTACH, XPRINT BOX, XPRINT
COLOR, XPRINT ELLIPSE, XPRINT LINE, XPRINT POLYLINE

XPRINT POLYLINE statement

XPRINT POLYLINE statement
Purpose Draw a series of connected lines on a host printer page.

Syntax XPRINT POLYLINE points [, rgbColor&]

Remarks The coordinate points are specified in pixels, unless optional world coordinates have been
defined with an XPRINT SCALE statement. Line width can be set using XPRINT WIDTH.
If line width is set to 1 (the default), the line style can be set with XPRINT STYLE.
XPRINT POLYLINE neither uses, nor updates, the last point referenced (

). If executed without a host printer attached, error 57 is generated.
Windows graphic conventions consider the final x2 and y2 coordinates to be exclusive.
 Therefore, by default, the final pixel is not drawn unless Overlap Mode is enabled. See

PowerBASIC Compiler for Windows Version 10

2105 / 2126

XPRINT SET OVERLAP for details.

points User-defined type that defines the number of vertices and the location of each. There
must be at least two, and no more than 1024 vertices. The first member is a long integer
point count, followed directly by the appropriate number of single precision floats to
specify the actual coordinates. Floating point coordinates are required, because of the
possibility of their use as world coordinates with SCALE. You can use a type with a
scalar list, like this:

TYPE PolyPoints
 count as long
 x1 as single
 y1 as single
 x2 as single
 y2 as single
 x3 as single
 y3 as single
END TYPE
Or, you can create an array using point types, like this:
TYPE PolyPoint
 x as single
 y as single
END TYPE

TYPE PolyArray
 count as long
 xy(1 TO 3) as PolyPoint
END TYPE

rgbColor& Optional RGB color of the polygon edge. If omitted (or -1), the edge color defaults to the
current foreground color for the host printer page.

See also Built In RGB Color Equates, XPRINT ARC, XPRINT ATTACH, XPRINT BOX, XPRINT
COLOR, XPRINT ELLIPSE, XPRINT LINE, XPRINT POLYGON, XPRINT SET OVERLAP,
XPRINT STYLE, XPRINT WIDTH

XPRINT PREVIEW statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT PREVIEW statement
Purpose Display a replica of a printed document on the screen.

Syntax XPRINT PREVIEW hWin, ID [, CALL xxx]
XPRINT PREVIEW CLOSE

Remarks Print Preview is a powerful concept which should be considered in most application
programs which provide printed reports. Briefly, the idea involves displaying a printed
report on the screen before it is committed to printing on paper.

XPRINT PREVIEW allows you to redirect output from

 statements to a graphic , control, or window so that it may be displayed on the

PowerBASIC Compiler for Windows Version 10

2106 / 2126

screen. When XPRINT PREVIEW CLOSE is executed, XPRINT output reverts
back to the host printer so that a repeat of the XPRINT code is now sent to the
printer for completion of the printed report.
XPRINT PREVIEW selects the graphic target, and should be executed directly after the
printer is selected with XPRINT ATTACH. The target is identified by the handle and ID
given when it was created. You can optionally specify a callback function which is called
upon every execution of an XPRINT FORMFEED or XPRINT CLOSE.

XPRINT PREVIEW must be executed immediately after XPRINT ATTACH or an
error 98 "XPrint Preview Error" will be generated at run time. No XPRINT
statements (other than the XPRINT$ function) may be executed between
XPRINT ATTACH and XPRINT PREVIEW.

If you include the CallBack option, the callback procedure must be a simple SUB with no
parameters and no return value. It is called automatically by the XPRINT engine at the
completion of each preview page (upon execution of XPRINT FORMFEED or XPRINT
PREVIEW CLOSE. This Sub can perform all sorts of housekeeping help, such as
copying the preview bitmap for separate storage, counting pages in the report, or most
anything else needed by your program. Copying the bitmap is important in multi-page
reports as XPRINT FORMFEED erases the graphic target for preview of the next page.

See also XPRINT ATTACH, XPRINT CLOSE, XPRINT FORMFEED

XPRINT PRINT statement

XPRINT PRINT statement
Purpose Output text to be printed on the selected printer.

Syntax XPRINT PRINT [EXPRLIST] [POS(n)] [SPC(n)] [TAB(n)] [,] [;]...
XPRINT [EXPRLIST] [POS(n)] [SPC(n)] [TAB(n)] [,] [;]...

Remarks Prior to any XPRINT operations, you should be certain that a printer has been selected
with XPRINT ATTACH. The text foreground and background color are set with XPRINT
COLOR. Text which extends beyond the bounds of the page is clipped. The size of the
text to be printed can be determined in advance with XPRINT TEXT SIZE, and formatted to
fit a particular field with XPRINT SPLIT. Drawing begins at the last point referenced by
another statement, or the point specified by XPRINT SET POS. The upper left corner of
the text is positioned at the POS.

XPRINT PRINT has the following parts, which may occur in any order and quantity, within
a single statement:

EXPRL
IST

 and/or expression(s) which are written to the page. A semicolon can
be used as separator between multiple expressions in the same
statement. Upon completion, the POS is moved to the left margin of the
next line.

POS(n) An optional function used to set the POS to the horizontal page unit (pixel,
scaled unit, etc.) specified by the numeric argument, Multiple uses of the
POS function is permitted in a single statement. The vertical position is
unchanged.

SPC(n) An optional function used to insert n spaces into the printed output.
 Multiple uses of SPC is permitted in a single statement. Values of n less
than 1 are ignored.

TAB(n) An optional function used to tab to the nth column before printing the next
expression. Multiple use of TAB is permitted in a single statement. Since
TAB references columns, rather than pixels, it can give unpredictable
results when used with a variable width font. It is best used with a fixed
width font.

javascript:void(0);
javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2107 / 2126

[;|,] Special characters that determine the position of the next text item printed.
 A semicolon (;) means the next text item is printed immediately; a comma
(,) means the next text item is printed at the start of the next print zone.
 Print zones begin every 14 columns.

If the final argument is a semicolon or comma, the POS is maintained at the current
location, rather than the default action of moving to the start of the next line. For
example:

XPRINT PRINT "Hello";
XPRINT PRINT " world!";

...produces the contiguous result "Hello world!"

If you omit all arguments, XPRINT PRINT just moves the POS to the left margin of the
next line. Any control codes, such as Carriage Return, Line-Feed, and Backspace are
not interpreted. They will display as symbols in the current selected font.

USING$ is a separate function, which may be included in the ExprList. See the USING$()
function for more information.

It is not possible to print a User-Defined Type (UDT), a Variant, an object variable, or an
entire array. Individual member values must be extracted with the appropriate function
before they can be displayed.

See also FONT NEW, LPRINT, XPRINT ATTACH, XPRINT CELL, XPRINT CHR SIZE, XPRINT
COLOR, XPRINT CLOSE, XPRINT SET FONT, XPRINT GET POS, XPRINT SET POS,
XPRINT SET WORDWRAP, XPRINT SET WRAP, XPRINT SPLIT, XPRINT TEXT SIZE

Example ' Typical XPRINT printing strategy
ERRCLEAR
XPRINT ATTACH DEFAULT ' Use default printer
IF ERR = 0 AND LEN(XPRINT$) > 0 THEN
 XPRINT "This is your printer talking"
 XPRINT FORMFEED ' Issue a formfeed
 XPRINT CLOSE ' detach the printer
END IF

XPRINT RENDER statement

XPRINT RENDER statement
Purpose Render an image on a host printer page.

Syntax XPRINT RENDER BmpName$, (x1!, y1!)-(x2!, y2!)

Remarks Renders an image (bitmap or icon), loaded from a resource or a disk file, to a host printer
page. The parameter BmpName$ contains the name of the image to be loaded. If
BmpName$ contains a period, it is presumed to be the name of a disk file. Otherwise, an
attempt is made to load it from the program's resource data; if not found, it is then
presumed to be a disk file. The parameters x1!,y1! define the upper left corner of the
destination rectangle, while x2!,y2! define the lower right corner of that rectangle. If the
destination rectangle is larger or smaller than the original, the image is stretched or
condensed to the requested size. If XPRINT RENDER is unsuccessful, an appropriate
error is generated.

The following code will retrieve the natural size of an image in a bitmap file, in pixels:

nFile& = FREEFILE
OPEN "myimage.bmp" FOR BINARY AS nFile&
GET #nFile&, 19, nWidth&
GET #nFile&, 23, nHeight&
CLOSE nFile&

See also XPRINT ATTACH, XPRINT COPY, XPRINT STRETCH, XPRINT SET STRETCHMODE

PowerBASIC Compiler for Windows Version 10

2108 / 2126

XPRINT SCALE statement

XPRINT SCALE statement
Purpose Define a custom world coordinate system for a host printer page.

Syntax XPRINT SCALE (x1!, y1!)-(x2!, y2!)
XPRINT SCALE PIXELS

Remarks XPRINT SCALE lets you define your own world coordinate system for all subsequent

 statements. World coordinates may be values, with the only requirement that x1! not
equal x2!, and y1! not equal y2!. If either pair are equal, an error 5 is generated. The
custom coordinates remain with the printer page until XPRINT SCALE is repeated,
or the host printer is detached. If executed without a host printer attached, error 57 is
generated.
If x2! is greater than x1!, coordinates grow larger as they move to the right. Otherwise,
they grow larger as they move to the left.

If y2! is greater than y1!, coordinates grow larger as they move downward. Otherwise, they
grow larger as they move upward.

By default, the position x2!/y2! translates to the first pixel which is outside of the client
area, and therefore not drawn. However, if OVERLAP MODE is enabled by XPRINT SET
OVERLAP, x2!/y2! translates to the final pixel in the client area and is drawn.

XPRINT SCALE PIXELS sets or resets the coordinate system to pixel coordinates.

See also XPRINT ATTACH, XPRINT GET SCALE, XPRINT SET OVERLAP statement

Example ' Attach the default Windows printer
XPRINT ATTACH DEFAULT

' Retrieve the client size (printable area) of the printer page
XPRINT GET CLIENT TO ncWidth!, ncHeight!

' Retrieve the resolution (points per inch) of the attached printer
XPRINT GET PPI TO x&, y&

' Width in inches of the printable area
ncWidth! = ncWidth!/x&

' Height in inches of the printable area
ncHeight! = ncHeight!/y&

' Set the scale to inches, for American letter-size paper
' in portrait mode. This is the equivalent to 8.5x11 minus the margins.
XPRINT SCALE (0,0)-(ncWidth!,ncHeight!)

XPRINT SET CLIP statement

XPRINT SET CLIP statement
Purpose Establishes margins around the outer edges of the print page.

Syntax XPRINT SET CLIP LeftMargin!, TopMargin!, RightMargin!, BottomMargin!

Remarks This statement establishes margins on any or all sides of the selected printer. All
subsequent

 operations are "clipped" on these boundaries, so that no additional text or graphics

PowerBASIC Compiler for Windows Version 10

2109 / 2126

are written in these protected areas.
Each of the 4 parameters is specified in the PAGE UNITS currently in effect. However, as
this changes the target space available to you, the page units are immediately set to
pixels/points. The upper left corner of the clip area is now addressed as point (0,0), while
the right and bottom limits are reduced by the size of the margins. If you would prefer to
use new Scaled Page Units for this revised clip area, you must executes a new XPRINT
SCALE.

XPRINT SET CLIP is particularly useful for displaying text, where enclosing "white space"
improves the appearance a good deal.

You can disable a clip area by executing GRAPHIC SET CLIP 0,0,0,0.

See also XPRINT GET CANVAS, XPRINT GET CLIENT, XPRINT GET SCALE, XPRINT SCALE

XPRINT SET COLLATE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT SET COLLATE statement
Purpose Change the XPRINT collate status.

Syntax XPRINT SET COLLATE numrexp

Remarks XPRINT allows you to set the collate status, if the printer driver supports both multiple
copies and collate capability. XPRINT SET COLLATE enables or disables collating,
depending upon the value of the numrexp (1=true 0=false). The following equates are
predefined in the compiler to symbolically represent the possible status:

%DMCOLLATE_FALSE = 0
%DMCOLLATE_TRUE = 1

If the printer does not support collating, or other values are used, error 5 is generated. If
this statement is executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET COLLATE

XPRINT SET COLORMODE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT SET COLORMODE statement

PowerBASIC Compiler for Windows Version 10

2110 / 2126

Purpose Changes the XPRINT colormode status.

Syntax XPRINT SET COLORMODE numrexp

Remarks XPRINT allows you to set the color or monochrome print mode if the printer driver
supports it. XPRINT SET COLORMODE expects a

 expression which evaluates to one of the following listed values. The following
equates are predefined in the compiler to symbolically represent the possible status:
%DMCOLOR_MONOCHROME = 1
%DMCOLOR_COLOR = 2

If this statement is executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET COLORMODE

XPRINT SET COPIES statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT SET COPIES statement
Purpose Change the XPRINT copy count.

Syntax XPRINT SET COPIES numrexp

Remarks XPRINT SET COPIES allows you to set the number of copies to be automatically printed,
if it is supported by the printer driver. The default value is one (1). If multiple copies are
not supported by the printer driver, or the count requested is greater than that supported
by the printer driver, error 5 is generated. If this statement is executed without a host
printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET COPIES

XPRINT SET DUPLEX statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT SET DUPLEX statement
Purpose Change the XPRINT duplex status.

Syntax XPRINT SET DUPLEX numrexp

PowerBASIC Compiler for Windows Version 10

2111 / 2126

Remarks XPRINT allows you to set the duplex status, if the printer supports printing on both sides
of a page. XPRINT SET DUPLEX changes the mode to that specified by the numrexp.
 The following equates are predefined in the compiler to symbolically represent the
possible duplex status:

%DMDUP_SIMPLEX = 1 (single sided printing)
%DMDUP_VERTICAL = 2 (page flipped on the vertical edge)
%DMDUP_HORIZONTAL = 3 (page flipped on the horizontal edge)

If the printer does not support duplex printing, error 5 is generated. If this statement is
executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET DUPLEX

XPRINT SET FONT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT SET FONT statement
Purpose Select a font for the XPRINT statement.

Syntax XPRINT SET FONT FontHndl&

fonthndl& The numeric handle returned by the FONT NEW statement.

Remarks The font specified by FontHndl& is selected to be used by

 statements. This is the most efficient way to change fonts and their general
appearance (size, style, etc.). If you specify a FontHndl& of zero, the font is
changed back to the original default font chosen by PowerBASIC.
You can predefine virtually any number of fonts and attributes by executing FONT NEW
statements for each of them. That makes them ready for immediate use when selected
by XPRINT SET FONT.

Prior to any XPRINT operations, a specific printer must first be selected with XPRINT
ATTACH. If no specific font is selected, the default font is Courier New with no style
attributes.

See also FONT NEW, XPRINT, XPRINT ATTACH, XPRINT CHR SIZE, XPRINT TEXT SIZE

XPRINT SET MIX statement

XPRINT SET MIX statement
Purpose Set the color mix mode for a host printer page.

Syntax XPRINT SET MIX mode&

Remarks Prior to any graphical operations, a host printer must first be selected with XPRINT
ATTACH. There are 16 mix modes available to use for mixing the drawing color with the
color that already exists at the drawing location. The default mix mode is 13, %
mix_CopySrc. The mix mode equates are predefined in PowerBASIC.

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2112 / 2126

%MIX_BLACKNESS Pixel is always 0 (black).
%MIX_NOTMERGESRC Pixel is the inverse of the MergeSrc color.
%MIX_MASKNOTSRC Pixel is a combination of the colors common to both

the pixel and the inverse of the source.
%MIX_NOTCOPYSRC Pixel is the inverse of the pen color.
%MIX_MASKSRCNOT Pixel is a combination of the colors common to both

the source and the inverse of the pixel.
%MIX_NOT Pixel is the inverse of the pixel color.
%MIX_XORSRC Pixel is a combination of the colors in the source and

in the pixel, but not in both.
%MIX_NOTMASKSRC Pixel is the inverse of the MaskSrc color.
%MIX_MASKSRC Pixel is a combination of the colors common to both

the source and the pixel.
%MIX_NOTXORSRC Pixel is the inverse of the XorSrc color.
%MIX_NOP Pixel remains unchanged.
%MIX_MERGENOTSRC Pixel is a combination of the source color and the

inverse of the pixel color.
%MIX_COPYSRC Pixel is the source color (default).
%MIX_MERGESRCNOT Pixel is a combination of the source color and the

inverse of the pixel color.
%MIX_MERGESRC Pixel is a combination of the source color and the

pixel color.
%MIX_WHITENESS Pixel is always 1 (white).

See also XPRINT ATTACH, XPRINT GET MIX

XPRINT SET ORIENTATION statement

XPRINT SET ORIENTATION statement
Purpose Set the paper orientation for a host printer page.

Syntax XPRINT SET ORIENTATION orent&

Remarks XPRINT SET ORIENTATION sets the orientation of the paper in the host printer. The value
1 indicates portrait mode, while 2 indicates landscape mode. If a host printer is not
attached, or does not support setting the orientation, error 57 is generated.

See also FONT NEW, XPRINT ATTACH, XPRINT GET ORIENTATION, XPRINT SET FONT

XPRINT SET OVERLAP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT SET OVERLAP statement
Purpose Enables or disables XPRINT Overlap Mode.

Syntax XPRINT SET OVERLAP [NumrExpr&]

PowerBASIC Compiler for Windows Version 10

2113 / 2126

Remarks XPRINT SET OVERLAP enables or disables overlap mode for the host printer which is
currently attached to the XPRINT stream. It has no effect on any other XPRINT target. If
NumrExpr& is true (non-zero), overlap mode is enabled. If false (zero), overlap mode is
disabled. If NumrExpr& is missing, the default is to enable Overlap Mode.

With Overlap Mode, you can control how PowerBASIC treats XPRINT operations which
involve a bounding rectangle (RECT structure) in their definition. Windows maintains
unique conventions for a RECT. The bottom and right coordinates of a RECT are
exclusive. In other words, the pixels at the bottom and right edges lie immediately
outside the rectangle. They are ignored. For example:

XPRINT BOX (0,0) - (50,50)

In this case, a box is drawn from 0,0 to 49,49. The final pixels at the bottom and right
edge are simply not drawn. However, if Overlap Mode is enabled, the box is drawn from
0,0 to 50,50.

The Overlap Mode affects all XPRINT functions which take a bounding rectangle as a
parameter. This includes XPRINT SCALE, XPRINT BOX, XPRINT ELLIPSE, XPRINT
LINE, XPRINT POLYLINE, etc.

See also XPRINT BOX, XPRINT ELLIPSE, XPRINT GET OVERLAP, XPRINT LINE, XPRINT
POLYLINE, XPRINT SCALE

XPRINT SET PAGES statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT SET PAGES statement
Purpose Sets the XPRINT page number limits for this print job.

Syntax XPRINT SET PAGES FromPage&, ToPage&

Remarks You may elect to limit a particular print job to a subset of the total number of pages. This
can be accomplished under program control by executing XPRINT SET PAGES, or the
user can make the appropriate choice in the Print Dialog which is displayed when XPRINT
ATTACH is executed with the CHOOSE option. When the pages are limited in this way,
PowerBASIC handles all the details of print suppression for you.

Normally, XPRINT pages are numbered from one. The parameter FromPage& specifies
the first page of the full report which will be printed, while ToPage& specifies the last
page.

If XPRINT SET PAGES is executed without a host printer attached, an error 57 is
generated.

See also XPRINT ATTACH, XPRINT GET PAGES, XPRINT SET COPIES

XPRINT SET PAPER statement

Keyword Template

PowerBASIC Compiler for Windows Version 10

2114 / 2126

Purpose

Syntax

Remarks

See also

Example

XPRINT SET PAPER statement
Purpose Sets a new paper size/type.

Syntax XPRINT SET PAPER papertype&

Remarks XPRINT SET PAPER changes the paper style for the host printer to that designated by
papertype&. The paper style is identified by an

 value given in the expression papertype&. The following equates are predefined in
the compiler, and represent the most common paper styles:
%DMPAPER_LETTER = 1 Letter 8.5 x 11 inches
%DMPAPER_TABLOID = 3 Tabloid 11 x 17 inches
%DMPAPER_LEDGER = 4 Ledger 17 x 11 inches
%DMPAPER_LEGAL = 5 Legal 8.5 x 14 inches
%DMPAPER_STATEMENT = 6 Statement 5.5 x 8.5 inches
%DMPAPER_EXECUTIVE = 7 Executive 7.25 x 10.5 inches
%DMPAPER_A3 = 8 A3 297 x 420 mm
%DMPAPER_A4 = 9 A4 210 x 297 mm
%DMPAPER_A5 = 11 A5 148 x 210 mm
%DMPAPER_B4 = 12 B4 250 x 354 mm
%DMPAPER_B5 = 13 B5 182 x 257 mm
%DMPAPER_FOLIO = 14 Folio 8.5 x 13 inches
%DMPAPER_QUARTO = 15 Quarto 215 x 275 mm
%DMPAPER_10X14 = 16 10x14 10 x 14 inches
%DMPAPER_11X17 = 17 11x17 11 x 17 inches
%DMPAPER_NOTE = 18 Note 8.5 x 11 inches
%DMPAPER_ENV_9 = 19 9 Envlp 3.875 x 8.875 inches
%DMPAPER_ENV_10 = 20 10 Envlp 4.125 x 9.5 inches

Other paper style codes may be defined by Windows or printer suppliers. You can use
XPRINT GET PAPERS to obtain a list of all the paper styles supported by the attached
host printer.

If the printer does not support the paper style specified, error 5 is generated. If executed
without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET PAPER, XPRINT GET PAPERS

XPRINT SET PIXEL statement

XPRINT SET PIXEL statement
Purpose Set the color of a pixel on a host printer page.

Syntax XPRINT SET PIXEL [STEP] (x!, y!) [, rgbColor&]

Remarks XPRINT SET PIXEL draws a single pixel on the host printer page. The optional color
parameter is an RGB value; if not included, the color defaults to the current foreground
color for the host printer. If the STEP option is included, the x! and y! coordinates are
relative to the last point referenced (

). The coordinate points are specified in pixels, unless world coordinates were set
with an XPRINT SCALE statement. If no host printer is attached, error 57 is

PowerBASIC Compiler for Windows Version 10

2115 / 2126

generated.
See also Built In RGB Color Equates, XPRINT ATTACH, XPRINT COLOR, XPRINT GET PIXEL

XPRINT SET POS statement

XPRINT SET POS statement
Purpose Set the last point referenced (POS) by an

 statement.
Syntax XPRINT SET POS [STEP] (x!, y!)

Remarks XPRINT SET POS allows you to set the last point referenced (POS) by XPRINT
statements. If the STEP option is included, the x! and y! coordinates are relative to the
prior POS. The coordinate points are specified in pixels (or world coordinates, if those
were defined with an XPRINT SCALE statement). If executed without a host printer
attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET POS

XPRINT SET QUALITY statement

XPRINT SET QUALITY statement
Purpose Set the print quality for a host printer.

Syntax XPRINT SET QUALITY qual&

Remarks XPRINT SET QUALITY sets the print quality setting for the host printer. The value 1 is
draft mode, 2 is low resolution, 3 is medium resolution, and 4 is high resolution. It should
be noted that some printers only allow higher resolutions to be set from the printer dialog
(in XPRINT ATTACH CHOOSE). If no host printer is attached, or the printer does not
support print quality settings, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET QUALITY

XPRINT SET STRETCHMODE statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT SET STRETCHMODE statement
Purpose Sets the default bitmap stretching mode for the current DC.

Syntax XPRINT SET STRETCHMODE ModeExpr

Remarks There are several operations in PowerBASIC which involve stretching or condensing
images on bitmaps, most notably XPRINT STRETCH. As individual pixels must be added
or removed, there is a good chance that the quality of the image will be degraded.
 However, if you describe the nature of the image by defining a StretchMode, you can

PowerBASIC Compiler for Windows Version 10

2116 / 2126

substantially enhance the appearance.

The default StretchMode is maintained individually for each DC. You can set the default
mode with this statement, or retrieve it with XPRINT GET STRETCHMODE. Of course,
you can also override the default StretchMode when you execute one of the affected
statements.

The 4 stretch mode equates are predefined in PowerBASIC.

%
BLACKONWHIT
E

1 This is the default Windows stretch mode, and is most
appropriate for monochrome bitmaps, or those with blocks of
color. Performs a boolean OR of eliminated and existing
pixels. It preserves black pixels at the expense of white
pixels.

%
WHITEONBLAC
K

2 Performs a boolean OR of eliminated and existing pixels. It
preserves white pixels at the expense of black pixels.

%
COLORONCOL
OR

3 Deletes eliminated lines of pixels without trying to preserve
their information.

%HALFTONE 4 This provides the highest quality for complex color bitmaps.
 The average color of the destination pixel block is kept
approximately the same as the source pixel block.

See also XPRINT COPY, XPRINT GET STRETCHMODE, XPRINT RENDER, XPRINT STRETCH

XPRINT SET TRAY statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT SET TRAY statement
Purpose Sets a new active printer tray.

Syntax XPRINT SET TRAY numrexp

Remarks XPRINT SET TRAY changes the active paper tray on the host printer to that specified by
numrexp. The following equates are predefined in the compiler, and represent the most
common paper trays:

%DMBIN_UPPER = 1
%DMBIN_LOWER = 2
%DMBIN_MIDDLE = 3
%DMBIN_MANUAL = 4
%DMBIN_ENVELOPE = 5
%DMBIN_ENVMANUAL = 6
%DMBIN_AUTO = 7
%DMBIN_TRACTOR = 8
%DMBIN_SMALLFMT = 9
%DMBIN_LARGEFMT = 10
%DMBIN_LARGECAPACITY = 11
%DMBIN_CASSETTE = 14

PowerBASIC Compiler for Windows Version 10

2117 / 2126

%DMBIN_FORMSOURCE = 15

Other tray codes may be defined by Windows or printer suppliers, so your program
should be written to consider that possibility. You can use XPRINT GET TRAYS to obtain
a list of all the paper trays supported by the attached host printer.

If the printer does not support the tray change requested, error 5 is generated. If
executed without a host printer attached, error 57 is generated.

See also XPRINT ATTACH, XPRINT GET TRAY, XPRINT GET TRAYS

XPRINT SET WORDWRAP statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT SET WORDWRAP statement
Purpose Enables or disables XPRINT WordWrap Mode.

Syntax XPRINT SET WORDWRAP [NumrExpr&]

Remarks XPRINT SET WORDWRAP enables or disables WordWrap mode for the host printer
which is currently attached to the XPRINT stream. It has no effect on any other printer. If
NumrExpr& is true (non-zero), WordWrap mode is enabled. If false (zero), WordWrap
mode is disabled. If NumrExpr& is missing, the default is to enable WordWrap Mode.

With WordWrap Mode, you can control how PowerBASIC prints text on an XPRINT page
when it reaches the end of a line. Since a host printer operates on a full page basis, the
default is to ignore text which is printed past the end of the line.

When WordWrap mode is enabled, it affects only XPRINT PRINT operations. If XPRINT
PRINT attempts to display a word beyond the end of a row, the entire word is
automatically wrapped to the first column of the next row.

See also XPRINT CELL, XPRINT GET WORDWRAP, XPRINT PRINT, XPRINT SET WRAP, XPRINT
SPLIT

XPRINT SET WRAP statement

XPRINT SET WRAP statement
Purpose Enables or disables XPrint Wrap Mode.

Syntax XPRINT SET WRAP [NumrExpr&]

Remarks XPRINT SET WRAP enables or disables wrap mode for the host printer which is currently
attached to the XPrint stream. It has no effect on any other printer. If NumrExpr& is true
(non-zero), wrap mode is enabled. If false (zero), wrap mode is disabled. If NumrExpr& is
missing, the default is to enable Wrap Mode.

With Wrap Mode, you can control how PowerBASIC prints text on an XPRINT PAGE
when it reaches the end of a line. Since a host printer operates on a full page basis, the
default is to ignore text which is printed past the end of the line.

PowerBASIC Compiler for Windows Version 10

2118 / 2126

When Wrap Mode is enabled, it affects only XPRINT PRINT operations. If XPRINT PRINT
attempts to display a character beyond the end of a row, it is automatically wrapped to
the first column of the next row.

See also XPRINT CELL, XPRINT GET WRAP, XPRINT PRINT, XPRINT SET WORDWRAP, XPRINT
SPLIT

XPRINT SPLIT statement

Keyword Template
Purpose

Syntax

Remarks

See also

Example

XPRINT SPLIT statement
Purpose Splits a

 into two parts for printing with XPRINT.
Syntax XPRINT SPLIT [WORD] MainStr, Part1Len TO Part1Var, Part2Var

Remarks Generally speaking, XPRINT SPLIT allows you to determine how much text will fit on a
line (or a line section), so you don't overrun the end. This is critical with variable-width
fonts. Since these text characters have different widths, you cannot rely on a simple
character count.

XPRINT SPLIT separates the MainStr string expression into two parts, which are then
assigned to the two string variables specified by Part1Var and Part2Var. The

 expression Part1Len specifies the maximum width of the print field, using page units
(pixels/points, scaled units). After completion of XPRINT SPLIT, the Part1Var will
contain those characters which can be safely printed in the print field. The Part2Var
will contain the remaining characters, which might be printed on following lines.
Since this operation creates a "line break" not contemplated in the original text, you may
have to modify the results in order to obtain the best appearance. For example, it's
usually best to remove any leading spaces from Part2Var before printing it.

WORD If the WORD option is included, PowerBASIC guarantees that Part1 will not end on a
partial word. This may require that Part1Len is adjusted to a smaller value. In that case,
Part2Var would be assigned these characters to compensate.

See also XPRINT CELL, XPRINT SET FONT, XPRINT SET WORDWRAP, XPRINT SET WRAP

XPRINT STRETCH statement

XPRINT STRETCH statement
Purpose Copy and resize a

 to the XPRINT page.
Syntax XPRINT STRETCH hBmp, ID, (x1,y1)-(x2,y2) TO (x3,y3)-(x4,y4) [,Mix, Stretch]

XPRINT STRETCH PAGE hBmp, ID [, Mix, Stretch]

Remarks You can copy a complete bitmap, or a portion of it, to the XPRINT page, while resizing it to a larger or smaller size. The handle
variable hBmp specifies the handle of the source bitmap or window. The parameter ID is the control identifier (1 to 65535) assigned

javascript:void(0);
javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2119 / 2126

with CONTROL ADD GRAPHIC. ID must be zero (0) for a GRAPHIC WINDOW or a

. The destination of the stretch operation is always the attached XPRINT page. The bitmap is automatically resized to fit the
destination parameters. You must use care that your parameters are valid for the specified bitmaps, or result of the operation is
undefined.
The second form, XPRINT STRETCH PAGE, is a shortcut for copying a complete bitmap to the clip or client area of the host printer
page. The image is automatically stretched or condensed to fit the target appropriately.

Mix If the Mix parameter is included, it is one of the values in the following table. If not specified, a default of %MIX_COPYSRC is
presumed. There are 16 mix modes available to use for mixing drawing colors with the colors which already exist at the at the
drawing location. The mix mode equates are predefined in PowerBASIC.

%mix_Blackness Pixel is always 0 (black).
%mix_NotMergeSrc Pixel is the inverse of the MergeSrc color.
%mix_MaskNotSrc Pixel is a combination of the colors common to both the pixel and the inverse of the source.
%mix_NotCopySrc Pixel is the inverse of the pen color.
%mix_MaskSrcNot Pixel is a combination of the colors common to both the source and the inverse of the pixel.
%mix_Not Pixel is the inverse of the pixel color.
%mix_XorSrc Pixel is a combination of the colors in the source and in the pixel, but not in both.
%mix_NotMaskSrc Pixel is the inverse of the MaskSrc color.
%mix_MaskSrc Pixel is a combination of the colors common to both the source and the pixel.
%mix_NotXorSrc Pixel is the inverse of the XorSrc color.
%mix_Nop Pixel remains unchanged.
%mix_MergeNotSrc Pixel is a combination of the source color and the inverse of the pixel color.
%mix_CopySrc Pixel is the source color (default).
%mix_MergeSrcNot Pixel is a combination of the source color and the inverse of the pixel color.
%mix_MergeSrc Pixel is a combination of the source color and the pixel color.
%mix_Whiteness Pixel is always 1 (white).

Stretch If the Stretch parameter is included, it is one of the values in the following table. If not included, or it is the value zero (0), the stretch
mode is unchanged. An appropriate choice of stretch mode can substantially enhance the quality of bitmaps which are changed in
size. The stretch mode equates are predefined in PowerBASIC.

%BLACKONWHITE 1 This is the default Windows stretch mode, and is most appropriate for monochrome bitmaps,
or those with blocks of color. Performs a boolean OR of eliminated and existing pixels. It
preserves black pixels at the expense of white pixels.

%WHITEONBLACK 2 Performs a boolean OR of eliminated and existing pixels. It preserves white pixels at the
expense of black pixels.

%COLORONCOLOR 3 Deletes eliminated lines of pixels without trying to preserve their information.

%HALFTONE 4 This provides the highest quality for complex color bitmaps. The average color of the
destination pixel block is kept approximately the same as the source pixel block.

See also XPRINT COPY, XPRINT RENDER, XPRINT SET MIX, XPRINT SET STRETCHMODE

XPRINT STRETCH PAGE statement

XPRINT STRETCH statement
Purpose Copy and resize a

 to the XPRINT page.
Syntax XPRINT STRETCH hBmp, ID, (x1,y1)-(x2,y2) TO (x3,y3)-(x4,y4) [,Mix, Stretch]

XPRINT STRETCH PAGE hBmp, ID [, Mix, Stretch]

Remarks You can copy a complete bitmap, or a portion of it, to the XPRINT page, while resizing it to a larger or smaller size. The handle
variable hBmp specifies the handle of the source bitmap or window. The parameter ID is the control identifier (1 to 65535) assigned
with CONTROL ADD GRAPHIC. ID must be zero (0) for a GRAPHIC WINDOW or a

. The destination of the stretch operation is always the attached XPRINT page. The bitmap is automatically resized to fit the

javascript:void(0);

PowerBASIC Compiler for Windows Version 10

2120 / 2126

destination parameters. You must use care that your parameters are valid for the specified bitmaps, or result of the operation is
undefined.
The second form, XPRINT STRETCH PAGE, is a shortcut for copying a complete bitmap to the clip or client area of the host printer
page. The image is automatically stretched or condensed to fit the target appropriately.

Mix If the Mix parameter is included, it is one of the values in the following table. If not specified, a default of %MIX_COPYSRC is
presumed. There are 16 mix modes available to use for mixing drawing colors with the colors which already exist at the at the
drawing location. The mix mode equates are predefined in PowerBASIC.

%mix_Blackness Pixel is always 0 (black).
%mix_NotMergeSrc Pixel is the inverse of the MergeSrc color.
%mix_MaskNotSrc Pixel is a combination of the colors common to both the pixel and the inverse of the source.
%mix_NotCopySrc Pixel is the inverse of the pen color.
%mix_MaskSrcNot Pixel is a combination of the colors common to both the source and the inverse of the pixel.
%mix_Not Pixel is the inverse of the pixel color.
%mix_XorSrc Pixel is a combination of the colors in the source and in the pixel, but not in both.
%mix_NotMaskSrc Pixel is the inverse of the MaskSrc color.
%mix_MaskSrc Pixel is a combination of the colors common to both the source and the pixel.
%mix_NotXorSrc Pixel is the inverse of the XorSrc color.
%mix_Nop Pixel remains unchanged.
%mix_MergeNotSrc Pixel is a combination of the source color and the inverse of the pixel color.
%mix_CopySrc Pixel is the source color (default).
%mix_MergeSrcNot Pixel is a combination of the source color and the inverse of the pixel color.
%mix_MergeSrc Pixel is a combination of the source color and the pixel color.
%mix_Whiteness Pixel is always 1 (white).

Stretch If the Stretch parameter is included, it is one of the values in the following table. If not included, or it is the value zero (0), the stretch
mode is unchanged. An appropriate choice of stretch mode can substantially enhance the quality of bitmaps which are changed in
size. The stretch mode equates are predefined in PowerBASIC.

%BLACKONWHITE 1 This is the default Windows stretch mode, and is most appropriate for monochrome bitmaps,
or those with blocks of color. Performs a boolean OR of eliminated and existing pixels. It
preserves black pixels at the expense of white pixels.

%WHITEONBLACK 2 Performs a boolean OR of eliminated and existing pixels. It preserves white pixels at the
expense of black pixels.

%COLORONCOLOR 3 Deletes eliminated lines of pixels without trying to preserve their information.

%HALFTONE 4 This provides the highest quality for complex color bitmaps. The average color of the
destination pixel block is kept approximately the same as the source pixel block.

See also XPRINT COPY, XPRINT RENDER, XPRINT SET MIX, XPRINT SET STRETCHMODE

XPRINT STYLE statement

XPRINT STYLE statement
Purpose Set the line style to be used by various

 statements.
Syntax XPRINT STYLE linestyle&

Remarks XPRINT STYLE determines the line style which will be used when drawing various
graphical objects, while the width value is set to 1. When the width value is greater than
one, Windows always interprets the style as 0 (solid).

Available line styles are:

0 Solid (default)
1 Dash
2 Dot
3 DashDot

PowerBASIC Compiler for Windows Version 10

2121 / 2126

4 DashDotDot
See also XPRINT ARC, XPRINT ATTACH, XPRINT BOX, XPRINT ELLIPSE, XPRINT LINE, XPRINT

PIE, XPRINT WIDTH

Example ' Draw a square box with blue, dotted lines
XPRINT WIDTH 1
XPRINT STYLE 2
XPRINT BOX (10, 10) - (110, 110), 0, %BLUE

XPRINT TEXT SIZE statement

XPRINT TEXT SIZE statement
Purpose Calculate the size of text to be printed on a host printer.

Syntax XPRINT TEXT SIZE txt$ To nWidth!, nHeight!

Function Form:
WidthVar! = XPRINT(TEXT.SIZE.X, txt$)
HeightVar! = XPRINT(TEXT.SIZE.Y, txt$)

Remarks This statement calculates the total size of the printed text, based upon the current font for
the host printer. The sizes returned are specified in Page Units.

This allows you to easily calculate the appropriate print position, particularly when using a
proportional font. If this statement is executed without a host printer attached, error 57 is
generated.

See also XPRINT CELL SIZE, XPRINT CHR SIZE, XPRINT SET FONT

Example FUNCTION PBMAIN
 ' The following example draws the text both horizontally
 ' and vertically centered on the host printer page

 LOCAL x, y, w, h, w2, h2 AS LONG
 LOCAL sText AS STRING
 sText = "PowerBASIC"

 XPRINT ATTACH "Lexmark C750"
 XPRINT COLOR %BLUE, -2 ' blue text, clear background
 XPRINT FONT "Times New Roman", 18, 3 ' 18p, bold, italic

 XPRINT GET CLIENT TO w, h ' get client size
 XPRINT TEXT SIZE sText TO w2, h2 ' get text size
 x = (w-w2) / 2 ' centered x-pos
 y = (h-h2) / 2 ' centered y-pos

 XPRINT SET POS (x, y) ' set position
 XPRINT sText ' draw the text
 XPRINT CLOSE
END FUNCTION

XPRINT WIDTH statement

XPRINT WIDTH statement
Purpose Set the graphic line width to be used by various

 statements..
Syntax XPRINT WIDTH ncPixels&

Remarks XPRINT WIDTH determines the line width which will be used when drawing various

PowerBASIC Compiler for Windows Version 10

2122 / 2126

graphical objects. The default width is 1 pixel. The width is always specified in pixels,
regardless of any XPRINT SCALE option. When the width is set to a value greater than 1,
XPRINT STYLE parameters are always interpreted as 0 (solid).

See also XPRINT ARC, XPRINT ATTACH, XPRINT BOX, XPRINT ELLIPSE, XPRINT LINE, XPRINT
PIE, XPRINT STYLE

Example FUNCTION PBMAIN
 XPRINT ATTACH "Lexmark C750"
 ' Draw a square box with thick, red lines
 XPRINT WIDTH 10
 XPRINT BOX (10, 10) - (110, 110), 0, %RED
 XPRINT CLOSE
END FUNCTION

Support

Technical Support

Technical Support

Visit the Peer Support forums on the PowerBASIC web site or contact us via email at
support@powerbasic.com.

Be sure to visit our home page for the latest news, information on upgrades, and programming tips.

License Agreement

LICENSE AGREEMENT IN PLAIN ENGLISH (see below for legal version)

This Agreement is between you and PowerBasic Tools, LLC ("PowerBASIC"). Your use of the Software is
governed by this Agreement.

PowerBASIC legally owns the Software, tools, and related products and documentation associated with
PowerBasic, and itʼs protected by copyright and trademark.

The Software is licensed to you; you do not own it.

The license is good for one person using one computer at a time. You can create your own products using
this Software without paying us anything extra, but you cannot distribute the PowerBASIC IDE, Compiler, or
PB/Forms.

If you are writing a tool such as a compiler, interpreter, or programming language, you may not republish
underlying PowerBASIC runtime as your own.

We warrant the physical medium of providing the Software will not have defects for 60 days. No other

https://forum.powerbasic.com/index.php
mailto:support@powerbasic.com
https://www.powerbasic.com/

PowerBASIC Compiler for Windows Version 10

2123 / 2126

warranties are included, in fact, theyʼre specifically excluded.

If you have a warranty claim, you have to let us know during the Warranty Period and we have 90 days to fix
it or refund your money. Our liability will never be more than the amount you paid for the Software. Thatʼs it.
No additional liability for PowerBASIC.

You agree to defend us against other parties and not hold us responsible for your actions or the products
you create, even if you used PowerBASIC to create those products. This includes almost any conceivable
notion of liability.

Since weʼre based in North Carolina, but have customers all over the world, weʼre going to use North
Carolina law to define and decide any disagreements

.

ANY LICENSE DISPUTE WILL BE GOVERNED BY THE LEGAL VERSION OF THE POWERBASIC
LICENSE AGREEMENT (BELOW).

POWERBASIC LICENSE AGREEMENT (Legal Version)

This License Agreement (the "Agreement") is an agreement between you (referred to herein as “you” or
“Licensee”) and PowerBasic Tools, LLC (“PowerBASIC”).

The PowerBASIC compiler and licensed tools (collectively and individually, the “Software”) are proprietary
products of PowerBASIC and are protected by United States copyright law and international treaties.

The Software, tools, and related products and documentation and various trademarks, service marks and
trade names (collectively “Intellectual Property”) are the sole and exclusive property of PowerBASIC, and
may be protected by copyright, trademark, trade secret and other intellectual property laws. Any use of
PowerBASICʼs Intellectual Property without PowerBASICʼs express written consent is prohibited.

The Software is licensed, not sold, only on the condition Licensee agrees to and complies with the terms

and conditions of this Agreement. PowerBASIC grants to Licensee a non‐exclusive, non-transferable, non-

sublicensable, limited license to use the Software and any associated manuals and/or documentation,
subject to Licensee's strict compliance with this Agreement and PowerBASIC's Terms of Use and Privacy
Policy.

This license is valid for use by one person only, whose name will be registered with PowerBASIC on one
computer at a time. The Software may be transferred from one computer to another as long as there is no
possibility of it being used on more than one computer at the same time. By written request to
PowerBASIC, you may specify a change of licensed user if the new user is your employee or family
member. If the Software is used on a network, one licensed copy of the Software is required for each person
who uses the Software. If the licensed Software is a compiler, you may distribute the programs you create
royalty free. This license grants Licensee no right to sub-license or in any way provide the Software to a
third party. You may not distribute the licensed compiler. If the Software includes one or more runtime
modules, you may reproduce and distribute the runtime modules royalty free, provided they are distributed
only in conjunction with, and as part of your software program, and provided that the program incorporating
the modules bears the copyright notice which appears on the PowerBASIC label or PowerBASIC.com
website. The runtime modules are those files that are required to execute your software program, and which

PowerBASIC Compiler for Windows Version 10

2124 / 2126

are specifically designated as "runtime modules" in the accompanying PowerBASIC documentation. Your
use of any of the demonstration or sample programs provided with the Software are governed by, and
subject to, the notices and restrictions of the respective author or copyright holder. Except as stated above,
you may not resell, transfer ownership, barter, donate, rent, lease, lend, or share the Software to/with
another person or entity. You agree to use commercially reasonable efforts to safeguard the Software
against infringement, misappropriation, theft, misuse or unauthorized access.

Additional Restrictions

You may use the licensed Software to create and maintain any form of target computer program for your
own use. If you publish any target computer program, freeware or commercial, which is a tool such as an
interpreter, DLL or programmer's library, etc., you may not export a wrapper subroutine/function for any
individual PowerBASIC command which republishes that command as your own and allows that command
to be used by anyone that does not own a PowerBASIC license.

Limited Warranty; Limitation of Liability

PowerBASIC warrants that the physical disks and physical documentation are free of defects in
workmanship and materials for a period of sixty (60) days from the date of purchase (the "Warranty Period").
If the disks or documentation are found to be defective within the Warranty Period, PowerBASIC will replace
the defective items at no cost to you. PowerBASIC's entire liability under this warranty is limited to
replacement or refund of the Software and documentation and shall not, under any circumstances, include
any other damages.

During the Warranty Period, Licensee shall promptly notify PowerBASIC in writing of any claimed deficiency
and provide information sufficient to permit PowerBASIC to validate the deficiency. If a deficiency exists
which breaches the warranty, PowerBASIC shall, at its sole discretion and within ninety (90) days: (i)

correct the deficiency; or (ii) with PowerBASICʼs prior written authorization and upon Licenseeʼs de‐
installation of the Software and return of all copies of the Software to PowerBASIC, refund any license fee
paid to PowerBASIC, whereupon this Agreement shall terminate. Under no circumstances will
PowerBASICʼs liability exceed amounts paid by the Licensee for use of the Software.

THE REMEDIES SET FORTH ABOVE ARE LICENSEEʼS SOLE AND EXCLUSIVE REMEDIES FOR
BREACH OF THE LIMITED WARRANTY CONTAINED IN THIS AGREEMENT.

EXCEPT FOR THE LIMITED WARRANTY SET FORTH ABOVE, THE SOFTWARE IS PROVIDED TO
LICENSEE "AS IS" AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO
THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, POWERBASIC, ITS AFFILIATES,
AND/OR THEIR SERVICE PROVIDERS, SUPPLIERS, EMPLOYEES, AGENTS, OFFICERS, OR
DIRECTORS EXPRESSLY DISCLAIM ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE, WITH RESPECT TO THE SOFTWARE AND DOCUMENTATION, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-
INFRINGEMENT, AND WARRANTIES THAT MAY ARISE OUT OF COURSE OF DEALING, COURSE OF
PERFORMANCE, USAGE, OR TRADE PRACTICE. WITHOUT LIMITATION TO THE FOREGOING,
POWERBASIC, ITS AFFILIATES, AND/OR THEIR SERVICE PROVIDERS, SUPPLIERS, EMPLOYEES,
AGENTS, OFFICERS, OR DIRECTORS PROVIDE NO WARRANTY OR UNDERTAKING, AND MAKE NO
REPRESENTATION OF ANY KIND THAT THE LICENSED SOFTWARE WILL MEET THE LICENSEE'S
REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE, OR WORK WITH ANY
OTHER SOFTWARE, APPLICATIONS, SYSTEMS, OR SERVICES, OPERATE WITHOUT INTERRUPTION,

PowerBASIC Compiler for Windows Version 10

2125 / 2126

MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE, OR THAT ANY
ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

IN NO EVENT WILL POWERBASIC, ITS AFFILIATES, AND/OR THEIR SERVICE PROVIDERS,
SUPPLIERS, EMPLOYEES, AGENTS, OFFICERS, OR DIRECTORS BE LIABLE TO LICENSEE OR ANY
THIRD PARTY FOR ANY USE, INTERRUPTION, DELAY, OR INABILITY TO USE THE SOFTWARE; LOST
REVENUES OR PROFITS; DELAYS, INTERRUPTION, OR LOSS OF SERVICES, BUSINESS, OR
GOODWILL; LOSS OR CORRUPTION OF DATA; LOSS RESULTING FROM SYSTEM OR SYSTEM
SERVICE FAILURE, MALFUNCTION, OR SHUTDOWN; FAILURE TO ACCURATELY TRANSFER, READ,
OR TRANSMIT INFORMATION; FAILURE TO UPDATE OR PROVIDE CORRECT INFORMATION; SYSTEM
INCOMPATIBILITY OR PROVISION OF INCORRECT COMPATIBILITY INFORMATION; BREACHES IN
SYSTEM SECURITY OR UNAUTHORIZED ACCESS TO CONFIDENTIAL INFORMATION; OR FOR ANY
INDIRECT, PUNITIVE, EXEMPLARY, INCIDENTAL, SPECIAL, CONSEQUENTIAL, OR ANY OTHER
DAMAGES, WHETHER ARISING OUT OF OR IN CONNECTION WITH THIS AGREEMENT, BREACH OF
CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, OR OTHERWISE, REGARDLESS OF
WHETHER SUCH DAMAGES WERE FORESEEABLE AND WHETHER OR NOT POWERBASIC WAS
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IN NO EVENT WILL THE AGGREGATE LIABILITY OF POWERBASIC, ITS AFFILIATES, AND/OR THEIR
SERVICE PROVIDERS, SUPPLIERS, EMPLOYEES, AGENTS, OFFICERS, OR DIRECTORS, UNDER
ANY LEGAL OR EQUITABLE THEORY, INCLUDING BREACH OF CONTRACT, TORT (INCLUDING
NEGLIGENCE), STRICT LIABILITY, OR OTHERWISE, EXCEED THE TOTAL AMOUNT PAID TO
POWERBASIC FOR THE SOFTWARE THAT IS THE SUBJECT OF THE CLAIM.

Indemnification of PowerBASIC

LICENSEE HEREBY AGREES TO INDEMNIFY, DEFEND, AND HOLD POWERBASIC, ITS AFFILIATES,
AND THEIR SERVICE PROVIDERS, SUPPLIERS, EMPLOYEES, AGENTS, OFFICERS, AND
DIRECTORS, HARMLESS FROM AND AGAINST ANY AND ALL LIABILITIES, LOSSES, COSTS,
EXPENSE, DAMAGES, AND DEFICIENCIES, INCLUDING, WITHOUT LIMITATION, COURT COSTS AND
REASONABLE ATTORNEY FEES, WHICH DIRECTLY OR INDIRECTLY ARISE OUT OF, RESULT FROM
OR RELATE TO (I) ANY AND ALL LIABILITIES, OBLIGATIONS, OR CLAIMS, WHETHER ACCRUED,
ABSOLUTE, CONTINGENT, OR OTHERWISE, WHICH HAVE AS A BASIS THE OPERATION OF
LICENSEE, ANY AND ALL ACCOUNTS PAYABLE OF LICENSEE, AND ANY AND ALL TAXES LEVIED OR
INCURRED, WHETHER PAYABLE TO A FEDERAL, STATE, LOCAL OR OTHER GOVERNMENTAL
AUTHORITY; (II) ANY AND ALL LOSSES, CLAIMS, CAUSES OF ACTION, LIABILITIES, COSTS,
EXPENSES, DAMAGES OR DEFICIENCIES DUE TO ANY BREACH BY LICENSEE OF ANY OF
ITS REPRESENTATIONS, WARRANTIES, OR COVENANTS CONTAINED IN THIS AGREEMENT; (III) ALL
ACTIONS, SUITS, PROCEEDINGS, DEMANDS, ASSESSMENTS, JUDGMENT COSTS AND EXPENSES,
INCLUDING THE COST AND EXPENSE OF SUCCESSFUL COLLECTION FROM LICENSEE OR ITS
LEGAL REPRESENTATIVE, SUCCESSORS, OR ASSIGNS OF ANY AMOUNT DUE POWERBASIC
HEREUNDER OR RESULTING THEREFROM; (IV) ANY HARMFUL SOFTWARE TRANSMITTED BY
LICENSEE OR ON BEHALF OF LICENSEE; AND (V) UNAUTHORIZED ACCESS TO ANY PERSONALLY
IDENTIFIABLE OR CONFIDENTIAL DATA ATTRIBUTABLE TO THE ACTS OR INACTION OR OMISSIONS
OF THE LICENSEE; AND (VI) ANY CLAIM BY A THIRD PARTY RELATING TO LICENSEEʼS USE OF THE
SOFTWARE OR THE RESULTS THEREOF. The obligations set forth in this section shall survive the
termination or expiration of this Agreement.

Governing Law

This Agreement shall be construed, interpreted, and governed by the laws of the State of North Carolina,
USA, and any action hereunder shall be brought only in North Carolina.

PowerBASIC Compiler for Windows Version 10

2126 / 2126

Export Regulation

The Software may be subject to US export control laws, including the US Export Administration Act and its
associated regulations. Licensee shall not, directly or indirectly, export, re-export, or release the Software
to, or make the Software accessible from, any jurisdiction or country to which export, re-export, or release is
prohibited by law, rule, or regulation. Licensee shall comply with all applicable laws, regulations, and rules,
and complete all required undertakings (including obtaining any necessary export license or other
governmental approval), prior to exporting, re-exporting, releasing, or otherwise making the Software
available outside the US.

US Government Rights

The Software and documentation is "commercial computer software", as such term is defined in 48 C.F.R.
§2.101, 48 C.F.R. §252.227-7014(a)(1) or otherwise. Accordingly, if Licensee is the US Government or any
contractor therefor, Licensee shall receive only those rights with respect to the Software and documentation
as are granted to all other Licensees, in accordance with (a) 48 C.F.R. §227.7201 through 48 C.F.R.
§227.7204, with respect to the Department of Defense and their contractors, or (b) 48 C.F.R. §12.212, with
respect to all other US Government Licensees and their contractors. Use, duplication, or disclosure by the
US Government of the Software and documentation shall be subject to the restricted rights under 48 C.F.R.

§252.227‐7013 and similar clauses of the Federal Acquisition Regulations applicable to commercial

computer software.

Miscellaneous

This Agreement, together with our Terms of Use and Privacy Policy, constitutes the entire agreement
between you and PowerBASIC. If any provision is found invalid or unenforceable, the balance of this
Agreement shall remain valid and enforceable. No failure to exercise, and no delay in exercising, on the part
of either party, any right or any power hereunder shall operate as a waiver thereof, nor shall any single or
partial exercise of any right or power hereunder preclude further exercise of that or any other right hereunder.
This Agreement is for the sole benefit of the parties hereto and their respective successors and permitted
assigns and nothing herein, express or implied, is intended to or shall confer on any other person any legal
or equitable right, benefit, or remedy of any nature whatsoever under or by reason of this Agreement. All
rights not specifically granted herein are reserved by PowerBASIC.

	Home
	Introducing PowerBASIC For Windows 10
	What's New
	New Statements and Functions
	Changes to existing Statements and Functions
	Additional Changes
	New in the IDE

	Running PB/Win
	Running PB/Win
	Running PB/Win From Windows
	Running PB/Win From The Command Prompt
	PB/Win Command Line Switches

	The PowerBASIC Integrated Development Environment
	The PowerBASIC Integrated Development Environment
	The PowerBASIC User Interface
	Toolbar Buttons
	Editor Hot Keys
	IDE Context Menu
	File Templates
	Project Files
	Custom Help Files
	IDE Options
	IDE Options
	File tab
	Editor tab
	Fonts tab
	Color tab
	Syntax Color Selector
	Syntax Custom Color Selector
	Compiler tab
	Browsing for Include folders
	Debugger tab
	General tab

	IDE Dialogs
	Code Finder Dialog
	Command Line Dialog
	Debugger Evaluate Dialog
	Find Dialog
	Go to Line Dialog
	Go to Bookmark Dialog
	Print Preview Dialog
	Primary Source File Dialog
	Replace Dialog Box
	PowerBASIC Library Manager

	Writing Programs in PB/Win
	Line numbers and Labels
	Long lines
	Statement separation
	Variables
	Structured Programming

	Creating Dynamic Link Libraries
	What is a Dll?
	Why use Dlls?
	Creating a Dynamic Link Library
	Private and Exported Procedures
	Dll example
	LibMain

	Creating Static Link Libraries
	What is an SLL?
	Creating a Static Link Library
	SLL example
	PowerBASIC Library Manager

	Debugging PB/Win Programs
	Debugging PB/Win Programs
	How the integrated debugger works
	Debugger Toolbar Buttons
	The Debug Menu
	Debugging a simple program
	Debugging a simple program
	TWORD.bas Source Listing
	Setting and using breakpoints
	Tracing execution
	Evaluating a variable
	Summary

	Data Types
	Data Types
	Integral Data Types
	Byte (?)
	Word (??)
	Integers (%)
	Long integers (&)
	Double-word (???)
	Quad integers (&&)

	Floating Point Data Types
	Single-precision floating-point (!)
	Double-precision floating-point (#)
	Extended-precision floating-point (##)
	Currency (@) and Extended-currency (@@)

	String Data Types
	Characters, Strings, and Unicode
	Dynamic (Variable-length) strings ($)
	FIELD strings
	Fixed-length strings
	Nul-Terminated Strings
	String expressions
	String Operations Commands

	Array Data Types
	Array Data Types
	Subscripts
	String arrays
	Multidimensional arrays
	Array storage requirements
	Internal representations of arrays
	Arrays within User-Defined Types
	Array operations
	POWERARRAY Object

	User-Defined Types and Unions
	User-Defined Types (UDTs)
	Defining User-Defined Types
	Accessing the fields of a User-Defined Type
	Nesting User-Defined Types
	Arrays within User-Defined Types
	Using arrays of User-Defined Types
	Using User-Defined Types with procedures
	Storage requirements and restrictions
	Built-in User Defined Types
	Unions
	Unions
	Storage requirements and restrictions

	Pointer Data Types
	Pointers (@)
	Pointers to Nul-Terminated and fixed-length strings
	Pointers to arrays
	Pointers to arrays with dual indexes

	Constants
	Constants and Literals
	Defining Constants
	Numeric Equates
	Built-in numeric equates
	Built In RGB Color Equates
	String Equates
	Built-in string equates

	Bit Data Types
	GUID data types
	Object Data Type
	Variant Data Types
	Comparative Data Types
	C/C++
	Delphi
	Visual Basic 6

	Variables and Variable Scope
	Variables
	Default Variable Typing
	Variable scope

	Operators
	Arithmetic Operators
	Relational Operators
	Operator Precedence

	Errors and Error Trapping
	Error Overview
	Error Trapping
	Error Trapping
	How error traps work
	Setting an error trap
	Writing an error handler
	Exiting an error handler
	Error Trapping Summary

	Compile Time Errors
	Error 401 Expression too long/complex
	Error 402 - Statement too long/complex
	Error 403 - #IF nesting overflow
	Error 404 - #INCLUDE file/Macro nesting overflow
	Error 405 - Block nesting overflow
	Error 406 - Compiler out of memory
	Error 407 - Source line too long
	Error 408 - Wrong compiler for this program
	Error 409 - Sub/Function is too large
	Error 411 - "," expected
	Error 412 - ";" expected
	Error 413 - "(" expected
	Error 414 - ")" expected
	Error 415 - "=" expected
	Error 416 - "-" expected
	Error 417 - "*" expected
	Error 418 - Statement expected
	Error 419 - Label/line number expected
	Error 420 - Relational operator expected
	Error 421 - String operand expected
	Error 422 - Scalar variable expected
	Error 423 - Array variable expected
	Error 424 - Numeric variable expected
	Error 425 - String variable expected
	Error 426 - Variable expected
	Error 427 - Integer constant expected
	Error 428 - Positive integer constant expected
	Error 429 - String constant expected
	Error 430 - Integer variable expected
	Error 431 - Numeric scalar variable expected
	Error 432 - Long-integer variable expected
	Error 433 - Matrix array expected (integer/float)
	Error 434 - End of line expected
	Error 435 - #IF expected
	Error 436 - #ENDIF expected
	Error 437 - AS expected
	Error 438 - Member name expected
	Error 439 - GOSUB expected
	Error 440 - GOTO expected
	Error 441 - IN expected
	Error 442 - THEN expected
	Error 443 - TO expected
	Error 444 - PREFIX clause expected
	Error 445 - OF expected
	Error 446 - FUNCTION expected
	Error 447 - IF expected
	Error 448 - DO loop expected
	Error 449 - SELECT expected
	Error 450 - CASE expected
	Error 451 - FOR loop expected
	Error 452 - SUB expected
	Error 453 - Equate (%xyz) expected
	Error 454 - END FUNCTION expected
	Error 455 - END IF expected
	Error 456 - LOOP/WEND expected
	Error 457 - END SELECT expected
	Error 458 - END SUB expected
	Error 459 - NEXT expected
	Error 460 - Undefined equate
	Error 461 - INSTANCE arrays must be declared
	Error 462 - Undefined SUB/FUNCTION reference
	Error 463 - Undefined label/line reference
	Error 464 - Undefined class reference
	Error 465 - May be defined only once
	Error 466 - This name is already in use
	Error 467 - Duplicate line number
	Error 468 - This equate may not be redefined
	Error 469 - Quad integer variable expected
	Error 471 - Invalid line number
	Error 472 - Invalid label
	Error 473 - Invalid numeric format
	Error 474 - Invalid name
	Error 475 - Metastatements not allowed here
	Error 476 - Block/scanned statements not allowed here
	Error 477 - Syntax error
	Error 478 - Resource file error
	Error 479 - Array bounds error
	Error 480 - Parameter mismatches definition
	Error 481 - Mismatch with prior definition
	Error 482 - Data type mismatch
	Error 483 - Requires Object Procedure (Method/Property)
	Error 484 - Requires procedure (Sub/Function)
	Error 485 - Dynamic/Field strings not allowed
	Error 486 - BYVAL option not allowed
	Error 487 - Multiple NEXT not allowed
	Error 488 - Numeric processor overflow
	Error 489 - Invalid string length
	Error 490 - Static array too large
	Error 491 - Invalid register variable
	Error 492 - Invalid SORT function
	Error 493 - Compiler file not found/accessible
	Error 494 - ASM not allowed here
	Error 495 - Compiler file read error
	Error 496 - Destination file write error
	Error 497 - Assembler syntax error
	Error 498 - Assembler variables must be declared
	Error 499 - Statement must be first on line
	Error 500 - Variable name must be unique
	Error 501 - Parameters too large (exceed 64 Kb)
	Error 502 - COM interface name expected
	Error 503 - Invalid MAIN Function(s)
	Error 504 - Executable requires PBMAIN/WINMAIN function
	Error 505 - Debugging requires EXE file, not DLL
	Error 506 - Declaration must precede statements
	Error 507 - OLE variable expected
	Error 508 - INSTANCE not allowed here
	Error 509 - Interface mismatches class
	Error 510 - Interface name expected
	Error 511 - Numeric operand expected
	Error 512 - Brackets not supported (use OPTIONAL)
	Error 513 - "]" expected
	Error 514 - Enclosing <...> angle brackets expected
	Error 515 - Fixup overflow
	Error 516 - DEFtype, Type ID or type-specifier required
	Error 517 - OPTIONAL requires CDECL or SDECL
	Error 519 - Missing declaration
	Error 520 - TYPE expected
	Error 521 - UNION expected
	Error 522 - END TYPE expected
	Error 523 - END UNION expected
	Error 524 - Undefined type
	Error 525 - Type ID or specifier (?%&!#$) not allowed
	Error 526 - Period not allowed
	Error 527 - End of statement expected
	Error 528 - Type too large
	Error 529 - Pointer variable error
	Error 530 - Invalid member name/definition
	Error 531 - Object variable expected
	Error 532 - Variant variable expected
	Error 533 - Dispatch object variable expected
	Error 534 - Bit field error
	Error 535 - Dynamic string variable expected
	Error 536 - Too many imports
	Error 537 - Pointer expected
	Error 538 - Invalid FOR/NEXT limits
	Error 539 - Invalid thread function
	Error 540 - Invalid operation with a register variable
	Error 541 - Register size conflict
	Error 542 - May not be altered
	Error 543 - Must be outside Sub/Function/Class...
	Error 544 - Field variable expected
	Error 545 - AT expected
	Error 546 - Use only as a Callback
	Error 547 - Callback function required
	Error 548 - No parameters with Callback
	Error 549 - BYVAL required with pointers
	Error 550 - Too many data statements
	Error 551 - Not supported in this version
	Error 552 - TRY statement expected
	Error 553 - CATCH statement expected
	Error 554 - END TRY statement expected
	Error 555 - ON ERROR/RESUME not allowed here
	Error 556 - Function restricted to threads
	Error 557 - Macro too long/complex
	Error 558 - MACRO expected
	Error 559 - END MACRO expected
	Error 560 - FASTPROC expected
	Error 561 - END FASTPROC expected
	Error 562 - INTERFACE expected
	Error 563 - END INTERFACE expected
	Error 564 - MACROTEMP not allowed here
	Error 565 - Macro mismatch with code position
	Error 566 - CLASS expected
	Error 567 - END CLASS expected
	Error 568 - METHOD expected
	Error 569 - END METHOD expected
	Error 570 - PROPERTY expected
	Error 571 - END PROPERTY expected
	Error 572 - PROPERTY GET expected
	Error 573 - Valid only in a CALLBACK FUNCTION
	Error 574 - Not allowed in an Event Class
	Error 575 - EVENT SOURCE is not declared
	Error 576 - Too many Interfaces
	Error 577 - EVENT INTERFACE expected
	Error 578 - INHERIT of Base Class expected
	Error 579 - BYREF variable or BYVAL/BYREF variant expected
	Error 580 - Duplicate GUID usage
	Error 581 - Type Library creation error
	Error 582 - Duplicate Dispatch interface
	Error 583 - Unpaired PROPERTY definition
	Error 584 - Mismatched PROPERTY pair
	Error 585 - PROPERTY requires BYVAL parameters
	Error 586 - User Defined Type or AS expected
	Error 587 - Invalid Constructor/Destructor
	Error 588 - Indirect operand must be bracketed: [12]
	Error 589 - Dual/IDispatch interface is required
	Error 590 - PROPERTY SET requires at least one parameter
	Error 591 - BYVAL with OUT is not allowed
	Error 592 - Return value required
	Error 593 - Dual or Automation interface is required
	Error 594 - Macro ends with continuation '_'
	Error 595 - Object return type required
	Error 596 - Inherited interface expected
	Error 597 - Invalid name or sequence in the interface
	Error 598 - CLASS METHOD name expected
	Error 599 - Requires CLASS but outside of Interfaces
	Error 600 - Macro phase error, referenced before define
	Error 601 - One INHERIT per interface
	Error 602 - Hidden interface referenced by COM
	Error 603 - Incompatible with a Dual/IDispatch interface
	Error 604 - Incompatible with #COM TLIB generation
	Error 605 - Macro parameter mismatch
	Error 606 - PowerCollection / LinkListCollection required
	Error 607 - New syntax requires GETCOM/NEWCOM/ANYCOM
	Error 609 - Too many macro expansions
	Error 610 - Invalid within a FastProc
	Error 611 - FASTPROC params must be ByVal Long Integer
	Error 612 - FASTPROC return may only be Long Integer
	Error 613 - Cannot compile - the program is now running
	Error 614 - Mismatched CHR Mode (Ansi/Wide)
	Error 615 - PREFIX expected
	Error 616 - END PREFIX expected
	Error 617 - ASMDATA expected
	Error 618 - END ASMDATA expected
	Error 619 - ENUM expected
	Error 620 - END ENUM expected
	Error 621 - Interface cannot inherit from itself
	Error 622 - AS STRING required for variant conversion
	Error 623 - THREADPARM Instance variable required
	Error 624 - Invalid THREADPARM variable type
	Error 625 - THREAD Method required
	Error 626 - Duplicate THREAD Method
	Error 627 - INHERIT IPowerThread expected
	Error 628 - Not valid in a Static-Lin-Lib (SLL)
	Error 629 - ALIAS disallows Private/Thread/Callback
	Error 630 - Link File Error
	Error 631 - Nested Link Files
	Error 632 - COMMON name is a duplicate
	Error 633 - COMMON signature is mismatched
	Error 634 - Undefined COMMON reference
	Error 635 - USING clause is required
	Error 636 - Invalid VersionInfo Resource
	Error 637 - SLL mismatch with this compiler
	Error 638 - Please change AS STRING to AS WSTRING
	Error 639 - TYPE variable expected
	Error 801 to 815 - Internal error
	Error 640 - Invalid use of BYCOPY

	Run Time Errors
	Error 0 - No error
	Error 5 - Illegal function call
	Error 6 - Overflow
	Error 7 - Out of memory
	Error 9 - Subscript / Pointer out of range
	Error 11 - Division by zero
	Error 24 - Device time-out
	Error 51 - Internal error
	Error 52 - Bad file name or number
	Error 53 - File not found
	Error 54 - Bad file mode
	Error 55 - File is already open
	Error 57 - Device I/O error
	Error 58 - File already exists
	Error 61 - Disk full
	Error 62 - Input past end
	Error 63 - Bad record number
	Error 64 - Bad file name
	Error 67 - Too many files
	Error 68 - Device unavailable
	Error 69 - COMM error
	Error 70 - Permission denied
	Error 71 - Disk not ready
	Error 72 - Disk media error
	Error 74 - Rename across disks
	Error 75 - Path/file access error
	Error 76 - Path not found
	Error 98 - XPrint Preview error
	Error 99 - Object error
	Error 241 - Global memory corrupt
	Error 242 - String space corrupt

	Dynamic Dialog Tools (DDT)
	Dynamic Dialog Tools (DDT)
	Creating a Dialog
	Adding Controls to the Dialog
	Modal vs. Modeless
	Controls
	Control Styles
	Callbacks
	Dialog Styles
	Menus
	Menu Walkthrough
	More on the Menu
	Menu State
	Menu Example

	Files
	Files
	Sequential Files
	Random Access Files
	Binary Files

	Graphics
	Printing
	Printing
	Print Preview

	Serial Communications
	Serial Communications
	Communications Basics
	Communication Buffers
	Parity and general error checking
	Start and stop bits
	Opening a communications port
	Reading and writing data
	A simple communications program

	TCP and UDP Communications
	TCP and UDP Communications
	The Internet Protocol (IP)
	User Datagram Protocol (UDP)
	Transmission Control Protocol (TCP)
	Winsock
	Request for Comments (RFC)
	TCP clients and servers
	Simple Mail Transfer Protocol (SMTP)
	An ECHO client and server using TCP

	Objects and COM Programming
	What is an object, anyway?
	Where are objects located?
	Why should I use objects?
	What are the parts of an object?
	Are there other important "Buzz-Words"?
	What does a Class look like?
	What is a Base Class?
	What does an Interface look like?
	Just what is COM?
	What is a COM component?
	How do you publish an object?
	What is inheritance?
	How do you create an object?
	How do you duplicate an object variable?
	How do you call a Direct Method?
	What is a Compound Object Reference?
	What is an hResult?
	How do you register a COM Component?
	What is a Class Method?
	What are Constructors and Destructors?
	What is DISPATCH?
	Late Binding
	ID Binding
	Creating a DISPATCH Object
	How do you call a DISPATCH METHOD?
	What are Connection Points?
	Enumerating Collections
	What are Type Libraries?
	How are GUID's used with objects?
	Built-in Interfaces

	The PowerBASIC COM Browser
	The PowerBASIC COM Browser
	The PowerBASIC COM Browser user interface
	The PowerBASIC COM Browser Menu
	The PowerBASIC COM Browser Toolbar
	Shortcut Keys
	Registered Type Library View
	Source Code View
	Getting Help
	Opening a type-library
	Saving the Source Code
	Options Dialog
	The PowerBASIC COM Browser Tutorial

	The Inline Assembler
	The Inline Assembler
	Using assembly-language in your code
	Inline Assembler code syntax
	Flat memory model
	Protected mode programming
	Mnemonics and Operands
	Opcodes and Mnemonics
	Registers
	Data types in Registers
	MMX registers
	The Stack
	Balancing the stack
	Tricks of the stack
	Stack Overhead Reduction
	Saving registers
	Saving Registers at the Procedure level
	Intermixing ASM and BASIC code
	Using ESP and EBP
	Saving the FPU registers
	Tricks in preserving registers
	Addressing and pointers
	Effective Addressing
	Passing parameters
	Parameters passed by reference or by copy
	Parameters passed by value
	Passing arrays
	Passing dynamic strings
	Accessing PowerBASIC variables by name
	Commenting Assembly code

	Resource Files
	What is a Resource File?
	Resource Editors
	Resource File Compiling
	Resource Scripts
	Converting a .RC to a .RES

	Working with Visual Basic
	Visual Basic Data Types
	VB Run-time errors when calling a PowerBASIC DLL

	Optimizing your code
	Keyword Reference
	Keyword Quick Finder
	Keyword Reference
	Format and typefaces
	Command Summary
	Command Summary
	Array Operations
	Collection Objects
	COM Commands
	Communication Control
	Compiler Operations
	Debugging and Error Control
	Dynamic Dialog Tools
	File Commands
	Flow Control
	Graphic Commands
	Input Commands
	Memory Management
	Metastatements
	Numeric Operations
	Operating System
	Printing Commands
	String Operations
	Text Commands
	Thread Control
	Time Commands
	Misc Operations

	%DEF operator
	%PB_COMPILETIME numeric equate
	#ALIGN metastatement
	#BLOAT metastatement
	#COM metastatement
	#COMPILE metastatement
	#COMPILER metastatement
	#DEBUG CODE metastatement
	#DEBUG DISPLAY metastatement
	#DEBUG ERROR metastatement
	#DEBUG PRINT metastatement
	#DIM metastatement
	#EXPORT metastatement
	#IF metastatement
	#INCLUDE metastatement
	#LINK metastatement
	#MESSAGES metastatement
	#OPTIMIZE metastatement
	#OPTION metastatement
	#PAGE metastatement
	#PBFORMS metastatement
	#REGISTER metastatement
	#RESOURCE metastatement
	#STACK metastatement
	#TOOLS metastatement
	#UNIQUE metastatement
	#UTILITY metastatement
	ABS function
	ACCEL ATTACH statement
	ACODE$ function
	AND operator
	ARRAY ASSIGN statement
	ARRAY DELETE statement
	ARRAY INSERT statement
	ARRAY SCAN statement
	ARRAY SORT statement
	ARRAYATTR function
	ASC function
	ASC statement
	ASM statement
	ASM ALIGN statement
	ASMDATA/END ASMDATA statements
	ATN function
	BEEP statement
	BGR function
	BIN$ function
	BIT CALC statement
	BIT function
	BIT statement
	BITS$ function
	BITS function
	BITSE function
	BUILD$ function
	CALL statement
	CALL DWORD statement
	CALLSTK statement
	CALLSTK$ function
	CALLSTKCOUNT function
	CB Callback functions
	CBYT function
	CCUR function
	CCUX function
	CDBL function
	CDWD function
	CEIL function
	CEXT function
	CHDIR statement
	CHDRIVE statement
	CHRBYTES function
	ChrToOem$ function
	ChrToUtf8$ function
	CHOOSE function
	CHR$ function
	CHR$$ function
	CINT function
	CLASS/END CLASS block
	CLIP$ function
	CLIPBOARD GET BITMAP statement
	CLIPBOARD GET OEMTEXT statement
	CLIPBOARD GET TEXT statement
	CLIPBOARD GET UNICODE statement
	CLIPBOARD RESET statement
	CLIPBOARD SET BITMAP statement
	CLIPBOARD SET OEMTEXT statement
	CLIPBOARD SET TEXT statement
	CLIPBOARD SET UNICODE statement
	CLNG function
	CLOSE statement
	CLSID$ function
	CODEPTR function
	COMBOBOX ADD statement
	COMBOBOX DELETE statement
	COMBOBOX FIND statement
	COMBOBOX FIND EXACT statement
	COMBOBOX GET COUNT statement
	COMBOBOX GET SELCOUNT statement
	COMBOBOX GET SELECT statement
	COMBOBOX GET STATE statement
	COMBOBOX GET TEXT statement
	COMBOBOX GET USER statement
	COMBOBOX INSERT statement
	COMBOBOX RESET statement
	COMBOBOX SELECT statement
	COMBOBOX SET TEXT statement
	COMBOBOX SET USER statement
	COMBOBOX UNSELECT statement
	COMM CLOSE statement
	COMM function
	COMM LINE statement
	COMM OPEN statement
	COMM PRINT statement
	COMM RECV statement
	COMM RESET statement
	COMM SEND statement
	COMM SET statement
	COMM TIMEOUT statement
	COMMAND$ function
	CONTROL ADD statement
	CONTROL ADD BUTTON statement
	CONTROL ADD CHECK3STATE statement
	CONTROL ADD CHECKBOX statement
	CONTROL ADD COMBOBOX statement
	CONTROL ADD FRAME statement
	CONTROL ADD HEADER statement
	CONTROL ADD GRAPHIC statement
	CONTROL ADD IMAGE statement
	CONTROL ADD IMAGEX statement
	CONTROL ADD IMGBUTTON statement
	CONTROL ADD IMGBUTTONX statement
	CONTROL ADD LABEL statement
	CONTROL ADD LINE statement
	CONTROL ADD LISTBOX statement
	CONTROL ADD LISTVIEW statement
	CONTROL ADD OPTION statement
	CONTROL ADD PROGRESSBAR statement
	CONTROL ADD SCROLLBAR statement
	CONTROL ADD STATUSBAR statement
	CONTROL ADD TAB statement
	CONTROL ADD TEXTBOX statement
	CONTROL ADD TOOLBAR statement
	CONTROL ADD TREEVIEW statement
	CONTROL DISABLE statement
	CONTROL ENABLE statement
	CONTROL GET CHECK statement
	CONTROL GET CLIENT statement
	CONTROL GET LOC statement
	CONTROL GET SIZE statement
	CONTROL GET TEXT statement
	CONTROL GET USER statement
	CONTROL HANDLE statement
	CONTROL HIDE statement
	CONTROL KILL statement
	CONTROL NORMALIZE statement
	CONTROL POST statement
	CONTROL REDRAW statement
	CONTROL SEND statement
	CONTROL SET CHECK statement
	CONTROL SET CLIENT statement
	CONTROL SET COLOR statement
	CONTROL SET FOCUS statement
	CONTROL SET FONT statement
	CONTROL SET IMAGE statement
	CONTROL SET IMAGEX statement
	CONTROL SET IMGBUTTON statement
	CONTROL SET IMGBUTTONX statement
	CONTROL SET LOC statement
	CONTROL SET OPTION statement
	CONTROL SET SIZE statement
	CONTROL SET TEXT statement
	CONTROL SET USER statement
	CONTROL SHOW STATE statement
	COS function
	CQUD function
	CSET statement
	CSET$ function
	CSNG function
	CURDIR$ function
	CVBYT function
	CVCUR function
	CVCUX function
	CVD function
	CVDWD function
	CVE function
	CVI function
	CVL function
	CVQ function
	CVS function
	CVWRD function
	CWRD function
	DATA statement
	DATACOUNT function
	DATE$ system variable
	DAYNAME$ function
	DEC$ function
	DECLARE statement
	DECR statement
	DEFBYT statement
	DEFCUR statement
	DEFCUX statement
	DEFDBL statement
	DEFDWD statement
	DEFEXT statement
	DEFINT statement
	DEFLNG statement
	DEFQUD statement
	DEFSNG statement
	DEFSTR statement
	DEFWRD statement
	DESKTOP GET CLIENT statement
	DESKTOP GET LOC statement
	DESKTOP GET SIZE statement
	DIALOG DEFAULT FONT statement
	DIALOG DISABLE statement
	DIALOG DOEVENTS statement
	DIALOG ENABLE statement
	DIALOG END statement
	DIALOG GET CLIENT statement
	DIALOG GET LOC statement
	DIALOG GET SIZE statement
	DIALOG GET TEXT statement
	DIALOG GET USER statement
	DIALOG HIDE statement
	DIALOG MAXIMIZE statement
	DIALOG MINIMIZE statement
	DIALOG NEW statement
	DIALOG NONSTABLE statement
	DIALOG NORMALIZE statement
	DIALOG PIXELS statement
	DIALOG POST statement
	DIALOG REDRAW statement
	DIALOG SEND statement
	DIALOG SET CLIENT Statement
	DIALOG SET COLOR statement
	DIALOG SET ICON statement
	DIALOG SET LOC statement
	DIALOG SET SIZE statement
	DIALOG SET TEXT statement
	DIALOG SET USER statement
	DIALOG SHOW MODAL statement
	DIALOG SHOW MODELESS statement
	DIALOG SHOW STATE statement
	DIALOG STABILIZE statement
	DIALOG UNITS statement
	DIM statement
	DIR$ function
	DIR$ CLOSE statement
	DISKFREE function
	DISKSIZE function
	DISPLAY BROWSE statement
	DISPLAY COLOR statement
	DISPLAY FONT statement
	DISPLAY OPENFILE statement
	DISPLAY SAVEFILE statement
	DLLMAIN function
	DO/LOOP statements
	ENUM/END ENUM statements
	END statement
	ENVIRON statement
	ENVIRON$ function
	EOF function
	EQV operator
	ERASE statement
	ERL system variable
	ERL$ function
	ERR system variable
	ERRCLEAR system variable
	ERROR statement
	ERROR$ function
	EVENT SOURCE statement
	EVENTS statement
	EXE.Inst member
	EXE.Extn$ member
	EXE.Full$ member
	EXE.Name$ member
	EXE.Namex$ member
	EXE.Path$ member
	EXIT statement
	EXP function
	EXP2 function
	EXP10 function
	EXTRACT$ function
	FASTPROC/END FASTPROC statements
	FIELD statement
	FILEATTR function
	FILECOPY statement
	FILENAME$ function
	FILESCAN statement
	FIX function
	FLUSH statement
	FONT END statement
	FONT NEW statement
	FOR EACH/NEXT statements
	FOR/NEXT statements
	FORMAT$ function
	FRAC function
	FREEFILE function
	FUNCNAME$ function
	FUNCTION/END FUNCTION statements
	GET statement
	GET$ statement
	GET$$ statement
	GETATTR function
	GLOBAL statement
	GLOBALMEM ALLOC statement
	GLOBALMEM FREE statement
	GLOBALMEM LOCK statement
	GLOBALMEM SIZE statement
	GLOBALMEM UNLOCK statement
	GOSUB statement
	GOSUB DWORD statement
	GOTO statement
	GOTO DWORD statement
	GRAPHIC Code Group
	GRAPHIC(CANVAS.X) function
	GRAPHIC(CANVAS.Y) function
	GRAPHIC(Cell.Size.X) function
	GRAPHIC(Cell.Size.Y) function
	GRAPHIC(Chr.Size.X) function
	GRAPHIC(Chr.Size.Y) function
	GRAPHIC(Client.X) function
	GRAPHIC(Client.Y) function
	GRAPHIC(Clip.X) function
	GRAPHIC(Clip.Y) function
	GRAPHIC(COL) function
	GRAPHIC(DC) function
	GRAPHIC(INSTAT) function
	GRAPHIC(LINES) function
	GRAPHIC(LOC.X) function
	GRAPHIC(LOC.Y) function
	GRAPHIC(MIX) function
	GRAPHIC(OVERLAP) function
	GRAPHIC(PIXEL...) function
	GRAPHIC(POS.X) function
	GRAPHIC(POS.Y) function
	GRAPHIC(PPI.X) function
	GRAPHIC(PPI.Y) function
	GRAPHIC(ROW) function
	GRAPHIC(SCROLLTEXT) function
	GRAPHIC(SIZE.X) function
	GRAPHIC(SIZE.Y) function
	GRAPHIC(STRETCHMODE) function
	GRAPHIC(TEXT.SIZE.X...) function
	GRAPHIC(TEXT.SIZE.Y...) function
	GRAPHIC(View.X) function
	GRAPHIC(View.Y) function
	GRAPHIC(WORDWRAP) function
	GRAPHIC(WRAP) function
	GRAPHIC$(CAPTION) function
	GRAPHIC$(INKEY$) function
	GRAPHIC$(WAITKEY$) function
	GRAPHIC$(WAITKEY$...) function
	GRAPHIC ARC statement
	GRAPHIC ATTACH statement
	GRAPHIC BITMAP END statement
	GRAPHIC BITMAP LOAD statement
	GRAPHIC BITMAP NEW statement
	GRAPHIC BOX statement
	GRAPHIC CELL SIZE statement
	GRAPHIC CELL statement
	GRAPHIC CHR SIZE statement
	GRAPHIC CLEAR statement
	GRAPHIC COLOR statement
	GRAPHIC COPY statement
	GRAPHIC DETACH statement
	GRAPHIC ELLIPSE statement
	GRAPHIC GET BITS statement
	GRAPHIC GET CANVAS statement
	GRAPHIC GET CAPTION statement
	GRAPHIC GET CLIENT statement
	GRAPHIC GET CLIP statement
	GRAPHIC GET DC statement
	GRAPHIC GET LINES statement
	GRAPHIC GET LOC statement
	GRAPHIC GET MIX statement
	GRAPHIC GET OVERLAP statement
	GRAPHIC GET PIXEL statement
	GRAPHIC GET POS statement
	GRAPHIC GET PPI statement
	GRAPHIC GET SCALE statement
	GRAPHIC GET SCROLLTEXT statement
	GRAPHIC GET SIZE statement
	GRAPHIC GET STRETCHMODE statement
	GRAPHIC GET VIEW statement
	GRAPHIC GET WORDWRAP statement
	GRAPHIC GET WRAP statement
	GRAPHIC IMAGELIST statement
	GRAPHIC INKEY$ statement
	GRAPHIC INPUT statement
	GRAPHIC INPUT FLUSH statement
	GRAPHIC INSTAT statement
	GRAPHIC LINE INPUT statement
	GRAPHIC LINE statement
	GRAPHIC PAINT statement
	GRAPHIC PIE statement
	GRAPHIC POLYGON statement
	GRAPHIC POLYLINE statement
	GRAPHIC PRINT statement
	GRAPHIC REDRAW statement
	GRAPHIC RENDER statement
	GRAPHIC SAVE statement
	GRAPHIC SCALE statement
	GRAPHIC SET AUTOSIZE statement
	GRAPHIC SET BITS statement
	GRAPHIC SET CAPTION statement
	GRAPHIC SET CLIENT statement
	GRAPHIC SET CLIP statement
	GRAPHIC SET FIXED statement
	GRAPHIC SET FOCUS statement
	GRAPHIC SET FONT statement
	GRAPHIC SET LOC statement
	GRAPHIC SET MIX statement
	GRAPHIC SET OVERLAP statement
	GRAPHIC SET PIXEL statement
	GRAPHIC SET POS statement
	GRAPHIC SET SCROLLTEXT statement
	GRAPHIC SET SIZE statement
	GRAPHIC SET STRETCHMODE statement
	GRAPHIC SET VIEW statement
	GRAPHIC SET VIRTUAL statement
	GRAPHIC SET WORDWRAP statement
	GRAPHIC SET WRAP statement
	GRAPHIC SPLIT statement
	GRAPHIC STRETCH statement
	GRAPHIC STYLE statement
	GRAPHIC TEXT SIZE statement
	GRAPHIC WAITKEY$ statement
	GRAPHIC WIDTH statement
	GRAPHIC WINDOW statement
	GRAPHIC WINDOW CLICK statement
	GRAPHIC WINDOW END statement
	GRAPHIC WINDOW HIDE statement
	GRAPHIC WINDOW MINIMIZE statement
	GRAPHIC WINDOW NONSTABLE statement
	GRAPHIC WINDOW NORMALIZE statement
	GRAPHIC WINDOW STABILIZE statement
	GRAPHIC WINDOW TEXT statement
	GUID$ function
	GUIDTXT$ function
	HEADER GET COUNT statement
	HEADER GET ITEM statement
	HEADER SEND statement
	HEADER SET ITEM statement
	HEX$ function
	HI function
	HOST ADDR statement
	HOST NAME statement
	IDISPINFO pseudo-object
	IF statement
	IF/END IF block
	IIF function
	ILinkListCollection.ADD method
	ILinkListCollection.CLEAR method
	ILinkListCollection.COUNT method
	ILinkListCollection.FIRST method
	ILinkListCollection.INDEX method
	ILinkListCollection.INSERT method
	ILinkListCollection.ITEM method
	ILinkListCollection.LAST method
	ILinkListCollection.NEXT method
	ILinkListCollection.PREVIOUS method
	ILinkListCollection.REMOVE method
	ILinkListCollection.REPLACE method
	IMAGELIST ADD BITMAP statement
	IMAGELIST ADD ICON statement
	IMAGELIST ADD MASKED statement
	IMAGELIST GET COUNT statement
	IMAGELIST KILL statement
	IMAGELIST NEW BITMAP statement
	IMAGELIST NEW ICON statement
	IMAGELIST SET OVERLAY statement
	IMP operator
	IMPORT ADDR statement
	IMPORT CLOSE statement
	INCR statement
	INPUT# statement
	INPUTBOX$ function
	INSTANCE statement
	INSTR function
	INT function
	INTERFACE / END INTERFACE Block (Direct)
	INTERFACE/END INTERFACE block (Dispatch)
	IPowerArray.ARRAYBASE method
	IPowerArray.ARRAYDESC method
	IPowerArray.ARRAYINFO property get
	IPowerArray.ARRAYINFO property set
	IPowerArray.CLONE method
	IPowerArray.COPYFROMVARIANT method
	IPowerArray.COPYTOVARIANT method
	IPowerArray.DIM method
	IPowerArray.ELEMENTPTR method
	IPowerArray.ELEMENTSIZE method
	IPowerArray.ERASE method
	IPowerArray.LBOUND method
	IPowerArray.LOCK method
	IPowerArray.MOVEFROMVARIANT
	IPowerArray.MOVETOVARIANT
	IPowerArray.REDIM method
	IPowerArray.REDIMPRESERVE method
	IPowerArray.RESET method
	IPowerArray.SUBSCRIPTS method
	IPowerArray.UBOUND method
	IPowerArray.UNLOCK method
	IPowerArray.VALUEGET method
	IPowerArray.VALUESET method
	IPowerArray.VALUETYPE method
	IPowerCollection.ADD method
	IPowerCollection.CLEAR method
	IPowerCollection.CONTAINS method
	IPowerCollection.COUNT method
	IPowerCollection.ENTRY method
	IPowerCollection.FIRST method
	IPowerCollection.INDEX method
	IPowerCollection.ITEM method
	IPowerCollection.LAST method
	IPowerCollection.NEXT method
	IPowerCollection.PREVIOUS method
	IPowerCollection.REMOVE method
	IPowerCollection.REPLACE method
	IPowerCollection.SORT method
	IPowerThread.Close method
	IPowerThread.Equals method
	IPowerThread.Handle method
	IPowerThread.Id method
	IPowerThread.IsAlive method
	IPowerThread.Join method
	IPowerThreadLaunch method
	IPowerThread.Priority property get
	IPowerThread.Priority property set
	IPowerThread.Result method
	IPowerThread.Resume method
	IPowerThread.StackSize property get
	IPowerThread.StackSize property set
	IPowerThread.Suspend method
	IPowerThread.TimeCreate method
	IPowerThread.TimeExit method
	IPowerThread.TimeKernel method
	IPowerThread.TimeUser method
	IPowerTime.AddDays method
	IPowerTime.AddHours method
	IPowerTime.AddMinutes method
	IPowerTime.AddMonths method
	IPowerTime.AddMSeconds method
	IPowerTime.AddSeconds method
	IPowerTime.AddTicks method
	IPowerTime.AddYears method
	IPowerTime.DateDiff method
	IPowerTime.DateString method
	IPowerTime.DateStringLong method
	IPowerTime.Day method
	IPowerTime.DayOfWeek method
	IPowerTime.DayOfWeekString method
	IPowerTime.DaysInMonth method
	IPowerTime.FileTime property get
	IPowerTime.FileTime property set
	IPowerTime.Hour method
	IPowerTime.IsLeapYear method
	IPowerTime.Minute method
	IPowerTime.Month method
	IPowerTime.MonthString method
	IPowerTime.MSecond method
	IPowerTime.NewDate method
	IPowerTime.NewTime method
	IPowerTime.Now method
	IPowerTime.NowUTC method
	IPowerTime.Second method
	IPowerTime.Tick method
	IPowerTime.TimeDiff method
	IPowerTime.TimeString method
	IPowerTime.TimeString24 method
	IPowerTime.TimeStringFull method
	IPowerTime.Today method
	IPowerTime.ToLocalTime method
	IPowerTime.ToUTC method
	IPowerTime.Year method
	IQueueCollection.CLEAR method
	IQueueCollection.COUNT method
	IQueueCollection.DEQUEUE method
	IQueueCollection.ENQUEUE method
	IStackCollection.CLEAR method
	IStackCollection.COUNT method
	IStackCollection.POP method
	IStackCollection.PUSH method
	IStringBuilderA.Add method
	IStringBuilderA.Capacity Property Get
	IStringBuilderA.Capacity Property Set
	IStringBuilderA.Char Property Get
	IStringBuilderA.Char Property Set
	IStringBuilderA.Clear method
	IStringBuilderA.Delete method
	IStringBuilderA.Insert method
	IStringBuilderA.Len method
	IStringBuilderA.String method
	IStringBuilderW.Add method
	IStringBuilderW.Capacity Property Get
	IStringBuilderW.Capacity Property Set
	IStringBuilderW.Char Property Get
	IStringBuilderW.Char Property Set
	IStringBuilderW.Clear method
	IStringBuilderW.Delete method
	IStringBuilderW.Insert method
	IStringBuilderW.Len method
	IStringBuilderW.String method
	ISFALSE operator
	ISFILE Function
	ISFOLDER function
	ISINTERFACE Function
	ISMISSING function
	ISNOTHING function
	ISNOTNULL function
	ISNULL function
	ISOBJECT function
	IStackCollection
	ISTRUE operator
	ISWIN function
	ITERATE statement
	JOIN$ function
	KILL statement
	LBOUND function
	LCASE$ function
	LEFT$ function
	LEN function
	LET statement
	LET statement (with Objects)
	LET statement (with Types)
	LET statement (with Variants)
	LIBMAIN function
	LINE INPUT# statement
	LISTBOX ADD statement
	LISTBOX DELETE statement
	LISTBOX FIND statement
	LISTBOX FIND EXACT statement
	LISTBOX GET COUNT statement
	LISTBOX GET SELCOUNT statement
	LISTBOX GET SELECT statement
	LISTBOX GET STATE statement
	LISTBOX GET TEXT statement
	LISTBOX GET USER statement
	LISTBOX INSERT statement
	LISTBOX RESET statement
	LISTBOX SELECT statement
	LISTBOX SET TEXT statement
	LISTBOX SET USER statement
	LISTBOX UNSELECT statement
	LISTVIEW DELETE COLUMN statement
	LISTVIEW DELETE ITEM statement
	LISTVIEW FIND statement
	LISTVIEW FIND EXACT statement
	LISTVIEW FIT CONTENT statement
	LISTVIEW FIT HEADER statement
	LISTVIEW GET COLUMN statement
	LISTVIEW GET COUNT statement
	LISTVIEW GET HEADER statement
	LISTVIEW GET HEADERID statement
	LISTVIEW GET MODE statement
	LISTVIEW GET SELCOUNT statement
	LISTVIEW GET SELECT statement
	LISTVIEW GET STATE statement
	LISTVIEW GET STYLEXX statement
	LISTVIEW GET TEXT statement
	LISTVIEW GET USER statement
	LISTVIEW INSERT COLUMN statement
	LISTVIEW INSERT ITEM statement
	LISTVIEW RESET statement
	LISTVIEW SELECT statement
	LISTVIEW SET COLUMN statement
	LISTVIEW SET HEADER statement
	LISTVIEW SET IMAGE statement
	LISTVIEW SET IMAGE2 statement
	LISTVIEW SET IMAGELIST statement
	LISTVIEW SET MODE statement
	LISTVIEW SET OVERLAY statement
	LISTVIEW SET STYLEXX statement
	LISTVIEW SET TEXT statement
	LISTVIEW SET USER statement
	LISTVIEW SORT statement
	LISTVIEW UNSELECT statement
	LISTVIEW VISIBLE statement
	LO function
	LOC function
	LOCAL statement
	LOCK statement
	LOF function
	LOG function
	LOG2 function
	LOG10 function
	LPRINT statement
	LPRINT ATTACH statement
	LPRINT CLOSE statement
	LPRINT FLUSH statement
	LPRINT FORMFEED statement
	LPRINT$ function
	LSET statement
	LSET$ function
	LTRIM$ function
	MACRO/END MACRO block
	MAK function
	MAT statement
	MAX function
	MCASE$ function
	ME pseudo-variable
	MEMORY COPY statement
	MEMORY FILL statement
	MEMORY SWAP statement
	MENU ADD POPUP statement
	MENU ADD STRING statement
	MENU ATTACH statement
	MENU CONTEXT statement
	MENU DELETE statement
	MENU DRAW BAR statement
	MENU GET STATE statement
	MENU GET TEXT statement
	MENU NEW BAR statement
	MENU NEW POPUP statement
	MENU SET STATE statement
	MENU SET TEXT statement
	METHOD / END METHOD statements
	METRICS function
	MID$ function
	MID$ statement
	MIN function
	MKBYT$ function
	MKCUR$ function
	MKCUX$ function
	MKD$ function
	MKDIR statement
	MKDWD$ function
	MKE$ function
	MKI$ function
	MKL$ function
	MKQ$ function
	MKS$ function
	MKWRD$ function
	MOD operator
	MONTHNAME$ function
	MOUSEPTR statement
	MSGBOX function
	MSGBOX statement
	MYBASE pseudo-variable
	NAME statement
	NEXT statement
	NOT operator
	NUL$ function
	OBJACTIVE function
	OBJECT statement
	OBJEQUAL function
	OBJPTR function
	OBJRESULT function
	OBJRESULT$ function
	OCT$ function
	OemToChr$ function
	ON ERROR statement
	ON GOSUB statement
	ON GOTO statement
	OPEN statement
	OPTION EXPLICIT statement
	OR operator
	PARSE statement
	PARSE$ function
	PARSECOUNT function
	PATHNAME$ function
	PATHSCAN$ function
	PBLIBMAIN function
	PBMAIN function
	PEEK function
	PEEK$ function
	PEEK$$ function
	PLAY WAVE statement
	PLAY WAVE END statement
	POKE statement
	POKE$ statement
	POKE$$ statement
	POWERARRAY Object
	POWERTIME object
	PREFIX/END PREFIX statements
	PRINT# statement
	PRINTER$ function
	PRINTERCOUNT function
	PROCESS GET PRIORITY statement
	PROCESS SET PRIORITY statement
	PROFILE statement
	PROGID$ function
	PROGRESSBAR GET POS statement
	PROGRESSBAR GET RANGE statement
	PROGRESSBAR SET POS statement
	PROGRESSBAR SET RANGE statement
	PROGRESSBAR SET STEP statement
	PROGRESSBAR STEP statement
	PROPERTY / END PROPERTY statement
	PUT statement
	PUT$ statement
	PUT$$ statement
	RAISEEVENT statement
	RANDOMIZE statement
	READ$ function
	REDIM statement
	REGEXPR statement
	REGISTER statement
	REGREPL statement
	REM statement
	REMAIN$ function
	REMOVE$ function
	REPEAT$ function
	REPLACE statement
	RESET statement
	RESOURCE$ function
	RESUME statement
	RESUME FLUSH statement
	RESUME NEXT statement
	RESUME <Label> statement
	RETAIN$ function
	RETURN statement
	RETURN FLUSH statement
	RGB function
	RIGHT$ function
	RMDIR statement
	RND function
	ROTATE statement
	ROUND function
	RSET statement
	RSET$ function
	RTRIM$ function
	SCROLLBAR GET PAGESIZE statement
	SCROLLBAR GET POS statement
	SCROLLBAR GET RANGE statement
	SCROLLBAR GET TRACKPOS statement
	SCROLLBAR SET PAGESIZE statement
	SCROLLBAR SET POS statement
	SCROLLBAR SET RANGE statement
	SEEK function
	SEEK statement
	SELECT CASE/END SELECT block
	SETATTR statement
	SETEOF statement
	SGN function
	SHELL function
	SHELL statement
	SHIFT statement
	SHRINK$ function
	SIN function
	SIZEOF function
	SLEEP statement
	SPACE$ function
	SPLIT statement
	SQR function
	STATIC statement
	STATUSBAR SET PARTS statement
	STATUSBAR SET TEXT statement
	STR$ function
	STRDELETE$ function
	STRING$ function
	STRING$$ function
	STRINSERT$ function
	STRINGBUILDER Object
	STRPTR function
	STRREVERSE$ function
	SUB/END SUB statements
	SWAP statement
	SWITCH function
	TAB$ function
	TAB DELETE statement
	TAB GET COUNT statement
	TAB GET DIALOG statement
	TAB GET IMAGE statement
	TAB GET PAGE statement
	TAB GET SELECT statement
	TAB GET TEXT statement
	TAB INSERT PAGE statement
	TAB RESET statement
	TAB SELECT statement
	TAB SET IMAGE statement
	TAB SET IMAGELIST statement
	TAB SET TEXT statement
	TALLY function
	TAN function
	TCP ACCEPT statement
	TCP CLOSE statement
	TCP LINE INPUT statement
	TCP NOTIFY statement
	TCP OPEN statement
	TCP PRINT statement
	TCP RECV statement
	TCP SEND statement
	THREAD CLOSE statement
	THREAD Code Group
	THREAD CREATE statement
	THREAD GET PRIORITY statement
	THREAD Object
	THREAD RESUME statement
	THREAD SET PRIORITY statement
	THREAD STATUS statement
	THREAD SUSPEND statement
	THREADCOUNT function
	THREADED statement
	THREADID function
	TIME$ system variable
	TIMER function
	TIX statement
	TOOLBAR ADD BUTTON statement
	TOOLBAR ADD SEPARATOR statement
	TOOLBAR DELETE BUTTON statement
	TOOLBAR GET COUNT statement
	TOOLBAR GET STATE statement
	TOOLBAR SET IMAGELIST statement
	TOOLBAR SET STATE statement
	TRACE statement
	TREEVIEW DELETE statement
	TREEVIEW GET BOLD statement
	TREEVIEW GET CHECK statement
	TREEVIEW GET CHILD statement
	TREEVIEW GET COUNT statement
	TREEVIEW GET EXPANDED statement
	TREEVIEW GET NEXT statement
	TREEVIEW GET PARENT statement
	TREEVIEW GET PREVIOUS statement
	TREEVIEW GET ROOT statement
	TREEVIEW GET SELECT statement
	TREEVIEW GET TEXT statement
	TREEVIEW GET USER statement
	TREEVIEW INSERT ITEM statement
	TREEVIEW RESET statement
	TREEVIEW SELECT statement
	TREEVIEW SET BOLD statement
	TREEVIEW SET CHECK statement
	TREEVIEW SET EXPANDED statement
	TREEVIEW SET IMAGELIST statement
	TREEVIEW SET TEXT statement
	TREEVIEW SET USER statement
	TREEVIEW UNSELECT statement
	TRIM$ function
	TRY/END TRY block
	TXT.CELL method
	TXT.CLS method
	TXT.COLOR method
	TXT.END method
	TXT.INKEY$ method
	TXT.INSTAT method
	TXT.LINE.INPUT method
	TXT.PRINT method
	TXT.WAITKEY$ method
	TXT.WINDOW method
	TYPE/END TYPE block
	TYPE SET statement
	UBOUND function
	UCASE$ function
	UCODE$ function
	UCODEPAGE statement
	UDP CLOSE statement
	UDP NOTIFY statement
	UDP OPEN statement
	UDP RECV statement
	UDP SEND statement
	UNION/END UNION block
	UNLOCK statement
	UNWRAP$ function
	USING$ function
	Utf8ToChr$ function
	VAL function
	VAL statement
	VARIANT# function
	VARIANT$/VARIANT$$ function
	VARIANTVT function
	VARPTR function
	VERIFY function
	WHILE/WEND statements
	WINDOW GET HANDLE statement
	WINDOW GET ID statement
	WINDOW GET PARENT statement
	WINDOW GET STYLE statement
	WINDOW GET STYLEX statement
	WINDOW GET USER statement
	WINDOW SET ID statement
	WINDOW SET STYLE statement
	WINDOW SET STYLEX statement
	WINDOW SET USER statement
	WINMAIN function
	WRAP$ function
	WRITE# statement
	XOR operator
	XPRINT Code Group
	XPRINT(CANVAS.X) function
	XPRINT(CANVAS.Y) function
	XPRINT(Cell.Size.X) function
	XPRINT(Cell.Size.Y) function
	XPRINT(Chr.Size.X) function
	XPRINT(Chr.Size.Y) function
	XPRINT(Client.X) function
	XPRINT(Client.Y) function
	XPRINT(Clip.X) function
	XPRINT(Clip.Y) function
	XPRINT(COL) function
	XPRINT(COLLATE) function
	XPRINT(COLORMODE) function
	XPRINT(COPIES) function
	XPRINT(DC) function
	XPRINT(DUPLEX) function
	XPRINT(LINES) function
	XPRINT(MIX) function
	XPRINT(ORIENTATION) function
	XPRINT(OVERLAP) function
	XPRINT(PAPER) function
	XPRINT(PIXEL...) function
	XPRINT(POS.X) function
	XPRINT(POS.Y) function
	XPRINT(PPI.X) function
	XPRINT(PPI.Y) function
	XPRINT(QUALITY) function
	XPRINT(ROW) function
	XPRINT(SELECTION) function
	XPRINT(SIZE.X) function
	XPRINT(SIZE.Y) function
	XPRINT(STRETCHMODE) function
	XPRINT(TEXT.SIZE.X...) function
	XPRINT(TEXT.SIZE.Y...) function
	XPRINT(TRAY) function
	XPRINT(WORDWRAP) function
	XPRINT(WRAP) function
	XPRINT$ function
	XPRINT$(ATTACH) function
	XPRINT$(PAPERS) function
	XPRINT$(TRAYS) function
	XPRINT ARC statement
	XPRINT ATTACH statement
	XPRINT BOX statement
	XPRINT CANCEL statement
	XPRINT CELL statement
	XPRINT CELL SIZE statement
	XPRINT CHR SIZE statement
	XPRINT CLOSE statement
	XPRINT COLOR statement
	XPRINT COPY statement
	XPRINT ELLIPSE statement
	XPRINT FORMFEED statement
	XPRINT GET ATTACH statement
	XPRINT GET CANVAS statement
	XPRINT GET CLIENT statement
	XPRINT GET CLIP statement
	XPRINT GET COLLATE statement
	XPRINT GET COLORMODE statement
	XPRINT GET COPIES statement
	XPRINT GET DC statement
	XPRINT GET DUPLEX statement
	XPRINT GET LINES statement
	XPRINT GET MARGIN statement
	XPRINT GET MIX statement
	XPRINT GET ORIENTATION statement
	XPRINT GET OVERLAP statement
	XPRINT GET PAGES statement
	XPRINT GET PAPER statement
	XPRINT GET PAPERS statement
	XPRINT GET PIXEL statement
	XPRINT GET POS statement
	XPRINT GET PPI statement
	XPRINT GET QUALITY statement
	XPRINT GET SCALE statement
	XPRINT GET SELECTION statement
	XPRINT GET SIZE statement
	XPRINT GET STRETCHMODE statement
	XPRINT GET TRAY statement
	XPRINT GET TRAYS statement
	XPRINT GET WORDWRAP statement
	XPRINT GET WRAP statement
	XPRINT IMAGELIST statement
	XPRINT LINE statement
	XPRINT PIE statement
	XPRINT POLYGON statement
	XPRINT POLYLINE statement
	XPRINT PREVIEW statement
	XPRINT PRINT statement
	XPRINT RENDER statement
	XPRINT SCALE statement
	XPRINT SET CLIP statement
	XPRINT SET COLLATE statement
	XPRINT SET COLORMODE statement
	XPRINT SET COPIES statement
	XPRINT SET DUPLEX statement
	XPRINT SET FONT statement
	XPRINT SET MIX statement
	XPRINT SET ORIENTATION statement
	XPRINT SET OVERLAP statement
	XPRINT SET PAGES statement
	XPRINT SET PAPER statement
	XPRINT SET PIXEL statement
	XPRINT SET POS statement
	XPRINT SET QUALITY statement
	XPRINT SET STRETCHMODE statement
	XPRINT SET TRAY statement
	XPRINT SET WORDWRAP statement
	XPRINT SET WRAP statement
	XPRINT SPLIT statement
	XPRINT STRETCH statement
	XPRINT STRETCH PAGE statement
	XPRINT STYLE statement
	XPRINT TEXT SIZE statement
	XPRINT WIDTH statement

	Support
	Technical Support
	License Agreement

