
UIUC Physics 193POM/498POM Physics of Music/Musical Instruments 
The Physics of a Longitudinally Vibrating Metal Rod 

 
 

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL,  
2002-2013. All rights reserved. 

1

The Physics of a Longitudinally Vibrating “Singing” Metal Rod: 
 

     A metal rod (e.g. aluminum rod) a few feet in length can be made to vibrate along its length – 
make it “sing” at a characteristic, resonance frequency by holding it precisely at its mid-point 
with thumb and index finger of one hand, and then pulling the rod along its length, toward one of 
its ends with the thumb and index finger of the other hand, which   have been dusted with 
crushed violin rosin, so as to obtain a good grip on the rod as it is pulled.  
     The pulling motion of the thumb and index finger actually stretches the rod slightly, giving it 

potential energy – analogous to the potential energy associated with stretching a spring along its 
length, or a rubber band. The metal rod is actually an elastic solid – elongating slightly when 
pulled! Pulling on the rod in this manner excites the rod, causing both of its ends to 
simultaneously vibrate longitudinally, back and forth along its length at a characteristic 
resonance frequency known as its fundamental frequency, f1.  For an excited aluminum rod of 
length, L ~ 2 meters, it is thus possible that at one instant in time both ends of the rod will be 
extended a small distance, δL ~ 1 mm beyond the normal, (i.e. non-stretched) equilibrium 
position of the ends of the rod. At another instant, one-half cycle later, the ends or the rod are 
compressed inwards this same amount. The displacement amplitude is a maximum at the ends of 
the rod. A point along the vibrating rod where the displacement amplitude is a maximum is 
known as a displacement anti-node. Thus both ends of the rod are displacement anti-nodes. 
 
     This type of excitation of a metal rod is known as the so-called fundamental, or first harmonic 
(n = 1) mode of excitation, or vibration – because this mode of vibration has the lowest possible 
frequency of vibration. The rod of length L vibrates in its fundamental mode with one-half of a 
wavelength, i.e. L = ½ λ1. The longitudinal displacement from equilibrium, along the length of 
the rod, as a function of position, is shown in the figure below. It can be seen that at the mid-
point of the rod, the displacement amplitude is zero for this mode of vibration of the rod. A point 
along the vibrating rod where the displacement amplitude is zero is known as a node. This is why 
the rod is held precisely at its mid-point. If the rod is held near to, but not at its mid-point, this 
mode of excitation of the rod is much harder to accomplish, and it is also quite rapidly damped 
out – the vibrational energy that is present in the rod is absorbed in one’s hand where it is held. 
Precisely at the mid-point of the rod, there is no net displacement at that point, hence there is no 
way energy can be transferred from the rod to one’s hand; thus the rod “sings” for a very long 
time, gradually decaying away from energy loss associated with direct radiation of sound waves 
into the air, and internal frictional dissipation processes associated with the finite stiffness of the 
rod. 
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One half cycle later in the oscillation of the rod, the longitudinal displacement would appear as: 

A further one half cycle later, the longitudinal displacement will again be as shown in the top 
picture above, and so on, as time progresses. At half-way times in between these two moments, 
the longitudinal displacement from equilibrium position is momentarily zero everywhere along 
the rod. The fundamental mode of vibration of the rod has one node, at its mid-point, x = 0. 
 
The (longitudinal) speed of propagation of sound in the metal rod, v is given by the formula: 
where Y = σ/ε = Young’s modulus, also known as the tensile elastic modulus. It is the ratio of 

longitudinal, compressive stress, σ = F/A (longitudinal compressive force per unit cross sectional 
area of the rod) to the longitudinal compressive strain, ε = |L2-L1|/L1 where L1 is the equilibrium 
length of the rod, and L2 is the extended length of the rod when stretched. The density (mass per 
unit volume) of the rod, is denoted by ρ. Aluminum has a density of ρAL = 2.71 gm/cm3 = 2710 
kg/m3 and has a Young’s modulus of YAL = 70×109 N/m2. Thus, the speed of sound in aluminum 
rod is thus vAL = 5082.4 m/s.  
 
     For an aluminum rod measured to be L = 1.52 meters long, the fundamental mode of vibration 
corresponds to a wavelength of λ1 = 2L = 3.04 meters. From the relationship between 
propagation speed, frequency and wavelength, namely that v = f1λ1, then for the fundamental 
mode of vibration of the aluminum rod, we thus have f1 = v/λ1  = (5082.4 m/s)/(3.04 m) = 1671.8 
Hz (cycles per second).  
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     Using a PC-based data acquisition system consisting of a National Instruments PC+ DAQ 
card and LabView DAQ software, we recorded 15 seconds of the signal waveform from a 
microphone held in proximity to the aluminum rod, vibrating in its fundamental mode. The DAQ 
program carried out so-called a Fast Fourier Transform/Harmonic Analysis of the recorded 
waveform, in 30 one-half second time-slices. The measured frequency of the fundamental mode 
of vibration was f1 ~ 1670±2 Hz, in good agreement with the above theoretical prediction. We 
show the results for the first four time slices (i.e. first two seconds) of the 15 second duration 
measurement in the figure below: 

The fundamental frequency of the vibrating rod actually has a finite width of ~ 2 Hz. It can be 
seen that as time increases, the amplitude decreases. The following figure shows the amplitude 
signal output from the microphone, recording the fundamental mode of vibration as a function of 
time. It can be seen that initially there is a relatively quick decrease, followed by a less rapid 
decrease in sound output with time. Thus, this plot indicates that there are at least two types of 
energy loss mechanisms associated with the vibrating rod – internal dissipation in the rod, the 
other, sound radiation into the air! 
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     It is also possible to excite other, higher modes of vibration of the rod. Instead of holding the 
rod at its mid-point, one can hold the rod at a point one-quarter of its length, measured from one 
end of the rod. Pulling on the rod along its length with rosin-dusted thumb and index fingers of 
the free hand will excite the next higher, second harmonic mode (n = 2) with a frequency, f2 = 2 
f1 = 2*1671.8 Hz = 3343.6 Hz. This corresponds to a wavelength, λ2 = v/f2 = (5082.4 
m/s)/(3343.6 Hz) = L = 1.52 meters. The displacement from equilibrium along the length of the 
rod, for this higher mode of oscillation, would thus appear as: 
 

The red curve is the longitudinal displacement profile, δ(x) along the rod at one instant in time, 
say at time t = 0 seconds. The blue curve is the longitudinal displacement profile, d(x) along the 
rod one half cycle of oscillation later, at time t = τ2/2, where τ2 = 1/f2 is the period of for this 
mode of vibration of the rod. The frequency f2 is twice that of the fundamental frequency, f1, (i.e. 
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one octave above) since the wavelength, λ2 = L for this mode of vibration of the rod is half that 
of the wavelength, λ1 = 2L associated with the fundamental mode. This mode of vibration of the 
rod has two nodes, located at x = ±1/4 L and three anti-nodes, one located at the mid-point of the 
rod at x = 0, and at the two ends of the rod, at x = ±1/2 L. 
 
     The next higher, third harmonic mode of vibration of the rod (n = 3) is shown in the figure 
below. The frequency f3 is three times higher than that of the fundamental frequency, f1, since the 
wavelength, λ3 = 2/3L for this mode of vibration of the rod is one third of that of the wavelength, 
λ1 = 2L associated with the fundamental mode. This mode of vibration of the rod has three 
nodes, one node located at x = 0, and two others located at x = ±1/3 L. This mode of vibration has 
four anti-nodes, two located at x = ±1/6 L and two located at the ends of the rod, at x = ±1/2 L. 
     The next higher, fourth harmonic mode of vibration of the rod (n = 4) is shown in the figure 

below. The frequency f4 is four times (i.e. two octaves) higher than that of the fundamental 
frequency, f1, since the wavelength, λ4 = 2/4L = ½ L for this mode of vibration of the rod is one 
fourth of that of the wavelength, λ1 = 2L associated with the fundamental mode. This mode of 
vibration of the rod has four nodes, two nodes located at x = ±1/8 L, and two others located at x = 
±3/8 L. There are five anti-nodes, one located at x = 0, two located at x = ±1/4 L and two located at 
the endpoints, at x = ±1/2 L. 
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     The next higher, fifth harmonic mode of vibration of the rod (n = 5) is shown in the figure 
below. The frequency f5 is five times higher than that of the fundamental frequency, f1, since the 
wavelength, λ4 = 2/4L = ½ L for this mode of vibration of the rod is one fourth of that of the 
wavelength, λ1 = 2L associated with the fundamental mode. This mode of vibration of the rod 
has five nodes, one at x = 0, two nodes located at x = ±1/5 L, and two others located at x = ±2/5 L. 
There are six anti-nodes, two located at x = ±1/10 L, two located at x = ±3/10 L and two located at 
the endpoints, at x = ±5/10 L = ±1/2 L. 

 
     There in fact exists an infinite hierarchy of so-called normal modes of vibration of the rod. 
Note that all modes (n = 0, 1, 2, 3, 4, 5, … ) of vibration of the rod all have the same longitudinal 
speed of propagation of sound in the rod, 

 
the frequencies of the higher modes are integer multiples of the fundamental mode, 
fn = n f1, where n = 1, 2, 3, 4, 5, …. The wavelengths associated with the higher modes of 
vibration are related to the wavelength of the fundamental mode by λn = λ1/n = 2L/n.  
 
     When a person excites the rod by holding the rod at its mid-point with one hand and pulling 
on it with rosin-dusted thumb and index fingers of the other hand, not only the fundamental is 
excited, but in fact the third, fifth, seventh, ninth, … – all odd-n harmonics (n = 1, 3, 5, 7, 9,….) 
are also excited. Note that the odd harmonics all have a node at the mid-point of the rod, x = 0, 
where it is held. 
 

     If the rod is held at x = ±1/4 L to excite the 2nd harmonic, it can be seen that this location is at 
an anti-node of the 4th harmonic – thus the 4th harmonic cannot be simultaneously excited by 
holding the rod at this point. Only if harmonics simultaneously have a common node at a given 
location along the length of the rod, will it then be possible to simultaneously excite more than 
one such harmonic of the rod. 
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     We summarize the modal frequencies, wavelengths, and the locations of nodes and anti-nodes 
for the first nine harmonics associated with a vibrating rod of length, L in the table below. 
 

Harmonic 
Mode #, n 

Frequency 
f (Hz) 

Wavelength 
λ (m) 

Node Locations, (m) Anti-Node Locations, (m) 

1 f1 λ1 = 2L 0 ±1/2L 
2 f2 = 2f1 λ2 = 1/2λ1 = L ±1/4L 0, ±2/4L = ±1/2L 
3 f3 = 3f1 λ3 = 1/3λ1 = 2/3L 0, ±2/6L = ±1/3L ±1/6L, ±3/6L = ±1/2L 
4 f4 = 4f1 λ4 = 1/4λ1 = 1/2L ±1/8L,  ±3/8L 0, ±2/8L = ±1/4L, ±4/8L= 

±1/2L 
5 f5 = 5f1 λ5 = 1/5λ1 = 2/5L 0, ±2/10L = ±1/5L, ±4/10L = ±2/5L ±1/10L,  ±3/10L, ±5/10L = 

±1/2L 
6 f6 = 6f1 λ6 = 1/6λ1 = 1/3L ±1/12L,  ±3/12L = ±1/4L, ±5/12L 0, ±2/12L = ±1/6L, ±4/12L= 

±1/3L, ±6/12L= ±1/2L 
7 f7 = 7f1 λ7 = 1/7λ1 = 2/7L 0,±2/14L = ±1/7L, ±4/14L = ±2/7L, 

±6/14L = ±3/7L 
±1/14L,  ±3/14L, ±5/14L,  

±7/14L = ±1/2L 
8 f8 = 8f1 λ8 = 1/8λ1 = 1/4L ±1/16L,  ±3/16L, ±5/16L, ±7/16L 0, ±2/16L = ±1/8L, ±4/16L= 

±1/4L, ±6/16L= ±3/8L 
9 f9 = 9f1 λ9 = 1/9λ1 = 2/9L 0,±2/18L = ±1/9L, ±4/18L = ±2/9L, 

±6/18L = ±3/9L= ±1/3L,  
±8/18L = ±4/9L 

±1/18L,  ±3/18L, ±5/18L,  
±7/18L, ±9/18L = ±1/2L 

 
     We used a Hewlett-Packard HP-3652A Dynamic Signal Analyzer (another piece of electronic 
measurement equipment in our lab) to carry out real-time Fast-Fourier Transform/Harmonic 
Analysis, in order to measure the harmonic content of the modal vibrations of our L = 1.52 m 
long aluminum rod. When the aluminum rod was held at its mid-point and excited, as expected, 
we observed the first three of the odd-harmonic (n = 1, 3, 5) modes of vibration of the rod, which 
we measured to be at f1 = 1672 Hz, f3 = 5012 Hz (~ 3 f1) and f5 = 8350 Hz (~ 5 f1), respectively. 
Nearly all of the vibrational energy of the aluminum rod (> 99%) is in the fundamental – very 
little energy is contained in the higher (n = 3, n = 5) harmonics. Most of this is in the 3rd 
harmonic, with even less in the 5th harmonic. Higher order (n = 7, 9, …) harmonics were not 
observable with our setup. 
 
     When the rod was held at x = ¼ L in order to excite (only) the 2nd harmonic, we observed 
(only) the second (n = 2) harmonic at f2 = 3338 Hz (~ 2 f1).  
 
     When the rod was held at x = 1/3 L, in order to excite (only) the 3rd harmonic odd harmonic, 
we observed (only) the third (n = 3) harmonic at f3 = 5012 Hz (~ 3 f1).  
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Motional Effects associated with a Rotating, Vibrating Rod: Doppler Effect and Beats 
 
     If the aluminum rod of length, L is excited by holding it at its mid-point and then rotated in a 
manner similar to that of twirling a baton, as shown in the figure below, one hears a warbling 
tone instead of the usual steady tone, because of the so-called Doppler effect, in honor of the 
German scientist who first discovered this motional effect. 
 

     The rotating ends of the vibrating rod are moving sound sources. If the (angular) frequency of 
rotation of the rod is Ω = 2πfrot radians per second, this corresponds to a rotational frequency of 
frot = Ω/2π revolutions per second, or a period of τrot = 1/frot = 2π/Ω seconds per revolution. The 
end of the rotating rod that is moving toward a listener is Doppler-shifted to a higher frequency. 
Conversely, the end of the rotating rod that is moving away from the listener is Doppler-shifted 
to a lower frequency. The ends of the rod are rotating at a tangential speed of vt = Ω r = ½ΩL. 
  
     For a stationary observer/listener, the formula for the Doppler-shifted frequency, f’  
in terms of the original frequency, f, the speed of sound, v and the speed of the moving source, vs 
is given by: 

where the + sign is associated with the sound source moving directly away from the listener, and 
the − sign is associated with the sound source moving directly toward the listener. This 
configuration occurs at only at two points during the rotation cycle of the rod. At other times, the 

'
s

vf f
v v

⎛ ⎞
= ⎜ ⎟±⎝ ⎠

φ L/2 

L/2 

vt = Ω r = ½ ΩL 

vt = Ω r = ½ ΩL 

Observer/Listener 
Position 



UIUC Physics 193POM/498POM Physics of Music/Musical Instruments 
The Physics of a Longitudinally Vibrating Metal Rod 

 
 

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL,  
2002-2013. All rights reserved. 

9

rod is oriented at an angle, φ = Ωt, as shown in the above figure (note that we define the zero of 
time such that at t = 0, φ = 0). Then we can write the Doppler shift formula for the frequency 
associated with each end of the rod as: 

for the end (# 1) of the rod moving directly towards the observer/listener at t = 0 (when f1’ > f ) 
and: 

for the end (# 2) of the rod moving directly away from the observer/listener at t = 0 (when f2’ < 
f). Thus, the rotating vibrating rod actually emits two time-dependent frequencies, one slightly 
higher and one slightly lower than the original frequency, f  for a stationary, non-rotating rod. 
Because of the small difference in frequency between f1’ and f and f2’ and f, the two Doppler-
shifted frequencies, f1’ and f2’ are also similar to each other. 
 
     When two sounds are superimposed upon each other that differ from each other only slightly 
in frequency, the resultant, overall sound is one which is equivalent to a sound which has the 
average of the two frequencies, <favg> = ½ (f1’+ f2’) but which is amplitude modulated at the 
difference frequency,  Δf = | f1’− f2’|. This acoustical phenomenon is known as beats, and is 
shown in the figures below, for two rotating sound sources as given by the above expressions for 
the two time-dependent frequencies,  f1’ and f2’ for a rotating vibrating aluminum rod, of length L 
= 1.52 meters, fundamental frequency f = 1672 Hz, rotating at frequency of frot = 1 
revolution/second, with rotational period τrot = 1/ frot = 1 second. 
 
     At a rotational frequency of frot = 1 revolution/second, the maximum (minimum) Doppler-
shifted frequencies are ~ 23 Hz  higher (lower) than the stationary, non-rotational fundamental (n 
= 1) frequency of  f = 1672 Hz, respectively. Thus, the maximum difference frequency due to the 
rotational motion associated with the Doppler effect is Δf = | f1’− f2’| ~ 46 Hz, when the vibrating 
rod is perpendicular to the observer/listener's line of sight. However, as the vibrating rod rotates, 
the Doppler-shifted frequencies f1’ and  f2’also change with time. When the vibrating rod is 
oriented such that it is parallel to the line of sight of the observer/listener (this occurs at two 
times − at  
t = ¼ τ = 0.25 sec and at t = ¾τ = 0.75 sec), at those moments in time when there is no Doppler 
shift of either sound source (from the listener’s perspective) and hence no beats are heard at that 
instant in time, since the two frequencies are identical, the beat frequency between them Δf = | 
f1’− f2’| = 0 Hz. When the rod is again oriented perpendicular to the observer/listener’s line of 
sight (at t = ½ τ = 0.5 sec and at t = τ = 1.0 sec), then the Doppler shifts high and low are again 
maximal, with the maximal beat frequency! The two frequencies,  f1’(t) and  f2’(t) as a function 
of time, t for one entire rotational period, are shown in the figure below. 
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     If the individual displacement amplitudes associated with the sounds emanating from each of 
the two individual sound sources are given by: 

and 

 
Then the total displacement amplitude is just the linear sum of the two individual amplitudes: 
 
 

     In the first figure below, we show the total displacement amplitude, ytot(x,t) = y1(x,t) + y2(x,t) 
for the first 1/10 of a rotational period, τ so that the high-frequency structure associated with the 
two individual frequencies, f1 and f2 (~ 1670 ± 23 Hz) can be readily observed. The envelope of 
the high-frequency waveform is modulated at the beat frequency, Δf = | f1’− f2’|. 

( ) ( )1 1 1 1 1( , ) cos cos 2y x t A t A f tω π= =

( ) ( )2 2 2 2 2( , ) cos cos 2y x t A t A f tω π= =

( ) ( ) ( ) ( )1 2 1 1 2 2 1 1 2 2( , ) ( , ) ( , ) cos cos cos 2 cos 2toty x t y x t y x t A t A t A f t A f tω ω π π= + = + = +
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     In the second picture, we show the total displacement amplitude, ytot(x,t) = y1(x,t) + y2(x,t) for 
one entire rotational period, τ = 1 second. The beat pattern between the two sound sources has 
quite a lot of interesting structure, due to the rotational Doppler effect. 

 



UIUC Physics 193POM/498POM Physics of Music/Musical Instruments 
The Physics of a Longitudinally Vibrating Metal Rod 

 
 

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL,  
2002-2013. All rights reserved. 

12

     The actual beat pattern is in fact even more complicated than that shown above, due to the 
fact(s) that a.) the rotating vibrating rod is a spatially extended sound source, b.) the 
listener/observer is a finite distance from the vibrating rod, and c.) the acoustic environment also 
affects the overall sound.  Sounds emanating from the ends of the rod are reflected off of walls, 
which the listener also hears, in addition to the sound waves coming directly from the two ends 
of the rotating vibrating rod. 
 
     Thus, we can see that quite a wide variety of acoustical phenomena can be observed 
associated with the longitudinal vibrations of a simple metal rod!  
 
     Musically, it is conceivable that an entire marching band could play a musical piece where 
each marching band member twirled their own vibrating aluminum rod of a given length, tuned 
to a given frequency. As we have discussed, twirling such vibrating rods like batons gives them 
an additional, rich sound texture due to the Doppler effect. A marching band playing a musical 
piece with twirling vibrating aluminum rods of varying lengths would make for a very unique 
half-time show e.g. at the Rose Bowl! 
 
     Would Mandi Patrick, UIUC Feature Twirler, be willing to lead such a marching band??? 
 

 
Also, if interested, check out e.g. Tom Kaufmann (musician and instrument builder) playing a 
“friction harp” – a whole collection of longitudinally-vibrating rods on YouTube:  
 

http://www.youtube.com/watch?v=47wkiyLsc2U 
and: 

http://www.youtube.com/watch?v=g4i2mzQqNRY 



UIUC Physics 193POM/498POM Physics of Music/Musical Instruments 
The Physics of a Longitudinally Vibrating Metal Rod 

 
 

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL,  
2002-2013. All rights reserved. 

13

 
 
 
 
 
 
 

Legal Disclaimer and Copyright Notice: 
 
 
 
 
 
 

Legal Disclaimer: 
 

    The author specifically disclaims legal responsibility for any loss of profit, or any 
consequential, incidental, and/or other damages resulting from the mis-use of information 
contained in this document. The author has made every effort possible to ensure that the 
information contained in this document is factually and technically accurate and correct. 

 
 
 
 
 

Copyright Notice: 
 

     The contents of this document are protected under both United States of America and 
International Copyright Laws. No portion of this document may be reproduced in any manner for 
commercial use without prior written permission from the author of this document. The author 
grants permission for the use of information contained in this document for private, non-
commercial purposes only. 
 


