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Abstract

This study presents efficient techniques for multiple fundamental frequency

estimation in music signals. The proposed methodology can infer harmonic

patterns from a mixture considering interactions with other sources and evaluate

them in a joint estimation scheme. For this purpose, a set of fundamental

frequency candidates are first selected at each frame, and several hypothetical

combinations of them are generated. Combinations are independently evaluated,

and the most likely is selected taking into account the intensity and spectral
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smoothness of its inferred patterns. The method is extended considering adjacent

frames in order to smooth the detection in time, and a pitch tracking stage is

finally performed to increase the temporal coherence. The proposed algorithms

were evaluated in MIREX contests yielding state of the art results with a very low

computational burden.

1 Introduction

The goal of a multiple fundamental frequency (f0) estimation method is to

infer the number of simultaneous harmonic sounds present in an acoustic

signal and their fundamental frequencies. This problem is relevant in speech

processing, structural audio coding, and several music information retrieval

(MIR) applications, like automatic music transcription, compression,

instrument separation and chord estimation, among others.

In this study, a multiple f0 estimation method is presented for the analysis of

pitched musical signals. The core methodology introduced in [1] is described

and extended considering information about neighbor frames.

Most multiple f0 estimation methods are complex systems. The decomposition

of a signal into multiple simultaneous sounds is a challenging task due to

harmonic overlaps and inharmonicity (when partial frequencies are not exact

multiples of the f0). Many different techniques are proposed in the literature

to face this task. Recent reviews of multiple f0 estimation in music signals can

be found in [2–4].

Some techniques rely on the mid-level representation, trying to emphasize the
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underlying fundamental frequencies by applying signal processing

transformations to the input signal [5–7]. Supervised [8, 9] and

unsupervised [10,11] learning techniques have also been investigated for this

task. The matching pursuit algorithm, which approximates a solution for

decomposing a signal into linear functions (atoms), is also adopted in some

approaches [12,13]. Methods based on statistical inference within parametric

signal models [3, 14,15] have also been studied for this task.

Heuristic approaches can also be found in the literature. Iterative cancellation

methods estimate the prominent f0 subtracting it from the mixture and

repeating the process until a termination criterion [16–18]. Joint estimation

methods [19–21] can evaluate a set of possible f0 hypotheses, consisting of f0

combinations, selecting the most likely at each frame without corrupting the

residual as it occurs with iterative cancellation.

Some existing methods can be switched to another framework. For example,

iterative methods can be viewed against matching pursuit background, and

many unsupervised learning methods like [11] can be switched to a statistical

framework.

Statistical inference provides an elegant framework to deal with this problem,

but these methods are usually intended for single instrument f0 estimation

(typically piano), as exact inference often becomes computationally intractable

for complex and very different sources.

Similarly, supervised learning methods can infer models of pitch combinations

seen in the training stage, but they are currently constrained to monotimbral

sounds with almost constant spectral profiles [4].

In music, consonant chords include harmonic components of different sounds

which coincide in some of their partial frequencies (harmonic overlaps). This

situation is very frequent and introduces ambiguity in the analysis, being the

main challenge in multiple f0 estimation. When two harmonics are
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overlapped, two sinusoids of the same frequency are summed in the waveform,

resulting a signal with the same frequency and which magnitude depends on

their phase difference.

The contribution of each harmonic to the mixture can not be properly

estimated without considering the interactions with the other sources. Joint

estimation methods provide an adequate framework to deal with this problem,

as they do not assume that sources are mutually independent and individual

pitch models can be inferred taking into account their interactions. However,

they tend to have high computational costs due to the number of possible

combinations to be evaluated.

Novel efficient joint estimation techniques are presented in this study. In

contrast to previous joint approaches, the proposed algorithms have a very low

computational cost. They were evaluated and compared to other studies in

MIREX [22,23] multiple f0 estimation and tracking contests, yielding

competitive results with very efficient runtimes.

The core process, introduced in [1], relies on the inference and evaluation of

spectral patterns from the mixture. For a proper inference, source interactions

must be considered in order to estimate the amplitudes of their overlapped

harmonics. This is accomplished by evaluating independent combinations

consisting of hypothetical patterns (f0 candidates). The evaluation criterion

enhances those patterns having high intensity and smoothness. This way, the

method takes advantage of the spectral properties of most harmonic sounds, in

which first harmonics are usually those with higher energy and their spectral

profile tend to be smooth.

Evaluating many possible combinations can computationally intractable. In

this study, the efficiency is boosted by reducing the spectral information to be

considered for the analysis, adding a f0 candidate selection process, and

pruning unlikely combinations by applying some constraints, like a minimum
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intensity for a pattern.

One of the main contributions of this study is the extension of the core

algorithm to increase the temporal coherence. Instead considering isolated

frames, the combinations sharing the same pitches across neighbor frames are

grouped to smooth the detection in time. A novel pitch tracking stage is

finally presented to favor smooth transitions of pitch intensities.

The proposed algorithms are publicly available at

http://grfia.dlsi.ua.es/cm/projects/drims/software.php.

The overall scheme of the system can be seen in Figure 1. The core

methodology performing a frame by frame analysis is described in Sec. 2,

whereas the extended method which considers temporal information is

presented in Sec. 3. The evaluation results are described in Sec. 4, and the

conclusions and perspectives are finally discussed in Sec. 5.

2 Methodology

Joint estimation methods generate and evaluate competing sets of f0

combinations in order to select the most plausible combination directly. This

scheme, recently introduced in [24,25] has the advantage that the amplitudes

of overlapping partials can be approximated taking into account the partials of

the other candidates for a given combination. Therefore, partial amplitudes

can depend on the particular combination to be evaluated, opposite to an

iterative estimation scheme like matching pursuit, where a wrong estimate

may produce cumulative errors.

The core method performs a frame by frame analysis, selecting the most likely

combination of fundamental frequencies at each instant. For this purpose, a

set of f0 candidates are first identified from the spectral peaks. Then, a set of

possible combinations, C(t), of candidates are generated, and a joint algorithm
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is used to find the most likely combination.

In order to evaluate a combination, hypothetical partial sequences HPS (term

proposed in [26] to refer to a vector containing hypothetical partial

amplitudes) are inferred for its candidates. In order to build these patterns,

harmonic interactions with the partials of the other candidates in the

combination are considered. The overlapped partials are first identified, and

their amplitudes are estimated by linear interpolation using the

non-overlapped harmonic amplitudes.

Once patterns are inferred, they are evaluated taking into account the sum of

its hypothetical harmonic amplitudes and a novel smoothness measure.

Combinations are analysed considering their individual candidate scores, and

the most likely combination is selected at the target frame.

The method assumes that the spectral envelopes of the analysed sounds tend

to vary smoothly as a function of frequency. The spectral smoothness principle

has successfully been used in different ways in the literature [7,26–29]. A novel

smoothness measure based on the convolution of the hypothetical harmonic

pattern with a Gaussian window is proposed.

The processing stages, shown in Figure 1, are described below.

2.1 Preprocessing

The analysis is performed in the frequency domain, computing the magnitude

spectrogram using a 93 ms Hanning windowed frame with a 9.28 ms hop size.

This is the frame size typically chosen for multiple f0 estimation of music

signals in order to achieve a suitable frequency resolution, and it

experimentally showed to be adequate. The selected frame overlap ratio may

seem high from a practical point of view, but it was required to compare the

method with other studies in MIREX (see 4.3).
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To get a more precise estimation of the lower frequencies, zero padding is used

multiplying the original window size by a factor z to complete it with zeroes

before computing the FFT.

In order to increase the efficiency, many unnecessary spectral bins are

discarded for the subsequent analysis using a simple peak picking algorithm to

extract the hypothetical partials. At each frame, only those spectral peaks

with an amplitude higher than a threshold µ are selected, removing the rest of

spectral information and obtaining this way a sparse representation containing

a subset of spectral bins. It is important to note that this thresholding does

not have a significant effect on the results, as values of µ are quite low, but the

efficiency of the method importantly increases.

2.2 Candidate selection

The evaluation of all possible f0 combinations in a mixture is computationally

intractable, therefore a reduced subset of candidates must be chosen before

generating their combinations. For this, candidates are first selected from the

spectral peaks within the range [fmin, fmax] corresponding to the musical

pitches of interest. Harmonic sounds with missing fundamentals are not

considered, although they seldom appear in practical situations. A minimum

spectral peak amplitude ε for the first partial (f0) can also be assumed in this

stage.

The spectral magnitudes at the candidate partial positions are considered as a

criterion for candidate selection as described next.

2.2.1 Partial search

Slight harmonic deviations from ideal partial frequencies are common in music

sounds, therefore inharmonicity must be considered for partial search. For
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this, a constant margin around each harmonic frequency fh ± fr is set. If there

are no spectral peaks within this margin, the harmonic is considered to be

missing. Besides considering a constant margin, frequency dependent margins

were also tested assuming that partial deviations in high frequencies are larger

than those in low frequencies. However, results decreased, mainly because

many false positive harmonics (most of them corresponding to noise) can be

found in high frequencies.

Different strategies were also tested for partial search, and finally, like in [30],

the harmonic spectral location and spectral interval principles [31] were chosen

in order to take inharmonicity into account. The ideal frequency fh of the first

harmonic is initialized to fh = 2f0. The next ones are searched at

fh+1 = (fx + f0)± fr, where fx = fi if the previous harmonic h was found at

the frequency fi, or fx = fh if the previous partial was missing.

In many studies, the closest peak to fh within a given region is identified as a

partial. A novel variation which experimentally slightly increased (although

not significantly) the proposed method performance is the inclusion of a

triangular window. This window, centered in fh with a bandwidth 2fr and a

unity amplitude, is used to weight the partial magnitudes within this range

(see Figure 2). The spectral peak with maximum weighted value is selected as

a partial. The advantage of this scheme is that low amplitude peaks are

penalized and, besides the harmonic spectral location, intensity is also

considered to correlate the most important spectral peaks with partials.

2.2.2 Selection of F candidates

Once the hypothetical partials for all possible candidates are searched,

candidates are ordered decreasingly by the sum of their amplitudes and, at

most, only the first F candidates of this ordered list are chosen for the
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following processing stages.

Harmonic summation is a simple criterion for candidate selection, and other

alternatives can be found in the literature, including harmonicity

criterion [30], partial beating [30], or the product of harmonic amplitudes in

the power spectrum [20]. Evaluating alternative criteria for candidate selection

is left as future study.

2.3 Generation of candidate combinations

All the possible combinations of the F selected candidates are calculated and

evaluated, and the combination with highest score is yielded at the target

frame. The combinations consist of different number of fundamental

frequencies. In contrast to studies like [26], there is not need for a priori

estimation of the number of concurrent sounds before detecting the

fundamental frequencies, and the polyphony is implicitly calculated in the f0

estimation stage, choosing the combination with highest score independently

from the number of candidates.

At each frame t, a set of combinations C(t) = {C1, C2, . . . , CN} is obtained. For

efficiency, like in [20], only the combinations with a maximum polyphony P

are generated from the F candidates. The amount of combinations without

repetition (N) can be calculated as:

N =

P∑
n=1

(
F

n

)
=

P∑
n=1

F !

n!(F − n)!
(1)

Therefore, N combinations are evaluated at each frame, so the adequate

selection of F and P is critical for the computational efficiency of the

algorithm. An experimental discussion on this issue is presented in Sec. 4.2.
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2.4 Evaluation of combinations

In order to evaluate a combination Ci ∈ C(t), a hypothetical pattern is first

estimated for each of its candidates. Then, these patterns are evaluated in

terms of their intensity and smoothness, assuming that music sounds have a

perceivable intensity and their spectral shapes are smooth, like it occurs for

most harmonic instruments. The combination Ĉ(t) which patterns maximize

these measures is yielded at the target frame t.

2.4.1 Inference of hypothetical patterns

The intention of this stage is to infer harmonic patterns for the candidates.

This is performed taking into account the interactions with other candidates in

the analysed combination, assuming that they have smooth spectral envelopes.

A pattern (HPS) is a vector pc estimated for each candidate c ∈ C consisting

of the hypothetical harmonic amplitudes of the first H harmonics:

pc = (pc,1, pc,2, . . . , pc,h, . . . , pc,H)T (2)

where pc,h is the amplitude for the h harmonic of the candidate c. The

partials are searched the same way as previously described for the candidate

selection stage. If a particular harmonic is not found within the search margin,

then the corresponding value pc,h is set to zero. As in music sounds the first

harmonics are usually the most representative and they contain most of the

sound energy, only the first H partials are considered to build the patterns.

Once the partials of a candidate are identified, the HPS values are estimated

taking into account the hypothetical source interactions. For this task, their

harmonics are identified and labeled with the candidate they belong to (see

Figure 3). After the labeling process, some harmonics will only belong to one

candidate (non-overlapped harmonics), whereas others will belong to more
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than one candidate (overlapped harmonics).

Assuming that interactions between non-coincident partials (beating) do not

alter significantly the original spectral amplitudes, the non-overlapped

amplitudes are directly assigned to the HPS. However, the contribution of

each source to an overlapped partial amplitude must be estimated.

Getting an accurate estimate of the amplitudes of colliding partials is not

reliable only with the spectral magnitude information. In this study, the

additivity of linear spectrum is assumed as in most approaches in the

literature. Assuming additivity and spectral smoothness, the amplitudes of

overlapped partials can be estimated similarly to [26,32] by linear interpolation

of the neighboring non-overlapped partials, as shown in Figure 3 (bottom).

If there are two or more consecutive overlapped partials, then the interpolation

is done the same way using the available non-overlapped values. For instance,

if harmonics 2 and 3 of a pattern are overlapped, then the amplitudes of

harmonics 1 and 4 are used to estimate them by linear interpolation.

After the interpolation, the estimated contribution of each partial to the

mixture is subtracted before processing the next candidates. This calculation

(see Figure 3) is done as follows:

• If the interpolated (expected) value is greater than the corresponding

overlapped harmonic amplitude, then pc,h is set as the original harmonic

amplitude, and the spectral peak is completely removed from the

residual, setting it to zero for the candidates that share that partial.

• If the interpolated value is smaller than the corresponding overlapped

harmonic amplitude, then pc,h is set as the interpolated amplitude, and

this value is linearly subtracted for the candidates that share the

harmonic.

The residual harmonic amplitudes after this process are iteratively analysed
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for the rest of the candidates in the combination in ascending frequency order.

2.4.2 Candidate evaluation

The intensity l(c) of a candidate c is a measure of the strength of a source

obtained by summing its HPS amplitudes:

l(c) =

H∑
h=1

pc,h (3)

Assuming that a pattern should have a minimum loudness, those combinations

having any candidate with a very low absolute (l(c) < η) or relative

(l(c) < γLC , being LC = max∀c{l(c)}) intensity are discarded.

The underlying hypothesis assumes that a smooth spectral pattern is more

probable than an irregular one. This is assessed through a novel smoothness

measure s(c) which is based on Gaussian smoothing.

To compute it, the HPS of a candidate is first normalized dividing the

amplitudes by its maximum value, obtaining p̄. The aim is to compare p̄ with

a smooth model p̃ built from it, in such a way that the similarity between p̄

and p̃ will give an estimation of the smoothness.

For this purpose, p̄ is smoothed using a truncated normalized Gaussian

window N0,1, which is convolved with the HPS to obtain p̃:

p̃c = N0,1 ∗ p̄c (4)

Only three components were chosen for the Gaussian window of unity

variance, N0,1 = (0.21, 0.58, 0.21)T, due to the small size of pc, which is

limited by H. Typical values for H are within the range H ∈ [5, 20], as only

the first harmonics contain most of the energy of a harmonic source.

Then, as shown in Figure 4, a roughness measure r(c) is computed by

summing up the absolute differences between p̃ and the actual normalized
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HPS amplitudes:

r(c) =

H∑
h=1

|p̃c,h − p̄c,h| (5)

The roughness r(c) is normalized into r̄(c) to make it independent of the

intensity:

r̄(c) =
r(c)

1−N0,1(x̄)
(6)

And finally, the smoothness s(c) ∈ [0, 1] of a HPS is calculated as:

s(c) = 1− r̄(c)

Hc
(7)

where Hc is the index of the last harmonic found for the candidate. This

factor was introduced to prevent that high frequency candidates that have less

partials than those at low frequencies will have higher smoothness. This way,

the smoothness is considered to be more reliable when there are more partials

to estimate it.

A candidate score is computed taking into account the HPS smoothness and

intensity:

S(c) = l(c) · sκ(c) (8)

where κ is a factor that permits to balance the smoothness contribution

experimentally.

2.4.3 Combination selection

Once all candidates are evaluated, a salience measure S(Ci) for a combination

Ci is computed as:
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S(Ci) =

|C|∑
c=1

[S(c)]2 (9)

When there are overlapped partials, their amplitudes are estimated by

interpolation, therefore the HPS smoothness tends to increase. To partially

compensate this effect in S(Ci), the candidate scores are squared in order to

boost the highest values. This favors a sparse representation, as it is

convenient to explain the mixture with the minimum number of sources.

Experimentally, it was found that this square factor was important to improve

the success rate of the method (more details can be found at [4, p. 148]).

Once computed S(Ci) for all the combinations at C(t), the one with highest

score is selected:

Ĉ(t) = arg max
i
{S(Ci(t))} (10)

3 Extension using neighbor frames

In the previously described method, each frame was independently analysed,

yielding the combination of fundamental frequencies that maximizes a given

measure. One of the main limitations of this approach is that the window size

(93 ms) is relatively short to perceive the pitches in a complex mixture, even

for an expert musician. Context is very important in music to disambiguate

certain situations. In this section the core method is extended, considering

information about adjacent frames to produce a smoothed detection across

time.
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3.1 Temporal smoothing

A simple and effective novel technique is presented in order to smooth the

detection across time. Instead of selecting the most likely combination at

isolated frames, adjacent frames are also analysed to get the score of each

combination.

The method aims to enforce the pitch continuity in time. For this, the

fundamental frequencies of each combination C are mapped into music pitches,

obtaining a pitch combination C′. For instance, the combination

Ci = {261 Hz, 416 Hz} is mapped into C′i = {C4,G]4}.

If there is more than one combination with the same pitches (for instance,

C1 = {260 Hz} and C2 = {263 Hz} are both C′ = {C4}), it is removed, and the

unique combination with the highest score value is only kept.

Then, at each frame t, a new smoothed score function S̃(C′i(t)) for a

combination C′i(t) is computed using the neighbor frames:

S̃(C′i(t)) =

t+K∑
j=t−K

S(C′i(j)) (11)

where C′i are the combinations that appear at least once in the 2K + 1 frames

considered. Note that the score values for the same combination are summed

in the 2K frames around t to obtain S̃(C′i(t)). An example of this procedure is

displayed in Figure 5 for K = 1. If Ci is missing for any t−K < j < t+K, it

does not contribute to the sum.

In this new situation, the pitch combination at the target frame t is selected as:

Ĉ′(t) = arg max
i
{S̃(C′i(t))} (12)

If Ĉ′(t) does not contain any combination because there are no valid candidates

in the frame t, then a rest is yielded without evaluating the adjacent frames.
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This technique smoothes the detection in the temporal dimension. For a visual

example, let’s consider the smoothed intensity of a given candidate c′ as:

l̃(c′(t)) =

t+K∑
j=t−K

l(c′(j)) (13)

When the temporal evolution of the smoothed intensity l̃(c′(t)) of the winner

combination candidates is plotted in a three-dimensional representation (see

Figures 6 and 7), it can be seen that the correct estimates usually show smooth

temporal curves. An abrupt change (a sudden note onset or offset, represented

by a vertical cut in the smoothed intensities 3D plot) means that the energy of

some harmonic components of a given candidate were suddenly improperly

assigned to another candidate in the next frame. Therefore, vertical lines in

the plot usually indicate errors in assigning harmonic components.

3.2 Pitch tracking

A basic pitch tracking method is introduced in order to favor smooth

transitions of l̃(c′(t)). The proposed technique aims to increase the temporal

coherence using a layered weighted directed acyclic graph (wDAG).

The idea is to minimize abrupt changes in the intensities of the pitch

estimates. For that, a graph layered by frames is built with the pitch

combinations, where the weights consider the differences in the smoothed

intensities for the candidates in adjacent frames and their combination scores.

Let G = (V, vI , E, w, t) be a layered wDAG, with vertex set V , initial vertex

vI , edge set E, and edge function w, where w(vi, vj) is the weight of the edge

from the vertex vi to vj . The position function t : V → {0, 1, 2, . . . , T}

associates each node with an input frame, being T the total number of frames.

Each vertex vi ∈ V represents a combination C′i. The vertices are organized in

layers (see Figure 8), in such a way that all vertices in a given layer have the
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same value for t(v) = τ , and they represent the M most likely combinations at

a time frame τ .

The edges connect all the vertices of a layer with all the vertices of the next

layer so, if (vi, vj) ∈ E, then t(vi) = τ and t(vj) = τ + 1. The weights w(vi, vj)

between two combinations are computed as follows:

w(vi, vj) =
D(vi, vj)

S̃(vj) + 1
(14)

where S̃(vj) is the salience of the combination in vj and D(vi, vj) is a

similarity measure for two combinations vi and vj , corresponding to the sum

of the absolute differences between the intensities of all the candidates in both

combinations:

D(vi, vj) =
∑

∀c∈vi,vj

|l̃(vi,c)− l̃(vj,c)| +
∑

∀c∈vi−vj

l̃(vi,c) +
∑

∀c∈vj−vi

l̃(vj,c) (15)

Using this scheme, the transition weight between two combinations considers

the score of the target combination and the differences between the candidate

intensities.

Once the graph is generated, the shortest path that minimizes the sum of

weights from the starting node to the final state across the wDAG is found

using the Dijkstra [33] algorithm. The vertices that belong to the shortest

path are the pitch combinations yielded at each time frame.

Building the wDAG for all possible combinations at all frames could be

computationally intractable, but considering only the M most likely

combinations at each frame keeps almost the same runtime than without

performing tracking for small values of M .
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4 Evaluation

Initial experiments were done using a data set of random mixtures to perform

a first evaluation and set up the parameters. Then, the proposed approaches

were publicly evaluated and compared by a third party to other studies in the

MIREX [22,23] multiple f0 estimation and tracking contest.

4.1 Evaluation metrics

Different metrics for multiple f0 estimation can be found in the literature. The

evaluation can be done both at frame by frame and note levels. The first mode

evaluates the correct estimation in a frame by frame basis, whereas note

tracking also considers the temporal coherence of the detection, adding more

restrictions for a note to be considered correct. For instance, in the MIREX

note tracking contest, a note is correct if its f0 is closer than half a semitone to

the ground-truth pitch and its onset is within a ±50 ms range of the ground

truth note onset.

A false positive (FP) is a detected pitch (or note, if evaluation is performed at

note level) which is not present in the signal, and a false negative (FN) is a

missing pitch. Correctly detected pitches (OK) are those estimates that are

also present in the ground-truth at the detection time.

A commonly used metric for frame-based evaluation is the accuracy, defined as:

Acc =
ΣOK

ΣOK + ΣFP + ΣFN
(16)

Alternatively, the performance can be assessed using precision/recall terms.

Precision is related to the fidelity whereas recall is a measure of completeness.

Prec =
ΣOK

ΣOK + ΣFP
(17)
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Rec =
ΣOK

ΣOK + ΣFN
(18)

The balance between precision and recall, or F-measure, is computed as their

harmonic mean:

F-measure =
2 · Prec · Rec

Prec + Rec
=

ΣOK

ΣOK + 1
2ΣFP + 1

2ΣFN
(19)

An alternative metric based on the speaker diarization error score from NISTa

was proposed by Poliner and Ellis [34] to evaluate multiple f0 estimation

methods. The NIST metric consists of a single error score which takes into

account substitution errors (mislabeling an active voice, Esubs), miss errors

(when a voice is truly active but results in no transcript, Emiss), and false

alarm errors (when an active voice is reported without any underlying source,

Efa).

This metric avoids counting errors twice as classical metrics do in some

situations. For instance, using accuracy, if there is a C3 pitch in the reference

ground-truth but the system reports a C4, two errors (a false positive and a

false negative) are counted. However, if no pitch was detected, only one error

would be reported.

To compute the total error (Etot) in T frames, the estimated pitches at every

frame are denoted as Nsys, the ground-truth pitches as Nref , and the number

of correctly detected pitches as Ncorr, which is the intersection between Nsys

and Nref .

Etot =

∑T
t=1 max{Nref (t), Nsys(t)} −Ncorr(t)∑T

t=1Nref (t)
(20)

Poliner and Ellis [34] state that, as in the universal practice in the speech

recognition community, this is probably the most adequate measure, since it
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gives a direct feel for the quantity of errors that will occur as a proportion of

the total quantity of notes present.

4.2 Parameterization

A data set of random pitch combinations, also used in the evaluation of

Klapuri [35] method, was used to tune up the algorithm parameters. The data

set consists on 4000 mixtures with polyphonyb 1, 2, 4, and 6. The 2842 audio

samples from 32 music instruments used to generate the mixtures are from the

McGill University master samples collectionc, the University of Iowad, IRCAM

studio onlinee, and recordings of an acoustic guitar. In order to respect the

copyright restrictions, only the first 185 ms of each mixturef were used for

evaluation. In this dataset, the range of valid pitches is [fmin = 38 Hz,

fmax = 2100 Hz], and the maximum polyphony is P = 6.

The values for the free parameters of the method were experimentally

evaluated. Their impact on the performance and efficiency can be seen on

Figures 9 and 10, and it is extensively analysed in [4, pp. 141–156]. In these

figures, the cross point represents the values selected for the parameters. Lines

represent the impact tuning individual parameters when keeping the selected

values for the rest of parameters.

In the parameterization stage, the selected parameter values were not those

that achieved the highest accuracy in the test set, but those that obtained a

good trade-off between accuracy and low computational cost.

The chosen parameter values for the core method are shown in Table 1. For

the extended method, when considering K adjacent frames, different values for

parameters H = 15, η = 0.15, κ = 4, and ε = 0 showed to perform slightly

better, therefore they were selected for comparing the method to other studies

(see Sec. 4.3). A detailed analysis of the parameterization process can be
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found in [4].

4.3 Evaluation and comparison with other methods

The core method was externally evaluated and compared with other

approaches in MIREX 2007 [22] multiple f0 estimation and tracking contest,

whereas the extended method was submitted to MIREX 2008 [23]. The data

set used in both MIREX editions were essentially the same, therefore the

results can be directly compared. The details of the evaluation and the

ground-truth labeling are described in [36]. Accuracy, precision, recall and

Etot were reported for frame by frame estimation, whereas precision, recall and

F-measure were used for the note tracking task.

The core method (PI1-07) was evaluated using the parameters specified in

Table 1. For this contest, a final postprocessing stage was added. Once the

fundamental frequencies were estimated, they were converted into music

pitches, and pitch series shorter than d = 56 ms were removed to avoid some

local discontinuities.

The extended method was submitted with pitch tracking (PI1-08) and without

it (PI2-08) for comparison. In the non-tracking case, a similar procedure than

in the core method was adopted, removing notes shorter than a minimum

duration and merging note with short rests between them. Using pitch

tracking, the methodology described in Sec. 3.2 was performed instead,

increasing the temporal coherence of the estimate with the wDAG using

M = 5 combinations at each layer.

The Table 2 shows all the methods evaluated. The proposed approaches were

submitted both for frame by frame and note tracking contests, despite the

only method which performs pitch tracking is PI1-08.

In the review from Bay et al. [36], the results of the algorithms evaluated in
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both MIREX editions are analysed. As shown in Figure 11, the proposed

methods achieved a high overall accuracy and the highest precision rates. The

extended method also obtained the lowest error rates Etot from all the

methods submitted in both editions (see Figure 12).

In the evaluation of note tracking considering only onsets, the proposed

approaches showed lower accuracies (Figure 13), as only the extended method

can perform pitch tracking. The inclusion of the tracking stage did not

improve the results for frame by frame estimation, but in the note tracking

task the results outperformed those obtained for the same method without

tracking. The proposed methods were also very efficient respect to the other

state of the art algorithms presented (see Table 3), especially considering that

they are based on a joint estimation scheme.

While the proposed approaches achieved the lowest Etot score, there were very

few false alarms compared to miss errors. On the other hand, the methods

from Ryynänen and Klapuri [17] and Yeh et al. [37] had a better balanced

precision, recall, as well as a good balance in the three error types, and as a

result, high accuracies.

Quoting Bay et al. [36], “Inspecting the methods used and their performances,

we can not make generalized claims as to what type of approach works best.

In fact, statistical significance testing showed that the top three methods

(YRC, PI, and RK) were not significantly different.”

5 Conclusions and discussion

In this study, an efficient methodology is proposed for multiple f0 estimation

of real music signals assuming spectral smoothness and strong harmonic

content without any other a priori knowledge of the sources.

The method can infer and evaluate hypothetical spectral patterns from the
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analysis of different hypotheses taking into account the interactions with other

sources.

The algorithm is extended considering adjacent frames to smooth the

temporal detection. In order to increase the temporal coherence of the

detection, a novel pitch tracking stage based on a wDAG has been included.

The proposed algorithms were evaluated and compared to other works by a

third party in a public contest (MIREX), obtaining a high accuracy, the

highest precision and the lowest Etot among all the multiple f0 methods

submitted. Although many possible combinations of candidates are evaluated

at each frame, the presented approach has a very low computational cost,

showing that it is possible to make an efficient joint estimation method by

applying some constraints, like the sparse representation of only certain

spectral peaks, the candidate filtering stage, and the combination pruning

process.

The pitch tracking stage could be replaced by a more reliable method in a

future study. For instance, the transition weights could be learned from a

labeled test set, or a more complex tracking method like the high-order HMM

scheme from Chang et al. [38] could be used instead. Besides intensity, the

centroid of an HPS should also have a temporal coherence when belonging to

the same source, therefore this feature could also be considered for tracking.

Using stochastic models, a probability could be assigned to each pitch in order

to remove those that are less probable given their context. Musical

probabilities can be taken into account, like in [17], to remove very unlikely

notes. The adaptation to polyphonic music of the stochastic approach from

Perez-Sancho [39] is also planned as future study, in order to complement the

multiple f0 estimation method to obtain a musically coherent detection.

Besides frame by frame analysis and the analysis of adjacent frames, the

possibility of the extended method for combining similar information across
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frames allows to consider different alternative architectures.

This novel methodology permits interesting schemes. For example, the

beginnings of musical events can be estimated using an onset detection

algorithm like [40]. Then, combinations of those frames that are between two

consecutive onsets can be merged to yield the pitches within the inter-onset

interval. This technique is close to segmentation, and it can obtain reliable

results when the onsets are correctly estimated, as it happens with sharp

attack sounds like piano, but a wrong estimate in the onset detection stage

will affect the results.

Beats, that can be defined as a sense of equally spaced temporal units [41], can

also be detected to merge combinations with a quantization grid. Once the

beats are estimated (for example with a beat tracking algorithm like

BeatRoot [42]), a grid split with a given beat divisor 1/q can be used,

assuming that the minimum note duration is q. For instance, if q = 4, each

inter-beat interval can be split in q sections. Then, the combinations of the

frames that belong to the quantization unit can be merged to obtain the

results at each minimum grid unit. Like in the onset detection scheme, the

success rate of this approach depends on the success of the beat estimation.

The extended method can be applied using any of these schemes. The

adequate choice of the architecture depends on the signal to be analysed. For

instance, for timbres with sharp attacks, it is recommended to use onset

information, which is very reliable for these kind of sounds. These alternative

architectures have been perceptually evaluated using some example real songs,

but a more rigorous evaluation of these schemes is left for future study, since

an aligned dataset of real musical pieces with symbolic data is required for this

task.
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50. T Lidy, A Rauber, A Pertusa, JM Iñesta, Improving genre classification by

combination of audio and symbolic descriptors using a transcription

system, in Proc. of the 8th International Conference on Music Information

Retrieval (ISMIR), (Vienna, Austria, 2007), pp. 61–66

31



51. P Leveau, A multipitch detection algorithm using a sparse decomposition

with instrument-specific harmonic atoms, in Proc. of the 3rd Music

Information Retrieval Evaluation eXchange (MIREX), (Vienna, Austria,

2007)

52. G Reis, F Fernandez, A Ferreira, Genetic algorithm approach to

polyphonic music transcription for MIREX 2008, in Proc. of the 4th Music

Information Retrieval Evaluation eXchange (MIREX), (Philadelphia, PA,

2008)

53. SA Raczynski, N Ono, S Sagayama, Multipitch analisys with harmonic

nonnegative matrix approximation, in Proc. of the 8th Int. Conference on

Music Information Retrieval (ISMIR), (Vienna, Austria, 2007), pp.

381–386

54. E Vincent, N Bertin, R Badeau, Two nonnegative matrix factorization

methods for polyphonic pitch transcription, in Proc. of the 3rd Music

Information Retrieval Evaluation eXchange (MIREX), (Vienna, Austria,

2007)

55. R Zhou, JD Reiss, A real-time polyphonic music transcription system, in

Proc. of the 4th Music Information Retrieval Evaluation eXchange

(MIREX), (Philadelphia, PA, 2008)

Figure 1.. General overview of the core method and its extension.

Figure 2.. Partial selection example. The selected peak is the one with the

greatest weighted value.
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Figure 3.. HPS estimation in a combination of two candidates sepa-

rated by one octave. The HPS of f1 is estimated by interpolation using the

non-overlapped partials.

Figure 4.. Spectral smoothness measure example. The normalized HPS

vector p̄ and the smooth version p̃ of two candidates c1 (top) and c2 (down) are

shown. In this example, r(c1) = 0.13, and r(c2) = 1.23.

Figure 5.. Example of combinations fusion across adjacent frames

using K = 1.

Figure 6.. 3D intensity representation (oboe). Top: Ground-truth evolu-

tion of pitch along time for an oboe melody. Bottom: 3D temporal representa-

tion of l̃(c′(t)) for the candidates of the winner combination at each frame. In

this example, all the pitches were correctly detected.

Figure 7.. 3D intensity representation (piano). Top: Ground-truth evolu-

tion of pitch along time for a piano piece. Bottom: 3D temporal representation

of l̃(c′(t)) for the candidates of the winner combination at each frame. Most

errors occur when there exist steep intensity transitions which mean that har-

monics of a candidate were wrongly assigned to another candidate

Figure 8.. Layered wDAG example for M = 3 combinations at each

time. Each layer t(v) = τ represents a time frame, and each vertex is a combi-

nation C′i(t). Weights have been multiplied by 104 for visual clarity. The grayed

nodes are the pitch combinations selected at each frame in this example.
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Figure 9.. Accuracy for the core method in the random pitch dataset

adjusting the individual parameters. The abcissae axis is not labeled since

these values depend on each particular parameter (the first and last values for

each parameter have been displayed in each plot to get the grid step for each

parameter).

Figure 10.. Core method runtime adjusting the parameters. Frame by

frame method runtime in seconds for the entire random mixtures database for

the parameters that have some influence in the computational cost.

Figure 11.. Frame by frame MIREX accuracy. Figure from [36]. Frame

by frame precision, recall and accuracy for MIREX 07-08 multiple f0 estimation

methods.

Figure 12.. Frame by frame MIREX Etot. Figure from [36], showing Esubs,

Emiss and Efa for MIREX 07-08 frame by frame evaluation ordered by Etot.

Figure 13.. MIREX note tracking F-m (Figure from [36]). Figure from

[36]. Precision, recall, average F-measure and average overlap based on note

onset for MIREX 07-08 note tracking.
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Table 1.. Parameter values experimentally selected

Stage Parameter Symbol Value

Preprocessing
Partial selection threshold µ 0.1

Zero padding factor z 4

Candidate selection Min. f0 amplitude ε 2

Combination generation Max. number of candidates F 10

Partial search bandwidth fr 11 Hz

HPS size H 10

Combination evaluation Absolute intensity threshold γ 5

Relative intensity threshold η 0.1

Smoothness weight κ 2

Temporal smoothing Number of adjacent frames K 2

ALE Nodes is the fastest machine. Runtime details are in [22,23]
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Table 2.. MIREX 07-08 methods submitted for frame by frame (FBF)

and note tracking (NT) evaluation.

Id References FBF NT Methodology

AC-07 [43]
√ √

Unsupervised learning

CL-07 [18]
√

Iterative cancelation

CL-08 [44]
√

Iterative cancelation

YRC-07 [30]
√

Joint estimation

DRD-08 [45]
√

Iterative cancelation

EBD-07 [20]
√ √

Statistical inference

EBD-08 [46]
√ √

Statistical inference

EOS-08 [47]
√ √

Statistical inference

EOS-07 [48]
√ √

Statistical inference

MG-08 [49]
√

Database matching

PE-07 [34]
√ √

Supervised learning

PI1-07 [1]
√ √

Core method

PI2-07 [50]
√

Iterative cancellation

PI1-08
√ √

Extended method + tracking

PI2-08
√ √

Extended method

PL-07 [51]
√

Matching pursuit

RFF-08 [52]
√ √

Supervised learning

RK-07 [17]
√ √

Iterative cancellation + f0 tracking
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Table 2.. continued

Id References FBF NT Methodology

RK-08 [17]
√ √

Iterative cancellation + f0 tracking

SR-07 [53]
√

Unsupervised learning

VBB-07 [54]
√ √

Unsupervised learning

VBB-08 [54]
√ √

Unsupervised learning

YRC1-08 [37]
√

Joint estimation

YRC2-08 [37]
√ √

Joint estimation + f0 tracking

ZR-07 [7]
√

Signal processing

ZR-08 [55]
√

Signal processing

The presented methods are indicated in bold.

Table 3.. MIREX 07-08 frame by frame and note tracking runtimes

in seconds of the top ten accuracy methods

Id FBF (s) NT (s) Machine

ZR-07 271 BLACK

PI1-07 364 364 ALE Nodes

PI2-08 792 790 ALE Nodes

PI1-08 955 950 ALE Nodes

VBB2-07 2233 ALE Nodes

RK-07 3540 3285 SANDBOX

RK-08 5058 5044 ALE Nodes

YRC1-08 57483 ALE Nodes

YRC2-08 57483 57483 ALE Nodes

YRC-07 132300 ALE Nodes
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